
Advances in Mathematics 384 (2021) 107720
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Blaschke–singular–outer factorization of free 

non-commutative functions ✩

Michael T. Jury a, Robert T.W. Martin b,∗, Eli Shamovich c

a University of Florida, United States of America
b University of Manitoba, Canada
c Ben-Gurion University of the Negev, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 February 2020
Received in revised form 14 January 
2021
Accepted 15 March 2021
Available online xxxx
Communicated by Dan Voiculescu

Keywords:
Non-commutative Hardy space
Fock space
Non-commutative analysis
Blaschke-singular-outer factorization
Inner-outer factorization

By classical results of Herglotz and F. Riesz, any bounded 
analytic function in the complex unit disk has a unique 
inner–outer factorization. Here, a bounded analytic function 
is called inner or outer if multiplication by this function 
defines an isometry or has dense range, respectively, as a linear 
operator on the Hardy Space, H2, of analytic functions in 
the complex unit disk with square-summable Taylor series. 
This factorization can be further refined; any inner function 
θ decomposes uniquely as the product of a Blaschke inner
function and a singular inner function, where the Blaschke 
inner contains all the vanishing information of θ, and the 
singular inner factor has no zeroes in the unit disk.
We prove an exact analogue of this factorization in the context 
of the full Fock space, identified as the Non-commutative 
Hardy Space of analytic functions defined in a certain multi-
variable non-commutative open unit ball.

© 2021 Elsevier Inc. All rights reserved.

✩ First named author partially supported by NSF grant DMS-1900364. Second author partially supported 
by NSERC grant 2020-05683.
* Corresponding author.

E-mail addresses: mjury@ad.ufl.edu (M.T. Jury), Robert.Martin@umanitoba.ca (R.T.W. Martin), 
shamovic@bgu.ac.il (E. Shamovich).
https://doi.org/10.1016/j.aim.2021.107720
0001-8708/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aim.2021.107720
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2021.107720&domain=pdf
mailto:mjury@ad.ufl.edu
mailto:Robert.Martin@umanitoba.ca
mailto:shamovic@bgu.ac.il
https://doi.org/10.1016/j.aim.2021.107720


2 M.T. Jury et al. / Advances in Mathematics 384 (2021) 107720
1. Introduction

Fundamental structure results of Herglotz and Riesz (and later Beurling) [5,20,46] in 
the theory of analytic functions in the complex unit disk, D, imply that any uniformly 
bounded analytic function, h, in D admits a Blaschke–Singular–Outer factorization:

h = b︸︷︷︸
Blaschke

· s︸︷︷︸
Singular

· f︸︷︷︸
Outer

,

where b is an inner Blaschke product, s is a singular inner and f is an outer function. 
There are several equivalent definitions of inner and outer functions in the unit disk. We 
will take operator-theoretic definitions as our starting point as these will most readily 
generalize to the non-commutative (NC) multi-variable setting of the full Fock space 
over Cd.

The Hardy space, H2(D), is the Hilbert space of analytic functions in the disk with 
square-summable Taylor series coefficients at the origin, and H∞(D) is the unital Banach 
algebra of all uniformly bounded analytic functions in D. The Hardy algebra, H∞ =
H∞(D) can be identified with the multiplier algebra of H2, the algebra of all functions 
in D which multiply H2 into itself. That is, if f ∈ H∞ and g ∈ H2, then f · g ∈ H2, 
and multiplication by f defines a bounded multiplier, a bounded linear multiplication 
operator, Mf , on H2. One can then define f ∈ H∞ to be inner if the multiplier Mf is an 
isometry, or outer if Mf has dense range. In particular, multiplication by the independent 
variable, z, defines an isometry on H2, the shift, S = Mz, so that H∞ = Alg(I, S)−weak−∗

and this plays a central role in Hardy Space Theory [34,50]. Blaschke and singular inner 
functions can also be described in purely operator-theoretic terms. Namely, given any 
h ∈ H∞ we define the shift-invariant space

S (h) :=
{
f ∈ H2

∣∣∣∣ fh ∈ Hol(D)
}
,

of all H2 functions ‘divisible by h’. Clearly g ∈ S (h) if and only if any zero of h is a 
zero of g with greater or equal multiplicity, and S (h) ⊇ Ran (Mh). An inner function, 
θ ∈ H∞, is then a Blaschke inner or singular inner if

S (θ) = θH2, or S (θ) = H2,

respectively. Equivalently, θ is singular inner if it has no zeroes in the disk. These are 
not the usual starting or historical definitions of Blaschke and singular inner functions, 
but they are equivalent, see [21, Chapter 5] or [50, Chapter III.1]. The goal of this paper 
is to extend the seminal Blaschke–Singular–Outer factorization of functions in H∞ and 
H2 to elements of the NC Hardy spaces.
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Recent research has identified the full Fock space over Cd,

H2
d :=

∞⊕
k=0

(
Cd
)⊗k = C ⊕Cd ⊕

(
Cd ⊗Cd

)
⊕
(
Cd ⊗Cd ⊗Cd

)
⊕ · · · , (1.1)

with the Free or Non-commutative Hardy space, H2(Bd
N), a canonical NC multi-variable 

analogue of H2(D) [4,11,22,23,41–43]. Elements of H2(Bd
N) are analytic matrix-valued 

functions defined in an NC multi-variable open unit ball, Bd
N , in several NC matrix-

variables [1,28,53–55]:

Bd
N :=

∞�
n=1

Bd
n; Bd

n :=
(
Cn×n ⊗C1×d

)
1 . (1.2)

Here, we fix the row operator space structure in Bd
n. Namely, any d−tuple of n × n

matrices, Z = (Z1, · · · , Zd) ∈ Bd
n, can be viewed as a linear map from d copies of Cn

into one copy. The NC unit ball consists of the strict row contractions, i.e., the d−tuples 
satisfying

ZZ∗ = Z1Z
∗
1 + · · · + ZdZ

∗
d < I.

Elements of the full Fock space can be identified with power series in d non-commuting 
variables with square-summable coefficients (see Section 2). That is, any f ∈ H2

d is a 
power series:

f(z) :=
∑
α∈Fd

f̂αz
α,

where Fd, the free monoid on d generators, is the set of all words in the d letters {1, ..., d}, 
and given any word α = i1 · · · in, ik ∈ {1, ..., d}, zα := zi1 · · · zin . At first sight this may 
appear to have little bearing to classical Hardy Space Theory and analytic function 
theory in the disk. However, foundational work of Popescu has shown that if Z :=
(Z1, · · · , Zd) : H⊗Cd → H is any strict row contraction on a Hilbert space, H, then the 
above formal power series for f converges absolutely in operator norm when evaluated 
at Z (and uniformly on compacta) [41,48]. It follows that any f ∈ H2

d can be viewed as a 
locally bounded free non-commutative function in the NC open unit ball, Bd

N [28]. That 
is, we can view H2

d as the NC Hardy space, H2(Bd
N), the Hilbert space of all (analytic) free 

NC functions in Bd
N with square-summable Taylor series coefficients. Non-commutative 

H∞, H∞(Bd
N) can then be defined as the unital Banach algebra of uniformly bounded 

free NC functions in the NC open unit ball, and as in the single-variable setting, this 
can be identified (completely isometrically [41,48]) with the left multiplier algebra of 
H2(Bd

N), the algebra of all free NC functions in Bd
N which left multiply the NC Hardy 

space, H2(Bd
N) into itself. Furthermore, again in exact analogy with classical Hardy Space 
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Theory, left or right multiplication by the independent NC variables define isometries on 
the NC Hardy space:

Lk := ML
Zk

, Rk := MR
Zk

, 1 ≤ k ≤ d,

and these have pairwise orthogonal ranges L∗
kLj = IH2δk,j , so that the row operator: 

L := (L1, L2, · · · , Ld) : H2(Bd
N) ⊗Cd → H2(Bd

N) is an isometry which we call the left free 
shift. The NC Hardy algebra, H∞(Bd

N) = H∞
d is equal to Alg(I, L)−weak−∗, the left free 

analytic Toeplitz algebra. This algebra and its norm closed analogue were first studied 
by Popescu in [38] (see also [39]). Later they were also studied by Davidson and Pitts 
[8–11], Arias and Popescu [3], and further by Popescu [36,41–43]. In greater generality 
this setup was extensively studied by Muhly and Solel [31–33].

Popescu was the first to discover an NC analogue of the classical Beurling theorem 
for H2(Bd

N) in [35, Theorem 2.2] (see also [37, Theorem 4.2] for the first instance of the 
inner-outer factorization). The theorem is also proven in [3, Theorem 2.1] and was later 
proven independently by Davidson and Pitts [11, Corollary 2.2]. Inner-outer factorization 
of NC functions in H2(Bd

N) or H∞(Bd
N) is an easy consequence of this; any H ∈ H∞(Bd

N)
can be factored as H = Θ ·F , where Θ is an NC inner (an isometric left multiplier) and F
is an NC outer, i.e. ML

F = F (L) has dense range. Equivalently F = ML
F 1 is an R−cyclic 

vector, and this second definition extends to F ∈ H2(Bd
N). In this paper, we refine these 

results to include an exact NC analogue of the Blaschke–Singular–Outer factorization. 
An NC Blaschke inner B ∈ H∞(Bd

N) will be an NC inner whose range is completely 
determined by its left ‘NC variety’ in the NC unit ball. An NC inner left multiplier S
will be singular if S(Z) is invertible for any Z ∈ Bd

N .

Theorem (NC Blaschke–Singular–Outer factorization, Theorem 5.10). Every non-zero 
H ∈ Hp(Bd

N), p ∈ {2, ∞}, can be factored as a product H = B ·S ·F for B, S ∈ H∞(Bd
N), 

where B is an NC Blaschke inner with the same NC variety as H, S is an NC singular 
inner and F ∈ Hp(Bd

N) is an NC outer function. The factors are unique up to scalars of 
unit modulus.

The left NC variety of any NC Hardy space function is formally defined in Defini-
tion 3.2 below. Roughly speaking, the NC variety is the collection of directional zeroes 
in the sense of [19] and [16]. When d = 1, our NC Blaschke–Singular–Outer factoriza-
tion theorem recovers the classical factorization with a new operator-theoretic proof, see 
Corollary 5.11.

1.1. Outline

Section 2 contains the necessary background on the NC unit ball, the NC Hardy space, 
the NC Hardy algebra H∞(Bd

N), and its commutant — the algebra of right multipliers. 
In Section 3 we discuss the (left) NC varieties cut out as degeneracy loci of functions 
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in the NC Hardy spaces. Examples of computations of NC Blaschke inner and singular 
inner functions are provided in Section 6. The main theorem stated above is proven in 
Section 5. Lastly, the appendix contains a factorization result for NC idempotent-valued 
functions obtained while working on the main theorem and is of independent interest in 
our opinion.

2. Preliminaries: Fock space as the NC Hardy space

The free monoid, Fd is the set of all words in d letters {1, ..., d}. This is the universal 
monoid on d generators, with product given by concatenation of words, and unit ∅, 
the empty word containing no letters. The Hilbert space of square summable sequences 
indexed by Fd, �2(Fd), and H2

d, the direct sum of all tensor powers of Cd, i.e. full 
Fock space over Cd, are naturally isomorphic (see equation (1.1)). This isomorphism is 
implemented by the unitary map ei1···ik �→ ei1 ⊗ · · · ⊗ eik , ik ∈ {1, ..., d}, and e∅ �→ 1
where {ej} denotes the standard basis of Cd, and 1 is the vacuum vector of the Fock 
space (which spans the subspace C ⊂ H2

d). Under this isomorphism the left free shifts 
become the left creation operators on the Fock space which act by tensoring on the left 
with the standard basis vectors of Cd. In the sequel we identify the free square-summable 
sequences, �2(Fd) and the Fock space H2

d with the NC Hardy space, denoted by H2(Bd
N):

H2(Bd
N) =

⎧⎨⎩f ∈ Hol(Bd
N)

∣∣∣∣∣∣ f(Z) =
∑
α∈Fd

f̂αZ
α,
∑

|f̂α|2 < ∞

⎫⎬⎭ .

