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1. Introduction

Fundamental structure results of Herglotz and Riesz (and later Beurling) [5,20,46] in
the theory of analytic functions in the complex unit disk, I, imply that any uniformly
bounded analytic function, h, in D admits a Blaschke—Singular—Quter factorization:

h= b - s - f,
~~~ NN =~
Blaschke Singular Outer
where b is an inner Blaschke product, s is a singular inner and f is an outer function.
There are several equivalent definitions of inner and outer functions in the unit disk. We
will take operator-theoretic definitions as our starting point as these will most readily
generalize to the non-commutative (NC) multi-variable setting of the full Fock space
over C?.

The Hardy space, H?(D), is the Hilbert space of analytic functions in the disk with
square-summable Taylor series coefficients at the origin, and H> (D) is the unital Banach
algebra of all uniformly bounded analytic functions in . The Hardy algebra, H>® =
H°(D) can be identified with the multiplier algebra of H?, the algebra of all functions
in D which multiply H? into itself. That is, if f € H> and g € H?, then f-g € H?,
and multiplication by f defines a bounded multiplier, a bounded linear multiplication
operator, My, on H?. One can then define f € H> to be inner if the multiplier M is an
isometry, or outer if My has dense range. In particular, multiplication by the independent
variable, z, defines an isometry on H?2, the shift, S = M., so that H> = Alg(l, ) week—*
and this plays a central role in Hardy Space Theory [34,50]. Blaschke and singular inner
functions can also be described in purely operator-theoretic terms. Namely, given any
h € H* we define the shift-invariant space

f

L (h) = {feH2 m eHol(]D)},

of all H? functions ‘divisible by h’. Clearly g € .#(h) if and only if any zero of h is a
zero of g with greater or equal multiplicity, and .(h) 2 Ran (M}). An inner function,
0 € H*°, is then a Blaschke inner or singular inner if

Z(0) =0H? or ()= H?

respectively. Equivalently, 6 is singular inner if it has no zeroes in the disk. These are
not the usual starting or historical definitions of Blaschke and singular inner functions,
but they are equivalent, see [21, Chapter 5] or [50, Chapter IIL.1]. The goal of this paper
is to extend the seminal Blaschke—Singular—Outer factorization of functions in H* and
H? to elements of the NC Hardy spaces.
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Recent research has identified the full Fock space over C,

H::=P(cH™ =caocie (Clach e (ClaCiaC) o, (L1
k=0

with the Free or Non-commutative Hardy space, H 2([B3dN), a canonical NC multi-variable
analogue of H*(D) [4,11,22,23,41-43]. Elements of H?*(Bg) are analytic matrix-valued
functions defined in an NC multi-variable open unit ball, B, in several NC matrix-
variables [1,28,53-55]:

Bl‘i] = |i|1Bz; IB%Z = (C"X” ®(C1><d)1. (1.2)
n=

Here, we fix the row operator space structure in BZ. Namely, any d—tuple of n x n
matrices, Z = (Zy,---,Z4) € B, can be viewed as a linear map from d copies of C"
into one copy. The NC unit ball consists of the strict row contractions, i.e., the d—tuples
satisfying

275 = Z0ZF + -+ ZaZ5 < 1.

Elements of the full Fock space can be identified with power series in d non-commuting
variables with square-summable coefficients (see Section 2). That is, any f € H? is a
power series:

f(j) = Z faﬁav

aclFd

where F?, the free monoid on d generators, is the set of all words in the d letters {1,...,d},
and given any word o = i1 -+ iy, ik € {1,...,d}, 3% := 3, - 34, . At first sight this may
appear to have little bearing to classical Hardy Space Theory and analytic function
theory in the disk. However, foundational work of Popescu has shown that if Z :=
(Zy,-++ , Zq) : HR®C? — H is any strict row contraction on a Hilbert space, 3, then the
above formal power series for f converges absolutely in operator norm when evaluated
at Z (and uniformly on compacta) [41,48]. It follows that any f € H? can be viewed as a
locally bounded free non-commutative function in the NC open unit ball, BdN [28]. That
is, we can view H? as the NC Hardy space, H? (Bl‘é), the Hilbert space of all (analytic) free
NC functions in [B%I‘il with square-summable Taylor series coefficients. Non-commutative
H>, H*(Bg) can then be defined as the unital Banach algebra of uniformly bounded
free NC functions in the NC open unit ball, and as in the single-variable setting, this
can be identified (completely isometrically [41,48]) with the left multiplier algebra of
H?(BY,), the algebra of all free NC functions in Bf; which left multiply the NC Hardy
space, H 2([8%1‘{]) into itself. Furthermore, again in exact analogy with classical Hardy Space
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Theory, left or right multiplication by the independent NC variables define isometries on
the NC Hardy space:

Ly ;:M§k7 Ry, ::Mgk, 1§k§da

and these have pairwise orthogonal ranges L;L; = Iy26y ;, so that the row operator:
L:=(Ly,Ly, - ,Lq) : H*(BE)®C? — H?(BY,) is an isometry which we call the left free
shift. The NC Hardy algebra, H>°(Bg) = H3° is equal to Alg(Z, L)~"*=* the left free
analytic Toeplitz algebra. This algebra and its norm closed analogue were first studied
by Popescu in [38] (see also [39]). Later they were also studied by Davidson and Pitts
[8-11], Arias and Popescu [3], and further by Popescu [36,41-43]. In greater generality
this setup was extensively studied by Muhly and Solel [31-33].

Popescu was the first to discover an NC analogue of the classical Beurling theorem
for H?(B) in [35, Theorem 2.2] (see also [37, Theorem 4.2] for the first instance of the
inner-outer factorization). The theorem is also proven in [3, Theorem 2.1] and was later
proven independently by Davidson and Pitts [11, Corollary 2.2]. Inner-outer factorization
of NC functions in H?(Bg;) or H>°(B§;) is an easy consequence of this; any H € H>(Bg)
can be factored as H = ©-F, where O is an NC inner (an isometric left multiplier) and F
is an NC outer, i.e. ML = F(L) has dense range. Equivalently F = ME1 is an R—cyclic
vector, and this second definition extends to F' € H 2([81‘11). In this paper, we refine these
results to include an exact NC analogue of the Blaschke—-Singular—Outer factorization.
An NC Blaschke inner B € H*®°(Bg) will be an NC inner whose range is completely
determined by its left ‘NC variety’ in the NC unit ball. An NC inner left multiplier S
will be singular if S(Z) is invertible for any Z € Bg,.

Theorem (NC Blaschke—Singular—Outer factorization, Theorem 5.10). Every non-zero
H € HP(BY), p € {2, 00}, can be factored as a product H = B-S-F for B,S € H”(Bl‘i}),
where B is an NC Blaschke inner with the same NC variety as H, S is an NC singular
inner and F' € HP(IB%I{I) is an NC outer function. The factors are unique up to scalars of
unit modulus.

The left NC variety of any NC Hardy space function is formally defined in Defini-
tion 3.2 below. Roughly speaking, the NC variety is the collection of directional zeroes
in the sense of [19] and [16]. When d = 1, our NC Blaschke-Singular—Outer factoriza-
tion theorem recovers the classical factorization with a new operator-theoretic proof, see
Corollary 5.11.

1.1. Outline
Section 2 contains the necessary background on the NC unit ball, the NC Hardy space,

the NC Hardy algebra H>°(Bg), and its commutant — the algebra of right multipliers.
In Section 3 we discuss the (left) NC varieties cut out as degeneracy loci of functions
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in the NC Hardy spaces. Examples of computations of NC Blaschke inner and singular
inner functions are provided in Section 6. The main theorem stated above is proven in
Section 5. Lastly, the appendix contains a factorization result for NC idempotent-valued
functions obtained while working on the main theorem and is of independent interest in
our opinion.

2. Preliminaries: Fock space as the NC Hardy space

The free monoid, F¢ is the set of all words in d letters {1, ...,d}. This is the universal
monoid on d generators, with product given by concatenation of words, and unit 0,
the empty word containing no letters. The Hilbert space of square summable sequences
indexed by F?, ¢2(F9), and H?l, the direct sum of all tensor powers of C%, i.e. full
Fock space over C¢, are naturally isomorphic (see equation (1.1)). This isomorphism is
implemented by the unitary map e;,..;, — €;, @ --- ®e;,, i € {1,...,d}, and ey — 1
where {e;} denotes the standard basis of C%, and 1 is the vacuum vector of the Fock
space (which spans the subspace C C H2). Under this isomorphism the left free shifts
become the left creation operators on the Fock space which act by tensoring on the left
with the standard basis vectors of C¢. In the sequel we identify the free square-summable
sequences, ¢2(F?) and the Fock space H?2 with the NC Hardy space, denoted by H? (Bld\]):

H*Bf) =< feHoIBY) | f(2)= > faZ® D |ful? <o

acFd

Similarly, we will use the notations H>(B&) := Alg(I, L)~weeh=* = HY,

(B - {f c Trol (B4,

sup [[f(Z)] < OO}~

ZeBg

Any element F € H*(B) is identified with the linear operator, F(L) := ME, of left
multiplication by F(Z). As described in the introduction, H>*(B) can be identified
with the left multiplier algebra of H*(B), and it immediately follows that H>(Bg,) C
H?*(BY). Any f € H*(B) is a locally bounded free non-commutative function in the
sense of modern Non-commutative Function Theory [1,28,52]. That is, f respects the
grading, direct sums and joint similarities which preserve its NC domain, BI{I. Any locally
bounded free NC function (under mild, minimal assumptions on its NC domain) is
automatically holomorphic, i.e. it is both Gateaux and Fréchet differentiable at any
point Z € Bf{] and has a convergent Taylor-type power series expansion about any point
[28, Chapter 7).

The right free shifts, R, = M Z are unitarily equivalent to the left free shifts L, = M ZLk
via the transpose unitary on ¢2(F9), U,

Uieq := €41,
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where if « =41 ---1, € Fd, then af :=14, ---iq, its transpose.
