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We extend the Lebesgue decomposition of positive measures with respect to Lebesgue

measure on the complex unit circle to the non-commutative (NC) multi-variable setting

of (positive) NC measures. These are positive linear functionals on a certain self-

adjoint subspace of the Cuntz–Toeplitz C∗−algebra, the C∗−algebra of the left creation

operators on the full Fock space. This theory is fundamentally connected to the repre-

sentation theory of the Cuntz and Cuntz–Toeplitz C∗−algebras; any ∗−representation

of the Cuntz–Toeplitz C∗−algebra is obtained (up to unitary equivalence), by applying a

Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines

the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue

decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel

Hilbert space theory, and NC Hardy space theory.

1 Introduction

The results of this paper extend the Lebesgue decomposition of any finite, positive,

and regular Borel measure, with respect to Lebesgue measure on the complex unit

circle, from one to several non-commutative (NC) variables. In [21], we extended the

concepts of absolute continuity and singularity of positive measures with respect to

Lebesgue measure, the Lebesgue decomposition, and the Radon–Nikodym formula of

Fatou’s Theorem to the NC, multi-variable setting of “NC measures,” that is, positive
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2 M. T. Jury and R. T. W. Martin

linear functionals on a certain operator system, the free disk system. Here, the free disk

system, Ad + A∗d, is the operator system of the free disk algebra, Ad := Alg(I, L)−‖·‖, the

norm-closed operator algebra generated by the left free shifts on the NC Hardy space.

(Equivalently, the left creation operators on the full Fock space over Cd.) We will recall

in some detail below why this is the appropriate (and even canonical) extension of the

concept of a positive measure on the circle to several non-commuting variables. The

primary goal of this paper is to further develop the NC Lebesgue decomposition theory

of an arbitrary (positive) NC measure with respect to NC Lebesgue measure (the “vacuum

state” of the Fock space), by proving that our concepts of absolutely continuous (AC) and

singular NC measures define positive hereditary cones, and hence that the Lebesgue

decomposition commutes with summation. That is, the Lebesgue decomposition of the

sum of any two NC measures is the sum of the Lebesgue decompositions. (Here, we say

a positive cone, P0 ⊂ P, is hereditary in a larger positive cone P if p0 ∈ P0, and p0 ≥ p

for any p ∈ P implies that p ∈ P0. The sets of AC and singular positive, finite, regular

Borel measures on the circle, ∂D, with respect to another fixed positive measure, are

clearly positive hereditary sub-cones.) In this paper, we focus on positive NC measures

and their Lebesgue decomposition with respect to NC Lebesgue measure. The study

of complex NC measures and the Lebesgue decomposition of an arbitrary positive NC

measure with respect to another will be the subject of future research.

By the Riesz–Markov Theorem, any finite positive Borel measure, μ, on ∂D, can

be identified with a positive linear functional, μ̂ on C (∂D), the commutative C∗−algebra

of continuous functions on the circle. By the Weierstrass Approximation Theorem,

C (∂D) = (A(D)+A(D)∗)−‖·‖∞ , where A(D) is the disk algebra, the algebra of all analytic

functions in the complex unit disk, D, with continuous extensions to the boundary.

In the above formula, elements of A(D) are identified with their continuous boundary

values and ‖·‖∞ denotes the supremum norm for continuous functions on the circle. The

disk algebra can also be viewed as the norm-closed unital operator algebra generated by

the shift, S := Mz, A(D) = Alg(I, S)−‖·‖ (with equality of norms). The shift is the isometry

of multiplication by z on the Hardy space, H2(D), and plays a central role in the theory

of Hardy spaces. Here recall that the Hardy Space, H2(D), is the space of all analytic

functions in D with square-summable MacLaurin series coefficients (and with the �2

inner product of these Taylor series coefficients at 0 ∈ D). The positive linear functional

μ̂ is then completely determined by the moments of the measure μ:

μ̂(Sk) :=
∫

∂D

ζ kμ(dζ ).
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NC Lebesgue Decomposition 3

The shift on H2(D) is isomorphic to the unilateral shift on �2(N0), where N0, the

non-negative integers, is the universal monoid on one generator. A canonical several-

variable extension of �2(N0) is then �2(Fd), where Fd is the free (and universal) monoid

on d generators, the set of all words in d letters. There is a natural d−tuple of isometries

on �2(Fd), the left free shifts, Lk, 1 ≤ k ≤ d defined by Lkeα = ekα where α ∈ Fd and {eα} is

the standard orthonormal basis. These left free shifts have pairwise orthogonal ranges

so that the row operator L := (L1, · · · , Ld) : �2(Fd) ⊗ Cd → �2(Fd) is an isometry from

d copies of �2(Fd) into one copy, which we call the left free shift. This Hilbert space

of free square-summable sequences can also be identified with an “NC Hardy Space”

of “non-commutative analytic functions” in an NC open unit disk or ball in several

matrix variables. Under this identification, the left free shifts become left multiplication

by independent matrix variables, see Section 2. The immediate analogue of a positive

measure in this NC multi-variable setting is then a positive linear functional, or NC

measure, on the free disk system,
(
Ad +A∗d

)−‖·‖ , where Ad := Alg(I, L)−‖·‖ is the free

disk algebra, the operator norm-closed unital operator algebra generated by the left

free shifts.

There is a fundamental connection between this work and the theory of row

isometries, that is, isometries from several copies of a Hilbert space into itself, or

equivalently to the representation theory of the important Cuntz–Toeplitz and Cuntz

C∗−algebras. The Cuntz–Toeplitz C∗−algebra, Ed = C∗(I, L), is the C∗−algebra generated

by the left free shifts. This is the universal C∗−algebra generated by a d−tuple of

isometries with pairwise orthogonal ranges, and the Cuntz C∗−algebra, Od, is the

universal C∗−algebra of an onto row isometry [6]. Namely, applying the Gelfand–

Naimark–Segal (GNS) construction to (μ,Ad), where μ is any (positive) NC measure,

yields a GNS Hilbert space, F2
d(μ), and a ∗−representation πμ of Ed so that �μ := πμ(L)

is a row isometry on F2
d(μ). A Lebesgue decomposition for bounded linear functionals

on the free disk algebra, Ad, has been developed by Davidson, Li, and Pitts in the

theory of free semigroup algebras, that is, WOT−closed (weak operator topology closed)

operator algebras generated by row isometries [8, 10, 11]. Building on this, Kennedy has

constructed a Lebesgue decomposition for row isometries [26], and we will explicitly

work out the relationship between this theory and our Lebesgue decomposition.

1.1 Three approaches to Lebesgue decomposition theory

There are three approaches to classical Lebesgue decomposition theory of measures on

the circle, which will provide natural and equivalent extensions to NC measures.
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4 M. T. Jury and R. T. W. Martin

Let μ be an arbitrary finite, positive, and regular Borel measure on ∂D, and as

before, m denotes normalized Lebesgue measure on the circle. As we will prove, one can

construct the Lebesgue decomposition of μ with respect to m using reproducing kernel

Hilbert space theory. Namely, setting H2(μ) to be the closure of the analytic polynomials

in L2(μ, ∂D), let H +(Hμ) be the space of all Cauchy transforms of elements in H2(μ): if

h ∈ H2(μ),

(Cμh)(z) :=
∫

∂D

1

1− zζ
h(ζ )μ(dζ ).

Equipped with the inner product of H2(μ), this is a reproducing kernel Hilbert space of

analytic functions in D, the classical Herglotz Space with reproducing kernel:

Kμ(z, w) = 1

2

Hμ(z)+ Hμ(w)∗

1− zw∗ =
∫

∂D

1

1− zζ

1

1− ζw
μ(dζ ),

and

Hμ(z) :=
∫

∂D

1+ zζ

1− zζ
μ(dζ ) = 2(Cμ1)(z)− μ(∂D),

is the Riesz–Herglotz integral transform of μ, an analytic function with non-negative

real part in D (see [14, Chapter 1], or [13, Chapter 1, Section 5]). It is not hard to verify that

domination of finite, positive, and regular Borel measures is equivalent to domination of

the Herglotz kernels for their reproducing kernel Hilbert spaces of Cauchy transforms:

0 ≤ μ ≤ t2λ ⇔ Kμ ≤ t2Kλ; t > 0.

Moreover, by a classical result of Aronszajn, domination of the reproducing kernels Kμ ≤
t2Kλ is equivalent to bounded containment of the corresponding Herglotz spaces on

D, H +(Hμ) ⊆ H +(Hλ), and the least such t > 0 is the norm of the embedding map

eμ : H +(Hμ) ↪→H +(Hλ) [3, Theorem I, Section 7]. Absolute continuity of measures on ∂D

can also be recast in terms of containment of reproducing kernel Hilbert spaces. Namely,

given two finite, positive, regular Borel measures λ, μ, recall that μ is AC with respect

to λ if there is a non-decreasing sequence of finite, positive, regular Borel measures μn,

which are each dominated by λ, and increase monotonically to μ:

0 ≤ μn ≤ μ, μn ↑ μ,

μn ≤ t2
nλ, tn > 0.
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NC Lebesgue Decomposition 5

Reproducing kernel Hilbert space theory then implies that each space of μn−Cauchy

transforms is contractively contained in the space of μ−Cauchy transforms, and their

linear span is dense in H +(Hμ) since the μn increase to μ,

∨
H +(Hμn

) =H +(Hμ).

Since each μn ≤ t2
nλ is dominated by λ, it also follows that each space of μn−Cauchy

transforms is boundedly contained in the space of λ−Cauchy transforms, and the

intersection space:

int(μ, λ) :=H +(Hμ)
⋂

H +(Hλ),

is dense in the space of μ−Cauchy transforms. In the case where λ = m is normalized

Lebesgue measure, one can check that Hm ≡ 1 is constant, so that H +(Hm) = H2(D) is

the classical Hardy space of the disk. It follows that one can take this as a starting point,

and simply define a measure, μ, to be AC or singular (with respect to m) depending on

whether the intersection space

int(μ, m) :=H +(Hμ)
⋂

H2(D),

is dense or trivial, respectively, in the space of μ−Cauchy transforms. In this way,

one can develop Lebesgue decomposition theory using reproducing kernel techniques.

It appears that this approach is new, even in this classical setting, and as shown in

Corollary 8.5, this recovers the Lebesgue decomposition of any finite, positive, and

regular Borel measure on the unit circle with respect to normalized Lebesgue measure.

As discussed in the introduction, any positive, finite, regular Borel measure, μ,

on ∂D, can be viewed as a positive linear functional, μ̂, on A(D) + A(D)∗. Equivalently,

μ (or μ̂) can be identified with the (generally unbounded) positive quadratic or

sesquilinear form,

qμ(a1, a2) :=
∫

∂D

a1(ζ )a2(ζ )μ(dζ ); a1, a2 ∈ A(D),

densely defined in H2(D). Applying the theory of Lebesgue decomposition of quadratic

forms due to B. Simon yields

qμ = qac + qs,
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6 M. T. Jury and R. T. W. Martin

where qac is the maximal positive form AC with respect to qm, where m is normalized

Lebesgue measure, and qs is singular [34]. In this theory, a positive quadratic form

with dense domain in a Hilbert space, H, is said to be AC if it is closable, that is, it

has a closed extension. Here, a positive semi-definite quadratic form, q, is closed if its

domain, Dom(q), is complete in the norm

‖ · ‖q+1 := √
q(·, ·)+ 〈·, ·〉H.

Closed positive semi-definite forms obey an extension of the Riesz representation

lemma: a positive semi-definite densely defined quadratic form, q, is closed if and only

if q is the quadratic form of a closed, densely defined, positive semi-definite operator,

T ≥ 0:

q(h, g) = 〈√Th,
√

Tg〉H; h, g ∈ Dom(
√

T) = Dom(q),

see [24, Chapter VI, Theorem 2.1, Theorem 2.23]. If q = qμ, we will prove that qac = qμac
,

and qs = qμs
where

μ = μac + μs,

is the classical Lebesgue decomposition of μ with respect to m, see Corollary 8.5.

Indeed, if one instead defines qμ as a quadratic form densely defined in L2(∂D), then

it follows without difficulty in this case that T is affiliated to L∞(∂D) so that

qμ(f , g) =
∫

∂D

f (ζ )g(ζ )|h(ζ )|2m(dζ ),

where
√

T1 = |h| ∈ L2(∂D). This shows that |h|2 ∈ L1(∂D) is the Radon–Nikodym

derivative of μ with respect to normalized Lebesgue measure, m. The Lebesgue

decomposition of quadratic forms in [34] is similar in this case to von Neumann’s

proof of the Lebesgue decomposition theory [37, Lemma 3.2.3]. In [21], we applied this

quadratic form decomposition to the quadratic form, qμ, of any (positive) NC measure μ

to construct an NC Lebesgue decomposition of μ, μ = μac + μs into AC and singular

NC measures μac and μs, 0 ≤ μac, μs ≤ μ, where qμ = qμac
+ qμs

is the Lebesgue

decomposition of the quadratic form qμ [21, Theorem 5.9].