Similarly, we will use the notations H∞(Bd
N) := Alg(I, L)−weak−∗ =: H∞

d ,

H∞(Bd
N) =

{
f ∈ Hol(Bd

N)

∣∣∣∣∣ sup
Z∈Bd

N

‖f(Z)‖ < ∞
}
.

Any element F ∈ H∞(Bd
N) is identified with the linear operator, F (L) := ML

F , of left 
multiplication by F (Z). As described in the introduction, H∞(Bd

N) can be identified 
with the left multiplier algebra of H2(Bd

N), and it immediately follows that H∞(Bd
N) ⊂

H2(Bd
N). Any f ∈ H2(Bd

N) is a locally bounded free non-commutative function in the 
sense of modern Non-commutative Function Theory [1,28,52]. That is, f respects the 
grading, direct sums and joint similarities which preserve its NC domain, Bd

N . Any locally 
bounded free NC function (under mild, minimal assumptions on its NC domain) is 
automatically holomorphic, i.e. it is both Gâteaux and Fréchet differentiable at any 
point Z ∈ Bd

N and has a convergent Taylor-type power series expansion about any point 
[28, Chapter 7].

The right free shifts, Rk = MR
Zk

are unitarily equivalent to the left free shifts Lk = ML
Zk

via the transpose unitary on �2(Fd), U†,

U†eα := eα† ,
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where if α = i1 · · · in ∈ Fd, then α† := in · · · i1, its transpose.

2.1. Fock space as an NC reproducing kernel Hilbert space

The Hardy space, H2(D) can be equivalently defined using Reproducing Kernel The-
ory. Namely, H2 is the reproducing kernel Hilbert space (RKHS) of the Szegö kernel:

k(z, w) := 1
1 − zw∗ .

As in the single-variable setting, the free Hardy space, H2(Bd
N), can be equivalently 

defined using (non-commutative) reproducing kernel theory [4]. All non-commutative 
reproducing kernel Hilbert spaces (NC-RKHS) in this paper will be Hilbert spaces of 
free NC functions in the NC unit ball, Bd

N . Any Hilbert space, H of NC functions in Bd
N , 

is an NC-RKHS if the linear point evaluation map, K∗
Z : H → (Cn×n, trn) is bounded 

for any Z ∈ Bd
n. We will let KZ , the NC kernel map, denote the Hilbert space adjoint of 

K∗
Z , and, for any y, v ∈ Cn,

K{Z, y, v} := KZ(yv∗) ∈ H.

Furthermore, given Z ∈ Bd
n, y, v ∈ Cn and W ∈ Bd

m, x, u ∈ Cm the linear map

K(Z,W )[·] : Cn×m → Cn×m,

defined by

(y,K(Z,W )[vu∗]x)Cn := 〈K{Z, y, v},K{W,x, u}〉H,

is completely bounded for any fixed Z, W and completely positive if Z = W . This map is 
called the completely positive non-commutative (CPNC) kernel of H. As in the classical 
theory there is a bijection between CPNC kernel functions on a given NC set and NC-
RKHS on that set [4, Theorem 3.1], and if K is a given CPNC kernel on an NC set, we 
will use the notation Hnc(K) for the corresponding NC-RKHS of NC functions. The NC 
Hardy space, H2(Bd

N), is then the non-commutative reproducing kernel Hilbert space 
(NC-RKHS) corresponding to the CPNC Szegö kernel on the NC unit ball, Bd

N :

K(Z,W )[·] :=
∑
α∈Fd

Zα[·](Wα)∗; H2(Bd
N) = Hnc(K).

Adjoints of left multipliers have a familiar and natural action on NC kernel vectors:

F (L)∗K{Z, y, v} = K{Z,F (Z)∗y, v}. (2.1)
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For our purposes, it will be convenient, as in [41], to view elements of the NC Hardy 
spaces as holomorphic (locally bounded) NC functions on all strict row contractions on 
a separable Hilbert space. That is, we will add the infinite level to Bd

N :

Bd
ℵ0

:= Bd
N�Bd

∞, (2.2)

where

Bd
∞ :=

(
C∞×∞ ⊗C1×d

)
1 ,

denotes the set of all strict row contractions on the separable Hilbert space C∞ := �2(N), 
and C∞×∞ := L 

(
�2(N)

)
. Here, and throughout, the notation Cn×m denotes the n ×m

matrices with entries in C, so that C1×d is a row with d entries. We will write Cd in 
place of Cd×1.

3. NC varieties

Let H(Z) be any free NC function in one of the NC Hardy spaces H2(Bd
N) or H∞(Bd

N). 
The left NC variety of H is the appropriate analogue of a variety in our NC multi-matrix-
variable setting. The definition below is stated more generally for operator-valued left 
multipliers between vector-valued NC Hardy spaces. Let H, J be separable or finite-
dimensional Hilbert spaces. We will write H∞(Bd

N) ⊗ L(H, J) in place of the weak 
operator topology (WOT) closure of this algebraic tensor product, viewed as left multi-
plication operators from H2(Bd

N) ⊗H into H2(Bd
N) ⊗ J.

Remark 3.1. Any element F (L) ∈ H∞(Bd
N) ⊗ Cn×m or H∞(Bd

N) ⊗ L(J, H) can be 
viewed as a matrix- or operator-valued function whose entries are bounded, free non-
commutative functions in Bd

N or Bd
ℵ0

. Note, however, that F (Z), viewed as a function 
in Bd

N need not be NC in the sense that it will generally not preserve direct sums. 
It can, however, be identified with a matrix-valued NC function, F̃ (Z) (i.e. F̃ does 
preserve direct sums, joint similarities and the grading) defined by conjugating F (Z)
with appropriate basis permutation matrices [27, pp. 65–66], [44, p. 38].

Definition 3.2. Given any H ∈ H∞(Bd
N) ⊗L(H, J) or H ∈ H2(Bd

N) ⊗H, the left singularity 
locus or left NC variety of H is:

Sing(H) := �
n∈N∪{∞}

Singn(H)

Singn(H) :=
{

(Z, y) ∈ Bd
n ×Cn \ {0}

∣∣ y∗H(Z) ≡ 0
}
.

The (left) singularity space of H is:

S (H) := {h ∈ H2(Bd
N) ⊗ J | y∗h(Z) ≡ 0 ∀ (Z, y) ∈ Sing(H)}.
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The singularity space of any such H (in vector-valued NC H2 or operator-valued NC 
H∞) is clearly right shift invariant, and

S (H) ⊇ RanH(L).

In the above y∗H(Z) ≡ 0 for H(L) ∈ H∞(Bd
N) ⊗ L(H, J) and Z ∈ Bd

n, y ∈ Cn \ {0}
means that

〈y ⊗ g,H(Z)x⊗ h〉Cn⊗J = 0,

for any h ∈ H, g ∈ J, and any x ∈ Cn.

Remark 3.3. These varieties differ from the ones considered in [2,48,49] since they corre-
spond to a left ideal in the algebra of right multipliers and not to two-sided ideals. Similar 
varieties in the case of NC polynomials and NC rational functions were considered by 
Helton and McCullough [19] and Helton, Klep and Putinar [16]. The projection onto the 
first coordinate gives the variety of determinantal zeroes considered, for example, in [17].

Remark 3.4. Let H ∈ Hp(Bd
N), p ∈ {2, ∞}, and let π : �n∈N Bd

n × Cn \ {0} → Bd
N

be the projection onto the first coordinate. We claim that if π(Sing(H)) = Bd
N , then 

H ≡ 0. In other words, if H is not identically zero, then one cannot have detH(Z) = 0
for all Z ∈ Bd

N . Indeed, by [30, Theorem 5.7] the inner rank of H considered as a 
1 × 1 matrix over the ring of germs of uniformly analytic NC functions at 0 is given 
by maxn

{
rank(H(Z))

n

∣∣∣Z ∈ a neighbourhood of 0 ∩ Bd
n

}
. This latter number is less than 

1 since detH(Z) = 0 for every Z ∈ Bd
N . Since the inner rank of H is either 1 or 0 we 

conclude that the inner rank of H is 0. However, this can only happen, if H ≡ 0.

Definition 3.5. An NC left multiplier, H(L) ∈ H∞(Bd
N) ⊗ L(H, J), is:

(1) inner, if H(L) is an isometry.
(2) outer, if H(L) has dense range in H2(Bd

N) ⊗ J.

An element of Fock space, h ∈ H2(Bd
N), is called NC outer if it is cyclic for the right 

shifts.

The second definition of an NC outer h ∈ H2(Bd
N) is equivalent to the first if H ∈

H∞(Bd
N). That is, if H(L) ∈ H∞(Bd

N), then H := H(L)1 ∈ H2(Bd
N) is NC outer if and 

only if H(L) is NC outer. (In fact, any element h ∈ H2(Bd
N) can be identified with a 

closed, densely-defined and generally unbounded left multiplier, h(L) in the NC Smirnov 
class [24]. Under this identification, h ∈ H2(Bd

N) is NC outer if and only if h(L) has 
dense range.)

Definition 3.6. An NC inner (isometric) left multiplier Θ ∈ H∞(Bd
N) ⊗ L(H, J) is:
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(1) Blaschke if Ran (Θ(L)) = S (Θ).
(2) singular if S (Θ) = H2(Bd

N) ⊗ J.

Remark 3.7. A scalar NC inner S ∈ H∞(Bd
N) is singular if and only if it is pointwise 

invertible in the NC unit ball, Bd
ℵ0

. Indeed, since the constant functions are in S (S), 
the singularity locus of S is empty. Thus for every 0 < r < 1, the operator S(rL) has 
dense range, i.e., it is an outer. By Theorem 4.2, S(rL) is invertible and thus S(Z) is 
invertible for every Z ∈ Bd

ℵ0
.

For simplicity, the following results are stated for scalar-valued NC left multipliers. 
These extend naturally to operator-valued left multipliers between vector-valued NC 
Hardy spaces.

Proposition 3.8. Given any H ∈ Hp(Bd
N), p ∈ {2, ∞}, Sing(H) satisfies the following 

properties:

(1) If (Z, y), (W, x) ∈ Sing(H) and c ∈ C, then (Z ⊕W, y ⊕ c · x) ∈ Sing(H).
(2) For S ∈ GLn and (Z, y) ∈ Sing(H), such that S−1ZS ∈ Bd

n, we have that 
(S−1ZS, (S∗)−1y) ∈ Sing(H).

Lemma 3.9. Given any H ∈ H∞(Bd
N) or H2(Bd

N), the set S (H) is a closed, R−invariant 
subspace and

S (H)⊥ =
∨

(Z,y)∈Sing(H)

K{Z, y, v}.

Proof. Clearly this is a subspace. If f ∈ S (H) then for any (Z, y) ∈ Sing(H), we have 
that

y∗(Rkf)(Z) = y∗f(Z)Zk = 0,

so that Rkf ∈ S (H). Observe that f ∈ S (H) if and only if

0 = (y, f(Z)v)Cn

= 〈K{Z, y, v}, f〉H2(Bd
N),

for all (Z, y) ∈ Sing(H) and all v ∈ Cn. Hence if (fn) ⊂ S (H) and fn → f in norm, 
then for any (Z, y) ∈ Sing(H) so that Z ∈ Bd

n, and for any v ∈ Cn,

(y, f(Z)v)Cn = 〈K{Z, y, v}, f〉H2(Bd
N)

= lim
n→∞

〈K{Z, y, v}, fn〉H2(Bd
N)

= lim (y, fn(Z)v)Cn = 0.
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This proves that S (H) is closed. �
Lemma 3.10. If Θ ∈ H∞(Bd

N) is NC inner then the kernels of the NC-RKHS (
Θ(L)H2(Bd

N)
)⊥ have the form:

KΘ{Z, y, v} := K{Z, y, v} − Θ(L)K{Z,Θ(Z)∗y, v}.