2.1. Fock space as an NC reproducing kernel Hilbert space

The Hardy space, H?(D) can be equivalently defined using Reproducing Kernel The-
ory. Namely, H? is the reproducing kernel Hilbert space (RKHS) of the Szegd kernel:

1

k(z,w) = T

As in the single-variable setting, the free Hardy space, H 2([B%CIN)7 can be equivalently
defined using (non-commutative) reproducing kernel theory [4]. All non-commutative
reproducing kernel Hilbert spaces (NC-RKHS) in this paper will be Hilbert spaces of
free NC functions in the NC unit ball, Bl‘il. Any Hilbert space, H of NC functions in ]Bfil,
is an NC-RKHS if the linear point evaluation map, K3 : H — (C"*", tr,,) is bounded
for any Z € BZ. We will let Kz, the NC kernel map, denote the Hilbert space adjoint of
K7, and, for any y,v € C",

K{Z y,v} := Kz(yv") € 3.
Furthermore, given Z € B¢ y,v € C® and W € B, z,u € C™ the linear map

K(ZW)[]: C™>™ — Ccmem™,
defined by

(y7 K(Z? W)[vu*]x)cn = <K{Z> Y, U}a K{VVa xZ, u}>ﬂ'fa

is completely bounded for any fixed Z, W and completely positive if Z = W. This map is
called the completely positive non-commutative (CPNC) kernel of 3. As in the classical
theory there is a bijection between CPNC kernel functions on a given NC set and NC-
RKHS on that set [4, Theorem 3.1], and if K is a given CPNC kernel on an NC set, we
will use the notation H,,.(K) for the corresponding NC-RKHS of NC functions. The NC

Hardy space, H Q(Bfil)v is then the non-commutative reproducing kernel Hilbert space
(NC-RKHS) corresponding to the CPNC Szeg6 kernel on the NC unit ball, ]B%g]:

K(ZW)[]:= Y Z°[J(W*)s  H*(BY) = Huo(K).

acFd

Adjoints of left multipliers have a familiar and natural action on NC kernel vectors:

F(L)*K{Z,y,v} = K{Z,F(Z)"y,v}. (2.1)
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For our purposes, it will be convenient, as in [41], to view elements of the NC Hardy
spaces as holomorphic (locally bounded) NC functions on all strict row contractions on
a separable Hilbert space. That is, we will add the infinite level to Bld\lz

B =Bg | |BL, (2.2)
where

Bgo .= (Cooxoo ®(Cl><d)1,

denotes the set of all strict row contractions on the separable Hilbert space C* := ¢?(N),
and C>*> := £ ((3(N)). Here, and throughout, the notation C™*™ denotes the n x m
matrices with entries in C, so that C'*? is a row with d entries. We will write C? in
place of C4x1,

3. NC varieties

Let H(Z) be any free NC function in one of the NC Hardy spaces H2(Bg,) or H>(Bg).
The left NC variety of H is the appropriate analogue of a variety in our NC multi-matrix-
variable setting. The definition below is stated more generally for operator-valued left
multipliers between vector-valued NC Hardy spaces. Let H,J be separable or finite-
dimensional Hilbert spaces. We will write H*°(Bg) ® £(H,J) in place of the weak
operator topology (WOT) closure of this algebraic tensor product, viewed as left multi-
plication operators from H?(BY) ® H into H*(Bf) ® J.

Remark 3.1. Any element F(L) € H®(B%) ® C™™ or H®(BY) ® £(J,H) can be
viewed as a matrix- or operator-valued function whose entries are bounded, free non-
commutative functions in Bl‘i] or Bgo. Note, however, that F(Z), viewed as a function
in BdN need not be NC in the sense that it will generally not preserve direct sums.
It can, however, be identified with a matrix-valued NC function, F(Z) (i.e. F does
preserve direct sums, joint similarities and the grading) defined by conjugating F(Z)
with appropriate basis permutation matrices [27, pp. 65-66], [44, p. 38].

Definition 3.2. Given any H € H* (B )®L(H,J) or H € H*(BY)®H, the left singularity
locus or left NC variety of H is:

Sing(H) : | | Sing,(H)

neNU{oco}

Sing,,(H) := {(Z,y) e BZ x C"\ {0} | y*H(Z) =0}.

The (left) singularity space of H is:

S(H):={he H*BY) ©d | y*h(Z) =0V (Z,y) € Sing(H)}.
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The singularity space of any such H (in vector-valued NC H? or operator-valued NC
H®) is clearly right shift invariant, and

Z(H) 2 Ran H(L).

In the above y*H(Z) = 0 for H(L) € H*(BY) ® £L(H,J) and Z € BL, y € C™\ {0}
means that

<y ®97H(Z>x ® h‘>C"®3 =0,
for any h € H,g € J, and any = € C™.

Remark 3.3. These varieties differ from the ones considered in [2,48,49] since they corre-
spond to a left ideal in the algebra of right multipliers and not to two-sided ideals. Similar
varieties in the case of NC polynomials and NC rational functions were considered by
Helton and McCullough [19] and Helton, Klep and Putinar [16]. The projection onto the
first coordinate gives the variety of determinantal zeroes considered, for example, in [17].

Remark 3.4. Let H € HP(BY), p € {2,00}, and let 7: | ],en B2 x C™\ {0} — B
be the projection onto the first coordinate. We claim that if 7(Sing(H)) = B, then
H = 0. In other words, if H is not identically zero, then one cannot have detH(Z) = 0
for all Z € Bl‘i]. Indeed, by [30, Theorem 5.7] the inner rank of H considered as a
1 x 1 matrix over the ring of germs of uniformly analytic NC functions at 0 is given
by max, { M’ Z € a neighbourhood of 0N Bg}. This latter number is less than

1 since det H(Z) = 0 for every Z € B. Since the inner rank of H is either 1 or 0 we
conclude that the inner rank of H is 0. However, this can only happen, if H = 0.

Definition 3.5. An NC left multiplier, H(L) € H*(BY) ® L(H,J), is:

(1) inner, if H(L) is an isometry.
(2) outer, if H(L) has dense range in H*(B%) ® J.

An element of Fock space, h € H? (Bfi]), is called NC outer if it is cyclic for the right
shifts.

The second definition of an NC outer h € H*(B) is equivalent to the first if H €
H>®(BY). That is, if H(L) € H*(BY), then H := H(L)1 € H*(B) is NC outer if and
only if H(L) is NC outer. (In fact, any element h € H?(Bf) can be identified with a
closed, densely-defined and generally unbounded left multiplier, h(L) in the NC Smirnov
class [24]. Under this identification, h € H?(Bf) is NC outer if and only if h(L) has
dense range.)

Definition 3.6. An NC inner (isometric) left multiplier © € H>*(Bg) ® £(3,J) is:
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(1) Blaschke if Ran (©(L)) = .7(0).
(2) singular if #(0) = H*(Bg) ®J.

Remark 3.7. A scalar NC inner S € H OO([B%dN) is singular if and only if it is pointwise
invertible in the NC unit ball, Bgo. Indeed, since the constant functions are in .#(5),
the singularity locus of S is empty. Thus for every 0 < r < 1, the operator S(rL) has
dense range, i.e., it is an outer. By Theorem 4.2, S(rL) is invertible and thus S(Z) is
invertible for every Z € ]Bgo.

For simplicity, the following results are stated for scalar-valued NC left multipliers.
These extend naturally to operator-valued left multipliers between vector-valued NC
Hardy spaces.

Proposition 3.8. Given any H € Hp(Bl‘i]), p € {2,00}, Sing(H) satisfies the following
properties:

(1) If (Z,y), (W,z) € Sing(H) and c € C, then (Z® W,y ® c-x) € Sing(H).
(2) For S € GL, and (Z,y) € Sing(H), such that S~'ZS € BZ, we have that
(S71ZS, (5%)~1y) € Sing(H).

Lemma 3.9. Given any H € H*(BY) or H?(BY), the set ./ (H) is a closed, R—invariant
subspace and

S(H)*t = \V K{Z,y,v}.
(Z,y)€Sing(H)

Proof. Clearly this is a subspace. If f € #(H) then for any (Z,y) € Sing(H), we have
that

v (Ref)(Z) =y f(Z)Z) = 0,
so that Ry f € #(H). Observe that f € .(H) if and only if
0=(y,f(Z)v)cn
= <K{Zvy7v}?f>H2(]BgI)7

for all (Z,y) € Sing(H) and all v € C™. Hence if (f,) C .(H) and f, — f in norm,
then for any (Z,y) € Sing(H) so that Z € BZ, and for any v € C",
(y7 f(Z)v)C" = <K{Z,y,l}}, f>H2(]Bg])
= nlLH;O<K{Z7yav}afn>H2(Br‘§)
=lim (y, fn(Z)v)cn = 0.
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This proves that .(H) is closed. O

Lemma 3.10. If © € H>*(BY) is NC inner then the kernels of the NC-RKHS
(@(L)HQ(B%))L have the form:

K®{Z y,v} = K{Zy,v} — O(L)K{Z,0(Z)*y,v}.

Proof. Easy to verify since I — ©O(L)O(L)* is the orthogonal projector onto
CIALEE) -

Lemma 3.11. If (Z,y) € B x C™ belongs to the singularity locus of an NC inner (L),
then

K®{Z,y,v} = K{Z y,v}. (3.1)

Conversely, if v is cyclic for Alg(I,Z) and (3.1) holds, then (Z,y) is in the singularity
locus.

Proof. Clearly, since ©(L) is injective, we have that (3.1) holds if and only if
K{Z,0(Z)*y,v} = 0. The latter holds if and only if for every f € H*(B) we have

0= (K{Z,0(2)"y,v}, f) = (0(2)"y, f(Z)v).

