Statistical mechanics of clock gene networks
underlying circadian rhythms

Lidan Sun'?, Ang Dong!-%, Christopher Griffin, and Rongling Wu*

Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry
University, Beijing 100083, China

2Center for Computational Biology, College of Biological Sciences and Technology, Beijing
Forestry University, Beijing 100083, China

3Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802,
USA

“Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The

Pennsylvania State University, Hershey, PA 17033, USA

Corresponding author: Rongling Wu, rwu@phs.psu.edu




Abstract

All multicellular organisms embed endogenous circadian oscillators or clocks that rhythmically
regulate a wide variety of processes in response to daily environmental cycles. Previous
molecular studies using rhythmic mutants for several model systems have identified a set of
genes responsible for rhythmic activities and illustrated the molecular mechanisms underlying
how disruptions in circadian rhythms are associated with the sort of aberrant cell cycling.
However, the wide use of these forward genetic studies is impaired by a limited number of
mutations that can be identified or induced only in a single genome, limiting the identification of
many other conserved or non-conserved clock genes. Genetic linkage or association mapping
provides an unprecedented glimpse into the genome-wide scanning and characterization of genes
underlying circadian rthythms. The implementation of sophisticated statistical models into
mapping studies can not only identify key clock genes or clock quantitative trait loci (cQTL) but
also, more importantly, reveal a complete picture of the genetic control mechanisms constituted
by gene interactomes. Here, we introduce and review an advanced statistical mechanics
framework for coalescing all possible clock genes into intricate but well-organizing interaction
networks that regulate rhythmic cycles. The application of this framework to widely available
mapping populations will reshape and further our understanding of the genetic signatures behind

circadian rhythms for an enlarged range of species including microbes, plants, and humans.
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1. Introduction

The 24-h rotation of the Earth causes predictable changes in light and temperature in our natural
environment. Accordingly, all living organisms from microorganisms to insects, plants, and
mammals exhibit circadian rhythms, i.e., sustained oscillations with a period close to 24 h [1].
Circadian rhythms are mediated by an internal body clock, which appears nearly ubiquitous in

life, and regulates a wide array of metabolic and physiological functions, such as hormone 2



production, cell regeneration, brain wave activity and organism behavior [2-5]. Disruptions in
biological rhythms can be associated with aberrant cell cycling, ultimately leading to disease
such as tumorigenesis, cardiovascular disease, and neurodegenerative disorders [6-8] and

reduced productivity in plants [9-12].

The biological process of circadian rhythms involves three fundamental components: Input
pathways that transmit environmental cues to the circadian clock, the clock gene itself, which
generates the biological rhythm, and output pathways that entrain the clock’s information
regarding phase and periodicity to the rest of the organism [13]. Extensive molecular studies
have successfully identified specific clock genes that regulate an organism’s cyclic response to
its surrounding environment [14-16]. The first clock gene, per, was characterized and cloned in
Drosophila [17-19], which was subsequently found to regulate circadian rhythms through its
protein product PER [20-23]. However, the question of how the PER protein enters the nucleus
to act as a transcriptional factor was not answered until the second clock gene tim was discovered
[24,25]. Takahashi and his group found that the transcription of ¢tim and per were crucial for
sustaining an autonomous oscillation that is activated by a positive input, clock, the first clock
gene detected in mammals [26-28], that functions through the CLOCK-BMALI1 heterodimeric
transcription factor [29]. Tremendous efforts have been made to understand the molecular basis
of how the clock genes receive input signals, drive their entrainment, and regulate cellular

aspects of circadian rhythms [1,8].

With the continuous improvement of molecular and cloning techniques, an increasing number of
clock genes have been detected and characterized [1,30-34]. These genes were revealed to
encode proteins through multiple interconnected transcriptional and translational feedback loops,
having various impacts on physiological and behavioral rhythmicity [1,16,34-38]. Despite this
progress, a complete characterization of clock genes and their rhythmic functions is still far from
clear. First, the current identification of molecular components for circadian clocks is mostly
based on forward genetics approaches that utilize mutants with abnormal behavioral cycles to
map genes [39]. In practice, only a limited number of rhythm mutations can be detected or
induced in a single genome for several well-studied model systems, such as cyanobacteria,

Neurospora crassa, Arabidopsis thaliana, Drosophila melanogaster and Mus musculus (mice).
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[1,40,41]. It is largely unknown how clock genes occur and function in those organisms for
which mutants are hardly available. Second, although circadian rhythms are omnipresent, their
underlying molecular mechanisms are not conserved among evolutionarily divergent organisms
[42-45], which makes it difficult or even impossible to chart a complete picture of clock

machineries from only model systems.

Linkage or association mapping is a forward genetic tool that can serve as an alternative
approach for clock gene detection [46]. This approach, not relying on rhythmic mutants, can take
advantage of increasingly available genotypic and sequencing data collected at unprecedented
resolution for almost all species and make a full use of considerable allelic variation in clock
function that has been accumulated during evolution in natural populations [47,48]. It displays a
formidable ability to map a complete set of quantitative trait loci (QTLs) throughout the entire
genome that control a rhythmic trait. For example, using linkage mapping or association studies,
important clock QTLs (cQTLs) that mediate rhythmic activities have been mapped in several
species [49-55]. These studies perform association analysis between marker genotypes and
chronophenotypes to identify and map significant genetic loci. To leverage the biological
relevance of cQTL detection, several dynamic mapping approaches have been proposed to
characterize how QTLs globally regulate the periodic pattern and form of circadian rhythms
expressed in various stages from gene expression to protein turnover to metabolic rhythm and
ultimately to cell cycles [56-63]. These dynamic approaches, referred to collectively as
functional mapping or systems mapping (reviewed in [64-66]), integrate mathematical aspects of
circadian rhythms into a mapping setting, and provide a capacity to test the temporal trajectories

of genetic effects, exerted by cQTLs, on rhythmic patterns.

Existing mapping models were developed to detect individual significant QTLs from a large pool
of genome-wide molecular markers. These models work well in specific situations, but may not
work for rhythmic mapping because circadian clocks involve a number of heterogeneous genes
that act singly and work together via local or non-local interactions. The past three decades have
seen the tremendous development of statistical models for reconstructing interaction networks
from gene expression data (see a number of excellent reviews [67-70] from different

perspectives). Reconstruction of genetic networks at the QTL level is much more challenging,
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although a genome-wide QTL-QTL interaction network can provide direct insight into the
genetic control of complex biological processes. More recently, Jiang et al. [71] have proposed a
statistical model for mapping QTL networks underlying developmental trajectories by
integrating functional mapping and evolutionary game theory. We argue that this model can be
modified to map new cQTLs for rhythmic processes and unveil how these cQTLs interact with
each other through an intrinsic but well-orchestrated network. Here, by reviewing the
fundamental utility of this model to study clock genetics, we augment it into a generic paradigm
in which genome-wide interactome networks can be inferred at any dimension. We also integrate
QTL control networks and gene regulatory networks to establish an intertwined bidirectional,
signed, and weight circuit that can better reveal key organizing principles of how biological

rhythms are regulated through a web of interacting cQTLs and transcriptomic networks.

2. A general framework for systems evolutionary game networks

Notation: Different from traditional forward genetics, reverse genetics based on mapping or
association studies can simultaneously detect and map a wide array of new genes regulating
rhythmic pattern and function for any species, without relying on the characterization of
rhythmic mutants. Also, unlike the notion of clock genes limited to transcriptional genes and
their products in forward genetics, clock mapping studies based on reverse genetic thinking are
concerned with gene detection that covers an entire domain of the central dogma of biology
ranging from DNA to RNA to proteins to cellular physiology and behavior. To clarify some
issues, we provide several relevant notations. In a mapping population, we genotype DNA
markers, e.g., single nucleotide polymorphisms (SNPs), measure the profiles of genes and their
products, and phenotype complex traits, aimed at illustrating a DNA to RNA to phenotype
pathway. We call the networks composed of DNA markers, transcriptional genes, and
phenotypic traits genetic or SNP-SNP interaction networks, gene (regulatory) networks, and
phenotypic networks, respectively. We use positive or negative epistasis to define interactions
between different markers and synergism and antagonism to define the pattern of how
transcriptional genes (or phenotypic traits) are co-regulated. We assume that phenotypic traits are
causally regulated by transcriptional genes, which are controlled by DNA markers. We refer to

the DNA markers that are significantly associated with gene expression or phenotypic variationg



OTLs.