Proof. Easy to verify since I − Θ(L)Θ(L)∗ is the orthogonal projector onto(
Θ(L)H2(Bd

N)
)⊥. �

Lemma 3.11. If (Z, y) ∈ Bd
n ×Cn belongs to the singularity locus of an NC inner Θ(L), 

then

KΘ{Z, y, v} = K{Z, y, v}. (3.1)

Conversely, if v is cyclic for Alg(I, Z) and (3.1) holds, then (Z, y) is in the singularity 
locus.

Proof. Clearly, since Θ(L) is injective, we have that (3.1) holds if and only if 
K{Z, Θ(Z)∗y, v} = 0. The latter holds if and only if for every f ∈ H2(Bd

N) we have

0 = 〈K{Z,Θ(Z)∗y, v}, f〉 = 〈Θ(Z)∗y, f(Z)v〉.

Hence, if (Z, y) is in the singularity locus, then the above equation holds. Conversely, if 
v is cyclic, then the set of all f(Z)v as f ranges over H2(Bd

N) is a dense set and thus 
(Z, y) is in the singularity locus. �
Remark 3.12. The above is not an if and only if statement in general. To see this consider 
Z =

(
A B
0 C

)
∈ Bd

n and set v =
( v0

0
)
, and y =

(
0
y0

)
, for some v0, y0 �= 0. Then for every 

f ∈ H2(Bd
N) we have f(Z)v =

(
f(A)v0

0

)
and thus

〈K{Z, y, v}, f〉H2(Bd
N) = (y, f(Z)v)Cn = 0.

Also for every f , f(Z)∗y =
(

0
f(B)∗y0

)
and thus K{Z, f(Z)∗y, v} = 0 for every f . How-

ever, it need not be the case that f(B)∗y0 = 0. This defect can be removed by relaxing 
our definition of NC variety: Let the extended NC variety of H ∈ H∞(Bd

N) be the graded 
set:

Sing′(H) := �
n∈N∪{∞}

Sing′n(H),

where



M.T. Jury et al. / Advances in Mathematics 384 (2021) 107720 11
Sing′(H) :=
{
(Z, y, v)

∣∣ Z ∈ Bd
n, y, v ∈ Cn \ {0}; H(Z)∗y ⊥ Alg(I, Z)v

}
.

The extended singularity space is then,

S ′(H) := {h ∈ H2(Bd
N)| h(Z)∗y ⊥ Alg(I, Z)v ∀ (Z, y, v) ∈ Sing′(H)}.

It is easily verified that this space is again R−invariant, closed, and that

S ′(H)⊥ =
∨

(Z,y,v)∈Sing′(H)

K{Z, y, v}.

Moreover, with this definition, (Z, y, v) ∈ Sing′(H) if and only if K{Z, y, v} ∈ S ′(H)⊥. 
Our original definition is, however, fully justified by the NC Blaschke–Singular–Outer 
factorization theorem.

Lemma 3.13. An NC inner Θ is Blaschke if and only if

Ran (Θ(L))⊥ =
∨

(Z,y)∈Singn(Θ);
v∈Cn; n∈N∪{∞}

K{Z, y, v}.

Proof. First any such Szegö kernel vector is in Ran (Θ(L))⊥ by the previous lemma. By 
definition, Θ is Blaschke if the range of Θ(L) is exactly the set of all f ∈ H2(Bd

N) so that

y∗f(Z) = 0, ∀ (Z, y) ∈ Sing(Θ),

and this condition holds if and only if

〈K{Z, y, v}, f〉 = 0,

for all (Z, y) in this singularity locus and all v ∈ Cn. This, in turn, is equivalent to the 
corresponding set of NC Szegö kernels spanning the orthogonal complement of the range 
of Θ(L). �
4. NC Blaschke row-column factorization

By the NC inner-outer factorization theorem, any NC Hardy space function, H ∈
Hp(Bd

N), p ∈ {2, ∞}, in the NC unit ball factors uniquely as H(L) = Θ(L) ·F (L), where 
Θ ∈ H∞(Bd

N), Θ is NC inner and F ∈ Hp(Bd
N) is NC outer [37, Theorem 4.2], [11, 

Corollary 2.2], [3, Theorem 2.1]. (For the inner-outer factorization of operator-valued 
left multipliers between vector-valued NC Hardy spaces, see [40, Theorem 1.7].) In this 
section, we therefore start with an NC inner function Θ ∈ H∞(Bd

N) and decompose it 
as the product of an NC Blaschke inner left row multiplier and an NC inner left column 
multiplier.
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Proposition 4.1. Any NC inner Θ ∈ H∞(Bd
N) factors as

Θ := B · S = (B1, ··· , BN )
( S1

...
SN

)
,

where Ran (B(L)) = S (Θ), Sing(Θ) = Sing(B), B is an NC Blaschke inner, all compo-
nents Bk(L) are inner with pairwise orthogonal ranges, and the column S is also inner.

Proof. By [11, Theorem 2.1, Corollary 2.2] or [40, Theorem 1.7], there is a (row) inner 
B(L) : H2(Bd

N) ⊗ CN → H2(Bd
N) (where N ∈ N ∪ {∞}), so that the R−invariant 

subspace

S (Θ) = RanB(L).

If f = Θ(L)g ∈ Ran Θ(L), observe that for any (Z, y) ∈ Sing(Θ), that

y∗f(Z) = y∗Θ(Z)g(Z) = 0,

and it follows that Ran Θ(L) ⊆ RanB(L). Since both B(L), Θ(L) are isometries, this 
implies Θ(L)Θ(L)∗ ≤ B(L)B(L)∗ so that by the Douglas Factorization Lemma [12], 
there is a contraction, S : H2(Bd

N) → H2(Bd
N) ⊗CN so that

Θ(L) = B(L) · S,

and Ran (S) ⊆ Ker(B(L))⊥. Moreover,

RkΘ(L) = B(L)(Rk ⊗ IN )S = Θ(L)Rk = B(L)SRk,

so that

B(L)((Rk ⊗ In)S − SRk) = 0,

and since B(L) is an isometry

(Rk ⊗ In)S − SRk = 0.

The weak−∗ closed unital algebra of the NC right shifts is the commutant of H∞(Bd
N)

[11, Theorem 1.2], and it follows that S = S(L) ∈ H∞(Bd
N) ⊗ CN is a column of left 

multipliers so that

Θ(L) = B(L)S(L) = (B1(L), ··· , BN (L) )

⎛⎝ S1(L)
...

⎞⎠ .
SN (L)
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In the above, since Θ(L), B(L) are isometries, it follows that S(L) is also an isometry 
(or inner), and also each Bk(L) is an isometry, so that the Bk(L) must have pairwise 
orthogonal ranges. �

Our goal is to show that N = 1 so that both B and S are scalar NC inner functions, 
and it will further follow that S is a scalar NC singular inner.

Theorem 4.2. If f ∈ H2(Bd
N) is an NC outer, then f(rL) ∈ H∞(Bd

N) is invertible for 
0 ≤ r < 1.

We will have several occasions to use the following concept of argument re-scaling 
map:

Definition 4.3. Given any r ∈ [0, 1], let Φr : H2(Bd
N) ⊗H → H2(Bd

N) ⊗H be defined by:

Φrf = Φr

∑
α∈Fd

Lα1 ⊗ f̂α

:=
∑
α

Lα1 ⊗ r|α|f̂α =: fr.

Similarly define ϕr : H∞(Bd
N) ⊗ L(H, J) → H∞(Bd

N) ⊗ L(H, J) by ϕrF (L) = F (rL).

We sometimes write fr = f(rL)1. If F ∈ H∞(Bd
N), then ΦrF (L)1 = ϕr(F (L))1.

Lemma 4.4. For any 0 < r ≤ 1, Φr is a contractive, self-adjoint quasi-affinity. The 
map ϕr is a completely contractive homomorphism for any r ∈ [0, 1]. If ϕr : H∞(Bd

N) ⊗
L(H) → H∞(Bd

N) ⊗L(H), then it is also unital, and extends to a completely positive and 
unital map on the corresponding operator system. The map Φr respects the module inter-
twining action of H∞(Bd

N) ⊗L(H, J): If F (L) ∈ H∞(Bd
N) ⊗L(H, J) and f ∈ H2(Bd

N) ⊗H, 
then ΦrF (L)f = F (rL)fr.

Lemma 4.5. If r ∈ [0, 1), and f ∈ H2(Bd
N), then f(rL) := ML

Φrf
∈ H∞(Bd

N).

Proof. Write f =
∑∞

n=0 fn, where each fn ∈ C{z1, ..., zd} is a homogeneous NC poly-
nomial of degree n. (This is the Taylor-Taylor series expansion of f at 0 ∈ Bd

1 .) Then 
fr =

∑
rnfn, and the operator norm of fr is

‖fr(L)‖ ≤
∞∑

n=0
rn ‖fn(L)‖L(H2(Bd

N))︸ ︷︷ ︸
=‖fn(L)1‖

H2(Bd
N

)

=
∞∑

rn‖fn‖H2 ,

n=0
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(the operator norm of any homogeneous free polynomial in L coincides with its Fock 
space norm),

≤
√

1
1 − r2 ·

(∑
‖fn‖2

H2

)1/2

= ‖f‖H2

√
1

1 − r2 . �
Proof of Theorem 4.2. Any NC outer F ∈ H∞(Bd

N) is necessarily pointwise invertible 
in the NC unit ball, Bd

N [24, Lemma 3.2], and this extends to any NC outer f ∈ H2(Bd
N). 

(Otherwise there is a Z ∈ Bd
n and y ∈ Cn so that f(Z)∗y = 0 and therefore K{Z, y, v} is 

orthogonal to the R−cyclic subspace generated by f , for any v ∈ Cn.) By the previous 
lemma, f(rL) ∈ H∞(Bd

N) is uniformly bounded. If f(rL) is not invertible, then it follows 
that f(rZ)−1 is not uniformly bounded in Bd

N , or, equivalently, f(Z)−1 is not uniformly 
bounded in rBd

N . Since ‖f(Z)−1‖ = ‖(f(Z)∗)−1‖, (f(Z)∗)−1 is not uniformly norm-
bounded in rBd

N , and it follows that we can find a sequence (W (n)) ⊂ rBd
N , W (n) ∈ rBd

mn
, 

and yn ∈ Cmn , ‖yn‖ = 1, so that

‖f(W (n))∗yn‖ <
1
n
.

We view each level Cn as a subspace of C∞ = �2(N) (the span of the first n standard 
basis vectors) so that each yn ∈ C∞. Let {ek} be the standard orthonormal basis for 
C∞, and choose a unitary Un so that Unyn = e1. Then, since f(Z) is a free NC function,

‖f(UnW
(n)U∗

n)∗e1‖ = ‖Unf(W (n))∗U∗
ne1‖

= ‖f(W (n))∗yn‖ → 0.

It follows that we can assume, without loss in generality, that yn = e1 for every n ∈ N. 
That is, we can replace the uniformly bounded sequence of strict row contractions W (n), 
with the sequence Z(n) := UnW

(n)U∗
n, and we set y = e1 = v. Since ‖Z(n)‖ ≤ r for every 

n ∈ N, it follows that the sequence of NC Szegö kernels 
(
K{Z(n), e1, e1}

)
is uniformly 

bounded in Fock space norm:

‖K{Z(n), e1, e1}‖2
H2(Bd

N) =
(
e1,K(Z(n), Z(n))[E11]e1

)
C∞

≤
(
e1,K(Z(n), Z(n))[I]e1

)
≤ ‖K(Z(n), Z(n))[I]‖

=

∥∥∥∥∥
∞∑
k=0

Ad(k)
Z(n),Z(n)∗(I)

∥∥∥∥∥
≤ 1

2 .
1 − r
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In the above AdZ,Z∗ denotes the completely positive map of adjunction by Z and Z∗,

AdZ,Z∗(P ) := Z1PZ∗
1 + · · · + ZdPZ∗

d ,

and we used the fact that ZZ∗ ≤ r2I. Since this sequence of NC kernels is uniformly 
bounded, it follows that there is a weakly convergent subsequence, 

(
K{Z(k), e1, e1}

)
(where say k = nk) so that

K{Z(k), e1, e1} w→ h ∈ H2(Bd
N).