Hence, if (Z,y) is in the singularity locus, then the above equation holds. Conversely, if
v is cyclic, then the set of all f(Z)v as f ranges over H*(B) is a dense set and thus
(Z,y) is in the singularity locus. O

Remark 3.12. The above is not an if and only if statement in general. To see this consider

Z = (‘Sg) € B? and set v = (U(;J), and y = (y(l), for some vg,yo # 0. Then for every

f € H2(BY) we have f(Z)v = (f@‘(‘))”o) and thus
<K{Zvya U}a f>H2(]BI‘§) = (y’ f(Z)v)(Cn =0.

Also for every f, f(Z)*y = (f(B(;*yo) and thus K{Z, f(Z)*y,v} = 0 for every f. How-
ever, it need not be the case that f(B)*yo = 0. This defect can be removed by relaxing
our definition of NC variety: Let the extended NC variety of H € H‘X’([B%dN) be the graded
set:

Sing/(H):= | | Sing,(H),

neNU{co}

where
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Sing'(H) := {(Z,y,v)| Z € B, y,v e C"\{0}; H(Z)'y L Alg(I,Z)v}.
The extended singularity space is then,
S'(H) :={h € H*B&)| h(Z)*y L Alg(I, Z)v ¥ (Z,y,v) € Sing'(H)}.
It is easily verified that this space is again R—invariant, closed, and that

S(H)* = \ K{Z,y,v}.
(Z,y,v)€Sing’ (H)

Moreover, with this definition, (Z,y,v) € Sing’(H) if and only if K{Z,y,v} € .'(H)> .
Our original definition is, however, fully justified by the NC Blaschke-Singular—-Outer
factorization theorem.

Lemma 3.13. An NC inner © is Blaschke if and only if

Ran (O(L))" = \/ K{Z,y,v}.

(Z,y)€8ing,, (0);
veC™; neNU{oo}

Proof. First any such Szegé kernel vector is in Ran (©(L))™ by the previous lemma. By
definition, © is Blaschke if the range of ©(L) is exactly the set of all f € H*(B) so that

y'f(Z)=0, V(Zy)e Sing(O),
and this condition holds if and only if

<K{Z7y7v}7f> =0,

for all (Z,y) in this singularity locus and all v € C™. This, in turn, is equivalent to the
corresponding set of NC Szeg6 kernels spanning the orthogonal complement of the range
of ©(L). O

4. NC Blaschke row-column factorization

By the NC inner-outer factorization theorem, any NC Hardy space function, H €
HP(BE), p € {2,00}, in the NC unit ball factors uniquely as H(L) = ©(L)- F(L), where
© € H>*(BY), © is NC inner and F € HP(B) is NC outer [37, Theorem 4.2], [11,
Corollary 2.2], [3, Theorem 2.1]. (For the inner-outer factorization of operator-valued
left multipliers between vector-valued NC Hardy spaces, see [40, Theorem 1.7].) In this
section, we therefore start with an NC inner function © € H*(BY) and decompose it
as the product of an NC Blaschke inner left row multiplier and an NC inner left column
multiplier.
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Proposition 4.1. Any NC inner © € H"O(IB%dN) factors as

S1
@::B'S:(qu“'»BN)<E>7
SN

where Ran (B(L)) = . (0©), Sing(©) = Sing(B), B is an NC Blaschke inner, all compo-
nents By (L) are inner with pairwise orthogonal ranges, and the column S is also inner.

Proof. By [11, Theorem 2.1, Corollary 2.2] or [40, Theorem 1.7], there is a (row) inner
B(L) : H*(BY) ® CN — H?(BY) (where N € N U {oo}), so that the R—invariant
subspace
Z(©) = Ran B(L).
If f=0(L)g € Ran©O(L), observe that for any (Z,y) € Sing(©), that
v f(Z) =y 6(2)9(Z) =0,

and it follows that Ran ©(L) C Ran B(L). Since both B(L),©(L) are isometries, this
implies O(L)O(L)* < B(L)B(L)* so that by the Douglas Factorization Lemma [12],

there is a contraction, S : H?(B%) — H*(Bf;) ® CV so that

and Ran (S) C Ker(B(L))*. Moreover,
RiO(L) = B(L)(R, ® In)S = ©(L)Ry, = B(L)SRy,
so that
B(L)((Rx ® I,)S — SRy) =0,
and since B(L) is an isometry
(R ®1,)S — SRy, = 0.
The weak—x* closed unital algebra of the NC right shifts is the commutant of H>(Bg)

[11, Theorem 1.2], and it follows that S = S(L) € H*(Bg) @ C¥ is a column of left
multipliers so that

S1(L)
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In the above, since ©(L), B(L) are isometries, it follows that S(L) is also an isometry
(or inner), and also each By(L) is an isometry, so that the By(L) must have pairwise
orthogonal ranges. O

Our goal is to show that NV =1 so that both B and S are scalar NC inner functions,
and it will further follow that S is a scalar NC singular inner.

Theorem 4.2. If f € H?(BY,) is an NC outer, then f(rL) € H*(B) is invertible for
0<r<1.

We will have several occasions to use the following concept of argument re-scaling
map:

Definition 4.3. Given any r € [0,1], let @, : H*(B¢) ® H — H*(Bg) ® H be defined by:

q)rf = o, Z La1®fa

acFd

= ZLal ® rlo‘lfa =: fr.

Similarly define ¢, : H*(BE) @ £(3,J) — H™(BE) ® £(H,J) by o, F(L) = F(rL).
We sometimes write f, = f(rL)1. If F € H*(Bg), then ®,F(L)1 = ¢,.(F(L))1.

Lemma 4.4. For any 0 < r < 1, ®, is a contractive, self-adjoint quasi-affinity. The
map @, is a completely contractive homomorphism for any r € [0,1]. If ¢, : H® (Bl‘il) ®
L(H) — H>®(BY)@L(H), then it is also unital, and extends to a completely positive and
unital map on the corresponding operator system. The map ®,. respects the module inter-
twining action of H*(B&)QL(H,J): If F(L) € H*®(BL)RL(H,J) and f € H*(BE)®H,
then ®,.F(L)f = F(rL) f,.

Lemma 4.5. If r € [0,1), and f € H*(BY), then f(rL) := M(%rf € H*(BY,).
Proof. Write f = Y7 f,, where each f, € C{31,...,34} is a homogeneous NC poly-

nomial of degree n. (This is the Taylor-Taylor series expansion of f at 0 € B¢.) Then
=Y r"f,, and the operator norm of f, is

(DI < Z?‘" [ (L)l (rr2 B, )

*”fn(L)l”H%]B%

0
= " falla,
n=0
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(the operator norm of any homogeneous free polynomial in L coincides with its Fock

1/2
< Vi (Il
[1

Proof of Theorem 4.2. Any NC outer F' € H*™® (BI{I) is necessarily pointwise invertible
in the NC unit ball, B, [24, Lemma 3.2], and this extends to any NC outer f € H?(Bg).
(Otherwise there is a Z € BZ and y € C™ so that f(Z)*y = 0 and therefore K{Z, y, v} is
orthogonal to the R—cyclic subspace generated by f, for any v € C™.) By the previous
lemma, f(rL) € H*°(BY) is uniformly bounded. If f(rL) is not invertible, then it follows
that f(rZ)~" is not uniformly bounded in B¢, or, equivalently, f(Z)~! is not uniformly
bounded in rBg. Since || f(Z)7| = [(f(Z)*)7'|, (f(Z)*)~! is not uniformly norm-
bounded in B, and it follows that we can find a sequence (W) C rBg, W™ € rB?, |
and y, € C™ | |lyn|| = 1, so that

space norm),

" 1
17wy g <

We view each level C™ as a subspace of C* = (?(N) (the span of the first n standard
basis vectors) so that each y, € C*. Let {e;} be the standard orthonormal basis for
C°, and choose a unitary U, so that U,y, = e1. Then, since f(Z) is a free NC function,
£ (U U er|| = |Un f(W ) Uen|
= [F W) yull = 0.
It follows that we can assume, without loss in generality, that y,, = e; for every n € N.
That is, we can replace the uniformly bounded sequence of strict row contractions W (™
with the sequence Z(™) := U, W™ U* and we set y = e; = v. Since || Z(|| < r for every

n € N, it follows that the sequence of NC Szegt kernels (K {Z (") ey, el}) is uniformly
bounded in Fock space norm:

||K{Z(n),€1,€1}||?{2(]]3§) = (61,K(Z("),Z(”))[E11]61>C00
< (e, K(2, 20 1] )
< |K(z™, 2|

= k
> AdY) . (D
k=0

1
- 1-—r2
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In the above Adz z- denotes the completely positive map of adjunction by Z and Z*,
AdZ,Z*(P) = Z1PZik + -+ ZdPZ§7

and we used the fact that ZZ* < r2I. Since this sequence of NC kernels is uniformly
bounded, it follows that there is a weakly convergent subsequence, (K{Z®) e, e1})
(where say k = ny) so that

K{Z® e, e1} B he H}(BY).
The vacuum coefficient of A is:

hg = (1, 1) 2B,
= lim(1, K{Z(k), e1, 61}>H2(]B;§)

= (61761)0)0

= 1,
and hence h # 0. However, for any NC polynomial p € C{31, ..., 34}, consider:
[0, P(R)S) 2 gy | = i [ (K{Z D 1,0}, p(R))

— lim ‘ (61, f(Z(k))P(Z(k))el)cw)

< lim | F(Z9) e llpll o s (4.1)
= 0’

by assumption. Since p € C{31,...,34} was arbitrary and h # 0, we conclude f is not
R—cyclic, contradicting the assumption that f € H? (]B%I‘il) is NC outer. O

Corollary 4.6. Given any H € HP(BY), p € {2,00}, if H = © - F s the inner-outer
factorization of H, then Sing(H) = Sing(0).