A 3rd approach to Lebesgue decomposition theory is to define a positive, finite,

regular, Borel measure μ, on ∂D to be AC if the corresponding linear functional μ̂ on
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NC Lebesgue Decomposition 7

C (∂D) = (A(D)+A(D)∗)−‖·‖ has a weak−∗ continuous extension to a linear functional

on (H∞(D)+ H∞(D)∗)−wk−∗ = L∞(∂D).

This notion of absolute continuity for bounded linear functionals on Ad extends

the classical notion of absolute continuity of a measure with respect to normalized

Lebesgue measure on ∂D, if one identifies finite positive Borel measures on ∂D with

positive linear functionals on the classical Disk Algebra A1 = A(D) ⊂ H∞(D). Indeed, in

the case where d = 1, L∞1 = H∞(D), and

(
H∞(D)+ H∞(D)∗

)−weak−∗ � L∞(∂D),

a commutative von Neumann algebra. In this case, if μ̂ ∈ (A(D)†)+ = C (∂D)
†
+ is any

positive linear functional, the Riesz–Markov Theorem implies it is given by integration

against a positive finite Borel measure, μ, on ∂D, and to say it has a weak−∗ continuous

extension to (H∞(D)+ H∞(D)∗)†
+ � L∞(∂D)

†
+ is equivalent to μ̂ being the restriction of a

positive μ̂ ∈ L∞(∂D)† � L1(∂D). Equivalently,

μ(dζ ) = μ(dζ )

m(dζ )
m(dζ ); m− a.e.,

μ(dζ )

m(dζ )
∈ L1(∂D),

that is, μ is AC with respect to Lebesgue measure.

This definition of absolute continuity has an obvious generalization to the NC

setting of NC measures, that is, positive linear functionals on the free disk system, and

this gives essentially the same definition of absolute continuity for linear functionals on

the free disk algebra introduced by Davidson–Li–Pitts [10]. We will show that all three

of these approaches extend naturally to the NC setting and yield the same Lebesgue

decomposition of any positive NC measure with respect to NC Lebesgue measure.

2 Background: The Free Hardy Space

We will use the same notation as in [21], and we refer to [21, Section 2] for a detailed

introduction to the NC Hardy space and background theory.

The free monoid, Fd, is the set of all words in d letters {1, ..., d}. This is the

universal monoid on d generators, with product given by concatenation of words, and

unit ∅, the empty word containing no letters. The Hilbert space of square summable
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8 M. T. Jury and R. T. W. Martin

sequences indexed by Fd, �2(Fd), and the full Fock space over Cd,

F2
d :=

∞⊕
k=0

(
Cd

)k·⊗ = C⊕ Cd ⊕
(
Cd ⊗ Cd

)
⊕

(
Cd ⊗ Cd ⊗ Cd

)
⊕ · · · ,

are naturally isomorphic. This isomorphism is implemented by the unitary map ei1···ik �→
ei1 ⊗ · · · ⊗ eik , ik ∈ {1, ..., d}, and e∅ �→ 1 where {ej} denotes the standard basis of Cd, and

1 is the vacuum vector of the Fock space (which spans the subspace C ⊂ F2
d). The free

square-summable sequences, �2(Fd), can also be viewed as a Hilbert space of free NC

functions on an NC set [23, 30, 33]. Namely, we can identify any f ∈ �2(Fd) with a formal

power series in d non-commuting variables z := (z1, ..., zd),

f (ζ ) :=
∑
α∈Fd

f̂αz
α.

Here, if α = i1i2 · · · in, ik ∈ {1, ..., d}, we use the standard notation zα = zi1zi2 · · · zid . Foun-

dational work of Popescu has shown that if Z := (Z1, ..., Zd) : H ⊗ Cd → H is any strict

(row) contraction on a Hilbert space, H, then the above formal power series for f con-

verges absolutely in operator norm when evaluated at Z (and uniformly on compacta) [30,

33]. It follows that any f ∈ �2(Fd) can be viewed as a function in the NC open unit ball:

Bd
N

:=
∞⊔

n=1

Bd
n; Bd

n :=
(
Cn×n ⊗ C1×d

)
1

,

where Bd
n is the set of all strict row contractions on Cn. Moreover, any such f is a

locally bounded free NC function, in the sense of [1, 23, 36]. That is, it respects the

grading, direct sums and the joint similarities which preserve its NC domain. Any locally

bounded free NC function (under mild, minimal assumptions on its NC domain) is

automatically holomorphic, that is, it is both Gâteaux and Fréchet differentiable at any

point Z ∈ Bd
N

and has a convergent Taylor-type power series expansion about any point

[23, Chapter 7]. It follows that we can identify �2(Fd) with the NC or free Hardy space:

H2(Bd
N
) :=

⎧⎨⎩f ∈ Hol(Bd
N
)

∣∣∣∣∣∣ f (Z) =
∑
α∈Fd

f̂αZα,
∑

| f̂α|2 <∞
⎫⎬⎭ ,

the Hilbert space of all (locally bounded hence holomorphic) NC functions in the NC

unit ball Bd
N

with square-summable Taylor–MacLaurin series coefficients. In the sequel,
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NC Lebesgue Decomposition 9

we will identify F2
d, �2(Fd), and the NC Hardy space, H2(Bd

N
), and use the terms Fock

space and NC Hardy space interchangeably.

As described in the introduction, the NC Hardy space is equipped with a

canonical left free shift, L := ML
Z , the row isometry of left multiplication by the NC

variables Z = (Z1, · · · , Zd) ∈ Bd
N

. Each component left free shift, Lk, 1 ≤ k ≤ d, is

an isometry on H2(Bd
N
) and these have pairwise orthogonal ranges. Viewing the Lk as

isometries on �2(Fd), Lkeα = ekα, and the Lk are also unitarily equivalent to the left

creation operators on the Fock space, F2
d. One can also define isometric right multipliers,

Rk = MR
Zk

, the right free shifts (which append letters to the right of words indexing the

standard orthonormal basis), and these are unitarily equivalent to the left free shifts

via the transpose unitary on �2(Fd), U†,

U†eα := eα† ,

where if α = i1 · · · in ∈ Fd, then α† := in · · · i1, its transpose.

As in the single-variable setting, the free Hardy space H2(Bd
N
) can be equivalently

defined using (NC) reproducing kernel theory [5]. All non-commutative reproducing

kernel Hilbert spaces (NC-RKHS) in this paper will be Hilbert spaces of free NC

functions on the NC unit disk or ball, Bd
N

. Any Hilbert space, H of NC functions on

Bd
N

, is an NC-RKHS if the linear point evaluation map, K∗Z : H→ (
Cn×n, trn

)
, is bounded

for any Z ∈ Bd
n. We will let KZ, the NC kernel map, denote the Hilbert space adjoint of

K∗Z, and, for any y, v ∈ Cn,

K{Z, y, v} := KZ(yv∗) ∈ H.

Furthermore, given Z ∈ Bd
n, y, v ∈ Cn and W ∈ Bd

m, x, u ∈ Cm the linear map

K(Z, W)[·] : Cn×m → Cn×m,

defined by

(
y, K(Z, W)[vu∗]x

)
Cn := 〈K{Z, y, v}, K{W, x, u}〉H,

is completely bounded for any fixed Z, W and completely positive if Z = W. This map is

called the completely positive non-commutative (CPNC) kernel of H. As in the classical

theory there is a bijection between CPNC kernel functions on a given NC set and NC-

RKHS on that set [5, Theorem 3.1], and if K is a given CPNC kernel on an NC set, we will
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10 M. T. Jury and R. T. W. Martin

use the notation Hnc(K) for the corresponding NC-RKHS of NC functions. The NC Hardy

space, H2(Bd
N
), is then the non-commutative reproducing kernel Hilbert space (NC-RKHS)

corresponding to the completely positive non-commutative (CPNC) Szegö kernel on the

NC unit ball, Bd
N

:

K(Z, W)[·] :=
∑
α∈Fd

Zα[·](Wα)∗; H2(Bd
N
) = Hnc(K).

All NC-RKHS in this paper will consist of free holomorphic functions in the NC

unit ball Bd
N

so that any f ∈ Hnc(K) has a convergent Taylor–MacLaurin series at 0 ∈ Bd
1 ,

f (Z) =
∑
α∈Fd

Zα f̂α; Z ∈ Bd
n,

and the linear coefficient evaluation functionals

f
�α→ f̂α; α ∈ Fd,

are all bounded. We will let Kα denote the coefficient evaluation vector:

〈Kα, f 〉Hnc(K) = �α( f ) = f̂α, α ∈ Fd,

and we will typically write �α =: K∗α. If K is the NC-Szegö kernel of the free Hardy space,

then

Kα(Z) = Zα,

that is, Kα can be identified with the free monomial Lα1 ∈ F2
d.

If Hnc(K) is an NC-RKHS of NC functions on Bd
N

, NC functions F, G on Bd
N

are said

to be left or right NC multipliers, respectively, if for any f ∈ Hnc(K), F · f , or f ·G belong

to Hnc(K). As in the classical theory any left or right multiplier defines a bounded linear

operator on Hnc(K),

(ML
F f )(Z) := F(Z) f (Z), (MR

G f )(Z) := f (Z)G(Z),

and under this identification the left and right multiplier algebras of Hnc(K) are unital

and closed in the weak operator topology (WOT). These NC multiplier algebras are
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NC Lebesgue Decomposition 11

denoted by MultL(Hnc(K)) or MultR(Hnc(K)), respectively. The left multiplier algebra

of the free Hardy space provides an NC generalization of H∞(D) = Mult(H2(D)):

H∞(Bd
N
) :=

⎧⎨⎩f ∈ Hol(Bd
N
)

∣∣∣∣∣∣ sup
Z∈Bd

N

‖ f (Z)‖ <∞
⎫⎬⎭ = MultL(H2(Bd

N
)).

(If F ∈ H∞(Bd
N
), the operator norm of ML

F is equal to the supremum norm of F(Z) over the

NC unit ball [33, Theorem 3.1].) This left multiplier algebra can also be identified with

L∞d := Alg(I, L1, ..., Ld)−weak−∗ = Alg(I, L1, ..., Ld)−WOT ,

the (left) analytic Toeplitz algebra. Here, note that the weak operator (WOT) and weak−∗
topologies coincide on L∞d , [11, Corollary 2.12]. Here, and throughout, we write Ad +A∗d
in place of (Ad+A∗d)−‖·‖ to simplify notation. We also define R∞d = Alg(I, R1, ..., Rd)−WOT ,

the right free analytic Toeplitz algebra, and R∞d = U†(L
∞
d )U† is the image of L∞d

under adjunction by the transpose unitary of F2
d. As in [11, 29] a left (or right) free

multiplier of the free Hardy space will be called inner if the corresponding (left or

right) multiplication operator is an isometry, and outer if the corresponding (left or

right) multiplication operator has dense range.

3 Non-Commutative Measures

Definition 3.1. Let (A
†
d)+ denote the set of all positive linear functionals on the (norm-

closure of the) operator system Ad + A∗d, the free disk system. We will call such a

functional a non-commutative or NC measure.

Definition 3.2. A free holomorphic function, H in Bd
N

, is a (right) NC Herglotz function

if the NC kernel

KH(Z, W) := 1

2
K(Z, W)

[
H(Z)(·)+ (·)H(W)∗

] ≥ 0,

is a CPNC kernel on Bd
N

, where K(Z, W) is the free Szegö kernel.

As in the classical setting, there is a natural bijection between NC Herglotz

functions and NC measures. Given any NC measure μ ∈ (A
†
d)+, its moments define an
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12 M. T. Jury and R. T. W. Martin

NC Herglotz function:

Hμ(Z) := μ(I)+ 2
∑
α �=∅

Zαμ(Lα)∗.

Conversely, any NC Herglotz function has the MacLaurin series expansion,

Hμ(Z) := H∅ +
∑
α �=∅

ZαHα,

and setting

μH(I) = Re
(
H∅

)
, and μH(Lα) := 1

2
H∗α ,

defines a (positive) NC measure [20]. (This Taylor–Maclaurin series converges absolutely

in Bd
N

, and uniformly on rBd
N

for any 0 < r < 1.)

Remark 3.3. A locally bounded NC function, G, in Bd
N

is said to be a left NC Herglotz

function if KG(Z, W)[·] := 1
2 (H(Z)K(Z, W)[·]+ K(Z, W)[·]H(W)∗) is CPNC, and this is equiv-

alent to G(Z) having positive semi-definite real part for all Z ∈ Bd
N

, [21, Definition 3.3,

Section 3]. The transpose map

H(Z) =
∑
α

ZαHα �→ H†(Z) :=
∑
α

ZαHα† ,

defines a bijection between the left and right Herglotz classes. The left and right

Herglotz classes are, however, distinct, as the following example shows.