The vacuum coefficient of h is:

h∅ = 〈1, h〉H2(Bd
N)

= lim〈1,K{Z(k), e1, e1}〉H2(Bd
N)

= (e1, e1)C∞

= 1,

and hence h �= 0. However, for any NC polynomial p ∈ C{z1, ..., zd}, consider:

|〈h, p(R)f〉H2(Bd
N)| = lim

∣∣∣〈K{Z(k), e1, e1}, p(R)f〉
∣∣∣

= lim
∣∣∣(e1, f(Z(k))p(Z(k))e1

)
C∞

∣∣∣
≤ lim ‖f(Z(k))∗e1‖‖p‖H∞(Bd

N) (4.1)

= 0,

by assumption. Since p ∈ C{z1, ..., zd} was arbitrary and h �= 0, we conclude f is not 
R−cyclic, contradicting the assumption that f ∈ H2(Bd

N) is NC outer. �
Corollary 4.6. Given any H ∈ Hp(Bd

N), p ∈ {2, ∞}, if H = Θ · F is the inner-outer 
factorization of H, then Sing(H) = Sing(Θ).

Proof. We have that (Z, y) ∈ Sing(H) if and only if

y∗H(Z) = y∗Θ(Z)F (Z) = 0.

Since F is outer, it is pointwise invertible in Bd
ℵ0

by the previous theorem, so that the 
above happens if and only if (Z, y) ∈ Sing(Θ). �
Corollary 4.7. For every 0 < r < 1 there is an Hr(L) ∈ H∞(Bd

N) ⊗C1×N so that

B(rL) = Θ(rL)Hr(L), and Hr(L)S(rL) = IH2(Bd ).
N
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In particular, the NC column-inner, S(L), is pointwise left invertible in the NC unit ball, 
Bd
ℵ0

.

Proof. We have that Θ(L) = B(L)S(L). For any 0 < r < 1, let,

Θ(rL) = Γr(L)Fr(L),

be the inner-outer factorization of Θ(rL). Fix 0 < r < 1 and choose 0 < s < 1 so that 
s > r. Then, if 0 < t < 1 it follows that

Θ(stL) = Γs(tL)Fs(tL),

where now Fs(tL) is an invertible left multiplier by Theorem 4.2 so that

Γs(tL) = Θ(stL)Fs(tL)−1.

By definition of B(L), it follows that if (Z, y) ∈ Sing(Θ) so that

y∗Θ(Z) = 0,

then necessarily,

y∗B(Z) = 0,

and this shows that

Ran (Θ(Z))⊥ ⊆ Ran (B(Z))⊥ ,

for any Z ∈ Bd
n, n ∈ N ∪ {∞}. In particular, for any 0 < r < 1, taking Z = rL,

Ran (B(rL))−‖·‖ ⊆ Ran (Θ(rL))−‖·‖ = Ran Γr(L). (4.2)

Applying Douglas Factorization and using that H∞(Bd
N) is the commutant of the algebra 

of right multipliers [11, Theorem 1.2], it again follows that there is a bounded left row 
multiplier Gr(L) so that

B(rL) = Γr(L)Gr(L),

and finally,

B(stL) = Γs(tL)Gs(tL)

= Θ(stL)Fs(tL)−1Gs(tL)︸ ︷︷ ︸
ˇ

.

=:Hs(tL)
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In particular, since we fixed s > r, we can choose 0 < t < 1 so that st = r, and

B(rL) = Θ(rL)Hr(L), where Hr(L) := Ȟr/t(tL) ∈ H∞(Bd
N) ⊗C1×N .

This proves the existence of Hr. Since B(rL) = Θ(rL)Hr(L), and Θ(rL) is injective [11, 
Theorem 1.7], it follows that KerB(rL) = KerHr(L).

For any 0 < r < 1,

Θ(rL) = B(rL)S(rL)

= Θ(rL)Hr(L)S(rL).

Again, since Θ(rL) is injective, it follows that Hr(L)S(rL) = IH2(Bd
N). �

Remark 4.8. The previous proof relies on the inclusion of the infinite level in our def-
inition of NC variety. Indeed, equation (4.2) which asserts that Ran (B(rL))−‖·‖ ⊆
Ran (Θ(rL))−‖·‖ follows from the assumption that Sing(Θ) includes all pairs (Z, y) ∈
Sing∞(Θ).

Corollary 4.9. The matrix-valued left multiplier

Er(L) := S(rL)Hr(L) ∈ H∞(Bd
N) ⊗CN×N ,

is idempotent. For any 0 < r < 1,

Ran (I −Er(L)) = KerEr(L) = KerB(rL) = KerHr(L).

For any 0 < r, s < 1, Hr·s(L) = Hr(sL) and Er·s(L) = Er(sL).

Proof. If we define Er(L) := S(rL)Hr(L), then

Er(L)Er(L) = S(rL)Hr(L)S(rL)︸ ︷︷ ︸
=I

H2(Bd
N

)

Hr(L) = Er(L),

proving that every Er is idempotent. Also,

B(rL) = Θ(rL)Hr(L)

= B(rL)Er(L),

and it follows that the idempotent

er(L) := IH2(Bd ) ⊗ IN −Er(L),

N
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takes values in the kernel of B(rL). Conversely, consider Er(L) = S(rL)Hr(L). Clearly, 
KerHr(L) ⊆ KerEr(L) = Ran (I −Er(L)), and on the other hand if Er(L)x = 0 then

0 = Hr(L)Er(L)x = Hr(L)S(rL)︸ ︷︷ ︸
=I

Hr(L)x,

so that Ker(B(rL)) = Ker(Hr(L)) = Ker(Er(L)) = Ran (I −Er(L)).
Since B(rL) = Θ(rL)Hr(L), it follows that

Θ(rsL)Hr(sL) = ϕs (Θ(rL)Hr(L))

= ϕs(Br(L)) = B(rsL)

= Θ(rsL)Hrs(L).

It follows that

Θ(rsL) (Hrs(L) −Hr(sL)) = 0,

and since Θ(rsL) is injective, Hr(sL) = Hrs(L). Then, by definition of Er(L),

Ers(L) = S(rsL)Hrs(L) = S(rsL)Hr(sL) = Er(sL). �
Remark 4.10. By [11, Corollary 1.8], the algebra H∞(Bd

N) contains no non-trivial idem-
potents. This result can be extended in a natural way to H∞(Bd

N) ⊗CN×N to show that 
any NC idempotent E ∈ H∞(Bd

N) ⊗CN×N factors as:

E(L) = T (L)−1 (I ⊗ P )T (L),

where T (L) ∈ H∞(Bd
N) ⊗ CN×N is invertible and P ∈ CN×N is a fixed projection, see 

Appendix A.

Remark 4.11. Define operator-valued functions in Bd
ℵ0

by

H(Z) := Hr(Z/r), and E(Z) := Er(Z/r),

where if ‖Z‖ = s < 1 then r is any value so that 0 < s < r < 1. This is well-defined 
since if 0 < s = ‖Z‖ < r < t < 1, then

H(Z) = Hr(Z/r) = Ht·r/t(Z/r) = Ht(Z/t).

Then H, E can be identified with operator-valued free NC functions in Bd
ℵ0

(see Re-
mark 3.1), and they are uniformly bounded on balls rBd

ℵ of radius r < 1.

0
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5. NC Blaschke–singular–outer factorization

Consider the net of operator-valued left multipliers B(rL) ∈ H∞(Bd
N) ⊗ C1×N for 

0 < r ≤ 1. Define the closed R−invariant subspaces Mr := Ran (B(rL))−‖·‖, and let Qr

denote the orthogonal projections onto these spaces. Recall then, that

P⊥
r := R(Qr ⊗ Id)R∗,

is the projection onto the range of the row isometry R|Mr⊗Cd , and that the wandering 
space of Mr is defined to be the subspace:

Wr := Mr �RMr ⊗Cd,

with orthogonal projector

Pr := Qr −R(Qr ⊗ Id)R∗.

Elements of Wr = Ran (Pr) are called wandering vectors, and if {Ωr;k}Nr

k=1 is an orthonor-
mal basis of wandering vectors then,

Ωr(L) := (Ωr;1(L), · · · ,Ωr;Nr
(L)) ; Ωr;k(L) := ML

Ωr;k
,

is a left-inner row multiplier with Ran (Ωr(L)) = Mr. We will call

Nr = dim(Wr),

the wandering dimension of Mr. We then have the NC inner-outer factorization:

B(rL) = Ωr(L)Fr(L); Ωr(L) ∈ H∞(Bd
N) ⊗C1×Nr , Fr(L) ∈ H∞(Bd

N) ⊗CNr×N ,

where Fr(L) := Ωr(L)∗B(rL) is NC left outer for every 0 < r ≤ 1. (Here, note that 
the Douglas Factorization Lemma implies the existence of a bounded linear operator 
Fr so that B(rL) = Ωr(L)Fr. Since Ωr(L) is an isometry, and B(rL) is a contraction, 
F ∗
r Fr = B(rL)∗B(rL) < I, so that Fr is therefore also a contraction. Again using that 

Ωr(L) is an isometry, one can verify that each component of Fr commutes with the 
right shifts, so that Fr = Fr(L) is a left operator-valued multiplier [11, Theorem 1.2]. 
Moreover, Fr = Fr(L) has dense range by construction, and is therefore NC outer.) 
The goal of this section is to prove that B(rL) is injective for 0 < r ≤ 1. Our NC 
Blaschke–Singular–Outer factorization theorem will be an easy consequence of this fact.

The following lemma is a straightforward observation, but we would like to emphasize 
the distinction of the cases d ∈ N and d = ∞. In the notation of the previous discussion:

Lemma 5.1. If Qr
SOT→ Q, then Pr

SOT→ P .
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Proof. This is a consequence of the fact that Qr ⊗ Id
SOT→ Q ⊗ Id. The convergence is 

immediate, if d ∈ N. For d = ∞, this is equivalent to Qr
σ−SOT→ Q. This latter claim 

follows from the fact that the Qr are bounded and [51, Lemma 2.5]. �
The main part of the following lemma is implicit in the work of Davidson and Pitts 

[11].

Lemma 5.2. Let A(L) ∈ H∞(Bd
N) ⊗ L(H, J) be any left multiplier, and set Mr :=

Ran (A(rL))−‖·‖. The wandering dimension of Mr is non-decreasing as r ↑ 1. Fur-
thermore, if Wr is the wandering subspace of Mr and Pr is the projection onto Wr, then 
Wr = (PrΦrW1)−‖·‖.

Proof. It suffices to show that for every 0 < r < 1, we have that Wr = PrΦr (W1)−‖·‖. 
Indeed, this implies that dim (Wr) ≤ dim (W1). Moreover, for 0 < t < r ≤ 1, set C(L) =
A(rL) and s = t/r, then A(tL) = C(sL) and applying the lemma to C(L) will yield 
dim (Wt) ≤ dim (Wr).