Proof. We have that (Z,y) € Sing(H) if and only if
y H(Z) =y"0(2)F(Z) = 0.

Since F' is outer, it is pointwise invertible in Bgo by the previous theorem, so that the
above happens if and only if (Z,y) € Sing(©). O

Corollary 4.7. For every 0 < r < 1 there is an H,(L) € H*(Bg) ® C'*V so that

B(rL)=©(rL)H.(L), and H,.(L)S(rL)= T2y )-
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In particular, the NC column-inner, S(L), is pointwise left invertible in the NC unit ball,
BL |
0

Proof. We have that ©(L) = B(L)S(L). For any 0 < r < 1, let,
O(rL) =T, (L)F,.(L),

be the inner-outer factorization of ©(rL). Fix 0 < r < 1 and choose 0 < s < 1 so that
s > r. Then, if 0 <t < 1 it follows that

O(stL) =T's(tL)Fs(tL),
where now F(tL) is an invertible left multiplier by Theorem 4.2 so that
T, (tL) = O(stL)Fy(tL)™ .

By definition of B(L), it follows that if (Z,y) € Sing(©) so that
then necessarily,

and this shows that
1 i
Ran (©(Z))” CRan(B(Z)) ",
for any Z € BY, n € N U {oc}. In particular, for any 0 < r < 1, taking Z = rL,
Ran (B(rL)) "l € Ran (0(rL)) "'l = RanT,(L). (4.2)

Applying Douglas Factorization and using that H>°(Bg) is the commutant of the algebra
of right multipliers [11, Theorem 1.2], it again follows that there is a bounded left row
multiplier G,.(L) so that

B(rL) =T,(L)G,(L),
and finally,

B(stL) = T, (tL)G4(tL)
= O(stL) Fy(tL) *G4(tL).
N— ————

=:H.(tL)
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In particular, since we fixed s > r, we can choose 0 < t < 1 so that st = r, and

B(rL) = ©(rL)H,(L), where H,(L):=H,;(tL) € H*Bg) o C*V.
This proves the existence of H,.. Since B(rL) = ©(rL)H, (L), and ©(rL) is injective [11,
Theorem 1.7, it follows that Ker B(rL) = Ker H,.(L).

Forany 0 <r <1,

O(rL) = B(rL)S(rL)
=O(rL)H.(L)S(rL).

Again, since O(rL) is injective, it follows that H,(L)S(rL) = Iy2@gg). O
Remark 4.8. The previous proof relies on the inclusion of the infinite level in our def-
inition of NC variety. Indeed, equation (4.2) which asserts that Ran(B(rL))_”'” C
Ran (@(TL))i”.” follows from the assumption that Sing(©) includes all pairs (Z,y) €
Sing..(©).
Corollary 4.9. The matriz-valued left multiplier
E.(L):=S(rL)H,(L) € H*(BY) @ CN*N,

is idempotent. For any 0 < r < 1,

Ran (I — E.(L)) =Ker E,.(L) = Ker B(rL) = Ker H,.(L).
For any 0 <r,s<1, H.s(L) = H-(sL) and E,.s(L) = E.(sL).

Proof. If we define E,.(L) := S(rL)H,(L), then

E,(L)E.(L) = S(rL) H,(L)S(rL) H, (L) = E, (L),

:IHZ(]B%)

proving that every E, is idempotent. Also,

B(rL) = ©(rL)H,(L)
= B(rL)E,(L),

and it follows that the idempotent

eT(L) = IH2(]BI‘{I) ®IN — ET(L)7
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takes values in the kernel of B(rL). Conversely, consider E,.(L) = S(rL)H,(L). Clearly,
Ker H-(L) C Ker E,.(L) = Ran (I — E(L)), and on the other hand if E,(L)z = 0 then

0= H,(L)E,(L)z = H,(L)S(rL) H,(L)z,
=I

so that Ker(B(rL)) = Ker(H,(L)) = Ker(E,(L)) = Ran (I — E.(L)).
Since B(rL) = ©(rL)H,(L), it follows that

G(TSL)H7(SL) = Ps (@(TL)H7(L))

It follows that
O(rsL) (H,s(L) — H,(sL)) =0,
and since O(rsL) is injective, H,(sL) = Hys(L). Then, by definition of E,.(L),
E.s(L)=S(rsL)H,s(L) = S(rsL)H,(sL) = E.(sL). O
Remark 4.10. By [11, Corollary 1.8], the algebra H> (Bl(il) contains no non-trivial idem-
potents. This result can be extended in a natural way to H*° (BI‘@) ®@CN*N t0 show that
any NC idempotent E € H*(Bf;) ® CV*V factors as:
B(L) =T(L)~" (I ® P)T(L),

where T(L) € H*(Bg) ® CV*V is invertible and P € CV*V is a fixed projection, see
Appendix A.

Remark 4.11. Define operator-valued functions in Bgo by
H(Z):=H.(Z/r), and E(Z):=E.(Z/r),

where if [|Z|| = s < 1 then r is any value so that 0 < s < r < 1. This is well-defined
since if 0 < s = || Z|| < r <t < 1, then

H(Z) = Hy(Z/r) = Hy., o (Z/1) = Hi(Z)1).

Then H, E can be identified with operator-valued free NC functions in Bgo (see Re-
mark 3.1), and they are uniformly bounded on balls ngO of radius r < 1.
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5. NC Blaschke—singular—outer factorization

Consider the net of operator-valued left multipliers B(rL) € H>®(B%) @ C*N for
0 < r < 1. Define the closed R—invariant subspaces .#;. := Ran (B(rL))~ I and let Q.
denote the orthogonal projections onto these spaces. Recall then, that

PL .= R(Q, ® I;)R*,

T

is the projection onto the range of the row isometry R| , ocd, and that the wandering
space of ., is defined to be the subspace:

W, = M, O RM, @ C?,
with orthogonal projector
P.:=Q, - R(Q,®I;)R".

Elements of #, = Ran (P,) are called wandering vectors, and if {QT;k}kNgl is an orthonor-
mal basis of wandering vectors then,

QT<L> = (Qr;l(L)v t >QT;N,,.(L)) 5 Qr;k(L) = Mg%

rik?

is a left-inner row multiplier with Ran (2, (L)) = .#,. We will call
N, = dim(#,),
the wandering dimension of .#,.. We then have the NC inner-outer factorization:
B(rL) = Q. (L)F.(L); Q.(L) € H*(Bf) ® C", F.(L) € H*(Bf) © CV*¥,

where F,.(L) := Q. (L)*B(rL) is NC left outer for every 0 < r < 1. (Here, note that
the Douglas Factorization Lemma implies the existence of a bounded linear operator
F, so that B(rL) = Q,(L)F,. Since Q,(L) is an isometry, and B(rL) is a contraction,
F}F, = B(rL)*B(rL) < I, so that F, is therefore also a contraction. Again using that
2,.(L) is an isometry, one can verify that each component of F, commutes with the
right shifts, so that F, = F,.(L) is a left operator-valued multiplier [11, Theorem 1.2].
Moreover, F,. = F,.(L) has dense range by construction, and is therefore NC outer.)
The goal of this section is to prove that B(rL) is injective for 0 < r < 1. Our NC
Blaschke—Singular—Outer factorization theorem will be an easy consequence of this fact.

The following lemma is a straightforward observation, but we would like to emphasize
the distinction of the cases d € N and d = co. In the notation of the previous discussion:

Lemma 5.1. If Q. = Q, then P, 59T p.
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Proof. This is a consequence of the fact that Q, ® I sOr Q ® I;. The convergence is
immediate, if d € N. For d = oo, this is equivalent to Q, o507 Q. This latter claim

follows from the fact that the @, are bounded and [51, Lemma 2.5]. O

The main part of the following lemma is implicit in the work of Davidson and Pitts
[11].

Lemma 5.2. Let A(L) € H*®(BY) ® L(H,d) be any left multiplier, and set M, =
Ran (A(rL))_H'H. The wandering dimension of M, is non-decreasing as v T 1. Fur-
thermore, if #; is the wandering subspace of M, and P, is the projection onto #,., then
¥y = (P, 1) I

Proof. It suffices to show that for every 0 < r» < 1, we have that #, = P.®, (7/1)_“.
Indeed, this implies that dim (%) < dim (#4). Moreover, for 0 <t <r <1, set C(L) =
A(rL) and s = t/r, then A(tL) = C(sL) and applying the lemma to C'(L) will yield
dim (#;) < dim (#;.).

Now fix 0 < r < 1, and let Wy = {wy,--- ,wi} be an orthonormal basis of #;. Note
that W, = &, W, C .. Moreover, note that <I>r(///1)*“'“ = M, since @r(Hg(]B%))
is dense in Hz(BdN). Since rR; ® I5c®, = ®,R; ® Ix for every 1 < j < d and NC
polynomials in R® I acting on Wy generate a dense linear subspace of .#1, we conclude
that W, is R® Iy—cyclic in .#,. Let P be, as above, the projection onto .#, © #,.. Let
w € Wy © PW,. and u € W,. = ®,.'W; be arbitrary. Write u = P.u + Pﬁ-u. For every
multi-index o we obtain that

(w, R* ® Iyu) = (w, R* ® I3P.u) = 0.

The first equality follows from the fact that .. © #; is R—invariant and the second
since w is wandering and orthogonal to P,W,.. Since W, is an R ® Iz—cyclic subset of
M., we conclude that w = 0 so that #, = \/ P.®,W; = (PTCDT%)*”'”. O

Let T, := I — Q, be the projection onto Ran (B(rL))", for r € (0, 1].
. — sor .
Proposition 5.3. The projections T, "= T =1—-Q =1— B(L)B(L)*.

