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Abstract

We derive both the finite and infinite population spatial replicator dynamics as the fluid
limit of a stochastic cellular automaton. The infinite population spatial replicator is identical
to the model used by Vickers and our derivation justifies the addition of a diffusion to the
replicator. The finite population form generalizes the results by Durett and Levin on finite
spatial replicator games. We study the differences in the two equations as they pertain to a
one-dimensional rock-paper-scissors game.

1 Introduction

Evolutionary games using the replicator dynamic have been studied extensively and are now well
documented [1–6]. Variations on the classical replicator dynamic include discrete time dynamics [7]
and mutations [8,9]. Additional evolutionary dynamics, such as imitation [1,4,10,11] and exchange
models [12] have been studied. Alternatively evolutionary games have been extended to include
spatial models by a number of authors [13–20]. Most of these papers append a spatial component
to the classical replicator dynamics (see e.g., [18]) or discuss finite population replicator dynamics
in which total population counts are used (see e.g., [13]). In the latter case, a spatial term is again
appended to the classical replicator structure.

In [21], Durrett and Levin study discrete and spatial evolutionary game models and compare
them to their continuous, aspatial analogs. For their study the authors focus on a specific class
of two-player two-strategy games using a hawk-dove payoff matrix. Because their payoff matrix
is 2 × 2, a single (spatial) variable p(x, t) can be used to denote the proportion of the population
playing hawk (Strategy 1) while a second variable s(x, t) denotes the total population. Using the
payoff matrix:

A =

[︃
a b
c d

]︃
,

the remarkable reaction-diffusion equation is analyzed:

∂p

∂t
= ∆p+

2

s
∇p · ∇s+ pq((a− c)p+ (b− d)(1− p)) (1)

∂s

∂t
= ∆s+ s

(︁
ap2 + (b+ c)p(1− p) + (1− p)2d

)︁
− κs2. (2)
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Here κ is a death rate due to overcrowding and q = (1− p). Let ei ∈ Rn be the ith unit vector. Let
u = ⟨p, q⟩. When κ = 0, we can rewrite these equation as:

∂p

∂t
= ∆p+

2

s
∇p · ∇s+ p

(︁
eT1 − uT

)︁
Au (3)

∂s

∂t
= ∆s+ s · uTAu. (4)

That is, Durrett and Levin have encoded the replicator dynamic into a finite population spatial
partial differential equation, which differs from the one used by Vickers [18] because it assumes a
finite population in its derivation. The second term in Eq. (3) is an advection of species p along
a velocity vector given by the gradient of the whole population. However, this advection speed is
inversely proportional to the population size. Thus small populations can have a dramatic effect on
this term. As we show in Section 3, this behavior carries through for general games. To illustrate
the advection clearly, we can define the potential function:

ϕ(x) = 2 log [s(x, t)] .

We then have:

v = ∇ϕ =
2

s
∇s.

Eq. (3) can then be written as:

∂p

∂t
= ∆p+ v · ∇p+ p

(︁
eT1 − uT

)︁
Au,

giving a standard advection-diffusion equation. The logarithm in the potential function conveniently
yields the per-capita advection rate.

In this paper we show that Durrett and Levin’s finite population spatial replicator is general-
izable to an arbitrary payoff matrix. We then focus our attention on the one-dimensional rock-
paper-scissors game under the replicator dynamics in both finite and infinite populations. This
system has interesting properties in both the finite and infinite population cases. In particular, we
show: (i) the model used by Vicker’s [18] arises naturally as the infinite population limit of the
generalization of Durrett and Levin’s model, which in turn can be derived from a stochastic cellular
automaton (particle) model as a fluid limit, and (ii) the one dimensional infinite population spa-
tial rock-paper-scissors dynamic has a constant amplitude traveling wave solutions in biased RPS.
However, the finite population version does not exhibit such solutions, but does seem to exhibit
attracting stationary solutions. We illustrate the latter result numerically.

2 Model

Let A ∈ Rn×n be a payoff matrix for a symmetric game [4]. All vectors are column vectors unless
otherwise noted. Below we construct a stochastic cellular automaton and show that the fluid
limit of this system yields a generalization of Durrett and Levin’s specific finite population spatial
replicator.