Example 3.4. Consider the NC polynomial B(Z) := 1√
2
Z2(In − Z1). This is isometric

(inner) as a right multiplier,

MR
B(Z) = B†(R) = 1√

2
(IF2 − R1)R2,

since

B†(R)∗B†(R) = 1

2
R∗2

(
2IF2 − R1 − R∗1

)
R2 = IF2 .
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NC Lebesgue Decomposition 13

However, as a left multiplier, B(Z) has norm
√

2:

‖ML
B‖ = 1√

2
‖L2(IF2 − L1)‖

= 1√
2
‖IF2 − L1‖

= 1√
2

sup
Z∈B2

n; n∈N
‖In − Z1‖

≤ 1√
2

sup
z∈D

|1− z| = √2.

In the last line, ≤ follows from von Neumann’s inequality as Z1 is a strict contraction,

and equality is achieved by choosing Z = (Z1, Z2) = (−rIn, 0n

)
for 0 < r < 1 and taking the

supremum. The fractional linear transformation μ(z) := (1+z)(1−z)−1 is a bijection from

the open unit disk, D onto the open right half-plane. Applied to operators, μ implements

a bijection, the so-called Cayley transform, between contractive operators, T, with 1

not an eigenvalue of T, and closed, densely defined accretive operators, A = μ(T) =
(I + T)(I − T)−1 [35, Chapter IV.4]. Here, an operator is called accretive if its numerical

range is contained in the right half-plane. It follows, as described in [18, Section 4], that

the Cayley transform maps the closed unit ball of the left multiplier algebra of F2
d (the

left NC Schur class) onto the left NC Herglotz class, and similarly for the right NC Schur

and Herglotz classes.

If H(Z) = μ (B(Z)), it follows that since B is in the right NC Schur class but not in

the left NC Schur class, that H is a right NC Herglotz function but not a left NC Herglotz

function. In particular, Re (H(Z)) will not be positive semi-definite for all Z ∈ B2
N

.

3.5 Non-commutative Lebesgue measure

Classically, the Riesz–Herglotz transform, Hm(z), of normalized Lebesgue measure, m

on ∂D is the constant function Hm ≡ 1. It is then natural to expect that in the NC multi-

variable theory, the role of normalized Lebesgue measure should be played by the unique

NC measure corresponding to the constant NC Herglotz function:

H(Z) := In; Z ∈ Bd
n.

The unique NC measure (which we also denote by m), m = μH , corresponding to the NC

function H(Z) = In is the Fock space vacuum state:

m(Lα) := 〈1, Lα1〉F2 = δα,∅.
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14 M. T. Jury and R. T. W. Martin

Definition 3.6. The vacuum state m ∈ (A
†
d)+ will be called (normalized) NC Lebesgue

measure.

3.7 Left regular represenations of the Cuntz–Toeplitz algebra

If μ ∈ (A
†
d)+, the GNS space F2

d(μ) is the the Hilbert space completion of Ad modulo zero

length vectors with respect to the pre-inner product:

〈a1, a2〉μ := μ(a∗1a2); a1, a2 ∈ Ad.

Observe that this pre-inner product is well defined as the NC disk algebra, Ad, has

the semi-Dirichlet property: A∗dAd ⊆
(
Ad +A∗d

)−‖·‖ [9]. Indeed, it is easily checked that

p(L)∗q(L) ∈ C{L}+C{L}∗, for any free polynomials p and q. We will typically write a+Nμ

for the equivalence class of a in F2
d(μ), where Nμ ⊆ Ad is the left ideal of all elements of

zero length. Moreover, the left regular representation: πμ : Ad → L(F2
d(μ)),

πμ(Lα)(a+ Nμ) := Lαa+ Nμ,

is completely isometric and extends uniquely to a ∗−representation of the Cuntz–

Toeplitz algebra Ed = C∗(I, L) on L(F2
d(μ)). In particular,

�μ = πμ(L) := (πμ(L1), ..., πμ(Ld)) : F2
d(μ)⊗ Cd → F2

d(μ),

is a (row) isometry, and we write (�μ)k := πμ(Lk). Again, if d = 1 then

F2
1 (μ̂) � H2(μ), and �μ̂ � Mζ |H2(μ),

where μ̂ is, as before, the positive linear functional corresponding to the positive

measure, μ.

Remark 3.8. One can obtain (up to unitary equivalence) any cyclic row isometry

with the above construction, that is, any cyclic row isometry is the left regular

GNS representation coming from an NC measure. More generally, one can construct

any ∗−representation of the Cuntz–Toeplitz algebra (up to unitary equivalence), by

considering Stinespring-GNS representations of operator-valued NC measures, that is,

completely positive operator-valued maps on the free disk system [18, 20].
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NC Lebesgue Decomposition 15

3.9 Free Cauchy transforms

Given any NC Herglotz function, H, the corresponding NC-RKHS Hnc(K
H) is then a

Hilbert space of NC holomorphic functions in Bd
N

by NC-RKHS theory [5]. If μ ∈ (A
†
d)+ is

the unique NC measure corresponding to H, we will usually write KH = Kμ, and we will

use the notation H +(Hμ) := Hnc(K
μ) for the right Free Herglotz Space of Hμ. Here, we

will also write H = Hμ (or sometimes μ = μH ). As described in [18, 20], if H = Hμ, there

is a natural onto isometry, the (right) free Cauchy transform, Cμ : F2
d(μ) → H +(Hμ),

defined as follows: for any free polynomial p ∈ C{L1, ..., Ld} ⊆ F2
d(μ) and Z ∈ Bd

N
,

(Cμp)(Z) :=
∑
α∈Fd

Zαμ
(
(Lα)∗p(L)

)
=

∑
α∈Fd

Zα〈Lα + Nμ, p(�μ)(I + Nμ)〉μ. (3.1)

The final formula above extends to arbitrary x ∈ F2
d(μ). See [20, 21] for more details.

3.10 Image of GNS row isometry under free Cauchy transform

The image of the GNS row isometry �μ under the free Cauchy transform is an isometry

on the free Herglotz space:

Vμ := Cμ�μ(Cμ)∗. (3.2)

The range R of the row isometry Vμ is

R :=
∨(

KHμ{Z, y, v} − KHμ{0n, y, v}
)
=

∨
α �=∅

KHμ
α , (3.3)

and for any Z ∈ Bd
n, v, y ∈ Cn,

V∗μ
(
KHμ{Z, y, v} − KHμ{0n, y, v}

)
= KHμ{Z, Z∗y, v}. (3.4)

The image of Ran(Vμ) under (Cμ)∗ is

F2
d(μ)0 =

∨
α �=∅

Lα + Nμ. (3.5)
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16 M. T. Jury and R. T. W. Martin

If F ∈ H +(Hμ) is orthogonal to Ran(Vμ), then F is a constant NC function: for any

Z ∈ Bd
n, F(Z) = InF(0) that is, F ≡ F(0) ∈ C is constant valued. See [20, Section 4.4] for

details.

Remark 3.11. Recall that if μ = m is normalized NC Lebesgue measure (the vacuum

state), then Hμ(Z) = In for any Z ∈ Bd
n so that the NC Herglotz kernel, KHm = K reduces

to the NC Szegö kernel and H +(Hm) = H2(Bd
N
) is simply the free Hardy space. In this

case, Vm = ML
Z � L is the left free shift.

4 Cauchy Transforms of NC Measures

The goal of this section is to define AC and singular NC measures and to show that any

positive NC measure μ ∈ (A
†
d)+ has a unique Lebesgue decomposition, μ = μac+μs, into

AC and singular parts, μac, μs ∈ (A
†
d)+.

As discussed in Section 1.1, domination and absolute continuity of any finite,

positive, regular Borel measure, μ, on ∂D, can be described in terms of the intersection

of the RKHS of μ−Cauchy transforms with the Hardy space, H2(D). In particular,

domination of measures is equivalent to domination of the reproducing kernels for their

spaces of Cauchy transforms so that the following NC analogue of a reproducing kernel

theory result due to Aronszajn applies, see [27, Theorem 5.1] [3, Theorem I, Section 7]:

Theorem 4.1. Let K1, K2 be CPNC kernels on an NC set, �. Then K1 ≤ t2K2 for some

t > 0 if and only if

Hnc(K1) ⊆ Hnc(K2),

and the norm of the embedding e : Hnc(K1) ↪→ Hnc(K2) is at most t.

Here, recall that an NC set is any subset of the NC universe, Cd
N

:=⊔∞
n=1 C

n×n ⊗
C1×d which is closed under direct sums.

Moreover, as in the single-variable setting, domination of (positive) NC measures

μ, λ ∈ (A
†
d)+ is equivalent to domination of the NC kernels for their spaces of Cauchy

transforms: if μ, λ ∈ (A
†
d)+ are positive NC measures and μ is dominated by λ, that is,

there is a t > 0 so that μ ≤ t2λ, then there is a linear embedding, Eμ : F2
d(λ) ↪→ F2

d(μ)

defined by

Eμ(p(L)+ Nλ) = p(L)+ Nμ, p ∈ C{z1, ..., zd},
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NC Lebesgue Decomposition 17

with norm at most t.

Lemma 4.2 ([21, Lemma 5.3]). Given μ, λ ∈ (A
†
d)+, there is a t > 0 so that Kμ ≤ t2Kλ if

and only if μ ≤ t2λ. If μ ≤ t2λ, then the linear embeddings eμ : H +(Hμ) ↪→ H +(Hλ) and

Eμ : F2
d(λ) ↪→ F2

d(μ) have norm at most t > 0 and are related by

Eμ = C∗μe∗μCλ.

Motivated by the discussion of Section 1.1, we define the following:

Definition 4.3. A positive NC measure μ ∈ (A
†
d)+ is AC (with respect to NC Lebesgue

measure, m) if the intersection of its space of Cauchy transforms, H +(Hμ), with the free

Hardy space is dense:

H +(Hμ) =
(
H +(Hμ)

⋂
H2(Bd

N
)
)−‖·‖Hμ

.

The NC measure μ is singular (again with respect to NC Lebesgue measure) if

int(μ, m) :=H +(Hμ)
⋂

H2(Bd
N
) = {0}.

The sets of all AC and singular positive NC measures will be denoted by AC(A
†
d)+

and Sing(A
†
d)+, respectively.

Here, recall that H +(Hm) = H2(Bd
N
). Corollary 8.5 will show that this definition

recovers the classical Lebesgue decomposition of any finite, positive and regular Borel

measure on the circle with respect to Lebesgue measure, in the single-variable setting.

Our goal now is to decompose any positive NC measure, μ ∈ (A
†
d)+ into AC and

singular parts by considering the intersection of the space of NC μ−Cauchy transforms

with the NC Hardy space. For any (positive) NC measures μ, λ, one has that Hμ+λ =
Hμ + Hλ, and it follows that the NC Herglotz kernel of the NC measure γ := μ+ λ obeys

Kγ (Z, W) = Kμ(Z, W)+ Kλ(Z, W).

In particular, one can prove the following NC analogue of a result on sums of

reproducing kernels due to Aronszajn (applied to the special case of NC Herglotz Spaces),

[3, Section 6], [27, Theorem 5.7]:
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18 M. T. Jury and R. T. W. Martin

Theorem 4.4. If μ, λ ∈ (A
†
d)+ then H +(Hμ+λ) = H +(Hμ) + H +(Hλ) and the NC

reproducing kernel of H +(Hμ+λ) is Kμ+λ(Z, W) = Kμ(Z, W) + Kλ(Z, W). The norm of any

h ∈H +(Hμ+λ) is

‖h‖2
Hμ+λ

= min
{
‖h1‖2

Hμ
+ ‖h2‖2

Hλ

∣∣∣h1 ∈H +(Hμ), h2 ∈H +(Hλ), and h = h1 + h2

}
.

In particular,

H +(Hμ+λ) �H +(Hμ)⊕H +(Hλ)

if and only if the intersection space

int(μ, λ) :=H +(Hμ)
⋂

H +(Hλ) = {0}, is trivial.

Applying the inverse free Cauchy transform, one has H +(Hμ+λ) � H +(Hμ) ⊕
H +(Hλ) if and only if

F2
d(μ+ λ) � F2

d(μ)⊕ F2
d(λ).

Proof. The proof is similar to the classical RKHS result, see [27, Theorem 5.7]. Since

Hμ+λ = Hμ + Hλ, it follows as in the classical theory that Kμ+λ(Z, W) = Kμ(Z, W) +
Kλ(Z, W), that H +(Hμ+λ) = H +(Hμ) + H +(Hλ), and that the map W from H +(Hμ+λ)

into the direct sum H +(Hμ)⊕H +(Hλ) defined by

WKμ+λ
Z := Kμ

Z ⊕ Kλ
Z ,

is an isometry onto the subspace

S :=
∨

Kμ{Z, y, v} ⊕ Kλ{Z, y, v},

with orthogonal complement

S⊥ = {f ⊕−f | f ∈H +(Hμ)
⋂

H +(Hλ)}.