Circadian oscillators function through highly interconnected, autoregulatory gene networks that
contain transcription-translation feedback loop motifs [1,16,34,72]. To accommodate this
complexity of thythmic processes, we describe a general framework for reconstructing SNP-SNP
interaction and gene regulatory networks that cover all genome-wide genes in order to chart a
complete atlas of the molecular mechanisms underlying circadian rhythms. Suppose there is a
circadian clock constituted by a number of genes that are rhythmically expressed to regulate
behavior and physiological traits in a way that conform to the daily environmental cycle of
light/dark. All these processes are encoded by an unknown number of DNA variants distributed
throughout the genome. An oscillating clock is large in dimension, complex in structure,
heterogeneous in organization, and diverse in function. Despite these recalcitrant characteristics,
we can view it as a multiplayer game. Originating in economic research [73], game theory
studies and models the payoff of one player based on the strategy implemented by the other
player. The application of game theory has been largely popularized by the concept of the Nash
equilibrium, a proposed solution of a non-cooperative game, at which each rational agent tends
to choose an optimal strategy to maximize its payoff, conditional on the strategies of its
opponents, as long as the latter remains unchanged [74]. By combining game theory and
evolutionary biology, Smith and Price [75] formulated evolutionary game theory to interpret how
frequency dependent fitness drives strategies to evolution [76]. This theory’s core is the concept
of an evolutionarily stable strategy regarded as an equilibrium refinement of the Nash
equilibrium and its extension to population evolution. However, Smith and Price’s evolutionary
game theory serves as the static analysis tool of evolutionary stability because it does not attempt
to model how strategies change in a population. By adding the time dimension, we expand
evolutionary game theory to its dynamic domain, making it possible to explicitly model the
change of strategy frequencies in the population. Such a dynamic evolutionary game theory
(dEGT) does not need to specifically define a notion of evolutionary stability because, by
specifying a population dynamic model, all of the standard stability concepts may be used to
characterize dynamical systems. As such, if a dynamic model is developed, we can implement
dEGT to characterize how a player achieves its payoff differently over time through its own

strategy and the strategies implemented by other players.



We interpret a circadian clock through the lens of dEGT. We view entities comprising the clock
as interactive players. The magnitude at which an entity regulates rhythmicity depends on the
intrinsic capacity of this entity and the extrinsic influences of other entities on it. Let gi(f) denote
the effect of entity j on a rhythmic trait at time ¢ (¢ = 71, ..., f7), which can be characterize by a
non-linear quasispecies (or non-linear Lotka-Volterra) equation. A whole rhythmic network is
composed of ¢ such quasispecies equations, specified by a system of ordinary differential

equations (ODEs), i.c.,

g;(t) = Qj(gj(t):ej) + Z ij’(gj’(t):ejj’)'j =1..,q €Y)

j'=1,j'#j

where the net effect of entity j includes two components: independent effect Of(g;(t): ;) that is
expected to occur when this entity is assumed to be socially isolated and accumulated dependent
effect £Q;;7,(g;1,(t): ©;;,) that results from the influence of other entities j' (j' = 1, ..., /-1,
Jj+1, ..., m) on the focal entity. The pattern and strength of how an entity acts independently are
determined by its own innate strategy, whereas how and how much the action of this entity is
affected depend on the strategies of other entities. Thus, we express the independent effect of
entity j as a function of g;(¢) and its dependent effect as a function of g/ (t). Equation (1)
represents a mathematically formulated dEGT framework for systematically characterizing inter-
entity interactions and their impacts on circadian changes. Given the uniqueness of the above

derivation procedure, we call networks reconstructed under this procedure systems evolutionary

game networks (SEGNS).

3. Statistical reconstruction of genetic SEGNs

3.1. Building up SEGN equations by functional mapping



To reconstruct the SEGN at the DNA level, we need to obtain genetic effects of individual SNPs
on biological rhythmicity, which can be used to formulate the nonlinear quasi-species equations,
as described by equation (1). At this time, j denotes a SNP, g denotes the number of SNPs, and
g;(t) denotes the genetic effect of SNP j on circadian rhythms at time . Functional mapping is a
dynamic mapping approach that can estimate the temporal pattern of genetic effect or genetic
variance due to single significant SNPs or single SNP pairs chosen from a genome-wide pool of
markers for any mapping or association populations [64-66]. This approach has proven itself to
be powerful for QTL mapping in a wide variety of species [77-84]. We initiate a mapping or
association study composed of # individuals that are genotyped at g genome-wide SNPs and
phenotyped for a rhythmic trait repeatedly at a series of 7" discrete time points. Let y; = (yi(#1), ...,
yi(tr)) denote a vector of measured values of a rhythmic trait for individual 7 at T discrete time
points. Consider a SNP with K genotypes whose observations are denoted by nx (k= 1, ..., K),
respectively. Functional mapping formulates a likelihood for # trait vectors at this SNP,

expressed as:

] Nk
1w = ) | [fimeD, @
i=1

k=11

where f; (y;|nx;Z) is a T-dimensional normal distribution for individual i/ with mean vector for
genotype j () and covariance matrix X. Functional mapping implements biologically
meaningful mathematical equations of trait formation to model genotype-typical mean vectors
[77]. Many parametric approaches, such as the first-order autoregressive (AR(1)) model [77,78],
the first-order structured antedependence (SAD(1)) model [85,86], the autoregressive moving
average (ARMA) model [87], and Brownian motion process, have been used to fit the structure
of the covariance matrix. Compared with parametric approaches, nonparametric approaches
based on B-splines or Legendre Orthogonal Polynomials (LOP) may better model the covariance

structure [88-90]. The best approach that structures the longitudinal covariance matrix of real



data can be chosen based on information criteria. Joint mean-covariance modeling in functional

mapping can enhance the biological relevance of QTL detection and its statistical power.

In rhythmic biology, the cyclic change of trait values can be approximated by mathematical
functions [91,92]. Fourier series are considered one of the universal approximators for rhythmic
models [58,59,93-96]. We model time-varying genotypic values in p, by the Fourier signal,

expressed as

pr(t) = ago + ER: (akrcos (Z;Zt>> + ER: <bkrsin (27;;”)) (3)

where axo is the trait mean of genotype & over time, T}, is the period of rhythmic cycle for

genotype k, ai- and by are the coefficients of cosines and sines at the rth harmonic, from which

the amplitude and phase of rhythmic change for genotype k are calculated as Ay, = /a2, + bz,
and ¢, = tan~"1(—by,/ax,), and R is the number of harmonics that best fits the observed data
by statistical reasoning. A number of parametric, nonparametric, or semiparametric approaches

have been developed to model the covariance matrix [59,88].

Statistical algorithms are implemented to solve the likelihood of equation (2) and obtain the
maximum likelihood estimates (MLEs) of the Fourier series parameters (axo, Ty, @i, bi-) for each
genotype j. We plug in these estimates into equation (3) to calculate time-varying genotypic
values of each genotype from which we calculate time-varying genetic effects or variances
explained by the SNP under consideration. In a hypothetical example of rhythmic mapping (Fig.
1), we demonstrate how functional mapping can be used to detect genotypic differences in
rhythmic curve. At SNP 1, three genotypes AA, Aa, and aa were detected to differ in amplitude
but not in phase and period (Fig. 1A). Genotypic differences at SNP 2 follow a different pattern;
genotypes AA and Aa differ in amplitude but are similar in phase and period, both differ from
genotype aa in the three rhythmic parameters (Fig. 1B). For a backcross or recombinant inbred
line mapping population, there are only two genotypic curves at a SNP, whose difference is used
to describe the genetic effect of this SNP. For an F> mapping population or human association

study population, three genotypes at a SNP may produce two effects, additive and dominant. 9



These estimated effects at different SNPs are implemented into nonlinear quasi-species equations
(1) for network reconstruction. In quantitative genetics, the contribution of a gene to trait
variation can be described by the genetic variance that is explained by this gene. Here, we
estimate and use the genetic variance of each SNP for the subsequent modeling. It is interesting
to find that genetic variance at a SNP also changes rhythmically, although the pattern of change
differs between SNPs (Fig. 1C). Let gj(¢)’s that build up equation (1) denote time-varying genetic
variances accounted for by a SNPj (=1, ..., p), which are marginal or net genetic variances

used for SEGN inference.