Lemma 5.4. For any 0 < r < 1, Sing B(rL) is the set of all (Z,y) so that (rZ,y) €
Sing(O).

Proof. One has y*O(rZ) = 0 if and only if (rZ,y) € Sing(0). O

Lemma 5.5. Let 8 C H*(B;) be any linear subspace. A vector x € H*(B;) is orthogonal
to ®,.8 if and only if x,. = ®.x is orthogonal to 8.

Proof. This follows immediately from the fact that ®, is self-adjoint. O
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Lemma 5.6. Any NC Szegé kernel vector, K{Z,y,v} for Z € B¢, y,v € C", n € NU{oo}
s given by the formula:

K{Z,yﬂ}} = Z (Zavay)(Cn La1~
acFd

For anyr €10,1], ®.K{Z,y,v} = K{rZ,y,v}.
Proof of Proposition 5.3. We have that

Ran(T) =Ran (B(L))" = \/  K{Zy,v}
(Z,y)€Sing(B)

Choosing a countable dense subset of kernel vectors and applying Gram-Schmidt orthog-
onalization (and using that linear combinations of NC kernels are NC kernels) we obtain
an orthonormal basis

{K{Z(n)v Yn, vn}}zo:h

for Ran (B(L))J‘. (Each (Z(n), y,) belongs to Sing(B), in fact, since linear combinations
of NC kernels are NC kernels:

K{Z y,v}+ cK{W,z,u} = K{Z&W,y®c-z,v® u},

and if (Z,y), (W, z) € Sing(B), sois (Z@ W,y ®c- ) for any c € C, see Proposition 3.8.
This is, however, not germane for our arguments here.) Given any N € N, and any
0 <r < 1, we define T;.(IN) as the orthogonal projection onto

\/{K{r‘lZ(n),yn,vnH 1<n<N and [Z(n)|<r}.

Here, note that for any NC Szegd kernel in the above set, ||Z(n)||/r < 1 so that each of
these kernels is a well-defined vector in H? (]Bl‘il). If we choose 0 < Ry < 1 so that

Ry =maxi<,<n|[|Z(n)]],

then for any r € (Rn, 1], T;-(N) is the projection onto

\/ E{r='Z(n),yn.va}.

1<n<N

We write T'(N) := T1(N). Since ®,.K{r=tZ(n), yn, va }=K{Z(n), yn, v, }ERan (B(L))™*

by Lemma 5.6, each of the K{r='Z(n),y,,v,} belongs to Ran (T}.) = Ran (B(rL))™*
by Lemma 5.5. (In fact, (r='1Z(n),y,) € Sing(B(rL)) by Lemma 5.4.) It follows that
T.(N) < T, for any r € (0,1]. Further observe that by the formula of Lemma 5.6,
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E{r™'Z(n),yn,vn} r11 K{Z(n), yn, vn},

so that T;.(N) oor T(N) as r 1 1. Moreover it is clear that T'(N) o,

Consider the net (7.),¢(o,1)- This is a net of projections, and hence is uniformly
bounded for 0 < r < 1. Any subsequence (7}, ), for which 7 1 1 has a WOT convergent
subsequence. Let (7).,) be any such WOT —convergent subsequence so that as r, T 1,

T, "srr. Then, for any N € N,

(z,Tx) = lim(z, T,, z)
> lim(z, Ty, (N)x)
= (z,T(N)z).

Here, we note that since r; 1 1, we have that eventually rp > RN This proves that

T > T(N) for any N € N, and hence T > T. Further note that T is positive semi-

WOT g

definite, and it is a contraction: Since 7}, T,

(x,Tx) = li]£n<xaTme> > 0.
Moreover,

1Tz |* = lim (T, T)|
< limsup |1, | T
< ][ T].
This proves that |Tz| < ||z|, and || T < 1. Let 2 = Ty be any vector in Ran7T'. Then
g =Ty 2 2, where w denotes weak convergence. By Lemma 5.5, we know that for

cach k, 2, € Ran (B(ryL))", so that hy := ®,, 2, € Ran (B(L))". Since each ®,, is a
contraction and so is T', the sequence hy, is uniformly bounded. Then, for any o € F¢,

since 1, T 1, and (x)q — 24 since xy converges weakly to z. Since o € F? is arbitrary
and the sequence (hy) is uniformly bounded, it follows that hj — z (converges weakly
to z). Moreover, each hy € Ran (B(L))", and closed subspaces are weakly closed, so
that # = wk — lim hy, € Ran (B(L))" and we conclude that RanT C RanT. Since T is
a positive semi-definite contraction and 7' is a projection, 1T = i and

TT =T =T*
=TT =TTT
<T.



M.T. Jury et al. / Advances in Mathematics 384 (2021) 107720 23

This proves that T < T. Earlier we proved that T > T, and we conclude that T' =
T = WOT — limy, T, . Since the subsequence T,, was an arbitrary WOT— convergent
subsequence so that r; T 1, it follows that the entire net 7T, converges in WOT to T
as r T 1. Since each T,.,T are projections, we then obtain that 7, — T in the strong
operator topology. 0O

Remark 5.7. Since B(rL) converges SOT — % to B(L) as r 1 1 (see e.g. [23, Lemma

6.3]), it follows that B(rL)B(rL)* = B(L)B(L)* = Q as r 1 1. Since @ is a non-trivial

projection, its spectrum is {0,1}, and it follows that for any ¢t € (0,1), the spectral
projections

Xjo.9(B(rL)B(rL)*) *%" (I - Q),

and
%\ SO
Xiea)(B(rL)B(rL)*) %" Q,

where X[, denotes the characteristic function of the interval [a, b] [45, Theorem VIII.24
(b)]. Tt does not immediately follow, however, that Q,. = I — T, converges to @ because

Qr = X(0,11(B(rL)"B(rL)),

and 0 belongs to the spectrum of @, see [45]. The crucial fact that makes the above proof
work is that if B(L) is NC Blaschke, then Ran (B(L))™" is spanned by NC functions which
are each analytic in an NC ball of radius greater than 1.

Corollary 5.8. B(rL) is injective for r € (0,1].
Lemma 5.9. If 0 # h € Ker B(rL), there is an b’ € Ker B(rL) so that h'(0) # 0 € CV.
Ife=1I—E is the NC idempotent so that Rane(rL) = Ker B(rL), then ey = e(0) =0

vanishes identically if and only if e = 0 is identically zero.

Proof. Observe that Ker B(rL) = Ker B(rL)*B(rL). Indeed if B(rL)h = 0 then
B(rL)*B(rL)h = 0. Conversely, if B(rL)*B(rL)h =0, then

0= (h, B(rL)*B(rL)h) = ||B(rL)h|?,
and it follows that B(rL)h = 0.
If hy = h(0) = 0, then h = Rh = R{hW +- - -+ Ryh@ for some h € H?(BE)oCNeC.

Then

0= R;B(rL)*B(rL)h = B(rL)*B(rL)h®,
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and it follows that h(®) € Ker B(rL) for every 1 < k < d. If hé)k) = 0, then we can repeat
this process until we ultimately end up with a g € Ker B(rL) so that g(0) # 0. In more
detail, if @ € F? is any word of minimal length so that h, # 0, then g := (R®)*h €
Ker B(rL), and g(0) = gg = hq # 0.

If e(0) = 0, then any h € Ker B(rL) = Rane(rL) has the form h = e(rL)g for some
g € H?(B) ® CV, so that h(0) = e(0)g(0) = 0. Hence there is no h € Ker B(rL) so
that h(0) # 0. If there was a non-zero h € Ker B(rL), then by the above argument there
would be a non-zero g € Ker B(rL) so that g(0) # 0. We conclude that Ker B(rL) = {0}
ande=0. O

Proof of Corollary 5.8. We have proven that if @), is the projection onto Ran (B(?“L))_l“”

that @, r @ = B(L)B(L)*. Consider the inner-outer factorization of B(rL) €

H>*BY) @ CN. Let {ex}_, be the standard orthonormal basis of CV. Then
B = B(L)(1 ® eg) is an orthonormal basis for the wandering space of Ran B(L).
Let P.:=Q, — R(Q, ® I;)R*, r € (0,1] be the orthogonal projection onto the wander-
ing subspace, #;., of Ran (B(TL))_H'H. Then, by Lemma 5.1, P. = P, where P is the
projection onto the wandering space of Ran (B(L)). Define wy., := P.®,(By), for every

1 <k < N. Then each w,,; is a (potentially zero) wandering vector in Ran (B(rL))fH'H,

and since P, sor P, o, SO 1 , and both nets are bounded, we have that

wr;k:Prq)er%PBk:Bk; 1§k§N

(So for any fixed k, wy.x, # 0 for r sufficiently close to 1.) Let Ny := {1,2,--- , N}, and
set Ny(0) := {j € Ny| wy;; = 0}. We define a sequence of vectors in the wandering
space of Ran (B(TL))_H'H as follows: If k € Ny(0), so that w;., = 0 we set ., = 0. We
then apply Gram-Schmidt orthogonalization to the (ordered) sequence:

(WT3k)kENN\NN(O) :

This produces an orthonormal sequence of vectors which we label in order by the elements
of N\ Ny(0). Combining this with the previous sequence of zero vectors indexed by
Np(0) yields the sequence (Qr;k)llcvzl, consisting of wandering vectors in %, so that the
non-zero elements of this sequence form an orthonormal set. (And €, = 0 if and only
if k € Ny (0).) Note that for any fixed k € {1, ..., N}, Q. converges to By, in Fock space
norm as r T 1 so that for any fixed k¥ € Ny and r sufficiently close to 1, ., # 0. Further
observe, by Lemma 5.2, that the set, {w;.; } has dense linear span in the wandering space
of Ran (B(rL))_H'H so that the set,

{7k FheNy\Ny (05

is an orthonormal basis of wandering vectors for Ran (B (rL))fH'H. The wandering di-
mension, N, < N, of Ran (B(rL))_H'H7 is then the cardinality of the set Ny \ Ny (0).