Now fix 0 < r < 1, and let W1 = {w1, · · · , wk} be an orthonormal basis of W1. Note 
that Wr = ΦrW1 ⊂ Mr. Moreover, note that Φr(M1)−‖·‖ = Mr since Φr(H2(Bd

N))
is dense in H2(Bd

N). Since rRj ⊗ IKΦr = ΦrRj ⊗ IK for every 1 ≤ j ≤ d and NC 
polynomials in R⊗IJ acting on W1 generate a dense linear subspace of M1, we conclude 
that Wr is R⊗ IJ−cyclic in Mr. Let P⊥

r be, as above, the projection onto Mr �Wr. Let 
w ∈ Wr � PrWr and u ∈ Wr = ΦrW1 be arbitrary. Write u = Pru + P⊥

r u. For every 
multi-index α we obtain that

〈w,Rα ⊗ IJu〉 = 〈w,Rα ⊗ IJPru〉 = 0.

The first equality follows from the fact that Mr � Wr is R−invariant and the second 
since w is wandering and orthogonal to PrWr. Since Wr is an R ⊗ IJ−cyclic subset of 
Mr, we conclude that w ≡ 0 so that Wr =

∨
PrΦrW1 = (PrΦrW1)−‖·‖. �

Let Tr := I −Qr be the projection onto Ran (B(rL))⊥, for r ∈ (0, 1].

Proposition 5.3. The projections Tr
SOT→ T = I −Q = I −B(L)B(L)∗.

Lemma 5.4. For any 0 < r ≤ 1, SingB(rL) is the set of all (Z, y) so that (rZ, y) ∈
Sing(Θ).

Proof. One has y∗Θ(rZ) = 0 if and only if (rZ, y) ∈ Sing(Θ). �
Lemma 5.5. Let S ⊂ H2(Bd

N) be any linear subspace. A vector x ∈ H2(Bd
N) is orthogonal 

to ΦrS if and only if xr = Φrx is orthogonal to S.

Proof. This follows immediately from the fact that Φr is self-adjoint. �
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Lemma 5.6. Any NC Szegö kernel vector, K{Z, y, v} for Z ∈ Bd
n, y, v ∈ Cn, n ∈ N∪{∞}

is given by the formula:

K{Z, y, v} =
∑
α∈Fd

(Zαv, y)Cn Lα1.

For any r ∈ [0, 1], ΦrK{Z, y, v} = K{rZ, y, v}.

Proof of Proposition 5.3. We have that

Ran (T ) = Ran (B(L))⊥ =
∨

(Z,y)∈Sing(B)

K{Z, y, v}.

Choosing a countable dense subset of kernel vectors and applying Gram-Schmidt orthog-
onalization (and using that linear combinations of NC kernels are NC kernels) we obtain 
an orthonormal basis

{K{Z(n), yn, vn}}∞n=1,

for Ran (B(L))⊥. (Each (Z(n), yn) belongs to Sing(B), in fact, since linear combinations 
of NC kernels are NC kernels:

K{Z, y, v} + cK{W,x, u} = K{Z ⊕W, y ⊕ c · x, v ⊕ u},

and if (Z, y), (W, x) ∈ Sing(B), so is (Z⊕W, y⊕ c ·x) for any c ∈ C, see Proposition 3.8. 
This is, however, not germane for our arguments here.) Given any N ∈ N, and any 
0 < r < 1, we define Tr(N) as the orthogonal projection onto∨{

K{r−1Z(n), yn, vn}
∣∣ 1 ≤ n ≤ N and ‖Z(n)‖ < r

}
.

Here, note that for any NC Szegö kernel in the above set, ‖Z(n)‖/r < 1 so that each of 
these kernels is a well-defined vector in H2(Bd

N). If we choose 0 < RN < 1 so that

RN = max1≤n≤N‖Z(n)‖,

then for any r ∈ (RN , 1], Tr(N) is the projection onto∨
1≤n≤N

K{r−1Z(n), yn, vn}.

We write T (N) := T1(N). Since ΦrK{r−1Z(n), yn, vn}=K{Z(n), yn, vn}∈Ran (B(L))⊥

by Lemma 5.6, each of the K{r−1Z(n), yn, vn} belongs to Ran (Tr) = Ran (B(rL))⊥

by Lemma 5.5. (In fact, (r−1Z(n), yn) ∈ Sing(B(rL)) by Lemma 5.4.) It follows that 
Tr(N) ≤ Tr for any r ∈ (0, 1]. Further observe that by the formula of Lemma 5.6,
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K{r−1Z(n), yn, vn}
−→
r ↑ 1 K{Z(n), yn, vn},

so that Tr(N) SOT→ T (N) as r ↑ 1. Moreover it is clear that T (N) SOT→ T .
Consider the net (Tr)r∈(0,1]. This is a net of projections, and hence is uniformly 

bounded for 0 < r ≤ 1. Any subsequence (Trk), for which rk ↑ 1 has a WOT convergent 
subsequence. Let (Trk) be any such WOT−convergent subsequence so that as rk ↑ 1, 
Trk

WOT→ T̃ . Then, for any N ∈ N,

〈x, T̃x〉 = lim〈x, Trkx〉
≥ lim〈x, Trk(N)x〉
= 〈x, T (N)x〉.

Here, we note that since rk ↑ 1, we have that eventually rk > RN . This proves that 
T̃ ≥ T (N) for any N ∈ N, and hence T̃ ≥ T . Further note that T̃ is positive semi-
definite, and it is a contraction: Since Trk

WOT→ T̃ ,

〈x, T̃x〉 = lim
k
〈x, Trkx〉 ≥ 0.

Moreover,

‖T̃ x‖2 = lim |〈Trkx, T̃x〉|
≤ lim sup ‖Trkx‖‖T̃ x‖
≤ ‖x‖‖T̃ x‖.

This proves that ‖T̃ x‖ ≤ ‖x‖, and ‖T̃‖ ≤ 1. Let x = T̃ y be any vector in Ran T̃ . Then 
xk := Trky

w→ x, where w denotes weak convergence. By Lemma 5.5, we know that for 
each k, xk ∈ Ran (B(rkL))⊥, so that hk := Φrkxk ∈ Ran (B(L))⊥. Since each Φrk is a 
contraction and so is T̃ , the sequence hk is uniformly bounded. Then, for any α ∈ Fd,

lim
k

(hk)α = lim
k

r
|α|
k (xk)α

= xα,

since rk ↑ 1, and (xk)α → xα since xk converges weakly to x. Since α ∈ Fd is arbitrary 
and the sequence (hk) is uniformly bounded, it follows that hk

w→ x (converges weakly 
to x). Moreover, each hk ∈ Ran (B(L))⊥, and closed subspaces are weakly closed, so 
that x = wk − lim hk ∈ Ran (B(L))⊥ and we conclude that Ran T̃ ⊆ RanT . Since T̃ is 
a positive semi-definite contraction and T is a projection, T T̃ = T̃ , and

T T̃ = T̃ = T̃ ∗

= T̃ T = T T̃T

≤ T.
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This proves that T̃ ≤ T . Earlier we proved that T̃ ≥ T , and we conclude that T =
T̃ = WOT − limk Trk . Since the subsequence Trk was an arbitrary WOT− convergent 
subsequence so that rk ↑ 1, it follows that the entire net Tr converges in WOT to T
as r ↑ 1. Since each Tr, T are projections, we then obtain that Tr → T in the strong 
operator topology. �
Remark 5.7. Since B(rL) converges SOT − ∗ to B(L) as r ↑ 1 (see e.g. [23, Lemma 

6.3]), it follows that B(rL)B(rL)∗ SOT→ B(L)B(L)∗ = Q as r ↑ 1. Since Q is a non-trivial 
projection, its spectrum is {0, 1}, and it follows that for any t ∈ (0, 1), the spectral 
projections

χ[0,t](B(rL)B(rL)∗) SOT→ (I −Q),

and

χ[t,1](B(rL)B(rL)∗) SOT→ Q,

where χ[a,b] denotes the characteristic function of the interval [a, b] [45, Theorem VIII.24 
(b)]. It does not immediately follow, however, that Qr = I − Tr converges to Q because

Qr = χ(0,1](B(rL)∗B(rL)),

and 0 belongs to the spectrum of Q, see [45]. The crucial fact that makes the above proof 
work is that if B(L) is NC Blaschke, then Ran (B(L))⊥ is spanned by NC functions which 
are each analytic in an NC ball of radius greater than 1.

Corollary 5.8. B(rL) is injective for r ∈ (0, 1].

Lemma 5.9. If 0 �= h ∈ KerB(rL), there is an h′ ∈ KerB(rL) so that h′(0) �= 0 ∈ CN . 
If e = I − E is the NC idempotent so that Ran e(rL) = KerB(rL), then e∅ = e(0) ≡ 0
vanishes identically if and only if e ≡ 0 is identically zero.

Proof. Observe that KerB(rL) = KerB(rL)∗B(rL). Indeed if B(rL)h = 0 then 
B(rL)∗B(rL)h = 0. Conversely, if B(rL)∗B(rL)h = 0, then

0 = 〈h,B(rL)∗B(rL)h〉 = ‖B(rL)h‖2,

and it follows that B(rL)h = 0.
If h∅ = h(0) = 0, then h = Rh = R1h

(1)+· · ·+Rdh
(d) for some h ∈ H2(Bd

N) ⊗CN⊗Cd. 
Then

0 = R∗
kB(rL)∗B(rL)h = B(rL)∗B(rL)h(k),
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and it follows that h(k) ∈ KerB(rL) for every 1 ≤ k ≤ d. If h(k)
∅ = 0, then we can repeat 

this process until we ultimately end up with a g ∈ KerB(rL) so that g(0) �= 0. In more 
detail, if α ∈ Fd is any word of minimal length so that hα �= 0, then g := (Rα)∗h ∈
KerB(rL), and g(0) = g∅ = hα �= 0.

If e(0) ≡ 0, then any h ∈ KerB(rL) = Ran e(rL) has the form h = e(rL)g for some 
g ∈ H2(Bd

N) ⊗ CN , so that h(0) = e(0)g(0) = 0. Hence there is no h ∈ KerB(rL) so 
that h(0) �= 0. If there was a non-zero h ∈ KerB(rL), then by the above argument there 
would be a non-zero g ∈ KerB(rL) so that g(0) �= 0. We conclude that KerB(rL) = {0}
and e ≡ 0. �
Proof of Corollary 5.8. We have proven that if Qr is the projection onto Ran (B(rL))−‖·‖

that Qr
SOT→ Q = B(L)B(L)∗. Consider the inner-outer factorization of B(rL) ∈

H∞(Bd
N) ⊗ C1×N . Let {ek}Nk=1 be the standard orthonormal basis of CN . Then 

Bk := B(L)(1 ⊗ ek) is an orthonormal basis for the wandering space of RanB(L). 
Let Pr := Qr − R(Qr ⊗ Id)R∗, r ∈ (0, 1] be the orthogonal projection onto the wander-
ing subspace, Wr, of Ran (B(rL))−‖·‖. Then, by Lemma 5.1, Pr

SOT→ P , where P is the 
projection onto the wandering space of Ran (B(L)). Define ωr;k := PrΦr(Bk), for every 
1 ≤ k ≤ N . Then each ωr;k is a (potentially zero) wandering vector in Ran (B(rL))−‖·‖, 
and since Pr

SOT→ P , Φr
SOT→ I, and both nets are bounded, we have that

ωr;k = PrΦrBk → PBk = Bk; 1 ≤ k ≤ N.

(So for any fixed k, ωr;k �= 0 for r sufficiently close to 1.) Let NN := {1, 2, · · · , N}, and 
set NN (0) := {j ∈ NN | ωr;j = 0}. We define a sequence of vectors in the wandering 
space of Ran (B(rL))−‖·‖ as follows: If k ∈ NN (0), so that ωr;k = 0 we set Ωr;k = 0. We 
then apply Gram-Schmidt orthogonalization to the (ordered) sequence:

(ωr;k)k∈NN\NN (0) .