The state of cell i at time index k of the cellular automaton is a tuple ⟨U1(i, k), . . . , Un(i, k)⟩
where Uj(i, k) provides the size of the population of species j at position i at time k. For simplic-
ity, we assume that species interaction may only happen between cells and not within cells; i.e.,
the U1(i, k) members of species 1 will not play against the Un(i, k) members of species n. This
assumption will become irrelevant in the limit.
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During state update, an agent A at cell i chooses a random direction (cell i′ ) and a random
member of the population (agent A′) within that cell. Assume Agent A uses strategy r while Agent
A′ uses strategy s. After play, there are α·Ars additional agents at cell i using strategy r and β ·Ars

additional agents playing strategy r at cell i′, where α+β = 1 is the probability of motion from cell
i to cell i′. If Ars < 0, then agents are removed from their respective cells. To avoid computational
issues when more members of a species die than are present, A can be modified so that Ars ≥ 0 for
all r, s ∈ {1, . . . , n}, without altering the evolutionary dynamics in proportion [2]. The update rule
for a single agent is illustrated in Fig. 1. The process described above and illustrated in Fig. 1 is

Figure 1: A single interaction between two agent in a spatial game on a one-dimensional lattice is
illustrated. The direction of interaction is chosen at random. Motion is random and governed by
α and β where α+ β = 1.

assumed to be happening simultaneously for each agent and we assume that the replication/death
as a result of game play along with the migration are happening on (roughly) the same time scale.
Using these assumptions, we can construct mean-field equations for the population Ur at position
i and time k + 1 in a 1-D cellular automaton, assuming an equal likelihood that agents diffuse
left or right. The mean number of agents playing strategy r present at position i at time k + 1 is
determined by:

1. The expected number of agents who remain at cell i: αUr(i, k)

2. The expected number of new agents created at cell i who remain at cell i:

α

2
Ur(i, k)

(︄∑︂
s

Ars (us(i+ 1, k) + us(i− 1, k))

)︄
.

3. The expected number of agents who migrate to position i from neighboring cells:

β

2
(Ur(i+ 1, k) + Ur(i− 1, k)) .
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4. The expected number of agents created in a neighboring cell who migrate to cell i:

β

2
(Ur(i+ 1, k) + Ur(i− 1, k))

∑︂
s

Arsus(i, k).

Here us(i, k) is the proportion of the population at cell i playing strategy s at time step k.
Let u(i, k) = ⟨u1(i, k), . . . , un(i, k)⟩. Re-writing sums as matrix products, the expected number

of agents playing strategy r at cell i at time k + 1 is:

Ur(i, k + 1) = αUr(i, k) +
β

2
(Ur(i+ 1, k) + Ur(i− 1, k))+

α

2
Ur(i, k)

(︁
eTr A (u(i+ 1, k) + u(i− 1, k))

)︁
+

β

2
(Ur(i+ 1, k) + Ur(i− 1, k)) eTr Au(i, k). (5)

Assume the cellular grid has lattice spacing ∆x. Following [22] and using a Taylor approxima-
tion, we can write:

Ur(x, t+∆t) ≈ Ur(x, t) + ∆t
∂Ur(x, t)

∂t
+O(∆t2)

Ur(x+∆x, t) ≈
2∑︂

j=0

∆xj

j!

∂jUr(x, t)

∂xj
+O(∆x3).

3 Derivation of Fluid Limits

We proceed to derive the mean-field approximation. Passing to the continuous case and assuming
that interaction rates decrease linearly with ∆t, we can write a second order approximation of
Eq. (5) as:

∆t
∂Ur(x, t)

∂t
= αUr(x, t) + β

(︃
Ur(x, t) +

1

2
∆x2

∂2Ur

∂x2

)︃
+

α∆tUr(x, t) · eTr A
(︃
u(x, t) +

1

2
∆x2

∂2u

∂x2

)︃
+

β∆t

(︃
Ur(x, t) +

1

2
∆x2

∂2Ur

∂x2

)︃
eTr Au(x, t)− Ur(x, t). (6)

Where the −Ur(x, t) on the right-hand-side arises from the formation of the Newton quotient on
the left-hand-side. Expanding and simplifying yields:

∆t
∂Ur(x, t)

∂t
=

β

2
∆x2

∂2Ur

∂x2
+∆tUr(x, t)e

T
r Au(x, t)+

α∆t

2
∆x2Ur(x, t)e

T
r A

∂2u

∂x2
+

β∆t

2
∆x2

∂2Ur

∂x2
eTr Au(x, t). (7)

Assume β ∈ (0, 1]. Dividing through by ∆t and assuming that lim∆t→0∆x2/∆t = 2D/β yields:

∂Ur(x, t)

∂t
= Ur(x, t)e

T
r Au(x, t) +D

∂2Ur

∂x2
. (8)
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The constant D is the diffusion constant and the assumption that

lim
∆t→0

∆x2/∆t = 2D/β

is a variant of the assumption used to derive Fick’s Law [23] and identical when β = 1.
These are the spatial dynamics used by Durrett and Levin, (in the first part of their paper),

but are derived only by adding a diffusion term to the standard finite population growth equations.
In [21], Durrett and Levin note that they derive a set of equations they feel are more appropriate
for modeling finite spatial systems. Their derivation at the end of [21] (for a specific hawk-dove
system) rests on the assumption that migration happens “on a much faster timescale” than game
interactions. Our model assumes that migration and game interactions occur on approximately
the same time scale. Under this assumption, Eq. (8) is the correct spatial adaptation for finite
populations; i.e., one simply adds a diffusion term. In the case where migration happens more
quickly, then the derivation in [21] should be used instead.

4 Spatial Replicator with Finite Population

The derivation of Eqs. (1) and (2) are not given in [21]. They can be generalized for an arbitrary
evolutionary game using Eq. (8) as the starting point. Let:

M(x, t) =
∑︂
s

Us(x, t).

Differentiating we have:

∂

∂t

Ur(x, t)

M(x, t)
=

1

M(x, t)

∂Ur(x, t)

∂t
− ur(x, t)

∑︂
s

1

M(x, t)

∂Us(x, t)

∂t
.

Substituting from Eq. (8) we obtain:

∂ur
∂t

= ur ·
(︁
eTr Au− uTAu

)︁
+

D

M

(︄
∂2Ur

∂x2
− ur ·

∑︂
s

∂2Us

∂x2

)︄
. (9)

Unlike in the derivation of the standard replicator dynamic, the rate of change of the population
proportion is not solely a function of the proportions themselves.

We can remove dependence on the individual populations to derive an independent (coupled)
system of differential equations that includes only the total population. For arbitrary strategy r,
we can apply the quotient rule to obtain:

M
∂ur
∂x

=
∂Ur

∂x
− ur

∂M

∂x

Differentiating again, multiplying by 1/M and re-arranging yields the expression:

1

M

∂2Ur

∂x2
=

ur
M

∂2M

∂x2
+

2

M

∂ur
∂x

∂M

∂x
+

∂2ur
∂x2

.

Using this we can write

D

M

(︄
∂2Ur

∂x2
− ur

∑︂
s

∂2Us

∂x2

)︄
= D

(︃
2

M

∂M

∂x

∂ur
∂x

+
∂2ur
∂x2

)︃
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Using this we can re-write Eq. (9) as:

∂ur
∂t

= ur ·
(︁
eTr Au− uTAu

)︁
+D

(︃
2

M

∂M

∂x

∂ur
∂x

+
∂2ur
∂x2

)︃
. (10)

The dynamics of M can be derived (by addition) from Eq. (8):

∂M

∂t
= MuTAu+D

∂2M

∂x2
.

Thus, we have a coupled set of differential equations written entirely in terms of u and M , rather
than Ur, M and u: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∀r

⎧⎪⎪⎨⎪⎪⎩
∂ur
∂t

=ur ·
(︁
eTr Au− uTAu

)︁
+

D

(︃
2

M

∂M

∂x

∂ur
∂x

+
∂2ur
∂x2

)︃
∂M

∂t
= MuTAu+D

∂2M

∂x2

. (11)

This is the spatial replicator equation for finite populations. Letting M = s and D = 1, we recover
the dynamics of Durrett and Levin. In contrast to the aspatial replicator, the inclusion of dynamics
for M yields a linearly independent system of differential equations.