In particular, one has the direct sum decomposition if and only if the intersection space

is trivial. �
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NC Lebesgue Decomposition 19

Theorem 4.5. Given any two (positive) NC measures μ, λ ∈ (A
†
d)+, the intersection

space

int(μ, λ) :=H +(Hμ)
⋂

H +(Hλ),

is both Vμ and Vλ co-invariant, and

V∗μ|int(μ,λ) = V∗λ |int(μ,λ).

Lemma 4.6. Let h ∈ Hol(Bd
N
)⊗ Cd. Then Zh (Z) = 0n for all Z ∈ Bd

n implies that h ≡ 0.

Proof. This follows from basic NC analytic function theory. Let g(Z) = Zh(Z) ∈
Hol(Bd

N
), so that g ≡ 0. Any g ∈ Hol (Bd

n) has the Taylor–Taylor series expansion

about 0n:

g(Z) =
∞∑

k=0

1

k!
(∂k

Z g)(0n),

where

(∂Zg)(W) := d

dt
g(W + tZ)

∣∣∣∣
t=0

,

is the Gâteaux derivative of g at W in the direction of Z, and the ∂k
Z are the higher order

Gâteaux derivatives. This is a homogeneous polynomial decomposition, setting

g(k)(Z) := (∂k
Z g)(0n),

each g(k)(Z) is a homogeneous free polynomial of degree k. It follows that if

h =

⎛⎜⎜⎝
h1
...

hd

⎞⎟⎟⎠ ,

and each hj(Z) is the sum of homogeneous polynomials h(k)

j (Z), then,

g(k)(Z) = Z1h(k−1)
1 (Z)+ · · · + Zdh(k−1)

d (Z); k ≥ 1.
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20 M. T. Jury and R. T. W. Martin

Since g vanishes identically, so do all of the g(k)(Z) = (∂k
Z g)(0n), for k ≥ 0. It further

follows that each of the h(k)

j vanishes identically. Indeed, one easy way to see this is that

each h(k)

j is a homogeneous free polynomial in the Fock space F2
d, and

g(k)(Z) = (Lh(k))(Z); h(k)(Z) :=

⎛⎜⎜⎝
h(k)

1
...

h(k)

d

⎞⎟⎟⎠ .

It follows that each h(k) is in the kernel of the left free shift. Since the left free shift is

an isometry, each h(k)

j ≡ 0 vanishes identically for 1 ≤ j ≤ d. �

Proof (of Theorem 4.5). If f ∈H +(Hμ)
⋂

H +(Hλ) then observe that

Z(V∗μf )(Z) = (VμKμ
Z Z∗)∗f

= (Kμ
Z − Kμ

0n
)∗f = f (Z)− f (0n) (By Equation 3.4)

= Z(V∗λf )(Z).

By the previous lemma, it follows that

(V∗μ,kf )(Z) = (V∗λ,kf )(Z); 1 ≤ k ≤ d,

agree so that V∗
λ,kf = V∗

μ,kf ∈H +(Hμ)∩H +(Hλ) for each 1 ≤ k ≤ d, and the intersection

space is both Vμ and Vλ−co-invariant. �

Theorem 4.7. If M is a closed subspace of H +(Hμ), which is reducing for Vμ, then

there exists an NC measure γ ≤ μ such that

M =H +(Hγ ).

Proof. It is easier to work in the F2
d(μ) model, the conclusions then carry over to

H +(Hμ) via the NC Cauchy transform. If M ⊂ F2
d(μ) is any reducing subspace for �μ,

letting P be the orthogonal projection on M, we can define a new NC measure γ by the

formula

γ (Lα) = 〈I + Nμ, P�α
μ(I + Nμ)〉μ = 〈I + Nμ, P(Lα + Nμ)〉μ, α ∈ Fd.
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NC Lebesgue Decomposition 21

We extend γ in the natural way to a linear functional on the free disk system by

γ ((Lα)∗) := γ (Lα)∗. It remains to check that γ is a positive linear functional. By [18,

Lemma 4.6], any positive element in the free disk system is the norm-limit of sums

of squares of free polynomials, so that it suffices to check that γ (p(L)∗p(L)) ≥ 0

for any p ∈ C{z1, ..., zd}. Given any p ∈ C{z1, ..., zd}, let u ∈ C{z1, ..., zd} be such that

p(L)∗p(L) = u(L) + u(L)∗. Using that the orthogonal projection, P, commutes with the

GNS representation �μ, it is then not difficult to verify that

γ (p(L)∗p(L)) = γ (u(L))∗ + γ (u(L))

= 〈p(L)+ Nμ, P(p(L)+ Nμ)〉μ ≥ 0,

so that γ ∈ (A
†
d)+. It is then evident M is isometrically identified with F2

d(γ ) and that

the image of M ⊂ F2
d(μ) under the Cauchy transform is equal to H +(Hγ ). In particular,

γ ≤ μ. �

Proposition 4.8. Given λ, μ ∈ (A
†
d)+, if H +(Hλ) contains the constant NC functions,

then H +(Hμ)
⋂

H +(Hλ) is reducing for Vμ.

Clearly, this applies to λ = m since H2(Bd
N
) =H +(Hm) contains the constant NC

functions.

Proof. Theorem 4.5 shows that this intersection space is co-invariant for Vμ. Con-

versely, given f ∈H +(Hμ)
⋂

H +(Hλ), observe that

(Vμ,kf )(Z)− (Vμ,kf )(0n) = Zkf (Z)

= (Vλ,kf )(Z)− (Vλ,kf )(0n),

so that, (Vμ,kf )(Z) = (Vλ,kf )(Z)+ cIn,

where c := (Vμ,kf )(0)− (Vλ,kf )(0) is constant. Since H +(Hλ) contains all the constant NC

functions, it follows that

Vμ,kf ∈H +(Hλ)
⋂

H +(Hμ)

also belongs to the intersection space. �
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22 M. T. Jury and R. T. W. Martin

Theorem 4.9. Any positive NC measure μ ∈ (A
†
d)+ has the Lebesgue decomposition

μ = μac + μs, where 0 ≤ μac, μs ≤ μ are the (positive) AC and singular NC measures

defined by

H +(Hμac
) :=

(
H +(Hμ)

⋂
H2(Bd

N
)
)−‖·‖Hμ

,

and

H +(Hμs
) :=H +(Hμ)�H +(Hμac

).

Both H +(Hμac
) and H +(Hμs

) are reducing for Vμ and

H +(Hμ) =H +(Hμac
)⊕H +(Hμs

).

The direct sum decomposition of this theorem implies, by inverse Cauchy

transform, that

F2
d(μ) = F2

d(μac)⊕ F2
d(μs),

and these orthogonal subspaces are both reducing for �μ.

Proof. This is an immediate consequence of Theorem 4.7 and Proposition 4.8. �

Theorem 4.10. The set AC(A
†
d)+ is a positive cone.

Proof. Suppose that λ, μ ∈ AC(A
†
d)+ and let γ = λ+ μ. Then by Theorem 4.5,

H +(Hγ ) =H +(Hμ)+H +(Hλ),

and both H +(Hλ), H
+(Hμ) are contractively contained in H +(Hγ ) by Theorem 4.1,

so that any h ∈ H +(Hγ ) can be decomposed as h = f + g for f ∈ H +(Hμ) and

g ∈ H +(Hλ). Since both λ and μ are AC, there is a Hμ−norm convergent sequence

(fn) ⊂ H +(Hμ)
⋂

H2(Bd
N
) so that fn → f in H +(Hμ). Similarly, there is a sequence

(gn) ⊂ H +(Hλ)
⋂

H2(Bd
N
) so that gn → g in H +(Hλ). Let eμ, eλ be the contractive

embeddings of H +(Hμ), H +(Hλ) into H +(Hγ ). The sequence,

hn := eμfn + eλgn ∈H +(Hγ )
⋂

H2(Bd
N
),
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NC Lebesgue Decomposition 23

is then Cauchy in H +(Hγ ),

‖hn − hm‖Hγ
≤ ‖eμ(fn − fm)‖Hγ

+ ‖eλ(gn − gm)‖Hγ

≤ ‖fn − fm‖Hμ
+ ‖gn − gm‖Hλ

→ 0.

For any Z ∈ Bd
N

,

hn(Z) = fn(Z)+ gn(Z) → f (Z)+ g(Z) = h(Z),

and it follows that h is the limit of the Cauchy sequence (hn). This proves that

H2(Bd
N
)
⋂

H +(Hγ ),

is dense in H +(Hγ ), and γ = λ+ μ is then an AC NC measure. �

Lemma 4.11. The set of singular NC measures is hereditary: if μ ∈ Sing(A
†
d)+, λ is any

positive NC measure and μ ≥ λ, then λ is also singular.

Proof. If λ is not singular then μ ≥ λ ≥ λac �= 0. It follows that

{0} � H +(Hλac
)
⋂

H2(Bd
N
) ⊂H +(Hμ),

so that the space of free Cauchy transforms of μ has non-trivial intersection with the

free Hardy space. This contradicts the assumption that μ is singular. �

5 AC Measures and Closable L−Toeplitz Forms

Any positive NC measure μ ∈ (A
†
d)+ can be identified with a densely defined, positive

semi-definite quadratic form, qμ on the Fock space. In [21], we applied B. Simon’s

Lebesgue decomposition theory for quadratic forms to qμ [34, Section 2] to construct

an NC Lebesgue decomposition of any NC measure into AC and singular parts. In

this section, we prove that this “Lebesgue form decomposition” of any μ ∈ (A
†
d)+ and

the Lebesgue decomposition developed in the previous section using (NC) reproducing

kernel techniques are the same. We refer to [21, Section 4] for more detail on the

quadratic forms arising from NC measures, and to [24], [32, Section VIII.6], for the theory

of unbounded sesquilinear forms in Hilbert space.
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24 M. T. Jury and R. T. W. Martin

Definition 5.1. A densely defined positive semi-definite quadratic (sesquilinear) form,

q, with dense domain Dom(q) := Ad ⊆ F2
d is called an L−Toeplitz form if there is a

(positive) NC measure, μ ∈ (A
†
d)+, so that

q(a1, a2) = μ
(
(a1(L))∗a2(L)

) =: qμ(a1, a2); a1, a2 ∈ Ad.

Given any positive semi-definite quadratic form, q, with dense form domain

Dom(q) = Ad ⊂ F2
d, we define the (generally non-positive) linear functional, q̂ :

Ad +A∗d → C, by

q̂(a1 + a∗2) := q(1, a1)+ q(a2, 1).

Recall that we defined closed positive semi-definite quadratic forms in

Subsection 1.1, and that a positive semi-definite quadratic form, q, with dense domain

in H is closed if and only if

q(h, g) = qA(h, g) := 〈√Ah,
√

Ag〉H; g, h ∈ Dom(q) = Dom(
√

A),

for some closed, positive, semi-definite operator A. A positive quadratic form, q, is

closable if it has a closed extension. If q is closable, then it has a minimal closed

extension, q, with Dom(q) ⊆ H equal to the set of all h ∈ H so that there is a sequence

hn ∈ Dom(q), such that hn → h and (hn) is Cauchy in the norm of H(q + 1). A dense set

D ⊆ Dom(q) is called a form core for a closed form q if D is a dense linear subspace

in H(q + 1). If q is closable with closure (minimal closed extension) q, then Dom(q) is

a form core for q [24, Chapter VI, Theorem 1.21]. If q = qA is a closed, positive, semi-

definite quadratic form, then D is a form core for q if and only if D is a core for
√

A. In

particular, Dom(A) is a form core for q.

Definition 5.2. A closed, positive semi-definite operator T with domain Dom(T) ⊆ F2
d

will be called L−Toeplitz if:

1. Ad ⊆ Dom(
√

T) and C{z1, ..., zd} ⊆ Dom(
√

T) is a core for
√

T,

2. The associated quadratic form

qT(a1, a2) := 〈√Ta1(L)1,
√

Ta2(L)1〉F2
d
; a1, a2 ∈ Ad

is L−Toeplitz.
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NC Lebesgue Decomposition 25

Remark 5.3. If T is a bounded L−Toeplitz operator, then

L∗kTLj = δk,jT,

so that T is multi-Toeplitz in the sense of Popescu, see [29, Section 1.1].