3.2. Network sparsity and variable selection

In a mapping study, Jiang et al. [71] showed that the estimated net genetic variances by
functional mapping implemented in equation (1) can reconstruct a gene network for growth
trajectories. This implementation can characterize the detailed interaction pattern of genes, but it
only illustrates the partial architecture of epistasis among a limited set of significant loci that are
first chosen from single marker analysis. It is possible that virtually all genes in the genome
participate in mediating a complex trait or disease [97] such that it is essential to reconstruct a

genome-wide SEGN that covers the interactome of all genes.

Although we attempt to encapsulate all genes into circadian networks, this does not mean that we
would reconstruct a completely connected network in which each gene is linked with every other
gene. Instead, we will need to reconstruct sparsely connected networks, in which most genes
have a low number of links. Ample evidence from a variety of data analyses suggests that
biological networks, ranging from metabolic gene-regulatory to species interaction networks, are
sparse; i.e., the percentage of active interactions scales inversely with the network size [98-

102]. This is different from inanimate networks and telecommunication networks that are
connected by a complete number of links. Several studies have begun to explore why interaction
networks in living systems universally possess a non-random architecture and sparsity [103]. It

has been generally suggested that sparsity is an emergent property that enables the interactive
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system to better adapt to newly intervening changes and remain stable after perturbations of the

underlying dynamics [104,105].

Reconstructing a sparse circadian network based on the ODEs of equation (1) is equivalent to
identifying and choosing a small number of SNPs that regulate a focal SNP from a huge pool of
genome-wide SNPs. To do so, we formulate a regression model to describe the genetic variance
value of each SNP as a linear combination of the genetic variance of all other SNPs across time
points (equivalent to samples for a traditional regression model). However, because the number
of SNPs (g) is significantly larger than the number of time points (7), we encounter the “curse of
dimensionality” for model overfitting. We implement LASSO-based variable selection [106] to
choose a subset of the most significant SNPs (predictors) that interact with a focal SNP. LASSO
can only select at most 7" SNPs before it saturates, but several versions of its modifications, such
as elastic net [107], group LASSO [108], and adaptive group LASSO [109], can address the
technical issue of ¢ >> T. We can also address this issue by augmenting “sample size” through

the curve fitting of genetic variance over time.

The Fourier approximations of genotype values by equation (3) allows us to calculate and
interpolate an infinite number of genetic variance values of each SNP expressed during the
rhythmic cycle, which provide an infinite number of “samples” to perform LASSO-based
variable selection with any dimension of SNP data. Using the interpolated genetic variance

values denoted as z;(t) (t=1, ..., T), we formulate a regression model to characterize how a

SNP (say j) is affected by all other SNPs (j'), expressed as

q
7(t) = a; + Z Bz () +&(6),) = 1,..,q 4)

J'=1j'#j

where @; and f;: are the constant and the regression coefficient of SNP j'as a predictor,
respectively, and &;(t) is the residual error. The basic principle of LASSO to disentangle the ¢

>> T problem in order to minimize squared error loss (L? loss) under a penalty on the sum of the

absolute values of the coefficients (an L' penalty). Under this principle, the solution of equation
11



(4) tends to find estimates of B (j "=1,...,j-1,j+1, ..., m) that are mostly zero. By plotting the
genetic variance of SNP 2 against that of SNP 1 (used in Fig. 1’s example), we found that their
relationship can be better fitted by a nonparametric approach (Fig. 1C). Thus, we implement a
general nonparametric approach for variable selection on regression model (4). Thus, through
variable selection procedure, we will find a small subset of the most significant SNPs (say d))
that link with each focal SNPj (j =1, ..., m), which allows us to rewrite the ODEs of equation
(1) as

dj

gi(®) = Q;(g;(0):0;) + Z Qjj(9y®:0,;7),j=1,..,m (5)

j'=1j'#j

where O/(g;(t): ©;) and Q;;:(g;/(t): ©;;+) are defined as above. Although a majority of
regression coefficients in equation (4) are shrunk to be zero, we pose no constraints on the
number of ODEs such that the dimension of networks remains unchanged. Equation (5) affords
an interdisciplinary platform on which evolutionary game theory and network theory are cross-
pollinated through statistical variable selection to reconstruct a series of gene networks. These

networks are high-dimensional (¢ SNPs), highly sparse (d; << ¢), and mobile (as a function of ¢).

3.3. Statistical algorithms for ODE solving

The ODE:s in equation (5) can be solved by implementing mathematical and statistical
algorithms. Genetic variance g;(t) is calculated from genotypic values p (t) that have an
explicit periodic form, fitted by a Fourier series approximation (2), but we do not know about the

form of Qx(g;(t): ©;) and Q;;+ (g, (t): ©;;7). Thus, these two functions can be better fitted by a

nonparametric approach. Because of its favorable property as an infinitely differentiable
function, we implement the LOP-based approach for smoothing time-varying independent and

dependent genetic variances through the parameters ©; and ©; 7, respectively. Many mature

i’
mathematical techniques have been available for studying numerical or theoretical properties of
ODE models (e.g., sensitivity and bifurcation analysis) [110-112]. In the past decade, many

statistical algorithms have emerged for estimating ODE parameters from the noisy data. These 12



methods includes Ramsay et al.’s generalized profiling approach [113], Liang and Wu’s two-step
derivative-based local polynomial regression approach [114], Cao et al.’s penalized least square
method [115], Brunel et al.’s gradient matching approach [116], Li et al.’s regularization
estimation approach [117], and Chen et al.’s derivative-free approach [118]. Each of these
methods has its own advantages and disadvantages in parameter estimation, power, and
computational efficiency. For example, the derivative-free approach is very flexible to handle
noisy data. Because gene expression data often contain unknown noises, we hybridize the
derivative-free approach with the simplex (Nelder-Mead) algorithm under a likelihood setting to

obtain the maximum likelihood estimates (MLEs) of ODE parameters in equation (5).

Let Pi(#) and P; ./ (t) denote the integrals of the MLEs of O{(g;(t): ©;) and ijf(gjr(t): @1-]-/),
respectively. Then, we code P(7) as a node and P;;(t) as an edge into g-node networks. Such
networks, i.e., SEGNSs, cover all possible genes that take a part in circadian rhythms along direct
or indirect pathways. SEGNs can contextualize bidirectional, signed, and weighted gene
interactions into fully informative graphs and, thereby, own many favorable features that are

unavailable to commonly used correlation- and Bayesian-based networks.
3.4. Mechanistic characterization of epistasis constituting rhythmic clock networks

The phenomenon by which the impact of one gene on a phenotype is determined by other genes
is called epistasis [119]. Classic quantitative genetic theory can estimate the size of epistasis, but
fails to characterize its causality and the direction of its causality [120]. The SEGN is the
interdisciplinary integration that combines separate perspectives through the development of
mechanistic connections among them to establish a more cognitive and empirical approach
toward the epistatic identification of clock genes. The pattern of how and how strongly SNP j is
affected by SNP j’ can be assessed by Pj;(#). If this value is positive, zero, or negative, then this
suggests that SNP ;" activates, is neutral to, or inhibits SNP j, respectively. By comparing P;y(¢)

and Py(t), we can classify SNP-SNP interactions into five qualitatively different types:

e Positive epistasis by which two interactive SNPs activate each other. This can be seen if both

Pji(¢) and Py(t) are positive; 13



e Negative epistasis by which two interactive SNPs inhibit each other. This can be seen if both
Pj(¢) and Py (t) are negative;

e Directional positive epistasis by which SNP ;" activates SNP j but the latter is neutral to the
former. This can be seen if Pjy(¢) is positive but P;;(f) is zero;

o Directional negative epistasis by which SNP ;' inhibits SNP ; but the latter is neutral to the
former. This can be seen if P (f) is negative but P(¢) is zero;

e Altruistic/exploitation epistasis in which one SNP activates the other but the latter inhibits
the former. If Py (¢) is positive whereas Pj(f) is negative, this suggests that SNP ;' offers

altruism to SNP j, or say, SNP j exploits SNP ;'.