Allowing M to approach infinity uniformly in x, we arrive at the fluid limit in terms of u alone;
this is the 1D nonlinear reaction-diffusion equation used by Vicker’s [18,19]:

∀r
{︃
∂ur
∂t

= ur ·
(︁
eTr Au− uTAu

)︁
+D

∂2ur
∂x2

. (12)

Generalization to N -dimensions is straightforward by replacing ∂2
x with the Laplacian ∆. The

N -dimensional spatial replicator with finite population is given by:

∀r
{︃
∂ur
∂t

=ur ·
(︁
eTr Au− uTAu

)︁
+

(︃
2

M
∇M · ∇ur +∆ur

)︃
∂M

∂t
= MuTAu+D∆M.

Thus, the finite population case adds a nonlinear advection term that forces ur to follow the
population gradient. A similar system is studied by deForest and Belmonte in [13], where the
payoff gradient is followed instead of the population gradient.

In both Eqs. (11) and (12), we see that the aspatial replicator dynamics appear on the right
hand side perturbed by a spatial term. It is well known that the dynamics of the aspatial replicator
are confined to the n-dimensional simplex ∆n. This remains true for the spatial replicator dynam-
ics with finite populations. Moreover, the solution ur = 1 (i.e., there is only one population) is a
fixed point for the spatial replicator dynamic since the spatial derivative of the probability distri-
bution of the population proportions is zero and the time derivative is identically zero as expected.
Thus, pure populations are constant stationary solutions for these dynamics. Lastly, if ũ(x, t) is
a constant solution at a Nash equilibrium for the game defined by A, then the right-hand-side is
again identically zero by the Folk Theorem [4] of evolutionary game theory together with the fact
that there is no spatial variation. Thus every Nash equilibrium of the matrix game corresponds
to a spatially constant stationary solution of the spatial replicator dynamic in both the finite and
infinite population cases.
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5 Example: One Dimensional Rock-Paper-Scissors

Durrett and Levin’s analysis of Hawk-Dove was aided by the fact that one strategy can be elim-
inated, leaving a coupled system of two partial differential equations. In the remainder of this
paper, we analyze variations of rock-paper-scissors (RPS), which yield more interesting results be-
cause of its cyclic three-strategy nature and because it can be easily parameterized as discussed
in [2]. Substantial work has been done on (spatial) RPS without assuming a replicator dynamic
or assuming a general replicator dynamic [24–33]. In an example of a very recent generalization,
Kabir & Tanimoto study pairwise evolution in RPS with noise [34].

A major focus of work in non-replicator spatial RPS has been on identifying spatial structures
(e.g., spirals) that can emerge from these dynamics. For completeness, we quantify the relationship
between the work in [26–33] and the replicator dynamic considered in this work in Appendix A.
There, we show that the equation system used in these references does not subsume results on the
replicator dynamic in general and hence one cannot extend these results automatically to this case.

The objective in the remainder of this work is to compare the finite and infinite population
replicator for a more interesting three strategy game. For simplicity (and in contrast to much of
the previous work in spatial RPS), we focus our attention on the one-dimensional PDE.

We consider a generalized RPS payoff matrix as given by:

A =

⎡⎣ 0 −1 1 + a
1 + a 0 −1
−1 1 + a 0

⎤⎦ .

When a = 0, this is the standard RPS game which has Nash equilibrium ⟨13 ,
1
3 ,

1
3⟩. This is the

unique interior fixed point and the aspatial replicator exhibits an elliptic fixed point at this Nash
equilibrium. This Nash equilibrium is preserved for a ̸= 0; and corresponds to an asymptotically
stable interior fixed point when a > 0 and unstable fixed point when a < 0 [35] as a result of
a degenerate Hopf bifurcation. This degenerate Hopf bifurcation is well understood and leads to
traveling wave solutions, which we discuss in Section 5.1. We note A is not as fully general as the
RPS matrix given in [4] or [35], but it is substantially easier to work with.

Let u = ⟨ur, up, us⟩ and note:

ζ(ur, up, us)
∆
= uTAu = a (urus + urup + usup) .