We then define:
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QT(L) = (MS%T;U U 7M§%T;N> : HQ(BI%) ® (CN - HQ(BI%%
and
Q,(L) == (Qr;j(L))jeNN\NN(o) .

Observe that each non-zero €Q,.;(L) = Mém, (for j € Ny \ Ny (0)), is an isometric, or

inner left multiplier. It follows that 2, (L) € H*®(Bf) ® C'*V is a partially isometric
left multiplier and Q,.(L) € H® (Bf{;) ® C'*Nr is the inner left multiplier obtained from
Q,(L) by deleting any zero entries. The inner-outer factorization of B(rL) is then

B(TL) = Q’I’(L)F’I‘(L)7

where F,.(L) := Q,(L)*B(rL). If N, < N, we add a tail end of N — N, zeroes to Q,(L)
to obtain

QT’(L) = (QT(L)aov e 70) € HOO(BdN) ® (CIXN'
If we set F.(L) := Q,.(L)*B(rL) then note that we still have

B(TL) = QT(L)FT(L))

where F,.(L) is simply F,.(L) with N — N, rows of zeroes added to make it ‘square’. In
particular, since €,.(L) is an isometry, we have that

Ker B(rL) = Ker F,.(L) = Ker F(L).
Observe that there is a unitary basis permutation matrix U, € CV*¥ so that
(L) = (L) (2 gg,) @ Ur)

If for example, N = 3, N,, = 2 and

ﬁr = (Qr;la 07 Qr;3) 5
Qr = (QT‘;I; QV';37 O) )

100
u.=(0 0 1),
01 0

satisfies Q,.(L) (IH2(]BId\I) @U,) = Q, (L). If we then define,

then,
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F,(L) := Q,(L)*B.(L)
= (I2y) © US)Q (L) B(rL)
= (Ig2@g,) ® U7 (L),

we see that
Ker B(rL) = Ker F.(L) = Ker F,(L).

We claim that €,.(L) converges in WOT to B(L). Indeed, each component €2,.j, con-
verges to By = Bj(L)1 in Fock space norm, so that €,.,(Z) — Bi(Z) in the NC unit
ball. This pointwise convergence and the uniform boundedness of the ,.,(L), Bx(L)
(these are all isometries or 0) implies WOT convergence of .., (L) to By(L) for any
fixed k (see for example [48, Lemma 2.5]). To prove that the entire row €,.(L) converges
in WOT to B(L), let h € H?(BY) ® CN and g € H%(Bf) be any fixed vectors. Given
any € > 0 choose M € N sufficiently large so that if

ha

N
h=|( @ |, then, Y [lhlfrme) <e
hy M+1
Then,
_ M
(2 (L) = B(L)h, g) g=(may | < € llgll + Z((an(L) = Bi(L)) hies 9) 12 B, | »
k=1

which can be made arbitrarily small as r 1 1 since each Q,.,(L) converges in WOT to
By (L).
Since the adjoint map is WOT —continuous, it then follows that €2,.(L)* war B(L)*.

Finally, since B(rL) ' p (L), we obtain that

Fo(L) = Q.(L)*B(rL) "S3" Ipaa ) @ I

(Here, note that if Ay and By are uniformly bounded nets of operators on a Hilbert

space so that Ay WOT 4 and By, = B, then AyBj converges in the WOT to AB.)

Since F, (L) converges in WOT to T2 mg) ® In, it follows that
(e.F0)) _, = tecFL)1ec)
= (¢,c)ew s

and this proves that ﬁT(O) € CNXN converges in WOT to In. As observed previously,
Ker B(rL) = Ker F.(L) so that B(rL)h = 0 implies F,.(L)h = 0. However, if
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F.(L) = E L“® F,,, and
63

h =Y L’1&hs € Ker(B(rL)),
B

then,

0=F(L)h=> L"1® > F..hg.
¥ a-f=y

All coefficients must vanish, so that in particular,
FE.(0)h(0) = 0.
Now given any c,c’ € CV, we have that
e(rL)1 ® ¢ € Ker B(rL) = Ker F,.(L) = Ker F.(L).

It follows that 0 = F,(L)e(rL)1 ® ¢, and in particular,

Then,

0= <c’,ﬁr(0)e(0)c)CN — (s e(0)e) g -

Since ¢, ¢’ € CV were arbitrary we conclude that e(0) = 0. By Lemma 5.9, we conclude
that e = 0 vanishes identically so that B(rL) is injective for 0 < r <1. O

Theorem 5.10 (NC' Blaschke-Singular-Outer factorization). Any H € HP(Bg), p €
{2, 00}, has a unique Blaschke-Singular—Outer factorization:

H=B-S-F; B,S € H*(Bf), F € H?(BY),

where B is an NC Blaschke inner, Sing(B) = Sing(H), S is NC singular inner and F
is an NC outer function. The factors are unique up to constants of unit modulus.

Proof. By the NC inner-outer factorization, any H € HTD(BI”{])7 p =2 or p= oo, factors
as H = ©-F for an NC inner © € H*(BY,) and an NC outer F € H?(B) [11, Corollary
2.2, Corollary 2.3], [3, Theorem 2.1]. By Proposition 4.1 and Corollary 4.7,

S1
@ZBS:(B177BN)<~>7
SN
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for a Blaschke row-inner B and a column-inner S, both of length N. In Corollary 4.9,
we constructed an NC idempotent, e, e(rL) € H>(Bg) @ CN*V for r € [0,1),
so that Ker B(rL) = Rane(rL). Moreover, if E(rL) = Ig2gs) ® In — e(rL), then
E(rL) = S(rL)H,(L), is an NC idempotent and H,(L)S(rL) = Iy>gg), so that
H,(L) € H*(Bf) ® C*N is a left inverse for S(rL). (Also recall that we can write
H.(L) = H(rL) by Corollary 4.9 and Remark 4.11.) Corollary 5.8 shows that e = 0 so
that S(rL)H(rL) = E(rL) = Iy>g¢ ) ® Iy for any fixed 0 <r < 1. This means that the
diagonal components obey:

Sk(TL)Hk(TL) = IH2(]BId\I) = Hk<TL>Sk(7”L).

On the other hand, in Corollary 4.7 we proved that H(rL) is a left inverse for S(rL) so
that

N
ey = H(rL)S(rL) =Y Hy(rL)Sk(rL) = N - Iyp2(pg ).
k=1

This proves N = 1, and then S(rL) is an invertible left scalar multiplier with inverse
H(rL). In particular, the NC variety of S is the empty set so that .(S) = H?(B) and
S is an NC singular inner function. O

When d = 1, we recover the classical Blaschke-Singular—Outer factorization with a
new operator-theoretic proof:

Corollary 5.11. Given any h € HP(D), p € {2,00}, the NC Blaschke—Singular—Outer
factorization of h and the classical Blaschke—Singular—Quter factorization of h coincide.
That is, if h =0b-s- f is the classical Blaschke—Singular—QOuter factorization of h, then
the range of b(M,) = My is the singularity space of h.

Proof. As observed in the introduction, if h = b - s - f is the classical Blaschke—
Singular—Outer factorization of h € HP(D), p € {2, 00}, then

f

Ran (My) = 2(h) = {f € H? & € Hol(D) }

is the set of all H? functions which are divisible by h. On the other hand, if h = B-S- F
is the NC Blaschke-Singular-Outer factorization of h obtained by setting d = 1 in
Theorem 5.10 above, then it is clear from [11, Corollary 2.2] that F' = f, and it remains
to show that

Ran (Mp) = . (h) ={g € H?| y*g(Z) = 0 ¥(Z,y) € Sing(h)},

coincides with Ran (M,) = 2(h). Clearly g € 2(h) if and only if every zero of h is a zero
of g of greater or equal multiplicity. If w € D is a zero of h of order n, consider
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w e
. P n+1)x(n+1
W.—< . ._>e<C< > (ntl)

where we choose 0 < € < 1 —|w| so that W is a strict contraction. The image of W under
h is

h(w) ek’ (w) € h’é:u) e h(")l(w)
h(w)
h(W) == ’
eh’ (w)
h(w)

which vanishes identically as h has a zero of order n at w € D. It follows that for any
y € C"1 (W,y) € Sing(h), so that any g € .%(h) is necessarily such that g(W) = 0.
This is equivalent to w being a zero of g € H? of order at least n, and we conclude that
Z(h) C Z(h) so that Ran (Mp) C Ran (M,). Conversely, if (Z,y) € Sing(h) then,

where s(Z) f(Z) is invertible, by spectral mapping, since s, f are non-vanishing in . This
proves that y*b(Z) = 0 for any (Z,y) € Sing(h) so that b = M1 € .#(h) = Ran (Mp),
b= Mpg = Bg, for some g € H2. If p € C[2] is any analytic polynomial, then

Myp = M,b = M,Mpg = Mppg € Ran (Mpg).

Since M,C|z] is dense in Ran (M), we conclude that Ran (M;) C Ran (Mp) so that
My, Mg have the same range. Since b, B are inner functions in D with the same range,
they are equal up to a unimodular constant. Without loss of generality B =band F = f
so that S =s as well. O

5.12. The infinite level

A natural question is whether it is really necessary to include the infinite level,
Sing. (H), in our definition of NC variety. Our current operator-theoretic proof of the
NC Blaschke-Singular Outer factorization theorem seems to rely on this, see Remark 4.8.
Namely, one can define the finite NC variety:

Singy(H) = |_| Sing, (H),

neN

and the finite singularity space:
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IN(H) = {h € H*B)| y*h(Z) = 0V(Z,y) € Singy (H)},

and this is again a closed R—invariant subspace. Applying similar factorization argu-
ments to those in the proof of Proposition 4.1 to an NC inner H = © € H>*(Bg,) again
yields:

S1(L)
O(L) = BI(L)S'(L) = (50, v |1 .