In [34, Section 2], B. Simon proved that any densely defined and positive

semi-definite quadratic form, q, acting in a Hilbert space H, has a unique Lebesgue

decomposition:

q = qac + qs,

where qac is the maximal closable form dominated by q, and qs = q−qac. It follows that

any μ ∈ (A
†
d)+ has the Lebesgue form decomposition:

μ = q̂ac + q̂s, (5.1)

where q̂ac, q̂s are (a priori not necessarily positive) linear functionals on the free disk

system, see Definition 5.1. By [21, Equation (5.2)], the NC measure q̂ac ∈ (A
†
d)+ is given

by the formula:

q̂ac(L
α) = 〈(I + Nμ+m), (I −Q)�α

μ+m(I + Nμ+m)〉μ+m, (5.2)

where Q is the orthogonal projection onto the kernel of the contractive embedding

E : F2
d(μ + m) ↪→ F2

d. In [21, Theorem 5.9], we proved that q̂ac and q̂s are positive NC

measures, so that this yields a “quadratic form” Lebesgue decomposition of μ and an

alternative definition of “absolutely continuous” and “singular” positive NC measures.

(The next theorem shows that these potentially different decompositions and definitions

are the same.)

Theorem 5.4. An NC measure μ ∈ (A
†
d)+ is AC if and only if qμ ≥ 0 is a closable

quadratic form. If μ is AC and q = qT is the closure of qμ, then the positive semi-definite

operator T is L−Toeplitz.

Proof. By [21, Corollary 5.6], an NC measure μ ∈ (A
†
d)+ generates a closable quadratic

form, qμ if and only if the intersection of the space of NC Cauchy transforms of μ +m

with the NC Hardy space is dense in H +(Hμ+m), that is, if and only if μ +m is an AC

NC measure in the sense of Definition 4.3.
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26 M. T. Jury and R. T. W. Martin

We claim that μ+m is AC if and only if μ is AC so that these two definitions of

absolute continuity are equivalent. First, by Theorem 4.10, AC(A
†
d)+ is a positive cone

so that if μ is AC, so is μ +m. Conversely, if μ +m is AC, this is equivalent to qμ being

a closable quadratic form, so that qμ =: qT is the quadratic form of a unique, positive

semi-definite, L−Toeplitz T ≥ 0, and C{z1, ..., zd} is a core for
√

T by [21, Theorem 5.8].

Suppose that x ∈ Dom(T) ⊆ Dom(
√

T). Then since C{z1, ..., zd} is a core for
√

T, we can

find a sequence of free polynomials, pn, so that

pn → x, and
√

Tpn →
√

Tx.

In particular, the sequence pn(L) + Nμ is Cauchy in F2
d(μ) and converges to a vector

x̂ ∈ F2
d(μ):

‖pn − pm + Nμ‖μ = ‖
√

T(pn − pm)‖F2
d
→ 0.

It follows that we can identify Dom(T) with a linear subspace (generally non-closed),

Dμ(T) ⊂ F2
d(μ). We claim that any vector y ∈ Dμ(T) is such that Cμy ∈ H2(Bd

N
). Indeed, as

above, given y ∈ Dμ(T), there is a vector y̌ ∈ Dom(T) and a sequence of free polynomials

pn so that pn → y̌,
√

Tpn → √
Ty̌, and pn(L) + Nμ → y in F2

d(μ). The free Cauchy

transform of y is

(Cμy)(Z) =
∑
α∈Fd

Zα〈�α
μ(I + Nμ), y〉μ

= lim
n→∞

∑
Zα〈�α

μ(I + Nμ), pn(L)+ Nμ〉μ
= lim

n

∑
Zα〈√TLα1,

√
Tpn(L)1〉F2

d

=
∑

Zα〈√TLα1,
√

Ty̌〉F2
d

=
∑

Zα〈Lα1, Ty̌〉F2
d
.

= (Ty̌)(Z).

Since Ty̌ ∈ H2(Bd
N
) = F2

d this proves our claim. Moreover, by general facts about closed

operators, Dom(T) is a core for
√

T, and it follows that Dμ(T) is norm-dense in F2
d(μ).

This proves that

H +(Hμ)
⋂

H2(Bd
N
),
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NC Lebesgue Decomposition 27

is dense in H +(Hμ), so that μ is, by definition, an AC NC measure. �

Theorem 5.5. Given μ ∈ (A
†
d)+, the Lebesgue form decomposition and Lebesgue

decomposition of μ coincide. That is, the quadratic form of μac is the maximal closable

quadratic form bounded above by qμ.

Lemma 5.6. Given μ ∈ (A
†
d)+ with Lebesgue decomposition μ = μac +μs, if λ = μ+m,

then λ has Lebesgue decomposition:

λ = μac +m︸ ︷︷ ︸
=λac

+ μs︸︷︷︸
=λs

.

Proof. By Theorem 4.5,

H +(Hλ) =H +(Hμac
)+H +(Hm)︸ ︷︷ ︸

=H2(Bd
N
)

+H +(Hμs
),

and each of the spaces of this decomposition is contractively contained in H +(Hλ), with

λ = μ +m. Since AC(A
†
d)+ is a positive cone, by Theorem 4.10, μac +m is AC. One can

show, as in the proof of Theorem 4.10,

H2(Bd
N
) ∩H +(Hμac+m),

is dense in the subspace

(
H +(Hμac+m)

)−‖·‖Hλ ,

and it follows that μac +m ≤ (μ +m)ac = λac. Also, since μs is the singular part of μ,

we know that both

H +(μs)
⋂

H +(μac) = {0},

by Theorem 4.9, and

H +(μs)
⋂

H2(Bd
N
) = {0},
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28 M. T. Jury and R. T. W. Martin

by definition. We claim also that

H +(μs)
⋂

H +(Hμac+m) = {0}.

Indeed, we have as above that

H +(Hμac+m) =H +(Hμac
)+ H2(Bd

N
),

as vector spaces, so that if f ∈H +(μs)
⋂

H +(Hμac+m), then

f = g+ h; g ∈H +(Hμac
), h ∈ H2(Bd

N
).

However, this would imply that

f − g = h ∈ H2(Bd
N
)
⋂

H +(Hμ) ⊆H +(Hμac
),

by the definition of the AC part of μ, so that g, f − g, and hence f belong to H +(Hμac
).

Since the Herglotz space of μac is by construction orthogonal to H +(Hμs
), f = 0, and

this proves that the intersection of H +(Hμs
) with H +(Hμac+m) is empty. By Theorem

4.4, we then have the direct sum decompositions:

H +(Hλ) =H +(Hμac+m) ⊕ H +(Hμs
)

=H +(Hλac
) ⊕ H +(Hλs

).

The 1st decomposition, implies, in particular, that H +(Hμac+m) is contained isometri-

cally in H +(Hλ), and since μac+m ≤ λac, it is contained isometrically inside H +(Hλac
).

However, by definition, H +(Hλac
)
⋂

H2(Bd
N
) is dense in H +(Hλac

), and

H +(Hλac
)
⋂

H2(Bd
N
) ⊆ H2(Bd

N
) (5.3)

⊆ H2(Bd
N
)+H +(Hμac

)

= H +(Hμac+m),

so that

H +(Hλac
)
⋂

H +(Hμac+m)
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NC Lebesgue Decomposition 29

is dense in H +(Hλac
). Since these are both closed subspaces, it must be that λac =

μac +m and μs = λs. �

Proof (of Theorem 5.5). It remains to prove that if μ = μac + μs is the Lebesgue

decomposition of μ of Theorem 4.9, that μac generates the largest closable quadratic

form bounded above by μ, so that μac = q̂ac and the Lebesgue decomposition and

Lebesgue form decompositions of μ coincide. Let e : H2(Bd
N
) = H +(Hm) ↪→ H +(Hμ+m)

be the contractive embedding (since m ≤ μ+m). By Lemma 4.2,

E = C∗me∗Cμ+m,

and it follows that the kernel of E is the kernel of e∗Cμ+m.

By Theorem 4.4, H +(Hμac+m) = H +(Hμac
) + H2(Bd

N
) and the NC Hardy space is

contractively contained in H +(Hμac+m). Furthermore, by Theorem 4.10, μac + m is an

AC NC measure so that H2(Bd
N
) ⊆ H2(Bd

N
)
⋂

H +(Hμac+m) is norm-dense in the space of

(μac+m)−Cauchy transforms. Since the previous lemma implies that (μ+m)ac = μac+m,

it follows that the range of e is contained in and norm-dense in H +(H(μ+m)ac
) so that

Ran (e) =H +(H(μ+m)ac
).

Consequently, and again by the previous lemma,

Ran (e)
⊥ = Ker(e∗) =H +(H(μ+m)s

) =H +(Hμs
),

and

Ker(E) = F2
d(μs).

By Formula (5.2), it follows that q̂ac = μac. �

6 Lebesgue Decomposition of Row Isometries

The concept of absolute continuity, singularity, and Lebesgue decomposition for

bounded linear functionals on Ad was first defined and studied in the context of

free semigroup algebra theory [8, 10, 26]. Recall, a free semigroup algebra is any WOT

closures unital operator algebra generated by a row isometry. If � is a row isometry on
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30 M. T. Jury and R. T. W. Martin

a Hilbert space, H, we denote the free semigroup algebra of � by

Fd(�) := Alg(I, �)−WOT .

As proven in [11], the weak−∗, and WOT closures of Ad coincide so that the left free

analytic Toeplitz algebra, L∞d = H∞(Bd
N
), is a free semigroup algebra.

Definition 6.1 (see [10, Definition 2.1] and [11, Theorem 2.10]). A bounded linear

functional ϕ ∈ A
†
d is weak−∗ continuous if it has a weak−∗ continuous extension to

L∞d .

Theorem 6.2 ([11, Theorem 2.10]). A bounded linear functional φ ∈ A
†
d is weak−∗

continuous if and only if there are vectors, x, y ∈ F2
d so that

φ(a) = mx,y(a) := 〈x, a(L)y〉F2
d
.

A natural extension of the above definition to (positive) NC measures on the free

disk system is then:

Definition 6.3. A bounded positive linear functional (or NC measure) φ ∈ (A
†
d)+ is

weak−∗ continuous if it has a weak−∗ continuous extension to the (left) Toeplitz System(
L∞d + (L∞d )∗

)−weak−∗ = (
Ad +A∗d

)−weak−∗. Let WC(A
†
d)+ denote the positive cone of all

weak−∗ continuous NC measures.

Clearly, WC(A
†
d)+ is a positive cone since positive linear combinations of positive

weak−∗ continuous linear functionals are again weak−∗ continuous and positive. We

will prove that any (positive) NC measure is weak−∗ continuous in the above Davidson–

Li–Pitts sense if and only if it is AC in the sense of Definition 4.3, see Theorem 8.4.

Definition 6.4. A representation π : Ad → L(H) on a separable Hilbert space, H, is

called ∗−extendible if and only if it is the restriction of a unital ∗−representation of the

Cuntz–Toeplitz C∗-algebra, Ed = C∗(I, L) to Ad.

A unital homomorphism π : Ad → L(H) is ∗−extendible if and only if �k :=
π(Lk) is a row isometry. The following concept of a weak−∗ continuous vector will be

important for our investigations:
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NC Lebesgue Decomposition 31

Definition 6.5 ([10, Definition 2.4]). A vector h ∈ H is called a weak−∗ continuous (WC)

vector for a ∗−representation, π , of Ed, if

φh(Lα) := 〈h, π(L)αh〉H,

is a weak−∗ continuous functional on Ad. The set of all weak−∗ continuous vectors for

π is denoted by WC(π), or WC(μ) if π = πμ is the GNS representation of an NC measure.

Definition 6.6 ([10, Definition 2.6]). A bounded linear map X : F2
d → H is called

an intertwiner for a ∗−extendible representation π if XLα = �αX. The set of all

intertwiners is denoted χ(π) (or χ(μ) if π = πμ for an NC measure μ).

Weak−∗ continuous vectors are characterized by the following theorem

[10, Theorem 2.7]:

Theorem 6.7. Let π be a ∗−extendible representation of Ad on H. Then WC(π) is a

� := π(L)−invariant, closed subspace and WC(π) = χ(π)F2
d. Given any x, y ∈ WC(π),

μx,y(p(L)) := 〈x, π(p(L))y〉H; p ∈ C{z1, ..., zd},

defines a weak−∗ continuous functional on Ad.

In [26], M. Kennedy extended and applied these notions to develop a Lebesgue

decomposition of row isometries. Namely, let � denote an arbitrary row-isometry on a

Hilbert space H. By the Kennedy–Wold–Lebesgue decomposition � and H decompose as

direct sums:

� =: �L ⊕�C−L ⊕�vN ⊕�dil,

on

H = HL ⊕HC−L ⊕HvN ⊕Hdil,

where �L is pure type−L, �C−L is called Cuntz type−L, �vN is purely singular or of von

Neumann type, and �dil is of dilation type. These classes of row isometries are defined

as follows:

Definition 6.8. A row isometry, �, on H is:

1. type−L if it is unitarily equivalent to a vector-valued left free shift L⊗ IK for

some Hilbert space K.
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32 M. T. Jury and R. T. W. Martin

2. Cuntz type−L if it is an onto row isometry (also called a Cuntz unitary)

and the free semigroup algebra generated by �, Fd(�) = Alg(I, �)−WOT , is

isomorphic to L∞d , that is, if the map �k �→ Lk extends to a completely

isometric isomorphism and weak−∗ continuous homeomorphism of Fd(�)

onto L∞d .