It is possible that the two SNPs may peacefully coexist when they do not affect each other. This
can be seen if both P; ;s (t) and P;s;(¢) are zero. The SEGN is also a quantitative network,
because each activation or inhibition is quantified by a value. If P;;/(t) and P;;(t) are positive
and their values are equal, the positive epistasis of two SNPs j and j’ is regarded as symmetrical
positive epistasis. If P;;/(t) and P;;(t) are positive but their values are not equal, then positive
epistasis becomes asymmetrical positive epistasis. Similarly, we can distinguish between
symmetrical negative epistasis and asymmetrical negative epistasis. Table 1 condenses the
salient features of a SEGN. Taken together, the definitions and interpretations of various patterns
of gene interactions can facilitate the exploration of the mass, energetic, or signal basis for each

interaction, surpassing the traditional notation of epistasis in terms of its biological relevance.

The central themes of network reconstruction include sparsity, stability and causality [121-123].
As described above, the implementation of ODEs meets the causality property of a network by
determining the direction of gene interaction. As shown in Box 1, the statistical procedure for
learning the SEGN is formulated under the maximum likelihood and convex optimality setting.
Thus, various strategies each SNP chooses to interact with different SNPs can be thought to
achieve the maximum stability of the network [122]. As predicted by network theory, there is a

limit to the number of links owned by each node in a network [124]. We can implement variable

14



selection to detect the number of the most significant SNPs that affect a focal SNP. Taken

together, we can reconstruct sparse, stable, and casual gene networks for circadian rhythms.

Networks are regarded as snapshots of biological systems at different times. Uncovering the
dynamic nature of genetic networks can shed light on the genomic mechanisms that drive

circadian rhythms. As a function of time ¢, P; ;s (t) can be calculated at any time point from z =0

to 7. In an example illustrated by Figure 2, we simulated 10 SNPs each with genetic variance
spinning cyclically with time in a different manner. We can reconstruct mobile SEGNs using
these SNPs along the time axis. We show such SEGNs at three representative time points, 15, 30,
and 60 h, in a rhythmic cycle. Although network topologies do not change from time 15 to 60,
the quantitative organization of the network dramatically varies from time to time. For example,
SNP3 and SNP 8 establish a relationship of weak symmetric negative epistasis at time 15, but
this relationship is changed to sizeable altruistic/repressive epistasis with SNP 8 promoting SNP
3 but with SNP 3 inhibiting SNP 8 at time 30, which becomes even stronger at time 60. In
general, the strength of SNP-SNP interactions increases with time. Indeed, SEGNs can be
reconstructed instantaneously, which are equipped with a capacity to establish a real-time
visualization of genetic networks during biological processes. Such momentary monitoring
facilitates the detection of genetic disruption in circadian rhythms, thereby providing a

quantitative approach for rhythmically-related disorder prediction.

3.5. Network modularity and functional clustering

It has been widely recognized that biological networks across nearly an entire range of scales
from molecules all the way up to the whole organism can be divided into smaller communities or
modules that have strong internal interactions but are relatively autonomous with respect to each
other [125,126]. This phenomenon, called network modularity, has received considerable
attention in biological and biomedical research [127-129]. Genes within modules function
similarly and vary together, but they are independent from the function of other genes. Such
structural and functional diversity of gene networks enhance the robustness of biological systems
to environmental perturbations, showing a widespread implication for mediating developmental

and evolutionary processes. A number of computational algorithms have been developed to



detect and characterize modular structure in networks by revealing the occurrence of densely

connected groups of vertices, with only sparser connections between groups [130-134].

Genes that display a similar pattern of time-varying gene expression profiles are attributed to the
same group. These similarly differentiated genes form the same modules, which are less similar
in expression pattern to those from different modules. We implement functional clustering
[59,60,135] to classify SNPs into an optimal number of distinct groups, each representing a
different module within clock networks. Let g; = (g;(t,), ..., gj(tr)) denote a vector of genetic
variances due to SNP j at time points (¢1, ..., tr). To group ¢ SNPs into R modules according to

how they act with time, functional clustering formulates a mixture-based likelihood as

q

L) = | [[mfile)) + -+ mafile))] ©)

J=1

where 7 is the proportion of SNPs within module » (=1, ..., R) to all SNPs, f(g)) is the 7-
variate normal distribution of SNP j over time with mean vector p, = (ur (t1), s Uy (tT)) and

covariance matrix X. The form of rhythmic genetic variance curves may be unknown so that a
nonparametric smoothing approach can be used to model mean vector p,.. In a simulated
example derived from the emulated real data, we found that genetic variance explained by a SNP
obeys pattern of periodic change with time (Fig. 1C), in which case Fourier series approximation
can be used to model p, for more efficient fitting. Many approaches can be used to model the
matrix X, including AR(1), SAD(1), and AR(u,v)MA models [57] and nonparametric models
[88,89]. A specific optimal procedure must be formulated to select a model that structures the

covariance matrix for a given dataset.

Module proportions and parameters that model mean vectors and the covariance matrix can be

estimated by implementing an EM-(Nelder-Mead) simplex hybrid algorithm. In the E step, we

16



calculate the posterior probabilities of each SNP ; that belongs to a particular module r, by

equation

_ Ty fr (gj )
IM,; = : ™)
mfi(g;) + -+ m.fi(g))
and in the M step, we estimate the proportion of module / among all genes by equation
q
1
T, = Ez m,,. ®

In the M step, the vector-covariance modeling parameters are estimated by the simplex
algorithm. The E and M steps are repeated until the estimates are stable. The optimal number of
modules, Lo, can be determined by information criteria, such as AIC or BIC. Based on the
posterior probabilities of each SNP estimated by equation (7), we can assign SNPs into these R
distinct modules. We used a hypothetical example to show how functional clustering can be used
to classify 35,000 SNPs based on their rhythmic patterns of genetic variation. Under three
different orders of the Fourier series approximation, we calculated AIC values when different
number of modules are assumed. An optimal number of modules occurs at 24 for the third order
where the AIC value is minimized (Fig. 3). We chose 10 of the 24 modules to show that the
time-varying trends of genetic variances are dramatically different among rather than within
modules. For example, genetic variances of SNPs within modules 1, 6, 7, and 10 spin slightly
rhythmically with time, although their values are highly module-dependent. There are
remarkable periodic changes in genetic variance for other modules, but the phase, period and

amplitude of rhythmic cycles are largely different among the modules.