There are at least two classes of global solutions to Eqs. (11) and (12):

Equilibrium Solution Here, ur = up = us =
1
3 and M solves:

0 =
a

3
M +M ′′

or there is a single population (e.g., ur = 1) and M satisfies M ′′ = 0.

Oscillating Solution Here, u∗(x, t) ≡ υ∗(t) with ∗ ∈ {r, p, s} where υr, υp, υs are solutions to the
standard RPS replicator and M(x, t) = µ(t) satisfies linear equation:

µ̇ = ζ(υr, υp, υs)µ.

In either case, we may impose appropriate boundary conditions.

7



5.1 Traveling Wave Solutions

Consider the infinite population model. Letting z = x − ct, we can re-write Eq. (12) in compact
form as:

∀i

{︄
Dv′i = −ui

(︁
eTi Au− uTAu

)︁
− cvi

u′i = vi
. (13)

For RPS we have the six dimensional non-linear system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dv′r = aurζ(ur, us, up)− ur(us − up)− aurus − cvr

u′r = vr

Dv′p = aupζ(ur, us, up)− up(ur − us)− aupur − cvp

u′p = vp

Dv′s = ausζ(ur, us, up)− us(up − ur)− ausup − cvs

u′s = vs.

(14)

If u∗ is a Nash equilibrium of A, then the pair u = u∗ and v = 0 is a fixed point of Eq. (13).
Linearizing about ur = up = us =

1
3 , vr = vp = vs = 0, we obtain the eigenvalues:

λ1,2 =
−3c±

√
9c2 + 12aD

6D

λ3,4 =
−3c±

√︂
9c2 + 6aD + 6D

√
3
√︁

−(a+ 2)2

6D

λ5,6 =
−3c±

√︂
9c2 + 6aD − 6D

√
3
√︁

−(a+ 2)2

6D
.

We can simultaneously show that for appropriate choice of wave speed, a Hopf bifurcation and hence
a two dimensional center manifold exists and therefore a non-decaying traveling wave solution exists
for the PDE. As a by-product, we compute the wave speed for a non-decaying traveling wave in
terms of a and D. For some constant b (to be determined), let:

(3c± bi)2 = 9c2 + 6aD ± 6D
√
3
√︁

−(a+ 2)2 =

9c2 + i6aD ± 6D(a+ 2)
√
3.

Expanding the left hand side and relating real and imaginary parts we have:

9c2 − b2 = 9c2 + 6aD

6bc = 6D(a+ 2)
√
3.

Solving for b and c yields:

b =
√
−6aD

±c̃ = ±(a+ 2)
√
2k

2
√
−a
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Without loss of generality, assume positive c̃. Using this information, we can rewrite the eigenvalues
as:

λ̃1,2 =
−3c̃±

√︁
9c̃2 + 12aD

6D

λ̃3 =
−6c̃− bi

6D

λ̃4 =
bi

6D

λ̃5 =
−6c̃+ bi

6D

λ̃6 =
−bi

6D
.

For this solution to be physically realized, we must have a < 0. We also assume a > −2 or the
dynamics changes (i.e., winning becomes losing). These requirements and our assumption that
c̃ > 0 implies that Re(λ1,2) < 0 for all choices of D > 0 and a ∈ (−2, 0). Therefore, this system
has a four dimensional stable manifold and two pure imaginary eigenvalues, which satisfies the first
requirement of Hopf’s theorem (see [36], Page 152).

Consider λ4,6 as functions of c with:

λ4,6(c) =
−3c+

√︂
9c2 + 6aD ± 6D

√
3
√︁

−(a+ 2)2

6D
.

For c = c̃ > 0, we know that Re[λ4,6(c̃)] = 0. Differentiating we have:

λ′
4,6(c) = − 1

2D
+

3c

2D
√︂
9c2 + 6aD ± 6D

√
3
√︁
−(a+ 2)2

.