Sn(L)

for some ‘finite level’ NC Blaschke inner row, B’, i.e. Ran (B'(L)) = /n(0), and a ‘finite
level’ NC inner column, S’, where N € N U {occ}. It ©(L) = B(L)S(L) is the ‘infinite
level’ (scalar) NC Blaschke-Singular factorization of © given by Theorem 5.10, it could
be that Ran B(L) = Ran B’(L), so that B’(L) = B(L) up to a unimodular constant,
and B’(L) is scalar. If this were the case, unrestrictedly, then there would be no need to
include the infinite level in our definition of left NC variety. While we currently do not
know whether or not this is the case, we can show that if p € C{31,...,34} is any NC
polynomial with NC Blaschke-Singular—Outer factorization p = BSF, then B = B’ is
determined by the finite NC variety of p.

Proposition 5.13. If p € C{31,...,34}, then any (Z,y) € Sing..(p) can be approximated
by finite dimensional (Z®),y*K)) € Sing,, (p), nx < 00, in the sense that

K{Z,y,v} = wk — Jim K{Z®) 4® 4y},
—00
In particular,

Z(p) = In(p).

Proof. Suppose that m is the homogeneous degree of p, and that (Z,y) € Sing.(p).
Define the subspace

K= \/ (2%)'y S C>®:=(N),

lee|<m
where we assume y € C*°. Define the row contraction,
Xj = chZj|g<,

the compression of Z to the finite dimensional subspace K, and set z := y € K. We claim
that (X, z) € Singy(p) where N := dim(X). Indeed, this is easy to verify for m = 1. If
m > 1 then observe that
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X Xjx = PxZ; PxZiw
= PxZ; Z}y,

and similarly, for any |a| < m,
(X% = Py (Z")% = Py (Z%)%y.
It follows that
p(X)*x = Pxp(Z)"y =0,
so that (X, x) € Singy (p). For any n > m let

K(n) =\ (2,

lo|<n

and set X(n); := P,Zj|s5(n), where P, := Px(y). This produces a sequence of finite-
dimensional singularity points

(X(n),y) € Singy, (p),
so that
K{X(n),y,v} 2 K{Z y,v}.
Indeed, by Lemma 5.6,

K{X(n)’ Y, U} = Z<X(n)ava y>La17

[e3

where, for any fixed |a| < n,

(X (n)*v,y) = (v, (PaZPa)*)" y)
= <ZaPnU7y>'

For any fixed o € F?, (Z*P,v,y) = (Z%v,y), so that
(X (n)*v,y) n = o0 (Z%,y).
Since each || X(n)| < || Z|| < 1, the NC kernel vectors K{X(n),y,v} are uniformly

bounded in Fock space norm. This, combined with the convergence of their coefficients
implies that K{X (n),y,v} converges weakly to K{Z,y,v}. In particular,
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SANw)= ) EK{Zyv= |\  K{Zyv}=Sp). O

(Z,y)€Singy (p) (Z,y)€Sing(p)

Another related and perhaps easier question is whether there exists an H € H OO(BdN),
such that Singy (H) = 0, but Sing(H) # (07 A positive answer to this question, of course,
implies that one cannot dispense with the infinite level. However, a negative answer does
not tell us to what extent Sing(H) is determined by Singy (H).

6. NC Blaschke and singular examples
6.1. Homogeneous NC polynomials and NC Blaschke inners

In this example we will show that every homogeneous free polynomial p € C{31,...,34}
is a constant multiple of a Blaschke inner. Let p € H* (BI‘%) be a homogeneous polyno-
mial. Since p(L) = MpL is a constant times an isometry, we may assume without loss
of generality that p(L) is an isometry, i.e. p is inner. It is immediate that Sing(p) is
homogeneous in the first coordinate, i.e., if (Z,y) € Sing(p), then for every A € D,
(AZ,y) € Sing(p). Let f € Z(p) and (Z,y) € Sing(p). Write f = >"  fn, the Taylor-
Taylor series of f at 0 € B{, where f, are the homogeneous components. Then we
immediately have

2m
% —in6 10 N2k
0=y [ R DT =y 1(2),
0

Hence for every n € N, f,, € .#(p). By the Bergman Nullstellensatz [19, Theorem 6.3]
we have that f,, = pg, for some homogeneous g. This proves that f is in the range of
p(L) and we conclude that .¥(p) = Ranp(L) so that p is Blaschke, by definition.

6.2. The Weyl algebra relation

For any w € D, consider the Md&bius transformation:

zZ—w

Hol2) = 0
Lemma 6.3. If V € L(H) is an isometry then p, (V) is also an isometry.
Proof. Consider:

po (V) 1 (V) = (I = wV*) 1V = @) (V = w)(I —wV) "

Expand the middle term:
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(V=) (V —w) =T -0V —wV* + |w|?
=T —-wV*(I -wV),
and this proves the claim. O
In the classical Hardy space literature, any Mobius transformation composed with a
contractive analytic function in the disk is sometimes called a Frostman shift [13,14], see
also [15, Section 2.6].
Corollary 6.4 (NC inner Frostman shifts). If © € H>*(Bg) is inner, then for any w € D,
Ou = tyw(0) = (I —wO) (0 — wi),
is also inner.

The main result of this subsection will be:

Theorem 6.5. Let V(Z) be any inner NC homogeneous polynomial. For any w € D, the
NC Frostman shift Viy(Z) = py(V(2)) is Blaschke.

Again, in the classical Hardy space literature, given any inner § € H°, and any
w € D, there is a natural unitary (isometric and onto) multiplier, C,,(z), from (§H?)*
onto (0, H?)*, where as before 0, = p,,(0) is the w—Frostman shift of §. The uni-
tary multiplication operator, M¢, : (0H?*)* — (0,H?)* is sometimes called a Crofoot
Transform [7], [15, Theorem 6.3.1].

Proposition 6.6 (NC Crofoot Transform). Left multiplication by
Cu(2) = V1~ w2 (I, ~wO(2)) ",
is an isometry from (@(L)HQ(IB%dI\I))L onto (@w(L)HQ(]BIi]))l.
Proof. The NC kernel for the orthogonal complement of Ran (©,,(L)) is

K®(Z,W)=K(Z,W) —04(Z2)K(Z,W)O,(W)*,
= (I -wO(Z)) .
(I —wO(2)K(Z,W)I —wO(W)*) = (0(Z) —wl)K(Z, W)(O(W)" —wl))

)
=:G(Z,W)

~— —

(I —wO(W)*)~L.

The expression G(Z, W) can be expanded as:
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K(Z,W) -wO(Z)K(Z,W) —wK(Z,W)O(W)* + |w[*6(Z2)K (Z, W)0(W)*
—O(2)K(Z,W)O(W)* + wK (Z, W)O(W)* + wO(Z)K(Z,W) — |w|*K(Z,W)
= (1—|wl*) (K(Z,W) = ©(2)K(Z,W)0(W)")
= (1 - w)K®(Z,W).

Hence,
KO (Z,W) = (1 =) (I -w6(2)) ' K°(Z,W)(I —we(W))™,
and the claim follows readily from this formula. O

Let V € C{31,...,34} be an inner free homogeneous polynomial of degree n € Ny, fix
w € D and consider the operator

(I -V (w;/n L>>_1 - (I - %V(L)) _1.

Here, w'/™ is any n'" root of W, and 0 < r < 1 is chosen so that

|wl

’I"_n < 17 i.e. |w\1/"

<r<l,

to ensure that this operator is well-defined as a convergent geometric series.

Lemma 6.7. Given any h € Ran (V (L))" = Ker V(L)*, and |w|"/" < r <1,
T -1
R = (I — V(L)) h € Ker V,,(rL)*.
,r.n
Proof. Expand h(") as a convergent geometric series and calculate:

> k
V(rL)*h") = V(L)Y T —V(L)kh

TTL
k=

(e}

=wh(™.

This proves that every k(") is an eigenvector of V(rL)* to eigenvalue w. It then follows
that,
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Vo (rL)* (") = 11, (V (L)) * A"
= (I —wV(rL) Y (V(rL)* —wh" . o

=0

The above lemma implies that the following linear span of NC Szeg6 kernels,
X := \/ {K{TL,Q(T), | w/"<r<1, ge Ran(V(L))L , he HQ(IB%%)}
C Ran (V,(L))*.
If B,,(L) is the Blaschke factor of the inner V,, (L), then it follows that
K C Ran (B, (L))" € Ran (V,,(L))™*.

To prove that V,,(L) is Blaschke, i.e. that V,, = B,, it then suffices to show that
X = Ran (V,,(L))™".

Proof of Theorem 6.5. Consider any K{rL,¢"), 1} € K, where |w|"/" < r < 1 is fixed,
g € Ran (V(L))", and ¢ = (I — 7f‘:flV(L))_l g as above. This NC Szego kernel can be
expanded as:

K{TL,g(T)7 1} = K{Tng(r)a 1}(2) = Z 7"Otl<LO‘17g(r)>H2(]BdN)ZOZ'
a€clFd

Further expanding each ¢(") as a convergent geometric sum, the at® Taylor series coef-
ficient is:

« (e} I8 — r «
rlel(Le1, o )>H2(1B§) = E wk—rn.k (L 1aV(L>k9>H2(]B§)

=0 unless |a|=n-k

= (L1, (I =@V(L)) ™" 9) sy )-

In the above the first line vanishes unless |a| = nk because V(L) is a homogeneous free
polynomial of degree n, so that any V(L)* is a homogeneous free polynomial of degree
n-k.If |a| # n -k, then

(V(L)*)*L*1 = 0.