3. weak−∗ continuous (WC), if it is a direct sum of type-L and Cuntz type-L

row isometries.

4. von Neumann type if it has no weak−∗ continuous restriction to an invariant

subspace.

5. dilation type if � has no direct summand, which is one of the previous types.

6. weak−∗ singular (WS) if � is a direct sum of von Neumann and dilation-type

row isometries.

Remark 6.9. Von Neumann and dilation-type row isometries are necessarily Cuntz

unitary. Any dilation-type row isometry can be decomposed in the form:

� �
(

T 0

∗ L⊗ IH

)
,

(so that the restriction of � to an invariant subspace is unitarily equivalent to several

copies of L). As shown in [26], � is of von Neumann type if and only if the WOT−closed

algebra generated by � (i.e., the free semigroup algebra of �) is self-adjoint, that is,

a von Neumann algebra. Von Neumann type row isometries are at this point rather

mysterious and poorly understood. There is essentially only one known example of a

von Neumann type row isometry due to C. Read [7, 31], which constructs an example of

a two-component row isometry � = (�1, �2) on a separable Hilbert space, H, so that the

WOT−closed algebra generated by � is all of L(H). In particular, it is unknown whether

one can generate other types of von Neumann algebras in this way.

Remark 6.10. In the free semigroup algebra literature, several variations of the

concept of a weak−∗ continuous row isometry (as we have defined it above) or

∗−representation of Ed were introduced in [10] to describe when the weak−∗ closure

of a free semigroup algebra of a row isometry or Cuntz–Toeplitz ∗−representation is

similar in structure to L∞d , see [10, Theorem 3.4]. There is also no clear consensus on

terminology see for example, [10, Theorem 3.4] and [26, Definition 3.2, Definition 3.6].

Eventually, the work of several authors showed that all these variations of type−L row
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isometries were the same [10, Definition 3.1, Theorem 3.4], [26, Definition 3.2, Definition

3.6, Theorem 4.16], [12]:

Theorem 6.11. Let � be a row isometry on a Hilbert space, H. The following are

equivalent:

1. � is weak−∗ continuous.

2. The representation Lk �→ �k induced by � is the restriction to Ad of a

weak−∗ continuous representation of L∞d .

3. Every vector in H is a weak−∗ continuous vector for �, H = WC(�).

Proof. The equivalence of the 1st two items is [26, Theorem 4.16] (see also Definitions

3.2 and 3.6). If � is a weak−∗ continuous row isometry (as we have defined it) then the

fact that WC(�) = H follows from [10, Theorem 3.4], or equivalently from [26, Theorem

4.17], which proves the stronger statement that H is spanned by wandering vectors

for �.

Conversely, the main result of [12] is that if H = WC(�), then the infinite

ampliation, �(∞) � � ⊗ I�2(N0), is a weak−∗ continuous row isometry. In this case, as

observed in [12], the weak−∗ closure of the free semigroup algebra of � is completely

isometrically isomorphic and weak−∗ homeomorphic to the free semigroup algebra

of �(∞) (recall a general free semigroup algebra is a priori only WOT−closed, not

necessarily weak−∗ closed, by definition), and hence to L∞d , since �(∞) is weak−∗
continuous. However, this implies that the representation π : Ad → L(H) induced by �,

π(Lk) := �k, is the restriction of a weak−∗ continuous representation of L∞d , and hence

by [26, Definition 3.2, Definition 3.6, Theorem 4.16], the free semigroup algebra of � is

isomorphic to L∞d . As described in [12] algebraic isomorphism necessarily implies the

much stronger property that they are completely isometrically isomorphic and weak−∗
homeomorphic. By Definition 6.8 above, � is then a weak−∗ continuous row isometry.�

We now apply the Kennedy–Wold–Lebesgue decomposition of row isometries to

(positive) NC measures:

Definition 6.12. Given μ ∈ (A
†
d)+, we say μ is one of the six types of Definition 6.8

if its GNS row isometry �μ is of that corresponding type. The Kennedy–Wold–Lebesgue

decomposition of μ is

μ = μL + μC−L + μvN + μdil,
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where each μtype ∈ (A
†
d)+ is positive and bounded above by μ and

F2
d(μ) = F2

d(μ)L ⊕ F2
d(μ)C−L ⊕ F2

d(μ)vN ⊕ F2
d(μ)dil,

is the Kennedy–Wold–Lebesgue direct sum decomposition. If PL, PC−L, PvN , Pdil are the

corresponding reducing projections,

μtype(·) := 〈I + Nμ, πμ(·)Ptype(I + Nμ)〉μ,

where 〈·, ·〉μ is the GNS inner product of μ and type ∈ {L, C − L, wc, vN, dil, ws}.
The weak−∗ Lebesgue decomposition of μ is then

μ =: μL + μC−L︸ ︷︷ ︸
=:μwc

+μvN + μdil︸ ︷︷ ︸
=:μws

= μwc + μws,

μwc, μws ∈ (A
†
d)+ are called the weak−∗ continuous and weak−∗ singular parts of μ,

respectively, and are both bounded above by μ. We will let WC(A
†
d)+, WS(A

†
d)+ denote

the sets of weak−∗ continuous and weak−∗ singular NC measures, respectively.

Similarly, we write F2
d(μ)wc := F2

d(μ)L⊕F2
d(μ)C−L and F2

d(μ)ws = F2
d(μ)vN⊕F2

d(μ)dil

so that F2
d(μ)wc and F2

d(μ)ws are reducing subspaces for �μ with orthogonal projections

Pwc = PL ⊕ PC−L, Pws = PvN ⊕ Pdil and then

F2
d(μ) = F2

d(μ)wc ⊕ F2
d(μ)ws.

The spaces F2
d(μ)type and F2

d(μtype) are naturally isomorphic. We will ultimately

show that μwc = μac and μws = μs so that Lebesgue decomposition and weak−∗
Lebesgue decomposition of any positive NC measure coincide.

Corollary 6.13. The weak−∗ continuous subspace, F2
d(μwc) ⊆ F2

d(μ), is the largest

�μ−reducing subspace of weak−∗ continuous vectors for μ. The �μ−invariant sub-

space of WC vectors for μ is WC(μ) = F2
d(μwc)⊕

(
F2

d(μdil) ∩WC(μ)
)

.

This is an immediate consequence of Theorem 6.11 and the definitions.

Remark 6.14. It is natural that the weak−∗ continuous part of an NC measure μ

should include μL + μC−L, and that the weak−∗ singular part of μ should include μvN .

It may not seem immediately obvious that the dilation part of μ should be included in
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NC Lebesgue Decomposition 35

the singular part of μ since any dilation-type row isometry has a weak−∗ continuous

restriction to an invariant subspace by definition (i.e., it has weak−∗ continuous

vectors). However, our results will show that this definition is consistent and justified.

If μ ∈ (A
†
d)+ is an NC measure, our weak−∗ Lebesgue decomposition of μ differs

from the Lebesgue decomposition for μ|Ad
, as defined in [10, Proposition 5.9]. Indeed,

by [10, Proposition 5.2, Proposition 5.9], the Davidson–Li–Pitts Lebesgue decomposition

of μ as a functional on Ad is μ = μ̌wc + μ̌s, where

μ̌wc(L
α) = 〈I, �α

μQwcI〉μ, and μ̌ws(L
α) = 〈I, �α

μQwsI〉μ,

Qwc is the projection onto the invariant subspace of all weak−∗ continuous vectors

for πμ, and Qws = I − Qwc. This differs from our weak−∗ Lebesgue decomposition, in

general, since our Pwc = PL + PC−L ≤ Qwc. The decompositions are the same if and only

if �μ has no direct summand of dilation type.

As Theorem 8.4 will show, the μwc from our decomposition is the maximal

weak−∗ continuous functional that is both positive and bounded above by the original

NC measure μ. One can check that if μ is a positive NC measure, that (since Qwc is

�μ−invariant) the functional μ̌wc extends to a positive NC measure on Ad +A∗d:

μ̌wc(a
∗a) = 〈I + Nμ, Qwcπμ(a∗a)Qwc(I + Nμ)〉μ.

However, the operator

πμ(a)∗πμ(a)−Qwcπμ(a)∗πμ(a)Qwc,

need not be positive semi-definite, so that μ̌wc need not be bounded above by the

original NC measure μ. Indeed, since our μwc = μac is the maximal AC NC measure

bounded above by μ (see Theorem 8.4), it must be that μ̌wc is not bounded above by μ

unless μ̌wc = μwc (= μac) and (Pac =) Pwc = Qwc is reducing for �μ.

Corollary 6.15. An NC measure μ ∈ (A
†
d)+ is weak−∗ continuous if and only if it is

given by a positive vector functional on the Fock space, that is, μ = mx,y = my,x ≥ 0 for

x, y ∈ F2
d where

mx,y(Lα) := 〈x, Lαy〉F2
d
.
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36 M. T. Jury and R. T. W. Martin

Equivalently, μ is weak−∗ continuous if and only if �μ is a weak−∗ continuous row

isometry.

Any strictly positive L−Toeplitz operator that is bounded above and below has

an analytic outer factorization:

Theorem 6.16 (Popescu [29, Theorem 1.5]). Any positive L−Toeplitz T ∈ L(F2
d) that is

bounded below, T ≥ εI, can be factored as T = F(R)∗F(R) for some outer F ∈ R∞d .

If T ≥ 0 is an arbitrary positive semi-definite L−Toeplitz operator, it is still

possible to obtain an asymmetric factorization T = F(R)∗G(R) = G(R)∗F(R) with

F, G ∈ R∞d :

Lemma 6.17 ([25, Lemma 3.2, Lemma 3.3]). If d ≥ 2, R∞d + (R∞d )∗ is precisely equal to

the set of bounded L−Toeplitz operators and any bounded L−Toeplitz operator, T, can

be factored as T = F(R)∗G(R) for F, G ∈ R∞d , which are bounded below. If T ≥ 0, and

A(R)∗A(R) = I + T, one can choose

F(R) := R1A(R)+ R2, and G(R) = R1A(R)− R2,

so that

F(R)∗F(R) = G(R)∗G(R) = 2I + T ≥ 2I, and

F(R)∗G(R) = I + T − I = T ≥ 0.

Proof (of Corollary 6.15). If μ ∈ (A
†
d)+ is weak−∗ continuous, then by [11, Theorem

2.10], it is given by a vector state on the Fock space, μ = mx,y for x, y ∈ F2
d. Alternatively,

if μ is weak−∗ continuous, then by the GNS representation,

μ(Lα) = 〈I + Nμ, �α
μ(I + Nμ)〉μ,

so that by Definition 6.5, I+Nμ is a weak−∗ continuous vector for �μ. Theorem 6.7 then

implies that there is a bounded intertwiner, X : F2
d → F2

d(μ) and a vector y ∈ F2
d so that

I + Nμ = Xy.
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NC Lebesgue Decomposition 37

Hence,

μ(a) = 〈Xy, πμ(a)Xy〉μ
= 〈y, X∗Xa(L)y〉F2

d
,

and since XLα = �α
μX is an intertwiner, X∗X = T ≥ 0 is a bounded positive semi-definite

L−Toeplitz operator. By Lemma 6.17, there are F, G ∈ R∞d so that F(R)∗G(R) = X∗X.

Setting f := F(R)y and g := G(R)y, we obtain

μ(a) = 〈 f , a(L)g〉F2
d
= mf ,g(a),

and μ is a vector state on the Fock space. Conversely, any positive vector state on the

Fock space is clearly weak−∗ continuous.

If μ = mx,y is weak−∗ continuous (and positive), it is clear that the map �k �→ Lk

extends to a weak−∗ homeomorphism since this is a WOT and hence weak−∗ continuous

functional on L(F2
d). Hence, �μ is weak−∗ continuous. If �μ is weak−∗ continuous,

Theorem 6.11 implies that F2
d(μ) = WC(�μ) so that every h ∈ F2

d(μ) is weak−∗ continuous

for �μ. In particular, since I + Nμ is a weak−∗ continuous vector for �μ, we can repeat

the above argument to show that μ = mf ,g is a vector state, hence weak−∗ continuous.�

Lemma 6.18. The positive cone of all weak−∗ continuous NC measures � ∈ (A
†
d)+

is hereditary: if λ, � ∈ (A
†
d)+, � is weak−∗ continuous and λ ≤ � then λ is also

weak−∗continuous

Proof. If � is weak−∗ continuous, then by Theorem 6.7, there is an intertwiner X

and a y ∈ F2
d so that Xy = 1 ∈ F2

d(�) and �(a) = 〈y, X∗Xa(L)y〉F2 = 〈Xy, π�(a)Xy〉�.