Evaluating at c = c̃ and simpilfying yields:

λ′
4,6(c̃) = − 1

2D
+

3c̃ (3c̃∓ bi)

2D
(︁
9c̃2 − b2

)︁ ,
by choice of c̃. We conclude:

Re
[︁
λ′
4,6(c̃)

]︁
= − 1

2D
+

9c̃2

2D
(︁
9c̃2 − b2

)︁ =
b2

2D
(︁
9c̃2 − b2

)︁ .
This is non-zero since we assume a < 0 and D > 0. Thus the real parts of eigenvalues λ4,6 cross
the imaginary axis with non-zero speed, satisfying the second criterion of Hopf’s theorem. Thus
we conclude that the six dimensional traveling wave ODE has a solution and moreover exhibits a
Hopf bifurcation, implying the existence of traveling wave solutions. In our numeric simulations, we
show that fine tuning the parameters leads to a numerically stable traveling wave over the region
of integration when a = −4

5 and D = 1
12 (see Figs. 4 and 6).

5.2 Illustrative Behavior in the Unbiased Games

Consider Eqs. (11) and (12) and assume the periodic boundary conditions u∗(−π, t) = u∗(π, t) for
all time. When a = 0, then ζ(ur, up, us) = 0, so the population M(x, t) satisfies the heat equation.
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For simplicity, we choose a solution to the heat equation that models the diffusion of a population
outward:

M(x, t) =
4000e

− x2

4β(t+10)

√
π
√︁

β(t+ 10)
.

The initial conditions:

ur(x, 0) =
1

3

[︁
1 + sin

(︁
x− 4π

3

)︁]︁
up(x, 0) =

1

3

[︁
1 + sin

(︁
x− 2π

3

)︁]︁
us(x, 0) =

1

3
[1 + sin (x)]

model three populations that are proportionally spread around a circle. The behavior of the three
population proportions in both finite and infinite populations are shown in Fig. 2. In the infinite

Figure 2: Illustration of finite and infinite dynamics at various points in time on the circle for
RPS with zero bias. The diffusing population causes finite population to converge to a stationary
oscillating solution, while the infinite population converges to a stationary equilibrium solution.

population case we observe that the three population proportions converge toward the equilibrium
stationary solution. This is further illustrated in Fig. 3 (left) where we show a ternary plot of
the three strategies at x = 0. By contrast the finite population solution converges toward the
oscillating stationary solution, as illustrated in Fig. 3 (right). We show the corresponding solution
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to the ordinary RPS replicator dynamic to which the system converges at all points in space. The
convergence of the infinite population system to the equilibrium at all points in space is illustrated in
Fig. 3 (left). Before converging to an oscillating solution, we can see the one-dimensional proportions

Figure 3: (left) The infinite population spatial replicator converges to an equilibrium point as
illustrated from multiple starting points on the circle. (right) The finite population spatial replicator
converges to an oscillating stationary solution as illustrated from multiple starting points on the
circle. The oscillating solution is a solution to the replicator dynamic with unbiased RPS.

proportions are affected by the diffusion of the population at large. In Fig. 2, we note that the
finite population plots are stretched with respect to their infinite population counterparts. This is
particularly noticeable at time t = 5 and t = 10. This stretching, caused by the advection of the
total population, leads to the difference in steady state solutions for the same initial conditions.

We contrast this behavior with the case when a < 0. Here, the population will collapse since
ζ(ur, up, us) ≤ 0 at all times. As noted, we set a = −4

5 and D = 1
12 . From this we compute a

constant amplitude traveling wave speed of:

c̃ =
1

2

√︃
3

10
.

This traveling wave can be seen in Fig. 4 in the infinite population plots. In contrast the population
collapse (shown in Fig. 5) causes the finite population proportions to converge to an oscillating
stationary strategy with greater and greater amplitude. This is precisely the behavior one expects
to see from RPS under the replicator dynamics when a < 0. This is also shown Fig. 6(right), in
which we show an example RPS trajectory with a = −4

5 and example trajectories at various points
in space. Interestingly, the population collapse slows dramatically as t increases. This is caused
by the fact that for (nearly) pure strategies, ζ(ur, us, ut) ≈ 0. This is illustrated in Fig. 5, where
the nearly exponential decay flattens after t ≈ 30. Additionally, Fig. 5 shows that the population
becomes asymmetric as the system evolves, as a result of the various species dynamics.