This produces an orthonormal sequence of vectors which we label in order by the elements 
of N \ NN (0). Combining this with the previous sequence of zero vectors indexed by 
NN (0) yields the sequence (Ωr;k)Nk=1, consisting of wandering vectors in Wr so that the 
non-zero elements of this sequence form an orthonormal set. (And Ωr;k = 0 if and only 
if k ∈ NN (0).) Note that for any fixed k ∈ {1, ..., N}, Ωr;k converges to Bk in Fock space 
norm as r ↑ 1 so that for any fixed k ∈ NN and r sufficiently close to 1, Ωr;k �= 0. Further 
observe, by Lemma 5.2, that the set, {ωr;k} has dense linear span in the wandering space 
of Ran (B(rL))−‖·‖ so that the set,

{Ωr;k}k∈NN\NN (0),

is an orthonormal basis of wandering vectors for Ran (B(rL))−‖·‖. The wandering di-
mension, Nr ≤ N , of Ran (B(rL))−‖·‖, is then the cardinality of the set NN \ NN (0). 
We then define:
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Ω̃r(L) :=
(
ML

Ωr;1
, · · · ,ML

Ωr;N

)
: H2(Bd

N) ⊗CN → H2(Bd
N),

and

Ωr(L) := (Ωr;j(L))j∈NN\NN (0) .

Observe that each non-zero Ωr;j(L) = ML
Ωr;j

(for j ∈ NN \ NN (0)), is an isometric, or 
inner left multiplier. It follows that Ω̃r(L) ∈ H∞(Bd

N) ⊗ C1×N is a partially isometric 
left multiplier and Ωr(L) ∈ H∞(Bd

N) ⊗C1×Nr is the inner left multiplier obtained from 
Ω̃r(L) by deleting any zero entries. The inner-outer factorization of B(rL) is then

B(rL) = Ωr(L)Fr(L),

where Fr(L) := Ωr(L)∗B(rL). If Nr < N , we add a tail end of N −Nr zeroes to Ωr(L)
to obtain

Ω̂r(L) := (Ωr(L), 0, · · · , 0) ∈ H∞(Bd
N) ⊗C1×N .

If we set F̂r(L) := Ω̂r(L)∗B(rL) then note that we still have

B(rL) = Ω̂r(L)F̂r(L),

where F̂r(L) is simply Fr(L) with N −Nr rows of zeroes added to make it ‘square’. In 
particular, since Ωr(L) is an isometry, we have that

KerB(rL) = KerFr(L) = Ker F̂r(L).

Observe that there is a unitary basis permutation matrix Ur ∈ CN×N so that

Ω̃r(L) = Ω̂r(L)(IH2(Bd
N) ⊗ Ur).

If for example, N = 3, Nr = 2 and

Ω̃r = (Ωr;1, 0,Ωr;3) ,

Ω̂r = (Ωr;1,Ωr;3, 0) ,

then,

Ur =
(1 0 0

0 0 1
0 1 0

)
,

satisfies Ω̂r(L)(IH2(Bd ) ⊗ Ur) = Ω̃r(L). If we then define,

N
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F̃r(L) := Ω̃r(L)∗Br(L)

= (IH2(Bd
N) ⊗ U∗

r )Ω̂r(L)∗B(rL)

= (IH2(Bd
N) ⊗ U∗

r )F̂r(L),

we see that

KerB(rL) = Ker F̂r(L) = Ker F̃r(L).

We claim that Ω̃r(L) converges in WOT to B(L). Indeed, each component Ωr;k con-
verges to Bk = Bk(L)1 in Fock space norm, so that Ωr;k(Z) → Bk(Z) in the NC unit 
ball. This pointwise convergence and the uniform boundedness of the Ωr;k(L), Bk(L)
(these are all isometries or 0) implies WOT convergence of Ωr;k(L) to Bk(L) for any 
fixed k (see for example [48, Lemma 2.5]). To prove that the entire row Ω̃r(L) converges 
in WOT to B(L), let h ∈ H2(Bd

N) ⊗ CN and g ∈ H2(Bd
N) be any fixed vectors. Given 

any ε > 0 choose M ∈ N sufficiently large so that if

h =

⎛⎝ h1
...

hN

⎞⎠ , then,
N∑

M+1
‖hk‖2

H2(Bd
N) < ε.

Then,

∣∣∣〈(Ω̃r(L) −B(L))h, g〉H2(Bd
N)

∣∣∣ ≤ ε · ‖g‖ +

∣∣∣∣∣
M∑
k=1

〈(Ωr,k(L) −Bk(L))hk, g〉H2(Bd
N)

∣∣∣∣∣ ,
which can be made arbitrarily small as r ↑ 1 since each Ωr;k(L) converges in WOT to 
Bk(L).

Since the adjoint map is WOT−continuous, it then follows that Ω̃r(L)∗ WOT→ B(L)∗. 
Finally, since B(rL) SOT→ B(L), we obtain that

F̃r(L) = Ω̃r(L)∗B(rL) WOT→ IH2(Bd
N) ⊗ IN .

(Here, note that if Ak and Bk are uniformly bounded nets of operators on a Hilbert 
space so that Ak

WOT→ A and Bk
SOT→ B, then AkBk converges in the WOT to AB.) 

Since F̃r(L) converges in WOT to IH2(Bd
N) ⊗ IN , it follows that

(
c, F̃r(0)c′

)
CN

= 〈1 ⊗ c, F̃r(L)(1 ⊗ c′)〉

→ (c, c′)CN ,

and this proves that F̃r(0) ∈ CN×N converges in WOT to IN . As observed previously, 
KerB(rL) = Ker F̃r(L) so that B(rL)h = 0 implies F̃r(L)h = 0. However, if
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F̃r(L) =
∑
α

Lα ⊗ F̃r,α, and

h =
∑
β

Lβ1 ⊗ hβ ∈ Ker(B(rL)),

then,

0 = F̃r(L)h =
∑
γ

Lγ1 ⊗
∑

α·β=γ

F̃r,αhβ .

All coefficients must vanish, so that in particular,

F̃r(0)h(0) = 0.

Now given any c, c′ ∈ CN , we have that

e(rL)1 ⊗ c ∈ KerB(rL) = KerFr(L) = Ker F̃r(L).

It follows that 0 = F̃r(L)e(rL)1 ⊗ c, and in particular,

0 = F̃r(0)e(0)c.

Then,

0 =
(
c′, F̃r(0)e(0)c

)
CN

→ (c′, e(0)c)CN .

Since c, c′ ∈ CN were arbitrary we conclude that e(0) = 0. By Lemma 5.9, we conclude 
that e ≡ 0 vanishes identically so that B(rL) is injective for 0 < r ≤ 1. �
Theorem 5.10 (NC Blaschke–Singular–Outer factorization). Any H ∈ Hp(Bd

N), p ∈
{2, ∞}, has a unique Blaschke–Singular–Outer factorization:

H = B · S · F ; B,S ∈ H∞(Bd
N), F ∈ Hp(Bd

N),

where B is an NC Blaschke inner, Sing(B) = Sing(H), S is NC singular inner and F
is an NC outer function. The factors are unique up to constants of unit modulus.

Proof. By the NC inner-outer factorization, any H ∈ Hp(Bd
N), p = 2 or p = ∞, factors 

as H = Θ ·F for an NC inner Θ ∈ H∞(Bd
N) and an NC outer F ∈ Hp(Bd

N) [11, Corollary 
2.2, Corollary 2.3], [3, Theorem 2.1]. By Proposition 4.1 and Corollary 4.7,

Θ = B · S = (B1, ··· , BN )
( S1

...

)
,

SN
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for a Blaschke row-inner B and a column-inner S, both of length N . In Corollary 4.9, 
we constructed an NC idempotent, e, e(rL) ∈ H∞(Bd

N) ⊗ CN×N for r ∈ [0, 1), 
so that KerB(rL) = Ran e(rL). Moreover, if E(rL) = IH2(Bd

N) ⊗ IN − e(rL), then 
E(rL) = S(rL)Hr(L), is an NC idempotent and Hr(L)S(rL) = IH2(Bd

N), so that 
Hr(L) ∈ H∞(Bd

N) ⊗ C1×N is a left inverse for S(rL). (Also recall that we can write 
Hr(L) = H(rL) by Corollary 4.9 and Remark 4.11.) Corollary 5.8 shows that e ≡ 0 so 
that S(rL)H(rL) = E(rL) = IH2(Bd

N) ⊗ IN for any fixed 0 < r < 1. This means that the 
diagonal components obey:

Sk(rL)Hk(rL) = IH2(Bd
N) = Hk(rL)Sk(rL).

On the other hand, in Corollary 4.7 we proved that H(rL) is a left inverse for S(rL) so 
that

IH2(Bd
N) = H(rL)S(rL) =

N∑
k=1

Hk(rL)Sk(rL) = N · IH2(Bd
N).

This proves N = 1, and then S(rL) is an invertible left scalar multiplier with inverse 
H(rL). In particular, the NC variety of S is the empty set so that S (S) = H2(Bd

N) and 
S is an NC singular inner function. �

When d = 1, we recover the classical Blaschke–Singular–Outer factorization with a 
new operator-theoretic proof:

Corollary 5.11. Given any h ∈ Hp(D), p ∈ {2, ∞}, the NC Blaschke–Singular–Outer 
factorization of h and the classical Blaschke–Singular–Outer factorization of h coincide. 
That is, if h = b · s · f is the classical Blaschke–Singular–Outer factorization of h, then 
the range of b(Mz) = Mb is the singularity space of h.

Proof. As observed in the introduction, if h = b · s · f is the classical Blaschke–
Singular–Outer factorization of h ∈ Hp(D), p ∈ {2, ∞}, then

Ran (Mb) = D(h) :=
{
f ∈ H2

∣∣∣∣ fh ∈ Hol(D)
}
,

is the set of all H2 functions which are divisible by h. On the other hand, if h = B ·S ·F
is the NC Blaschke–Singular–Outer factorization of h obtained by setting d = 1 in 
Theorem 5.10 above, then it is clear from [11, Corollary 2.2] that F = f , and it remains 
to show that

Ran (MB) = S (h) = {g ∈ H2| y∗g(Z) = 0 ∀(Z, y) ∈ Sing(h)},

coincides with Ran (Mb) = D(h). Clearly g ∈ D(h) if and only if every zero of h is a zero 
of g of greater or equal multiplicity. If w ∈ D is a zero of h of order n, consider
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W :=
(w ε

. . . . . .

)
∈ C(n+1)×(n+1),

where we choose 0 < ε < 1 −|w| so that W is a strict contraction. The image of W under 
h is

h(W ) =

⎛⎜⎜⎜⎜⎜⎜⎝

h(w) εh′(w) ε2 h′(w)
2! ··· εn h(n)(w)

n!

h(w)
. . .
. . .

εh′(w)
h(w)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which vanishes identically as h has a zero of order n at w ∈ D. It follows that for any 
y ∈ Cn+1, (W, y) ∈ Sing(h), so that any g ∈ S (h) is necessarily such that g(W ) ≡ 0. 
This is equivalent to w being a zero of g ∈ H2 of order at least n, and we conclude that 
S (h) ⊆ D(h) so that Ran (MB) ⊆ Ran (Mb). Conversely, if (Z, y) ∈ Sing(h) then,

0 = y∗h(Z)

= y∗b(Z)s(Z)f(Z),

where s(Z)f(Z) is invertible, by spectral mapping, since s, f are non-vanishing in D. This 
proves that y∗b(Z) = 0 for any (Z, y) ∈ Sing(h) so that b = Mb1 ∈ S (h) = Ran (MB), 
b = MBg = Bg, for some g ∈ H2. If p ∈ C[z] is any analytic polynomial, then

Mbp = Mpb = MpMBg = MBpg ∈ Ran (MB) .