Let g, denote the number of SNPs that belong to module » (=1, ..., R). We take the time-
varying means of genetic variance over all SNPs within the same modules and use these means
to reconstruct an R-node interaction network among modules. We can further reconstruct R

interaction networks among SNPs within each of the R modules. Thus, a large SNP network is 17



decomposed into multiple functionally different but interconnected network communities based
on the theory of biological modularity. If the number of SNPs within a module is still large, a
further analysis using functional clustering can be conducted to identify more fine-grained
network communities. In the end, we will reconstruct a multilayer SNP interactome network, i.e.,
SEGN, that encapsulates all types of interactions for a complete set of genome-wide SNPs from
a circadian study. Figure 4 illustrates the hierarchical structure of such a multiplayer SEGN, at
the top tier of which a network was reconstructed with five modules. Each module contains
SNPs that display a similar thythmic pattern of genetic variance according to a certain criterion,
but some modules can be further classified if a more stringent criterion is used. For example,
module 1 is dissected into four submodules that build a network at the second tier, among which
submodule 3 is further split into 8 sub-submodules to form the third-tier network. Similarly,
module 3 and 5 can be decomposed into more fine-grained networks. Multiplayer networks
facilitate the fine detection of gene-gene interactions, but at the same time, cover all SNPs from
an association study, thus allowing a platform to test a variety of hypotheses regarding the

molecular mechanisms of biological clocks at unprecedented resolution and coverage.

4. OQTL control of gene regulatory SEGNs

4.1. Clocks as a high-dimensional, dynamic, and mechanistic network

Circadian clocks can be regarded as a molecular apparatus composed of clock genes at the
transcriptional level. Some of these transcriptional genes regulate rhythmic patterns, whereas
others cyclically change their expression in response to the regulation of biological cycles [136-
138]. Network alteration of these regulating or regulated processes may interpret causes of
circadian clock dysregulation for diseased patients [139]. Reconstructing such gene regulatory
networks (GRNs) from expression data has not only attracted the attention of computational
biologists [67-70], but also captivated the interest of engineers [121-123]. However, although a
plethora of computational approaches have been developed, fully informative networks that
capture all fundamental properties of interactions, including causality, the direction of causality,
feedback cycle, strength, and mobility, are quite lacking. More recently, Chen et al. [140]

proposed a new computational model for reconstructing mechanistic and dynamic interaction ¢



networks from gene expression data at any dimension, showing its potential application to
disentangle biological complexities [141]. By accommodating the cyclic property of clock genes,

this model can be modified and implemented to identify oscillating gene networks.

There has been ample evidence for the genetic control of gene co-expression related to various
biological processes [142-144]. To our knowledge, there have been no studies thus far that can
characterize whether and how specific QTLs control large-scale GRNs for circadian rhythms, but
we argue that such QTLs exist, which may affect biological systems at various scales. Our tasks
are not only to reconstruct GRNs from gene expression data, as reported in previous studies [67-
70,121-123], but also to develop a methodology for mapping QTLs that modulate these GRNS.
The identification of QTLs involved in gene networks allow us to gain new insight into the

molecular mechanisms of rhythmic processes.
4.2. Mapping oscillating gene networks

Likelihood model: In a mapping or association study population, » individuals are genotyped,
monitored for m transcriptional genes, and phenotyped for p rhythmic traits. Transcriptional
profiles and phenotypic traits are measured repeatedly at a series of T discrete time points. Let yi
= (yu(t), ..., yu(tr)) denote the expression vector of gene / measured for individual 7 at 7 time
points. Consider a SNP of K genotypes each with a size denoted as nx (k= 1, ..., K). The

likelihood of gene expression data at this SNP is formulated as

K TNk

L1(H;Z) :ank(yll”ymllulk” umk:z) (9)

k=1 i=1

where fi(+) is the n-dimensional m-variate normal distribution for m genes across 7 time points

with the mean vector w, for SNP genotype £ and covariance matrix X. Specifically, we have
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where p; (t) is the mean expression level of genotype & for gene / (I =1, ..., m) at time ¢. The
expression amount of each gene includes independent and dependent expression components.
The independent component is one that occurs when this gene is assumed to be in isolation,
whereas the dependent component is formed due to the regulation of other genes for the focal
gene. This argument can be mathematically formulated by a system of genotype-specific ODE:s,

expressed as

dik

e () = Wi Qe (8): Oy) + Z W (i (€): 047 11)

U=1,1"+#1

where Wy, (1, (t): 0y;,) is the independent expression component of gene /, determined by this
gene’s innate capacity expressed as a function of py (t); W (7 (£): ©y7) is the dependent
expression component of gene / that results from the strategy implemented by gene I, expressed
as a function of p;1, (t); and di (<< m) is the number of genes that significantly influence gene /
for genotype k. The determination of di is made by a LASSO-based variable selection built on a
regression model of () as a response on yri(f) (I' =1, ..., [-1, [+1, ..., m) as predictors over all
individuals carrying the same genotype across time points. We allow di to vary across SNP
genotypes for the same gene, because a focal gene may be regulated by different sets of genes for

different genotypes.

We implement a nonparametric approach to smooth Wy, (y, (t): Oy ) and Wy, (. (8): 0y71.),
specified by the unknown parameters 0, and 0,,/,, respectively. These independent and
dependent expression components constitute the time-varying mean vector of gene / for SNP
genotype k. Since the basis function is built on g (t) or p;7, (t) that contains time information,
we can still implement autoregressive models, such as AR(1) or SAD(1), to fit the structure of
the covariance matrix X in the likelihood (9). Under the mean-covariance modeling as described
above, we implement mathematical and statistical algorithms to solve the likelihood (9) and

obtain the MLEs of ODE parameters for each SNP genotype. By plugging these MLEs into the
20



independent and dependent expression components in equation (11), we reconstruct a series of

oscillating m-node sparse gene networks, denoted as Qy, (t), for each genotype £.

To determine whether the SNP determines oscillating gene networks, we need to formulate a
procedure for hypothesis testing. In case of no significant QTL, we formulate the null hypothesis
that gene networks characterized by ODE parameters in equation (11) are invariant among

genotypes, i.e., Ho: Qi (t) = Q(t), under which the likelihood is written as

n
Lo D) = [ [F0r0 o Vil o D) (12)
i=1

where f{-) is parameterized by the mean vector of time-varying expression of m genes over all
individuals and covariance matrix modelled by an autoregressive process. The likelihood under
the alternative hypothesis, i.e., all individuals with the same SNP genotype share the same
network, but individuals with different genotypes have different networks, is formulated by
equation (9). The log-likelihood ratio (LR) calculated under the null and alternative hypotheses is
used as a test statistic. The genome-wide critical threshold is determined by permutation tests. A

SNP is significant for gene networks if the LR value is beyond a threshold value.

Network dissection: Beyond GRNs reconstructed by commonly used correlation-based and
Bayesian network approaches, Q; (t) can capture all network features by characterizing
bidirectional, signed, and weighted gene co-regulation. As shown by equation (11), the pattern of
gene co-regulation can be assessed by Wir(f). The sign and size of this value reflect the
promotion, inhibition, or lack of regulation of gene /” on gene /. Based on Wi (¢) and Wri(t), We

can classify gene co-regulation into different types as follows:

e Synergism by which two genes activate each other if both Wi (¢) and Wi(t) are positive;
e Antagonism by which two genes inhibit each other if both Wy (f) and Wy (¢) are negative;
¢ Directional synergism by which gene /' activates gene / but the latter is neutral to the former

if Wi (£) is positive but Wi (¢) is zero or vice versa;
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e Directional antagonism by which gene /' inhibits gene / but the latter is neutral to the former
if Wir(?) is negative but Wy (t) is zero or vice versa;
e Altruism by which gene / activates gene /' but the latter inhibits the former if Wyi(¢) is

positive but Wi (¢) is negative. Here, the altruism of gene / is the egoism of gene /'

If both Wy (¢) and Wy(¢) are zero, then this indicates that the two genes / and /' peacefully coexist.
For synergism and antagonism, we can further define symmetrical synergism and symmetrical
antagonism if Wy (¢) and Wy(f) of the same sign are equal in size and asymmetrical synergism

and asymmetrical antagonism if Wi(¢) and Wy(t) of the same sign are not equal in size.