Convergence to the stable traveling wave solution is illustrated in Fig. 6 (left). Using the
computed c̃, numerical analysis provided initial conditions which can be used to find a numerical
solution to Eq. (14) that produces the closed curve (on the center manifold) that is guaranteed to
exist by the eigenvalue analysis performed in the previous section. This is shown in Fig. 6 (left).
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Figure 4: Illustration of finite and infinite dynamics at various points in time on the circle for
RPS with negative bias. In the infinite population case, a stable traveling wave emerges. In the
finite population case, population collapse causes the population proportions to swing with ever
increasing amplitude.

Figure 5: The population collapses exponentially until t ≈ 30. Additionally interactions with the
individual species cause the population to become asymmetric as illustrated by the trajectories of
M(x∗, t) at x∗ = ±π

2 .
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Figure 6: (left) The infinite population spatial replicator converges to a limit cycle of the 6 di-
mensional traveling wave ODE as illustrated from multiple starting points on the circle. (right)
The finite population spatial replicator converges to an oscillating stationary solution as illustrated
from multiple starting points on the circle. The oscillating solution is a solution to the replicator
dynamic with negative biased RPS and thus is converging to the boundary of the simplex.

6 Conclusion

In this paper we studied a finite and infinite population spatial replicator. We showed how the
finite population spatial replicator can be derived from first principles from a stochastic cellular
automaton model and from there how the infinite population replicator used by Vickers [18, 19]
follows from this. This result generalizes the work of Durrett and Levin [21] who first derived and
studied the finite population spatial replicator for a specific game. We then compared the finite
and infinite population spatial replicator for rock-paper-scissors on a circle (S1). Our results are
consistent with the work in [26–33], which studies various characteristics of RPS, not necessarily in
connection with spatial replicator. Consistent with the work in [26, 32] we show that for a certain
rock-paper-scissors variant stable amplitude traveling waves can emerge as solutions to the infinite
population spatial replicator by proving the existence of a Hopf bifurcation in the traveling wave
ODE. These traveling waves are destroyed by population collapse in the finite population spatial
replicator.

The finite population spatial replicator is intriguing because it is a highly non-linear reaction-
advection-diffusion equation where advection is governed by the per capita bulk population motion.
Identifying cases where complex behaviors emerge in the finite population case is a clear future
direction. Additionally, studying stationary solutions may yield insights. For example, in our
unbiased RPS, solutions to the stationary population equation are just the harmonic functions.
Using this simplification may help identify interesting properties of the population proportion
equations.
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A Relation to Other Rock Paper Scissors Games

A substantial amount of work has been done on rock-paper-scissors outside of the context of the
replicator dynamic. This work does not map conveniently to results on the replicator dynamic or
its spatial variants [24–34]. The earliest work to study competition among three species with cyclic
dominance may be [24], which is contemporary but does predate the earliest work in evolutionary
game theory (see e.g., [35, 37–39]). In the past twenty years, there has been substantial work on
the spatial dynamics of RPS that is independent of the spatial replicator dynamic [13–20]. Work
till 2014 is reviewed in [28]. Mobility in cyclic competition (RPS) is studied in [29,30]. The impact
of reaction rates on spatial RPS is considered in [31], while the emergence of spiraling waves is
studied in [27,33]. More recently, traveling waves, spirals and heteroclininc bifurcations have been
studied in [26,32]. A discrete time model displaying chaos is considered in [40].

The results most closely related to those in this paper (specifically Section 5.1) can be found
in the pair of papers by Postlethwaite and Rucklidge [26, 32]. Both these papers study a traveling
wave solution for a specific spatial model of the rock-paper-scissors, with a more formal treatment
given in [26]. The motivating aspatial model is given by the system of equations:

ȧ = a(1− (a+ b+ c)− (σ + ζ)b+ ζc) (15)

ḃ = b(1− (a+ b+ c)− (σ + ζ)c+ ζa) (16)

ċ = c(1− (a+ b+ c)− (σ + ζ)a+ ζb) (17)

The observation is made that when σ = 0, this system exhibits the conserved quantities a+b+c = 1
and abc = K for some constant K. Letting u1 = a, u2 = b and u3 = c, then Eqs. (15) to (17) can
be written as the standard replicator:

u̇i = ui

(︂
(ei − u)T Au

)︂
, (18)

where:

A =

⎡⎣ −1 −ζ − 1 ζ − 1
ζ − 1 −1 −ζ − 1
−ζ − 1 ζ − 1 −1

⎤⎦ (19)

This is trivially diffeomorphic to the replicator dynamic with payoff matrix:

Ã = ζ

⎡⎣ 0 −1 1
1 0 −1
−1 1 0

⎤⎦ . (20)

This is a scaled version of the standard (unbiased) RPS payoff matrix. However, when σ ̸= 0, then
Eqs. (15) to (17) can be written as:

u̇i = ui
(︁
1 + eTi Bu

)︁
, (21)

with:

B =

⎡⎣ −1 −σ − ζ − 1 ζ − 1
ζ − 1 −1 −σ − ζ − 1

−σ − ζ − 1 ζ − 1 −1

⎤⎦ . (22)

Population evolution equations of this form are considered in [41]. When σ = 0, then uTBu =
uTAu = −1, from which we derive Eq. (18). For σ ̸= 0, this is not the case and consequently
the dynamics of Eqs. (15) to (17) are not trapped on the unit 2-simplex as will be the case when
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Figure 7: We illustrate that the dynamics studied in [26, 32] are not trapped on the unit simplex
for σ ̸= 0, while the same dynamics are illustrative of an unbiased RPS game when σ = 0.

we study (un)biased spatial replicator dynamics in finite and infinite populations. To be clear, the
authors of [26, 32] make no claim to this effect, however it does create an important distinction
between the work in these papers and the work in this paper. Additionally, as illustrated in Fig. 7,
the ODE dynamics that give rise to the PDE are not trapped on the unit simplex (as they are in
the replicator) thus suggesting distinct behaviors may be observed.
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[31] Qian He, Mauro Mobilia, and Uwe C Täuber. Spatial rock-paper-scissors models with inho-
mogeneous reaction rates. Physical Review E, 82(5):051909, 2010.

[32] CM Postlethwaite and AM Rucklidge. Spirals and heteroclinic cycles in a spatially extended
rock-paper-scissors model of cyclic dominance. EPL (Europhysics Letters), 117(4):48006, 2017.

[33] Bartosz Szczesny, Mauro Mobilia, and Alastair M Rucklidge. When does cyclic dominance
lead to stable spiral waves? EPL (Europhysics Letters), 102(2):28012, 2013.

[34] KM Ariful Kabir and Jun Tanimoto. The role of pairwise nonlinear evolutionary dynamics in
the rock–paper–scissors game with noise. Applied Mathematics and Computation, 394:125767,
2021.

[35] E. C. Zeeman. Population dynamics from game theory. InGlobal Theory of Dynamical Systems,
number 819 in Springer Lecture Notes in Mathematics. Springer, 1980.

[36] John Guckenheimer and Philip Holmes. Nonlinear oscillations, dynamical systems, and bifur-
cations of vector fields, volume 42. Springer Science & Business Media, 2013.

[37] Peter D Taylor and Leo B Jonker. Evolutionary stable strategies and game dynamics. Math-
ematical Biosciences, 40(1-2):145–156, 1978.

[38] J. Hofbauer. On the occurrence of limit cycles in the volterra- lotka equation. Nonlinear
Analysis, Theory, Methods and Applications, 5(9):1003–1007, 1981.

[39] Immanuel M Bomze. Lotka-volterra equation and replicator dynamics: a two-dimensional
classification. Biological cybernetics, 48(3):201–211, 1983.

[40] Yuzuru Sato, Eizo Akiyama, and J. Doyne Farmer. Chaos in learning a simple two-person
game. PNAS, 99(7):4748–4751, 2002.

[41] Elisabeth Paulson and Christopher Griffin. Cooperation can emerge in prisoner’s dilemma
from a multi-species predator prey replicator dynamic. Mathematical Biosciences, 278:56 – 62,
2016.

17


	Introduction
	Model
	Derivation of Fluid Limits
	Spatial Replicator with Finite Population
	Example: One Dimensional Rock-Paper-Scissors
	Traveling Wave Solutions
	Illustrative Behavior in the Unbiased Games

	Conclusion
	Relation to Other Rock Paper Scissors Games