Now, assuming that λ ≤ �, there is a positive �-Toeplitz contraction D = E∗λEλ (i.e.,

π�(Lk)∗Dπ�(Lj) = δk,jD) so that

λ(a) = 〈1, Dπ�(a)1〉� = 〈Xy, Dπ�(a)Xy〉� = 〈y, X∗DXa(L)y〉F2 .

Since D is �-Toeplitz and X is an intertwiner, X∗DX is L-Toeplitz, and by Lemma 6.17,

X∗DX = X(R)∗Y(R) for some X(R), Y(R) ∈ R∞d . It follows that λ = mf ,g is also a vector

state, with f = X(R)y, g = Y(R)y, so that it is also weak−∗ continuous. �
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38 M. T. Jury and R. T. W. Martin

Remark 6.19. A natural question is whether any positive weak−∗ continuous func-

tional μ = mx,y on the free disk system necessarily has the symmetric form μ = mh :=
mh,h for some h ∈ F2

d. We will say that a positive weak−∗ continuous NC measure is

asymmetric if there is no h ∈ F2
d so that μ = mx,y = mh,h, and symmetric if x = y, and

we write mx = mx,x in this case. It is a curious fact that if μ is of Cuntz type−L then no

such h exists, so that μ is asymmetric, see Corollary 6.22.

Theorem 6.20. If μ = mx is symmetric and weak−∗ continuous, then μ is type−L.

Assuming that x = x(R)1 where x(R) is outer, the distance from I + Nμ to F2
d(mx)0

is |x(0)|.

Recall here that F2
d(mx)0 denotes the closed linear span of the non-constant free

monomials in F2
d(mx), see Equation (3.5). In the above statement, for x ∈ F2

d, x(R) will

generally be a closed, unbounded right multiplier.

Remark 6.21. There is no loss in generality in assuming that x is outer. By Davidson–

Pitts [11, Corollary 2.3], any x ∈ F2
d factors as x = �(R)y, where y ∈ F2

d is L−cyclic,

that is, right outer, and �(R) = MR
�† is right inner, that is, an isometry, so that for any

a1, a2 ∈ Ad,

mx(a∗1a2) = 〈a1(L)x, a2(L)x〉F2

= 〈a1(L)y, �(R)∗�(R)a2(L)y〉F2

= 〈a1(L)y, a2(L)y〉F2 = my(a∗1a2).

Proof. Define Ux : F2
d(μ) → F2

d by

Ux(Lα + Nμ) := Lαx ∈ F2
d.

This is an isometry, which is onto since x is L−cyclic (since x(R) is outer). It follows that

Ux�μU∗x = L, so that �μ is pure type−L, and hence �μ is not Cuntz.

However, we can say more: consider,

�x := inf
p(0)=0

‖(I − p(L))+ Nμ‖2
μ,

this is the distance (squared) from I + Nμ to F2
d(μ)0 =

∨
α �=∅(Lα + Nμ). Hence, �x = 0

if and only if the distance from I + Nμ to F2
d(μ)0 vanishes, that is, if and only if μ is
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NC Lebesgue Decomposition 39

column extreme in the sense of [20, Definition 6.1, Theorem 6.4]. Then, calculating as in

[29, Theorem 1.3],

�x = inf
p(0)=0

‖(I − p(�μ))(I + Nμ)‖2
μ

= inf
p(0)=0

‖(I − p(L))x‖2
F2

d

= inf
q∈C{z1,..zd}⊗Cd

‖x − Lq(L)x‖2
F2

d

= inf
y∈F2

d⊗Cd
‖x − Ly‖2

F2
d

(Since x is cyclic.)

= ‖P⊥Ran(L)x‖2
F2

d

= ‖P{1}x‖2
F2

d

= |x(0)|2.

�

Corollary 6.22. If μ ∈ (A
†
d)+ is column-extreme (i.e., �μ is Cuntz) and weak−∗

continuous, then there is no x ∈ F2
d so that μ = mx.

There are many examples of AC and column-extreme μ ∈ (A
†
d)+, see, for example,

[10, Example 2.11]. (This provides an example of a cyclic and AC Cuntz row isometry,

which is therefore not unitarily equivalent to copies of the left free shift. The fact that

it is cyclic implies that it is unitarily equivalent to the GNS row isometry of a Cuntz

type−L NC measure.)

Corollary 6.23. �μ is of pure type−L if and only if μ = mx is symmetric and weak−∗
continuous.

Proof. One direction is in the proof of the previous theorem, Theorem 6.20. Namely, if

μ = mx, then �μ is of type−L.

Conversely, if �μ is type−L, then �μ is unitarily equivalent to copies of L. But,

since �μ has a cyclic vector, it is unitarily equivalent to L. If U : F2
d → F2

d(μ) is the

unitary so that ULk = πμ(Lk)U, then, choosing h ∈ F2
d so that Uh = I + Nμ yields

μ(Lα) = 〈I + Nμ, �α
μ(I + Nμ)〉μ

= 〈Uh, �α
μUh〉μ

= 〈h, Lαh〉F2
d
= mh(Lα).

�
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40 M. T. Jury and R. T. W. Martin

6.24 Type−L NC measures: the Helson–Lowdenslager approach

Given an NC measure μ ∈ (A
†
d)+, let P0 denote the orthogonal projection of F2

d(μ)

onto F2
d(μ)0 =

∨
α �=∅(Lα + Nμ). The next two results are motivated by [17, Chapter 4,

Section 1]:

Lemma 6.25. There is a constant c2 ≥ 0 so that

c2m(Lα) = 〈(I − P0)(I + Nμ), �α
μ(I − P0)(I + Nμ)〉μ,

where m is (normalized) NC Lebesgue measure.

Proof. This follows immediately from the fact that F2
d(μ)0 is �μ−invariant so that

〈(I − P0)(I + Nμ), �α
μ(I − P0)(I + Nμ)〉μ = ‖(I − P0)(I + Nμ)‖2

μδα,∅ = c2m(Lα),

with c = ‖(I − P0)(I + Nμ)‖. �

Define the co-isometry W : F2
d(μ) → F2

d(m) = F2
d with initial space

Ker(W)⊥ =
∨
α

�α
μ(I − P0)(I + Nμ),

W�α
μP⊥0 (I + Nμ) = cLα + Nm = cLα1. (6.1)

Proposition 6.26. The vector P⊥0 (I + Nμ) is wandering for �μ so that

Ker(W)⊥ =
⊕
{�α

μP⊥0 (I + Nμ)}.

The subspace Ker(W)⊥ is �μ−reducing, the restriction of �μ to Ker(W)⊥ is unitarily

equivalent to L, and W∗W = PL, the projection onto the type−L part of F2
d(μ).

Proof. The vector w := P⊥0 (I + Nμ) is wandering since,

〈�α
μP⊥0 (I + Nμ), �β

μP⊥0 (I + Nμ)〉 = δα,βc2.

The subspace Ker(W)⊥ is �μ−invariant, by construction. Suppose that h ∈ Ker(W), so

that for any α ∈ Fd,

0 = 〈h, �α
μ(I − P0)(I + Nμ)〉μ.
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NC Lebesgue Decomposition 41

For any α �= ∅,

〈h, πμ(Lα)∗(I − P0)(I + Nμ)〉μ = 〈(I − P0)�α
μh, I + Nμ〉μ = 0,

since �μ(Lα)h ∈ F2
d(μ)0 for any α �= ∅. Since h ∈ Ker(W) was arbitrary, it follows that

Ker(W)⊥ =
∨

πμ(Ad +A∗d)(I − P0)(I + Nμ),

is �μ−reducing.

Since W∗W is reducing for �μ and generated by the wandering vector P⊥0 (I+Nμ),

it follows that W∗W ≤ PL. However, the vector I + Nμ is cyclic for �μ so that PL(I + Nμ)

is also cyclic for the type−L row isometry �L, and hence the wandering space of �L is

one-dimensional. Since P⊥0 (I + Nμ) ∈ Ran (W∗W) ⊆ F2
d(μL) is wandering for �μ, it spans

the wandering space for �L, and we obtain that Ker(W)⊥ = F2
d(μL). �

7 Weak−∗ Versus Absolute Continuity

In this section, we prove that any weak−∗ continuous NC measure is an AC NC measure.

7.1 NC measures dominated by NC Lebesgue measure

Proposition 7.2. Suppose that μ ∈ (A
†
d)+ is dominated by m, μ ≤ t2m. Then μ is both

AC and weak−∗ continuous. If Eμ = (Cμ)∗e∗μCm : F2
d → F2

d(μ), then Eμ is a bounded

intertwiner with dense range and norm at most t.

Proof. If μ is dominated by m, then it is weak−∗ continuous since the positive cone

WC(A
†
d)+ is hereditary by Lemma 6.18. It is AC, by definition since H +(Hμ) ⊂ H2(Bd

N
)

by Theorem 4.1. The statement about the intertwiner Eμ follows immediately from

Lemma 4.2. �

An arbitrary weak−∗ continuous NC measure μ ∈ WC(A
†
d)+ is generally not

dominated by m, and it is natural to ask whether the previous Cauchy transform

intertwining results can be extended to this general case. This is possible, if one allows

for unbounded intertwiners:

Definition 7.3. Let � be a row isometry on a Hilbert space H. A closed, operator X :

Dom(X) → H, with dense domain in F2
d is called an intertwiner if Dom(X) is L−invariant

and

XLkx = �kXx; x ∈ Dom(X).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa231/5901610 by U

niversity of Florida user on 12 June 2021



42 M. T. Jury and R. T. W. Martin

Lemma 7.4. Let � be a row isometry on a Hilbert space H, and let X : Dom(X)→ H be

a closed, densely defined intertwiner, Dom(X) ⊆ F2
d. Any vector y ∈ Ran (X) ∩ Dom(X∗)

is a weak−∗ continuous vector for �.

Proof. If X is densely defined and closed, then its adjoint, X∗ is also densely defined

and closed, and X∗X is densely defined, closed, and positive semi-definite. Furthermore,

Dom(X∗X) ⊆ Dom(X) is a core for X (hence dense in F2
d). If y ∈ Dom(X∗X) then Xy ∈

Dom(X∗) ∩ Ran (X), and

〈Xy, �αXy〉H = 〈X∗Xy, Lαy〉F2
d
,

is a weak−∗ continuous functional so that Xy is a weak−∗ continuous vector, by

definition. �

7.5 Symmetric AC functionals

Before tackling the fully general case of an asymmetric weak−∗ continuous NC measure,

first suppose that μ = mx = mx,x is a symmetric positive weak−∗ continuous functional,

where x ∈ F2
d. The results of [19, 22] show that one can define x(R), where x(R)1 = x

as a densely defined, closed, and potentially unbounded right multiplier in the Fock

space with symbol in the (right) free Smirnov class N +
d (R), the set of all ratios of

bounded right multipliers, B(R)A(R)−1, with outer (dense range) denominator. We will

write x(R) ∼ R∞d to denote that x(R) is an unbounded right multiplier affiliated to the

right free analytic Toeplitz algebra R∞d (i.e., it commutes with the left free shifts). The

potentially unbounded L−Toeplitz operator T := x(R)∗x(R) is then well-defined, closed,

positive semi-definite and densely defined.

Given x(R) ∼ R∞d , there is an essentially unique choice of A, B ∈ [R∞d ]1 so that

x(R) = B(R)A(R)−1, and if �x(R) denotes the two-component column with entries A, B,

then �x(R) is an isometric right multiplier (right-inner) from one to two copies of the NC

Hardy space and Ran
(
�x(R)

) = G(x(R)), the graph of x(R) [22, Corollary 4.27, Corollary

5.2]. Moreover, x = x(R)1 belongs to F2
d if and only if A−1 := A(R)−11 ∈ F2

d. In this

case, L∞d 1 ⊆ Dom(x(R)) [22, Lemma 5.3]. We can further assume that C{z1, ..., zd} is a

core for x(R) (if not, define x̌(R) as the closure of x(R) restricted to C{z1, ..., zd}), so that

for any y ∈ Dom(x(R)), there are free polynomials pn ∈ C{z1, ..., zd} so that pn → y and

x(R)pn → x(R)y. Recall, by Remark 6.21, we can assume without loss in generality that
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NC Lebesgue Decomposition 43

x is outer, that is, L−cyclic, or equivalently, x(R) has dense range. Let Ux : F2
d(μ) → F2

d

be defined by

Ux(Lα + Nμ) = Lαx.