Result interpretation: To explain how a QTL determines gene networks, we consider a
simulated example with results illustrated in Fig. 5. Suppose there is a genotyped mapping
population designed to characterize the genetic architecture of rhythmic co-regulation of genes in
response to the environmental cycle. As an example, we assume that 10 genes are monitored, but
the model can handle any number of genes by incorporating network modularity theory. Based
on the above LR test, we identify a set of significant QTLs for rhythmic GRNs from a pool of
genome-wide SNPs. By reconstructing 10-node gene networks for three different genotypes at a
QTL, we found remarkable genotypic differences in network features. First, three genotypes
display pronounced differences in the rhythmic pattern of gene expression profiles (Fig. SA).
Notably, 10 genes are expressed more rhythmically in genotype A4 than genotype Aa, both
genotypes having a stronger rhythmic pulse than genotype aa. Second, GRNs reconstructed
from 10 genes are sparser in genotype 44 than genotypes Aa and aa. The three gene networks
considerably differ in both structure and organization among genotypes. For example, in Q4,(t),
genes 9 and 6 form an asymmetric antagonistic relationship, but this relationship does not exist
in Quq(t) and Q,,(t). Gene 5 exerts a directional synergistic effect on gene 9 in Q 4, (%),
whereas these genes co-exist peacefully in Q44(t) and Q,,(t). By closely investigating how
gene-gene relationships differ among genotypes, one can decipher a global and detailed view

into the genetic control mechanisms of specific QTLs on rhythmic GRNs.

4.3. How a QTL modulates the emergent properties of gene networks
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The procedure described in the preceding section can identify and map network QTLs that
mediate the overall structure and organization of oscillating networks. Here, we develop a
framework to test how a QTL affects the emergent properties of gene networks. The properties
of a network can be described by many parameters, including connectivity, describing the
number of nodes with which a node links within a network [145]; closeness, describing the
degree of linkage of one node to other genes [146]; betweenness, reflecting the importance of a
node as a bridge across the network [147]; eccentricity, defined as the longest distance of one
node to other nodes [148]; eigenvector centrality, describing the importance of node to
neighboring nodes [149]; and PageRank, evaluating the quality and quantity of links to a
network [150]. As defined, these parameters determine the property of a network from different

topological aspects.

For each genotype-specific oscillating gene network, we calculate connectivity, closeness,
betweenness, eccentricity, eigenvector, and PageRank at different time points and plot these
network parameters against time. By comparing the genotype-specific curves of network
properties, we can address the following questions: (1) How does a QTL affect network structure
in terms of network parameters? (2) How does a QTL pleiotropically affect different network
parameters? Answers to these questions can help understand how the human genome encodes
instructions of gene regulation for circadian rhythms and find genetic variants that drive genomic

differences distinguishing a healthy status from a diseased status.

4.4. Genetic determination of casual gene networks

Clocks contain cyclic genes that drive behavior and physiology to change rhythmically in
response to daily cycles. This process operates through high-dimensional, complex casual
networks, and, more likely, is controlled by QTLs. The identification of such QTLs can facilitate
our mechanistic understanding of genotype-phenotype relationships. Let (yu; zi) = (vi(t), ...,
vii(tr); zsi(th), ..., zsi(tr)) denote the expression vector of gene / (/ =1, ..., m) and the phenotypic
vector of trait s (s =1, ..., p) measured for individual i at T time points. We extend the likelihood
function given in equation (9) for a given SNP to include information about both gene expression

and rhythmic traits. Under the expanded likelihood, we model the expanded mean vector for
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SNP genotype k by

dig
e (£) = Wi (e (£): 0y) + Z Wi (e (8): ©yp7) (134)
U=1,1"#l
bg dsk
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where equation (13A) is described as equation (11), which models m-node gene networks, and
equation (13B) characterizes how p rhythmic traits interact with each other to form phenotypic
networks and how gene networks causally regulate rhythmic processes. In Equation (13B), Rg(-)
is the independent phenotypic value of trait s (under the assumption that this trait is isolated),
Rssi() 1s the dependent phenotypic value of traits s that forms due to the influence of other trait
s', and Rui(-) is the dependent phenotypic value of trait s resulting from the regulation of gene /.
The first two terms can reconstruct phenotypic networks that reflect trait-trait interactions and
the third term is used to reconstruct casual networks from genes to phenotypes. These three terms
are a function of pg (t), the time-varying genotypic mean of trait s, g7, (t), the time-varying
genotypic mean of trait s, and py (t), the time-varying genotypic mean of gene /, specified by

parameters Og, 0.7y, and Oy, respectively, in a nonparametric way.

The expanded likelihood contains a bivariate covariance matrix, composed of m-dimensional
covariance submatrix (genes), p-dimensional covariance submatrix (traits), and (mxp)-
dimensional covariance submatrix (genes vs. traits). A bivariate autoregressive model, such as
bivariate SAD(1), has proven to be powerful for modeling the longitudinal structure of large
covariance matrices [86]. Moreover, the existence of closed forms for the determinant and
inverse of the bivariate SAD(1) matrix can increase the computational efficiency, despite the

high dimensionality of the covariance matrix.

A similar log-likelihood procedure can be implemented to test whether a SNP is significant in
affecting causal networks from genes to rhythmic phenotypes. The advantage of network

analysis is that one can identify the roadmap of each node through direct and indirect paths
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towards a targeted phenotype. A further testing procedure can be developed to identify which

genes and which paths play a critical role in mediating casual relationships.

5. QTL networks of oscillating gene networks

Traditional approaches for mapping genotype-phenotype relationships are mostly based on a
marginal single-marker analysis. These approaches are not particularly powerful for studying
rhythmic behaviors that contain a large number of genes and their complex genetic interaction
networks. In the preceding section, we describe a statistical model for reconstructing QTL
networks that can systematically characterize the genetic control of circadian rhythms. To reveal
the genomic internal workings behind biological processes from genotype to rhythmic
phenotype, we describe a second statistical model for mapping individual QTLs that mediate
gene regulatory networks of circadian rhythms. Here, we formulate a framework that unifies the
above two models to identify and reconstruct QTL networks of gene networks. Let g(¢) denote
the genetic variance of gene / (/=1, ..., m)due to SNPj (=1, ...,¢q) attime ¢t (t=1, ..., T). We
argue that the effect of SNP j on gene / is different in terms of three scenarios as follows. In
scenario 1, SNPj only affects gene / but not any other genes, in a way that is independent from
other SNPs. In scenario 2, SNP j receives epistatic interactions in a way that its effect on gene / is
influenced by other SNPs. In scenario 3, SNP j pleiotropically affects multiple genes so that its
effect on gene / is regulated by other genes. The value of gj(¢) that contributes to the genetic
architecture is the net consequence of these three scenarios. Using the dEGT model, we

decompose gy(¢) using the following equations,

dU blj
91;(®) = Qi;(g,;(®):0,5) + Z Q7 (9,7 (®©:0,;;1) + z Wiri(grj(®:0y,;) (14)
j'=1j'#j U=1,1"%1

where Q;; ( 91;(t): 0, j) is the independent genetic variance of gene / due to SNP j that is expected
to occur when both SNP j and gene / are assumed to be in isolation, Qljjr(gljr(t): Oljj’) is the
epistatic dependent genetic variance of gene [ due to interactions of other dj; SNPs with SNP j,

and Y Wiy ; (gv i(©):0y j) the pleiotropic dependent variance of gene [ due to influences of



other b; genes under the control of SNP ;. Note that the number of the most significant SNPs that
interact with SNP j (dj; << p) and the number of the most significant genes that regulate gene / (b
<< m) are determined by LASSO-based variable selection. A likelihood is formulated to solve
the ODEs of equation (14) by implementing LOP-based nonparametric models to smooth the
independent genetic variance, the epistatic dependent genetic variance, and pleiotropic dependent
variance, with ODE parameters ©;;, ©,;;7, and 0/, respectively, and autoregressive models to
fit the covariance structure. The MLEs of ODE parameters allow us to reconstruct a

tridimensional QTL interaction network of gene networks.