This proves that
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K{rL,g",1} =T —wV(L)) g
= VI TP  MEg,

which belongs to Ran (1, (V (L))" by Proposition 6.6. Since g can be any element in
Ran (V(L))*, and left multiplication by the NC Crofoot multiplier C\,(Z) is an isometry
of Ran V(L))" onto Ran (V,, (L))", it follows that the set K of NC Szegd kernels is
actually equal to Ran (Vw(L))L, and this proves that V,, = B, is Blaschke. O

Example 6.8. The homogeneous free polynomial,

V(Z) = % (leg — Z2Z1) y

is a (left) inner multiplier. Consider the following free polynomial of degree 2:
p(2) =1, —V2V(Z) =1, — Z1Zo + Zs 7).

This free polynomial has the inner-outer factorization:

p(Z) = (% - V(Z)) <In - %V(Z))_l V2 (In - M) .

=p_1_(V(2)), inner outer
V2

Here, setting w = \%, Lemma 6.3 implies that 1, (V(Z)) is again NC inner. The second
term in the above has the form I — A(L) for a contractive left multiplier, A(L), and
hence this term is NC outer by [24, Lemma 3.3]. Theorem 6.5 then implies that the NC
inner factor, = (V), of p, is NC Blaschke.

6.9. Elements of the NC' disk algebra with closed range

Theorem 6.10. If H belongs to the NC disk algebra Aq := Alg(I, L)'l and has closed
range, then its inner factor is Blaschke. In particular, any isometry in Ay is Blaschke.

Lemma 6.11. Given 0 < r < 1, the left multipliers H.(L) := H(rL) are uniformly
bounded below (and hence have closed ranges) for r sufficiently close to 1.

Proof. Each of the left multipliers H,.(L) are injective. By the open mapping theorem, it
follows that H,.(L) is bounded below if and only if it has closed range. In particular, by
assumption we have that H (L) is bounded below, by say ¢ > 0. Since we further assume
that H is in the NC disk algebra, H(rL) — H(L) in operator norm as r 1 1 so that
there is a 0 < R < 1 so that r > R implies that ||H(rL) — H(L)|| < €, where € := §/2.
Hence, for any = € H?(Bg),
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1H (rL)a|| > | H(L)x|| — [|(H(L) — H(rL))a|?
)
> 2l
so that H(rL) is uniformly bounded below by §/2 for R<r <1. O

Proof of Theorem 6.10. To prove that © is Blaschke, we need to show that .#(0) =
Ran ©(L). Since H has closed range, Ran H(L) = Ran ©(L), where H(L) = O(L)F (L) is
the inner-outer factorization of H. Hence, by Lemma 4.6, we need to show that . (H) =
Ran (H(L)).

Fix any 0 < 7 < 1, and consider any # € Ran (H(rL))". Observe that the pair
(rL,z) € Sing (H). It follows that if g is any element in .7 (H), then

<.’E,g(’l"L)1>H2(B§) = 07

for any x € Ran (H(?"L))L7 and this proves that g, = g(rL)1 € Ran (H(rL))_”'”, for any
0 < r < 1. Hence, for r sufficiently close to 1,

gr =g(rL)l € Ran H(rL),

since H(rL) has closed range for r sufficiently close to 1 by the previous lemma. In
conclusion,

gr = H(rL)x(T),

for some z(" € H?(B%). Observe that the net (z()) is uniformly bounded above (for
r close to 1). By the previous lemma, there is an ¢ > 0 and a 0 < R < 1 so that
r > R implies that H(rL) is bounded below by €. Hence, for such r, since the net (g,.) is
convergent and hence uniformly bounded in norm,

lgell = 1H (rL)™|
> ella],
proving that ||z(")|| is uniformly bounded for r > R. By weak compactness, there is a

weakly convergent subsequence x, := z("¥) | which therefore converges pointwise to some
z € H*(B). Hence, for any Z € B,

g(rZ) = HrZ) - xk(2)
i { 4
9(2) = H(Z) - z(2),

so that g = H(L)x € Ran H(L). This completes the proof. O
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6.12. NC singular inner examples

If B € [H>*(B)]1, i.e. B belongs to the NC Schur class of all contractive NC functions
in Bﬁ,, then B(L) is a contraction on the NC Hardy space. By [50, Chapter 8], (provided
B(L) # Iy2mg)) B(L) is the co-generator of a Cp—semigroup of contractions on H%(Bg).
Namely, if

Hp(L) = (I - B(L))"'(I + B(L)),

is the inverse Cayley transform of B, then Hg(L) is a closed, densely-defined accretive
operator (numerical range in the right half-plane), so that Hg(Z) belongs to the NC
Herglotz class of locally bounded (holomorphic) NC functions in BdN with positive semi-
definite real part:

Re Hp(Z) > 0, Z € Bd.
Since 1 is not an eigenvalue of B(L), [50, Theorem III.8.1] implies that
By(L) == exp(~tHp(L));  t>0,

is a SOT —continuous one-parameter monoid of contractions on H*(Bg,), so that B(Z) €
[H*(B&)]1 belongs to the NC Schur class for every ¢ > 0. Moreover, by [50, Proposition
I11.8.2], By(L) will be an isometry on H%(B) for every t > 0, i.e. By will be NC inner,
if and only if B(L) is NC inner. It further follows that if B(L) is NC inner, then every
Bi(L) will be an NC singular inner since

By(Z) = exp(~Hp(Z)), Z € By,

is clearly pointwise invertible in ]Bgo. This provides a large class of examples of NC
singular inner functions, and products of such NC singular inner functions are again NC
singular inner. It is unclear whether or not all NC singular inners can be obtained in
this way.

7. Outlook

The NC Blaschke-Singular—Outer factorization raises several natural questions. Clas-
sically, the inner factor of any polynomial in D is a finite Blaschke product, and hence
a rational analytic function with poles outside of the open disk. Rational functions have
been studied extensively in the NC setting by several authors [18,26,29,44,56,57].

Question 1. If v € H? (]Bfil) is any NC rational function, is its NC inner factor Blaschke?
Is it an NC rational function? Is the NC outer factor of an NC polynomial an NC
polynomial?
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Frostman’s theorem states that given any inner function, 6, in the unit disk, ‘almost
all” of its M&bius transformations are Blaschke inner. There is also a theory of so-called
indestructible Blaschke products, these are Blaschke inner functions so that their im-
ages under any Mobius transformation are again Blaschke products. In particular, the
Blaschke inner factor of any polynomial (a finite Blaschke product) is indestructible [47],
[15, Frostman’s Theorem, Theorem 2.6.1].

Question 2. Does an NC analogue of Frostman’s theorem hold? If the inner factor of an
NC rational function is Blaschke, is it indestructible?

Remark 7.1. Question 1 has been recently answered in the affirmative, see [25, Theorem
5.2, Theorem 6.1]. Moreover [25, Corollary 5.3] implies that the inner factor of any NC
rational function in Fock space is Blaschke and indestructible.

Any Blaschke inner in the disk is a (potentially) infinite product of Blaschke factors:

Similarly one could define NC' Blaschke factors as irreducible NC Blaschke inner func-
tions, B, with the property that there are no non-trivial NC Blaschke inners Bj, By so
that B = B1Bs. A final question on NC Blaschke inner functions is whether there is a
nice characterization of NC Blaschke factors.

Question 3. If H € H>(B{) is contractive and point-wise invertible, i.e. detH(Z) #
0 for all Z € B, is H infinitely divisible into point-wise invertible and non-trivial
contractive factors? That is, are there non-trivial, contractive and pointwise invertible
F,G € H®(BY) so that H = F - G?

Appendix A. Idempotents in H> (Bg) ® C"*x"

Theorem A.1. Let E € H*®(BY)®QC"*"™ be an idempotent, then there exists an orthogonal
projection P € C™*" and an S € GL,(H*(BY)), such that

E=5" (Iyxgg) @ P) S.

In particular, this implies that there are no non-trivial finitely generated projective
modules over H>°(Bg) and thus H>(BY,) is a semi-free ideal ring, see [6, Section 2.3].

Proof. Let M = Ran(E) = Ker(I — E) and X = Ker(E) and note that M + N =
H 2(IBdN) ® C™. In particular, the Friedrichs angle between M and X is non-zero. Ad-
ditionally, the spaces M and X are R ® I, —invariant and closed. Let #5( and #y be
the wandering subspaces of M and X, respectively. Note that since H? (Bl‘i]) ® C™ sur-
jects onto M and X, that m = dim (W), ,k = dim (W), < n. (This follows as in the
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proof of Lemma 5.2.) Let Vi (L): H?(BY) ® C™ — H?(BY) ® C™ be the inner left
multiplier in H>(B) ® C™*™ with image M and similarly V(L) € H*(Bg) @ C™**
be the isometric left multiplier with image X. Consider S(L) € H>®(Bg) @ C™*(k+m)
given by S = (Vi,Vx). Clearly, S is surjective and bounded. Furthermore, since
MNX = {0}, S is also injective and thus has a bounded inverse. For every 1 < i < d,
S(R;®1,) = (R; ® I,;,)S so that S = S(L). Multiplying by S~! on both left and right
we get that (R; ® I,)S™! = STY(R; ® I,). Thus S~ € H®(Bf}) @ Ch+m)xn,

Note that S(L): H*(Bg) ® CF™ — H%(Bf) ® C™ is surjective and thus m +k > n.
Similarly S~! is surjective and thus n > m + k. Therefore, m + k = n and thus the
matrix S(L) is square and E(L) is similar to the projection onto the m last components
of H(B) @ C™** via S. O

Remark A.2. The similarity, S(L), is not unique. Multiplication by any constant invert-
ible matrix in the commutant of P, for example, will result in a different S.

Corollary A.3. An operator-valued left multiplier S € HW(BI({]) ® C™** js invertible if
and only if n =k and its inverse is in H>(Bg) @ C"*".
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