Since MbC[z] is dense in Ran (Mb), we conclude that Ran (Mb) ⊆ Ran (MB) so that 
Mb, MB have the same range. Since b, B are inner functions in D with the same range, 
they are equal up to a unimodular constant. Without loss of generality B = b and F = f

so that S = s as well. �
5.12. The infinite level

A natural question is whether it is really necessary to include the infinite level, 
Sing∞(H), in our definition of NC variety. Our current operator-theoretic proof of the 
NC Blaschke-Singular Outer factorization theorem seems to rely on this, see Remark 4.8. 
Namely, one can define the finite NC variety:

SingN(H) := �
n∈N

Singn(H),

and the finite singularity space:
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SN(H) := {h ∈ H2(Bd
N)| y∗h(Z) = 0 ∀(Z, y) ∈ SingN(H)},

and this is again a closed R−invariant subspace. Applying similar factorization argu-
ments to those in the proof of Proposition 4.1 to an NC inner H = Θ ∈ H∞(Bd

N) again 
yields:

Θ(L) = B′(L)S′(L) = (B′
1(L), ··· , B′

N (L) )

⎛⎝ S′
1(L)
...

S′
N (L)

⎞⎠ ,

for some ‘finite level’ NC Blaschke inner row, B′, i.e. Ran (B′(L)) = SN(Θ), and a ‘finite 
level’ NC inner column, S′, where N ∈ N ∪ {∞}. If Θ(L) = B(L)S(L) is the ‘infinite 
level’ (scalar) NC Blaschke-Singular factorization of Θ given by Theorem 5.10, it could 
be that RanB(L) = RanB′(L), so that B′(L) = B(L) up to a unimodular constant, 
and B′(L) is scalar. If this were the case, unrestrictedly, then there would be no need to 
include the infinite level in our definition of left NC variety. While we currently do not 
know whether or not this is the case, we can show that if p ∈ C{z1, ..., zd} is any NC 
polynomial with NC Blaschke–Singular–Outer factorization p = BSF , then B = B′ is 
determined by the finite NC variety of p.

Proposition 5.13. If p ∈ C{z1, ..., zd}, then any (Z, y) ∈ Sing∞(p) can be approximated 
by finite dimensional (Z(k), y(k)) ∈ Singnk

(p), nk < ∞, in the sense that

K{Z, y, v} = wk − lim
k→∞

K{Z(k), y(k), v}.

In particular,

S (p) = SN(p).

Proof. Suppose that m is the homogeneous degree of p, and that (Z, y) ∈ Sing∞(p). 
Define the subspace

K :=
∨

|α|≤m

(Zα)∗y ⊆ C∞ := �2(N),

where we assume y ∈ C∞. Define the row contraction,

Xj := PKZj |K,

the compression of Z to the finite dimensional subspace K, and set x := y ∈ K. We claim 
that (X, x) ∈ SingN (p) where N := dim(K). Indeed, this is easy to verify for m = 1. If 
m > 1 then observe that
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X∗
jX

∗
kx = PKZ∗

j PKZ∗
kx

= PKZ∗
j PKZ∗

ky

= PKZ∗
jZ

∗
ky,

and similarly, for any |α| ≤ m,

(X∗)αx = PK(Z∗)αx = PK(Z∗)αy.

It follows that

p(X)∗x = PKp(Z)∗y = 0,

so that (X, x) ∈ SingN (p). For any n ≥ m let

K(n) :=
∨

|α|≤n

(Zα)∗y,

and set X(n)j := PnZj |K(n), where Pn := PK(n). This produces a sequence of finite-
dimensional singularity points

(X(n), y) ∈ SingNn
(p),

so that

K{X(n), y, v} w→ K{Z, y, v}.

Indeed, by Lemma 5.6,

K{X(n), y, v} =
∑
α

〈X(n)αv, y〉Lα1,

where, for any fixed |α| < n,

〈X(n)αv, y〉 = 〈v, ((PnZPn)α)∗ y〉
= 〈ZαPnv, y〉.

For any fixed α ∈ Fd, 〈ZαPnv, y〉 → 〈Zαv, y〉, so that

〈X(n)αv, y〉 −→
n → ∞ 〈Zαv, y〉.

Since each ‖X(n)‖ ≤ ‖Z‖ < 1, the NC kernel vectors K{X(n), y, v} are uniformly 
bounded in Fock space norm. This, combined with the convergence of their coefficients 
implies that K{X(n), y, v} converges weakly to K{Z, y, v}. In particular,
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SN(p) =
∨

(Z,y)∈SingN(p)

K{Z, y, v} =
∨

(Z,y)∈Sing(p)

K{Z, y, v} = S (p). �

Another related and perhaps easier question is whether there exists an H ∈ H∞(Bd
N), 

such that SingN(H) = ∅, but Sing(H) �= ∅? A positive answer to this question, of course, 
implies that one cannot dispense with the infinite level. However, a negative answer does 
not tell us to what extent Sing(H) is determined by SingN(H).

6. NC Blaschke and singular examples

6.1. Homogeneous NC polynomials and NC Blaschke inners

In this example we will show that every homogeneous free polynomial p ∈ C{z1, ..., zd}
is a constant multiple of a Blaschke inner. Let p ∈ H∞(Bd

N) be a homogeneous polyno-
mial. Since p(L) = ML

p is a constant times an isometry, we may assume without loss 
of generality that p(L) is an isometry, i.e. p is inner. It is immediate that Sing(p) is 
homogeneous in the first coordinate, i.e., if (Z, y) ∈ Sing(p), then for every λ ∈ D, 
(λZ, y) ∈ Sing(p). Let f ∈ S (p) and (Z, y) ∈ Sing(p). Write f =

∑∞
n=0 fn, the Taylor-

Taylor series of f at 0 ∈ Bd
1 , where fn are the homogeneous components. Then we 

immediately have

0 = y∗
2π∫
0

e−inθf(eiθZ) dθ2π = y∗fn(Z).

Hence for every n ∈ N, fn ∈ S (p). By the Bergman Nullstellensatz [19, Theorem 6.3]
we have that fn = pg, for some homogeneous g. This proves that f is in the range of 
p(L) and we conclude that S (p) = Ran p(L) so that p is Blaschke, by definition.

6.2. The Weyl algebra relation

For any w ∈ D, consider the Möbius transformation:

μw(z) := z − w

1 − wz
.

Lemma 6.3. If V ∈ L(H) is an isometry then μw(V ) is also an isometry.

Proof. Consider:

μw(V )∗μw(V ) = (I − wV ∗)−1(V ∗ − w)(V − w)(I − wV )−1.

Expand the middle term:
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(V ∗ − w)(V − w) = I − wV − wV ∗ + |w|2

= (I − wV ∗)(I − wV ),

and this proves the claim. �
In the classical Hardy space literature, any Möbius transformation composed with a 

contractive analytic function in the disk is sometimes called a Frostman shift [13,14], see 
also [15, Section 2.6].

Corollary 6.4 (NC inner Frostman shifts). If Θ ∈ H∞(Bd
N) is inner, then for any w ∈ D,

Θw := μw(Θ) = (I − wΘ)−1(Θ − wI),

is also inner.

The main result of this subsection will be:

Theorem 6.5. Let V (Z) be any inner NC homogeneous polynomial. For any w ∈ D, the 
NC Frostman shift Vw(Z) = μw(V (Z)) is Blaschke.

Again, in the classical Hardy space literature, given any inner θ ∈ H∞, and any 
w ∈ D, there is a natural unitary (isometric and onto) multiplier, Cw(z), from (θH2)⊥
onto (θwH2)⊥, where as before θw = μw(θ) is the w−Frostman shift of θ. The uni-
tary multiplication operator, MCw

: (θH2)⊥ → (θwH2)⊥ is sometimes called a Crofoot 
Transform [7], [15, Theorem 6.3.1].

Proposition 6.6 (NC Crofoot Transform). Left multiplication by

Cw(Z) :=
√

1 − |w|2 (In − wΘ(Z))−1
,

is an isometry from 
(
Θ(L)H2(Bd

N)
)⊥ onto 

(
Θw(L)H2(Bd

N)
)⊥.

Proof. The NC kernel for the orthogonal complement of Ran (Θw(L)) is

KΘw(Z,W ) = K(Z,W ) − Θw(Z)K(Z,W )Θw(W )∗,

= (I − wΘ(Z))−1 ·

((I − wΘ(Z))K(Z,W )(I − wΘ(W )∗) − (Θ(Z) − wI)K(Z,W )(Θ(W )∗ − wI))︸ ︷︷ ︸
=:G(Z,W )

·(I − wΘ(W )∗)−1.

The expression G(Z, W ) can be expanded as:
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K(Z,W ) − wΘ(Z)K(Z,W ) − wK(Z,W )Θ(W )∗ + |w|2Θ(Z)K(Z,W )Θ(W )∗

−Θ(Z)K(Z,W )Θ(W )∗ + wK(Z,W )Θ(W )∗ + wΘ(Z)K(Z,W ) − |w|2K(Z,W )

= (1 − |w|2) (K(Z,W ) − Θ(Z)K(Z,W )Θ(W )∗)

= (1 − |w|2)KΘ(Z,W ).

Hence,

KΘw(Z,W ) = (1 − |w|2)(I − wΘ(Z))−1KΘ(Z,W )(I − wΘ(W )∗)−1,

and the claim follows readily from this formula. �
Let V ∈ C{z1, ..., zd} be an inner free homogeneous polynomial of degree n ∈ N0, fix 

w ∈ D and consider the operator(
I − V

(
w1/n

r
L

))−1

=
(
I − w

rn
V (L)

)−1

.

Here, w1/n is any nth root of w, and 0 < r < 1 is chosen so that

|w|
rn

< 1, i.e. |w|1/n < r < 1,

to ensure that this operator is well-defined as a convergent geometric series.

Lemma 6.7. Given any h ∈ Ran (V (L))⊥ = KerV (L)∗, and |w|1/n < r < 1,

h(r) :=
(
I − w

rn
V (L)

)−1

h ∈ KerVw(rL)∗.

Proof. Expand h(r) as a convergent geometric series and calculate:

V (rL)∗h(r) = rnV (L)∗
∞∑
k=0

wk

rn·k
V (L)kh

= rn V (L)∗h︸ ︷︷ ︸
=0

+rn
∞∑
k=1

wk

rn·k
V (L)k−1h

= rn
w

rn

∞∑
k=1

wk−1

rn·(k−1)V (L)k−1h

= wh(r).

This proves that every h(r) is an eigenvector of V (rL)∗ to eigenvalue w. It then follows 
that,
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Vw(rL)∗h(r) = μw(V (rL))∗h(r)

= (I − wV (rL))−1 (V (rL)∗ − wI)h(r)︸ ︷︷ ︸
=0

. �

The above lemma implies that the following linear span of NC Szegö kernels,

K :=
∨{

K{rL, g(r), h}
∣∣∣ |w|1/n < r < 1, g ∈ Ran (V (L))⊥ , h ∈ H2(Bd

N)
}

⊆ Ran (Vw(L))⊥ .

If Bw(L) is the Blaschke factor of the inner Vw(L), then it follows that

K ⊆ Ran (Bw(L))⊥ ⊆ Ran (Vw(L))⊥ .

To prove that Vw(L) is Blaschke, i.e. that Vw = Bw, it then suffices to show that 
K = Ran (Vw(L))⊥.

Proof of Theorem 6.5. Consider any K{rL, g(r), 1} ∈ K, where |w|1/n < r < 1 is fixed, 
g ∈ Ran (V (L))⊥, and g(r) =

(
I − w

rnV (L)
)−1

g as above. This NC Szegö kernel can be 
expanded as:

K{rL, g(r), 1} = K{rL, g(r), 1}(Z) =
∑
α∈Fd

r|α|〈Lα1, g(r)〉H2(Bd
N)Z

α.