The nonlinear quasispecies equations (14) can be expanded to include rhythmic phenotypes. Let
g+j(?) denote the genetic variance of rthythmic trait s (s =1, ..., p) explained by SNP; (j =1, ...,
q)attime ¢t (¢=1, ..., 7). By adding g(¢) to the replicator equations, we can reconstruct a
tridimensional QTL interaction network of causal gene-phenotype networks for circadian
rhythms. To explain how such a tridimensional network works, we hypothesize a clock mediated
by three QTLs that regulate three genes and two rhythmic traits (Fig. 6). This tridimensional
network includes intertwined pleiotropic networks and epistatic networks across DNA
sequences. In the pleiotropic networks, we can characterize how a QTL pleiotropically affects
the expression of multiples genes and multiple rhythmic traits to form dynamic causal regulatory
networks from genes to phenotypes. Under the control of SNP 1, gene 1 inhibits gene 3 and also
promotes gene 2 that promotes phenotype 1, but these causal roadmaps change under the control
of the other SNPs. For example, SNP 2 changes the relationship between gene 1 and 3; under its
control, gene 1 is inhibited by gene 3 that promotes phenotype 1.

In the epistatic networks (Fig. 6), we can characterize how different SNPs interact with each
other to determine the expression of a gene or a phenotypic trait. Gene 1 is affected by an
epistatic network in which SNP 1 promotes SNP 3 and SNP 2, whereas SNP 2 inhibits SNP 3.
Phenotype 1 is affected by an epistatic network that is structurally the same as but quantitatively
different from the epistatic network of gene 1. For other genes and phenotypes, we found distinct
differences in epistatic network topology. Taken together, the tridimensional network charts the
change of the pleiotropic landscape of genes and phenotypes from SNP to SNP and the change of

the epistatic landscape of SNPs from genes to phenotypes. -



6. Conclusions and future directions

A clock contains numerous cyclically expressed genes that mediate biological rhythms, a process
encoded by the genome. Over the past decades, mutagenesis-based molecular genetic analysis
has considerably contributed to the identification of clock genes that are required for rhythmic
oscillations in response to the light/dark cycle, establishing the fundamental understanding of the
genetic mechanisms underlying circadian rhythms. The 2017 Nobel Prize in Physiology or
Medicine was awarded to Jeffrey C. Hall, Michael Rosbash and Michael W. Young for their
pioneering work in this establishment [20]. With the advent of advanced sequencing techniques,
current molecular studies have shifted from the identification of individual rhythmic genes to the
genome-wide landscaping of transcriptomic genes [137,138,151]. This paradigm shift has led to
the discoveries of a number of new genes that rhythmically synchronize cellular metabolism and

organismal behavior through the internal oscillators, or clocks.

The statistical models reviewed in this article can facilitate the promotion of this shift to a
generic and wide domain without relying on the use of rhythmic mutants. As a routine genetic
approach, linkage or association mapping populations have been produced worldwide for a wide
array of species during the past three decades. These populations provide a rich biobank of
genetic variants that may be responsible for rthythmic variation [49,152,153]. More importantly,
mapping approaches can stimulate the discoveries of new or non-conserved clock genes that are

involved in circadian rhythms at the transcriptional level and beyond.

A number of statistical methods have been widely developed and applied to map circadian
rhythms. One model, called functional mapping, integrates the mathematical aspects of circadian
rhythms to map how a ¢cQTL regulates molecular and physiological profiles rhythmically and
test by which parameter, period, phase, or amplitude the cQTL determines the temporal pattern
of circadian rhythms [56-62]. Because of a full use of longitudinal measures across multiple
points, functional mapping can increase the power of QTL detection. However, most existing
models aim to find individual clock QTLs (cQTLs), failing to characterize the genetic
complexity of thythmic physiology and behavior. The omnigenic theory even suggests that a

complex trait is determined by all genome-wide distributed genes carried by an organism [97]. 5



Thus, it is highly crucial for reconstructing a systematic network of how each gene acts and
interacts with every other gene to contributes to phenotypic variation. The inference of such an
omnigenic network is statistically challenging, but once reconstructed, it can provide a powerful

tool to extract and excavate the new organizing principles of circadian rhythms.

In this article, we assemble and integrate advanced approaches for QTL functional mapping and
gene network reconstruction through high-dimensional statistical modeling into a unified
framework for inferring large-scale genetic networks that encompass circadian clocks. Different
from GRNs widely reviewed in a range of biological, physical, and engineering literature, this
review represents the first among its kinds regarding SNP interactome networks. The reviewed
statistical methodology overcomes several technical issues, typical of SNP-SNP network
reconstruction. First, GRNs are reconstructed from continuous or semi-continuous abundance
data that directly reflect the expression levels of different genes, whereas SNP data describe
discrete genotypes of different individuals, which become meaningful for network reconstruction
only after genotypes are associated with phenotypes of interest. We translate genetic information
carried by individual SNPs into their continuous genetic effects by functional mapping, with
which a series of nonlinear quasispecies equations are derived on the basis of evolutionary game
theory. These replicator equations establish a basis for a graph theory that codes SNP-SNP

interactions into mathematical networks, i.e., SEGNS.

Second, since a complex trait may be controlled by all genes an organism carries, there is a
necessity to reconstruct interaction networks that cover a complete set of genes. However,
reconstructing a completely linked network from high-dimensional gene data is highly
challenging in practice and also is not meaningful from an evolutionary perspective. We
implement two advanced statistical approaches, functional clustering and variable selection, to
classify all SNPs into distinct modules according to their similarity of temporal genetic effects
and select a small set of the most significant SNPs that influences a focal SNP. This type of
implementation facilitates the reconstruction of multilayer, sparse, and large-scale genetic
networks filled by all SNPs from a mapping or association study. Third, a SNP is determined to
be insignificant by commonly used marginal statistical approaches, such as functional mapping,

but this detection is the net consequence of the intrinsic action of this SNP and its interactions
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with other SNPs. The statistical model reviewed in this article can decompose the net effect of a
SNP into its independent effect, expected to occur when this SNP is assumed to be in isolation,
and dependent effect resulting from the interactions of other SNPs with the focal SNP. Thus, the
insignificance of a SNP by marginal mapping does not necessarily indicates that this SNP is not
important in mediating circadian rhythms since it may be confounded by its negative epistasis
triggered by other SNPs. Thus, by knocking out these epistatic SNPs, we may clearly understand
and better use the genetic effect of this SNP on rhythmic activities.

Fourth, to reveal the causal links from genotype to high-order phenotype, increasing studies have
begun to integrate transcriptional, proteomic, and metabolomic profiles into mapping paradigms.
However, most of these studies model the individual roles of different genes, proteins, or
metabolites, rather the synthetic role of all these entities as a cohesive whole, in mediating
genotype-phenotype relationships. By reconstructing a series of networks of networks, the
statistical methods reviewed in this article leverage networks as a backbone of linking genotype
to phenotype. Networks inferred at a single level of biological organization have been used in the
past, but charting information flows of horizontal networks from lower microscopic organization
levels (upstream) of molecules to higher macroscopic levels (downstream) of the whole
organism via vertical networks has not been explored. Reconstructing intertwined networks is
founded on the fundamental premise that networks at different scales share similar global
statistical features and structural design principles. The reviewed methods will potentially fill the
gap in the systematic, mechanistic characterization of holistic genotype-phenotype relationships

for network biology and network medicine.