Further expanding each g(r) as a convergent geometric sum, the αth Taylor series coef-
ficient is:

r|α|〈Lα1, g(r)〉H2(Bd
N) =

∞∑
k=0

wk r
|α|

rn·k
〈Lα1, V (L)kg〉H2(Bd

N)︸ ︷︷ ︸
=0 unless |α|=n·k

=
∞∑
k=0

wk〈Lα1, V (L)kg〉H2(Bd
N)

= 〈Lα1, (I − wV (L))−1
g〉H2(Bd

N).

In the above the first line vanishes unless |α| = nk because V (L) is a homogeneous free 
polynomial of degree n, so that any V (L)k is a homogeneous free polynomial of degree 
n · k. If |α| �= n · k, then

(V (L)k)∗Lα1 = 0.

This proves that
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K{rL, g(r), 1} = (I − wV (L))−1
g

=
√

1 − |w|2
−1

ML
Cw

g,

which belongs to Ran (μw(V (L)))⊥ by Proposition 6.6. Since g can be any element in 
Ran (V (L))⊥, and left multiplication by the NC Crofoot multiplier Cw(Z) is an isometry 
of Ran (V (L))⊥ onto Ran (Vw(L))⊥, it follows that the set K of NC Szegö kernels is 
actually equal to Ran (Vw(L))⊥, and this proves that Vw = Bw is Blaschke. �
Example 6.8. The homogeneous free polynomial,

V (Z) := 1√
2

(Z1Z2 − Z2Z1) ,

is a (left) inner multiplier. Consider the following free polynomial of degree 2:

p(Z) := In −
√

2V (Z) = In − Z1Z2 + Z2Z1.

This free polynomial has the inner-outer factorization:

p(Z) =
(

In√
2
− V (Z)

)(
In − 1√

2
V (Z)

)−1

︸ ︷︷ ︸
=μ 1√

2
(V (Z)), inner

·
√

2
(
In − V (Z)√

2

)
︸ ︷︷ ︸

outer

.

Here, setting w = 1√
2 , Lemma 6.3 implies that μw(V (Z)) is again NC inner. The second 

term in the above has the form I − A(L) for a contractive left multiplier, A(L), and 
hence this term is NC outer by [24, Lemma 3.3]. Theorem 6.5 then implies that the NC 
inner factor, μ 1√

2
(V ), of p, is NC Blaschke.

6.9. Elements of the NC disk algebra with closed range

Theorem 6.10. If H belongs to the NC disk algebra Ad := Alg(I, L)−‖·‖ and has closed 
range, then its inner factor is Blaschke. In particular, any isometry in Ad is Blaschke.

Lemma 6.11. Given 0 < r ≤ 1, the left multipliers Hr(L) := H(rL) are uniformly 
bounded below (and hence have closed ranges) for r sufficiently close to 1.

Proof. Each of the left multipliers Hr(L) are injective. By the open mapping theorem, it 
follows that Hr(L) is bounded below if and only if it has closed range. In particular, by 
assumption we have that H(L) is bounded below, by say δ > 0. Since we further assume 
that H is in the NC disk algebra, H(rL) → H(L) in operator norm as r ↑ 1 so that 
there is a 0 < R < 1 so that r > R implies that ‖H(rL) −H(L)‖ < ε, where ε := δ/2. 
Hence, for any x ∈ H2(Bd

N),
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‖H(rL)x‖ ≥ ‖H(L)x‖ − ‖(H(L) −H(rL))x‖2

≥ δ

2‖x‖,

so that H(rL) is uniformly bounded below by δ/2 for R < r ≤ 1. �
Proof of Theorem 6.10. To prove that Θ is Blaschke, we need to show that S (Θ) =
Ran Θ(L). Since H has closed range, RanH(L) = Ran Θ(L), where H(L) = Θ(L)F (L) is 
the inner-outer factorization of H. Hence, by Lemma 4.6, we need to show that S (H) =
Ran (H(L)).

Fix any 0 < r < 1, and consider any x ∈ Ran (H(rL))⊥. Observe that the pair 
(rL, x) ∈ Sing∞(H). It follows that if g is any element in S (H), then

〈x, g(rL)1〉H2(Bd
N) = 0,

for any x ∈ Ran (H(rL))⊥, and this proves that gr = g(rL)1 ∈ Ran (H(rL))−‖·‖, for any 
0 < r < 1. Hence, for r sufficiently close to 1,

gr = g(rL)1 ∈ RanH(rL),

since H(rL) has closed range for r sufficiently close to 1 by the previous lemma. In 
conclusion,

gr = H(rL)x(r),

for some x(r) ∈ H2(Bd
N). Observe that the net (x(r)) is uniformly bounded above (for 

r close to 1). By the previous lemma, there is an ε > 0 and a 0 < R < 1 so that 
r > R implies that H(rL) is bounded below by ε. Hence, for such r, since the net (gr) is 
convergent and hence uniformly bounded in norm,

‖gr‖ = ‖H(rL)x(r)‖

≥ ε‖x(r)‖,

proving that ‖x(r)‖ is uniformly bounded for r > R. By weak compactness, there is a 
weakly convergent subsequence xk := x(rk), which therefore converges pointwise to some 
x ∈ H2(Bd

N). Hence, for any Z ∈ Bd
N ,

g(rkZ) = H(rkZ) · xk(Z)
↓ ↓ ↓

g(Z) = H(Z) · x(Z),

so that g = H(L)x ∈ RanH(L). This completes the proof. �



38 M.T. Jury et al. / Advances in Mathematics 384 (2021) 107720
6.12. NC singular inner examples

If B ∈ [H∞(Bd
N)]1, i.e. B belongs to the NC Schur class of all contractive NC functions 

in Bd
N , then B(L) is a contraction on the NC Hardy space. By [50, Chapter 8], (provided 

B(L) �= IH2(Bd
N)) B(L) is the co-generator of a C0−semigroup of contractions on H2(Bd

N). 
Namely, if

HB(L) := (I −B(L))−1(I + B(L)),

is the inverse Cayley transform of B, then HB(L) is a closed, densely-defined accretive 
operator (numerical range in the right half-plane), so that HB(Z) belongs to the NC 
Herglotz class of locally bounded (holomorphic) NC functions in Bd

N with positive semi-
definite real part:

ReHB(Z) ≥ 0n, Z ∈ Bd
n.

Since 1 is not an eigenvalue of B(L), [50, Theorem III.8.1] implies that

Bt(L) := exp(−tHB(L)); t ≥ 0,

is a SOT−continuous one-parameter monoid of contractions on H2(Bd
N), so that Bt(Z) ∈

[H∞(Bd
N)]1 belongs to the NC Schur class for every t ≥ 0. Moreover, by [50, Proposition 

III.8.2], Bt(L) will be an isometry on H2(Bd
N) for every t ≥ 0, i.e. Bt will be NC inner, 

if and only if B(L) is NC inner. It further follows that if B(L) is NC inner, then every 
Bt(L) will be an NC singular inner since

Bt(Z) = exp(−HB(Z)), Z ∈ Bd
n,

is clearly pointwise invertible in Bd
ℵ0

. This provides a large class of examples of NC 
singular inner functions, and products of such NC singular inner functions are again NC 
singular inner. It is unclear whether or not all NC singular inners can be obtained in 
this way.

7. Outlook

The NC Blaschke–Singular–Outer factorization raises several natural questions. Clas-
sically, the inner factor of any polynomial in D is a finite Blaschke product, and hence 
a rational analytic function with poles outside of the open disk. Rational functions have 
been studied extensively in the NC setting by several authors [18,26,29,44,56,57].

Question 1. If r ∈ H2(Bd
N) is any NC rational function, is its NC inner factor Blaschke? 

Is it an NC rational function? Is the NC outer factor of an NC polynomial an NC 
polynomial?
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Frostman’s theorem states that given any inner function, θ, in the unit disk, ‘almost 
all’ of its Möbius transformations are Blaschke inner. There is also a theory of so-called 
indestructible Blaschke products, these are Blaschke inner functions so that their im-
ages under any Möbius transformation are again Blaschke products. In particular, the 
Blaschke inner factor of any polynomial (a finite Blaschke product) is indestructible [47], 
[15, Frostman’s Theorem, Theorem 2.6.1].

Question 2. Does an NC analogue of Frostman’s theorem hold? If the inner factor of an 
NC rational function is Blaschke, is it indestructible?

Remark 7.1. Question 1 has been recently answered in the affirmative, see [25, Theorem 
5.2, Theorem 6.1]. Moreover [25, Corollary 5.3] implies that the inner factor of any NC 
rational function in Fock space is Blaschke and indestructible.

Any Blaschke inner in the disk is a (potentially) infinite product of Blaschke factors:

Bw(z) := z − w

1 − wz
.

Similarly one could define NC Blaschke factors as irreducible NC Blaschke inner func-
tions, B, with the property that there are no non-trivial NC Blaschke inners B1, B2 so 
that B = B1B2. A final question on NC Blaschke inner functions is whether there is a 
nice characterization of NC Blaschke factors.

Question 3. If H ∈ H∞(Bd
N) is contractive and point-wise invertible, i.e. detH(Z) �=

0 for all Z ∈ Bd
N , is H infinitely divisible into point-wise invertible and non-trivial 

contractive factors? That is, are there non-trivial, contractive and pointwise invertible 
F, G ∈ H∞(Bd

N) so that H = F ·G?

Appendix A. Idempotents in H∞(Bd
N) ⊗ Cn×n

Theorem A.1. Let E ∈ H∞(Bd
N) ⊗Cn×n be an idempotent, then there exists an orthogonal 

projection P ∈ Cn×n and an S ∈ GLn(H∞(Bd
N)), such that

E = S−1
(
IH2(Bd

N) ⊗ P
)
S.

In particular, this implies that there are no non-trivial finitely generated projective 
modules over H∞(Bd

N) and thus H∞(Bd
N) is a semi-free ideal ring, see [6, Section 2.3].

Proof. Let M = Ran (E) = Ker(I −E) and K = Ker(E) and note that M + N =
H2(Bd

N) ⊗ Cn. In particular, the Friedrichs angle between M and K is non-zero. Ad-
ditionally, the spaces M and K are R ⊗ In−invariant and closed. Let WM and WK be 
the wandering subspaces of M and K, respectively. Note that since H2(Bd

N) ⊗ Cn sur-
jects onto M and K, that m = dim (W )M , k = dim (W )K ≤ n. (This follows as in the 
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proof of Lemma 5.2.) Let VM(L) : H2(Bd
N) ⊗ Cm → H2(Bd

N) ⊗ Cn be the inner left 
multiplier in H∞(Bd

N) ⊗ Cn×m with image M and similarly VK(L) ∈ H∞(Bd
N) ⊗ Cn×k

be the isometric left multiplier with image K. Consider S(L) ∈ H∞(Bd
N) ⊗ Cn×(k+m)

given by S = (VM, VK). Clearly, S is surjective and bounded. Furthermore, since 
M ∩K = {0}, S is also injective and thus has a bounded inverse. For every 1 ≤ i ≤ d, 
S(Ri ⊗ In) = (Ri ⊗ Im)S so that S = S(L). Multiplying by S−1 on both left and right 
we get that (Ri ⊗ In)S−1 = S−1(Ri ⊗ Im). Thus S−1 ∈ H∞(Bd

N) ⊗C(k+m)×n.
Note that S(L) : H2(Bd

N) ⊗Ck+m → H2(Bd
N) ⊗Cn is surjective and thus m + k ≥ n. 

Similarly S−1 is surjective and thus n ≥ m + k. Therefore, m + k = n and thus the 
matrix S(L) is square and E(L) is similar to the projection onto the m last components 
of H2(Bd

N) ⊗Cm+k via S. �
Remark A.2. The similarity, S(L), is not unique. Multiplication by any constant invert-
ible matrix in the commutant of P , for example, will result in a different S.

Corollary A.3. An operator-valued left multiplier S ∈ H∞(Bd
N) ⊗ Cn×k is invertible if 

and only if n = k and its inverse is in H∞(Bd
N) ⊗Cn×n.
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