From the networks reconstructed at different scales, we can not only characterize key significant
QTLs responsible for circadian rhythms, but also chart a global picture of how each (significant
or insignificant) QTL interacts with every other possible QTL to regulate rhythmic phase,
amplitude, and period. A detailed analysis of rhythmic networks enables the discovery of
intricate but well-orchestrated structural design principles underlying circadian rhythms. We
describe and review the advanced statistical methods for genetic network reconstruction, but
there remains much work to be done. One prominent research direction is the incorporation of

environmental factors, spatial scales (such as different tissues or cells), and physiological states
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into network reconstruction at different levels, allowing the fundamental questions of how
environmental and developmental agents affect network topology or how alteration of gene
networks mediates rhythmic changes in physiology and behavior to be addressed. We deploy a
general statistical procedure to establish a network framework, but mathematical, statistical,
computational solutions of framework are likely to remain data-dependent. Optimal techniques
should be developed to suit the given data sets especially when the data are heterogeneous.
Lastly, and not least, we need to closely collaborate with experimental biologists or clinicians to
justify the networks reconstructed by the statistical models reviewed by performing in-vitro or
in-vivo experiments. Gene discoveries made by these justified methods will greatly advance the

study of chronobiology and the development of chronotherapies.
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Box 1: Statistical procedure for SEGN inference

Lety; = (y{t1), ..., y/(t7)) denote a vector of estimated time-varying genetic variance values
explained by SNPj (j = 1, ..., m). Given these data, the likelihood function of model parameters

é = (1, X) € @ is written as

LILD) =AY, ..., Ym 1, X) (ShH

where f{-) is the m-variate t~dimensional longitudinal multivariate normal distribution with mean
vector g =(gy, ..., g,) With g; = (gi(t1), ..., g(tr)) and the covariance matrix of e[t), Z. As

described below, we will model mean-covariance structures.

The time-varying genetic variance of each SNP is modeled by a system of ODEs described by
equation (1) containing the independent and dependent components. Each component is fitted by
a nonparametric approach, such as B-splines, regression B-spline, penalized B-spline, local
polynomials and Legendre orthogonal polynomials (LOP). Because of its advantage in
orthogonality and efficient convergence, LOP has been used to model the curves of any complex
form using sparse data in quantitative genetic studies [89,154]. The LOP is a solution of the
Legendre differential equation, (1 —v?)(d?u/dv?) — 2v(du/dv) + r(r + 1)u = 0. Let Pjx(f) = (P;(?),
..., Pig(?)) denote a vector of LOP including the first R orders for SNP j at time ¢, and o, = (¢,
..., ajg) denote a vector of basis values of time-invariant independent genetic variance of SNP ;.

Then, the independent genetic variance of SNP j is expressed as

gi(t) = PLr(Da; (52)
An optimal order of LOP may be SNP-specific; i.e., each SNP may have a different LOP order.

The optimal order for each SNP j can be determined via an information criterion, such as AIC or

BIC. Similarly, we use LOP to model time-varying dependent genetic variances. Time-invariant
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independent and dependent genetic variances, arrayed in ©; and 0;

i respectively, are the

unknown ODE parameters to be estimated (see equation (1)).

Since the residual covariance matrix X contains an autocorrelative structure, its structural
modeling using a parsimonious time-series approach can increase the precision of ODE
parameter estimation and computational efficiency. Given its power to structure the longitudinal
covariance of quantitative traits in genetic mapping studies [85,86], the structured
antedependence (SAD) model, developed by Zimmerman and Nuiez-Antén [155], is
implemented into likelihood (S1). The SAD assumes that residual errors at time ¢ are not only
composed of innovation errors specifically produced at this time point, but also contain a
proportion of the residual errors from the preceding time points. The size of this proportion, i.e.,
the degree of antedependence (), decays with time lag. The first-order SAD (SAD (1)) only
considers the dependence of errors at the immediate time point. The innovation error for SNP j is

iid with mean zero and variance 6]-2 which is assumed to be constant across time points. Two

parameters, p; and 6]-2, can well model the structure of Z.

With joint ODE and SAD(1) modeling, the parameters involved in likelihood (S1) are re-written

_ 2 m . . .
as ¢ = {@1-, 0;;1,p), 6 }j¢j’=1' We can obtain the optimal solution of these parameters by

maximizing the likelihood (S1), expressed as

¢ e {arg Iggeagll(u, 2‘.)}. (S3)

We implement a hybrid algorithm of the fourth-order Runge-Kutta (RK4) algorithm and simplex
approach to solve the likelihood incorporated by a system of LOP-transformed ODEs (equation
(1)). Intuitively, this maximization that makes the data most probable implies an optimal
topological structure and organization by which genes interact with each other to maximize the
joint expression of all genes. This solution is therefore consistent with the basic principle of

evolutionary game theory [75].
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Table 1 Qualitative definition of epistasis and its quantitative characterization by the SEGN

model.
Quantitative description
No Qualitative definition P (t) Relation P;r;(t)
1 Symmetric positive epistasis + = +
2 Asymmetric positive epistasis + # +
3 Directional positive epistasis toward j + > 0
4 Directional positive epistasis toward ;' 0 < +
5 Altruism toward j or exploitation by j + -
6 Altruism toward ;' or exploitation by ;' - +
7 Symmetric negative epistasis - = -
8 Asymmetric negative epistasis - * -
9 Directional negative epistasis toward j - 0
10 Directional negative epistasis toward ;' 0 -
11 Coexistence 0 0

Note: P;;r(t) and P;r;(t) are the dependent genetic variances of SNP j by SNP ;' and SNP ;' by

SNP j, respectively.
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Figure Legends

Figure 1 Simulated examples showing functional mapping of circadian rhythms as a first step of
SEGN reconstruction. A and B: Estimated rhythmic curves of three genotypes AA, Aa, and aa at
each of two randomly chosen SNPs, showing genotypic differences in rhythmic features
including phase, period, and amplitude. C: Rhythmic pattern of genetic variance explained by

each SNP. D: Plot of the genetic variance of SNP 2 against SNP 1 over rhythmic cycles.

Figure 2 Real-time genetic networks reconstructed from 10 simulated SNPs. A: Genetic variance
of each SNP changes rhythmically over time in a different way. B: Instantaneous SEGNs at times
15, 30, and 60 during rhythmic cycles, showing temporal changes in topological structure and
organization. Circles denote SNPs as nodes, whose size is proportional to the magnitude of
genetic variance explained by a given SNP. Red and blue arrowed lines denote promotion and
inhibition from one SNP to the next, respectively, with strength proportional to the thickness of

lines.

Figure 3 A diagram of tridimensional SEGN across multiple layers. Top tier: Coarse-grained
genetic networks among five modules detected from a complete set of SNPs for a mapping study.
Second tier: Some modules are furthered classified into submodules to form genetic networks at
higher resolution. Third tier: Some submodules need to be decomposed into different sub-
submodules, forming fine-grained genetic networks at the individual SNP level. Red and blue

arrows denote promotion and inhibition from one SNP to the next, respectively.

Figure 4 Fourier series-based functional clustering classifies 00,000 simulated SNPs into
different modules. On the basis of AIC, the optimal number of modules is determined to be 22
under the third order Fourier series approximation. Ten modules were chosen to show how

different modules are expressed rhythmically in various manners. Thin curves in each plot
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represent rhythmic changes of the genetic variance of individual SNPs and the thick curve is the

mean fitting curve of all SNPs within a module.

Figure 5 A simulated example showing how a QTL controls GRNs. A total of 10 genes are
assumed to regulate rhythmic activities through their interaction networks. A SNP is regarded as
a significant QTL if its genotypes have different gene networks. A: Rhythmic expression curves
of 10 genes varying among three QTL genotype AA, Aa, and aa. B: Gene networks reconstructed
with 10 genes, individually for three different genotypes. Red and blue arrows denote promotion
and inhibition from one gene to the next, respectively, with strength proportional to the thickness

of lines.

Figure 6 A hypothetical clock demonstrating how epistatic networks intertwine with pleiotropic
networks during rhythmic cycles. Assume that three genes G1, G2, and G3 regulate rhythmic
phenotypes P1 and P2 and this process is controlled by three SNPs. Under the control of each
SNP, genes are causally linked with phenotypes through a pleiotropic network (shown on yellow
ellipses). For the same gene or phenotype, different SNPs control their expression through
epistatic networks (indicated by a dotted triangle). Pleiotropic networks differ in topological
structure among SNPs, indicating that different SNPs affect causal gene-phenotypic networks in
different ways. SNPs affect a gene or phenotype through different networks (green for G1, purple
for G2, green-blue for G3, blue for P1 and black for P2), suggesting that each gene or phenotype
is encoded by a different genetic system. Red and blue arrows denote promotion and inhibition

from one gene to the next, respectively.
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