This is clearly an isometry, and since x is assumed to be outer, it is onto F2
d.

Theorem 7.6. Let μ = mx ∈ WC(A
†
d)+ be a symmetric weak−∗ continuous NC measure,

where x ∈ F2
d is outer. A vector yμ ∈ F2

d(μ) is such that Cμyμ ∈ H2(Bd
N
) if and only if

Uxyμ =: y ∈ F2
d belongs to Dom(x(R)∗).

Since Ux and Cμ are unitary and Dom(x(R)∗) is dense, it follows that if μ = mx

is symmetric and weak−∗ continuous then

CμU∗xDom(x(R)∗) = H2(Bd
N
)
⋂

H +(Hμ)

is dense in H +(Hμ) so that μ = mx ∈ AC(A
†
d)+ is an AC NC measure.

Proof. Suppose that y ∈ Dom(x(R)∗), and consider CμU∗xy ∈H +(Hμ). Then,

(
CμU∗xy

)
(Z) =

∑
α

Zα〈�α
μ(I + Nμ), U∗xy〉μ

=
∑

Zα〈Ux(Lα + Nμ), y〉F2
d

=
∑

Zα〈Lαx, y〉F2
d

=
∑

Zα〈Lα1, x(R)∗y〉F2
d
.

This shows that CμU∗xy has the same NC MacLaurin coefficients as x(R)∗y ∈ F2
d, and

hence belongs to H2(Bd
N
).

Conversely, suppose that yμ ∈ F2
d(μ) is such that h := Cμyμ belongs to H2(Bd

N
).

Then, setting y = Uxyμ,

h(Z) =
∑
α

Zα〈�α
μ(I + Nμ), yμ〉μ

=
∑

Zα〈Ux(Lα + Nμ), Uxyμ〉F2
d

=
∑

Zα〈Lαx, y〉F2
d

=
∑

Zα〈x(R)Lα1, y〉F2
d
.
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44 M. T. Jury and R. T. W. Martin

Identifying h with an element of F2
d, the Fourier coefficients of h are

hα := 〈Lα1, h〉 = 〈x(R)Lα1, y〉F2
d
,

and it follows that for any p ∈ C{z1, ..., zd},

〈p(L)1, h〉F2
d
= 〈x(R)p(L)1, y〉F2

d
.

Since free polynomials are a core for x(R), this proves that y ∈ Dom(x(R)∗) and that

x(R)∗y = h. �

Corollary 7.7. If μ = mx is a symmetric weak−∗ continuous NC measure, the

intersection space

H +(Hμ)
⋂

H2(Bd
N
) =: Dom(eμ)

is dense in H +(Hμ) and the embedding eμ : Dom(eμ) ↪→ H2(Bd
N
) is densely defined and

closed. That is, any symmetric weak−∗ continuous NC measure is AC.

Proof. The domain of eμ is dense by the previous proposition. It remains to show

that eμ is closed. If fn → f in H +(Hμ) and eμfn → g in F2
d, then in particular,

fn(Z) = (eμfn)(Z) → g(Z) for g ∈ F2
d and also fn(Z) → f (Z) so that f (Z) = g(Z) and

f ∈H +(Hμ)
⋂

H2(Bd
N
) = Dom(eμ). �

Corollary 7.8. The unbounded operator Xμ := (Cμ)∗e∗μ : H2(Bd
N
) → F2

d(μ) is a closed,

(generally unbounded) intertwiner with dense range and every vector in the dense set

Dom(X∗μ) ∩ Ran
(
Xμ

)
is a weak−∗ continuous vector for μ. Equivalently, the embedding

Eμ = XμCm : F2
d(m)→ F2

d(μ) is closed, densely defined and has dense range.

Lemma 7.9. Let T be a closed, densely defined linear operator on Dom(T) ⊆ H. If

Ran (T) is dense, then Dom(T∗) ∩ Ran (T) is dense and contains the dense linear space

Ran
(
T(I + T∗T)−1

)
.

Proof. Set �T := (I + T∗T)−1, this is a strictly positive contraction [28, Theorem 5.19].

Moreover, Ran
(
�T

)
is a core for T, so that the set of all pairs (x, Tx), for x ∈ Ran

(
�T

)
, is

dense in the graph of T. In particular, given any Ty ∈ Ran (T), one can find (xn, Txn) with

xn ∈ Ran
(
�T

)
so that xn → y and Txn → Tx. Since we assume that Ran (T) is dense it

follows that T�T = T(I + T∗T)−1 also has dense range. Moreover, again by [28, Theorem
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NC Lebesgue Decomposition 45

5.19], T�T is a contraction and Ran
(
�T

) = Dom(T∗T) so that Ran
(
T�T

) ⊂ Dom(T∗). In

conclusion, Ran
(
T�T

) ⊆ Ran (T) ∩ Dom(T∗) is dense. �

Proof (of Corollary 7.8). The proof goes through as in the case where μ is

dominated by m, using that X is closed operator, as in Lemma 7.4. In particular,

H2(Bd
N
)
⋂

H +(Hμ) = Dom(eμ) is dense, and eμ is by definition injective on its domain,

and closed by Corollary 7.7. It follows that e∗μ is also closed, densely defined and has

dense range, so that Ran(Xμ) is also dense in F2
d(μ). Since Xμ is a closed operator with

dense range, the previous general lemma shows that Dom(X∗μ)∩Ran(Xμ) is dense. Lemma

7.4 now implies that every vector in this dense set is a weak−∗ continuous vector. �

7.10 Asymmetric AC functionals

Even more generally, suppose that μ ∈ WC(A
†
d)+ is an arbitrary weak−∗ continuous NC

measure. By Corollary 6.15, μ = mx,y = my,x ≥ 0 is a vector state on the Fock space with

x, y ∈ F2
d.

Lemma 7.11. Any μ ∈ WC(A
†
d)+ has the form

μ(Lα) = 〈h, τLαh〉F2
d
,

where h is outer, that is, L−cyclic, and τ ≥ 0 is a bounded, positive semi-definite

L−Toeplitz operator.

Proof. This is as in the proof of Corollary 6.15. Since μ is weak−∗ continuous, every

vector in F2
d(μ) is a weak−∗ continuous vector. In particular, there is a g ∈ F2

d(μ), and a

bounded intertwiner X : F2
d → F2

d(μ) so that Xg = I + Nμ. Since g ∈ F2
d, g = g(R)1, where

g(R) ∼ R∞d is an unbounded right multiplier, and g(R) has the Smirnov factorization

g(R) = N(R)D(R)−1, where N, D ∈ [R∞d ]1, and D is outer. If �(R)F(R) is the inner–

outer factorization of N(R), set h := F(R)D(R)−11 ∈ F2
d, and τ := �(R)∗X∗X�(R) ≥ 0,

a bounded, positive semi-definite L−Toeplitz operator. Then,

μ(Lα) = 〈I + Nμ, �α
μ(I + Nμ)〉μ

= 〈Xg, �α
μXg〉μ

= 〈�(R)h, X∗XLα�(R)h〉F2
d

= 〈h, τLαh〉F2
d
.

�
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46 M. T. Jury and R. T. W. Martin

For any ε > 0, define με ∈ WC(A
†
d)+ by

με(L
α) := 〈h, (τ + εI)Lαh〉F2

d
. (7.1)

Since τ + εI is bounded below, Theorem 6.16 implies that it is factorizable:

τ + εI = Aε(R)∗Aε(R),

for some outer Aε(R) ∈ R∞d . Hence, setting gε := Aε(R)h ∈ F2
d, με = mgε

is a symmetric

vector state, so that με is AC for any ε > 0 by Theorem 7.7.

Proposition 7.12. Let Tε be the closed, positive semi-definite L−Toeplitz operator so

that qTε
is the closure of the form generated by με . Then Tε is convergent in the strong

resolvent sense to a closed, positive semi-definite L−Toeplitz T, where qT is the closure

of the AC part of qμ.

This proposition is a straightforward consequence of the monotone convergence

theorem for decreasing nets of positive semi-definite quadratic forms, due to B. Simon

[34, Theorem 3.2]. Recall here that a sequence of closed, positive, semi-definite operators

Tn is said to converge to a closed, positive, semi-definite operator T ≥ 0 in the strong

resolvent (SR) sense, if

(I + Tn)−1 SOT→ (I + T)−1,

where SOT denotes the strong operator topology [32, Chapter VIII.7].

Proof. Observe that the positive semi-definite forms qε := qTε
all have the free

polynomials, C{z1, ..., zd}, as a common form core, that

qε(p, q) → qμ(p, q),

as ε ↓ 0, and that the qε are monotonically decreasing as ε ↓ 0. The propo-

sition statement is now an immediate consequence of [34, Theorem 3.2] (see also

[32, Theorem S.16]). �

Our goal now is to show that μ is AC by showing that qT is the closure of qμ.

The strategy is to “peel off” the adjunction by h(R) and its adjoint from Tε + I, and to
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NC Lebesgue Decomposition 47

consider the invertible, positive operators:

Sε := (h(R)−1)∗h(R)−1 + τ + εI; ε ≥ 0, (7.2)

with common domain

Dom(Sε) = Dom((h(R)−1)∗h(R)−1) = Ran
(
h(R)h(R)∗

)
.

(Given any closed, self-adjoint operator S, and a bounded self-adjoint operator A, it is

straightforward to verify that S+A is closed, and self-adjoint on Dom(S).) Since each of

the Sε is invertible, the quadratic forms of their inverses are a monotonically increasing

net of positive quadratic forms, and we can then apply B. Simon’s 2nd monotone con-

vergence theorem for increasing sequences of quadratic forms to conclude, ultimately,

that qμ = qT .

For any ε ≥ 0 consider the positive quadratic form Qε := QSε
:

Qε(x, x) := 〈h(R)−1x, h(R)−1x〉F2
d
+ 〈x, (τ + εI)x〉F2

d

x ∈ D = Dom(h(R)−1) = Ran (h(R)) ,

where h is as above, in Equation (7.1). This is well defined since h(R) is outer, where

h = h(R)1 (note that h(R)−1 is also outer). Further observe that

Dom(S1/2
ε ) = Dom(h(R)−1) = Ran (h(R)) ,

for every ε ≥ 0 and that Sε is bounded below by εI.

Lemma 7.13. The strictly positive L−Toeplitz operators Sε converge in the strong

resolvent sense to

S0 = (h(R)−1)∗h(R)−1 + τ ≥ 0.

Proof. Since all of the Sε have the same domain for ε ≥ 0, fix any x ∈ Dom(Sε) =
Dom(S0) = Dom((h(R)−1)∗h(R)−1), and observe that

Sεx = (h(R)−1)∗h(R)−1x + (τ + εI)x,
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48 M. T. Jury and R. T. W. Martin

which clearly converges to S0x as ε ↓ 0. By [32, Theorem VIII.25 (a)], Sε converges to S0

in the strong resolvent sense. �

Lemma 7.14. For any ε > 0, the operator S1/2
ε h(R) is closed on Dom(h(R)), and

(S1/2
ε h(R))∗ = h(R)∗S1/2

ε .

Proof. First, Ran (h(R)) = Dom(S1/2
ε ) so that S1/2

ε h(R) is densely defined. If h(R)−1xn →
y, and S1/2

ε h(R)h(R)−1xn → g, then xn → x is convergent since Sε ≥ εI is bounded below.

Since h(R)−1 is closed on Ran (h(R)), it follows that x ∈ Dom(h(R)−1) = Ran (h(R)) and

h(R)−1x = y. Also, S1/2
ε is closed so that S1/2

ε xn → S1/2
ε x = g. Since x ∈ Dom(h−1), it then

follows that

g = S1/2
ε x = S1/2

ε h(R)h(R)−1x = S1/2
ε h(R)y,

proving that S1/2
ε h(R) is closed on this domain.

To prove the 2nd statement, fix x ∈ Dom((S1/2
ε h(R))∗) and consider any y =

h(R)−1g ∈ Dom(S1/2
ε h(R)). Then,

〈(S1/2
ε h(R))∗x, y〉 = 〈x, S1/2

ε g〉,

holds for any g ∈ Dom(h(R)−1), so that x ∈ Dom(S1/2
ε ) and the above is equal to

〈S1/2
ε x, g〉 = 〈S1/2

ε x, h(R)y〉.

Again, this holds for every y ∈ Dom(h) = Ran
(
h−1

)
so that S1/2

ε x ∈ Dom(h(R)∗), and the

above is equal to

〈h(R)∗S1/2
ε x, y〉,

proving the 2nd claim. �

Lemma 7.15. For any ε > 0, Tε + I = h(R)∗Sεh(R), and Dom(T1/2
ε ) = Dom(h(R)).

Proof. The last statement is essentially by definition, Tε = gε(R)∗gε(R), where

gε(R) := Aε(R)h(R), and Aε(R)∗Aε(R) = τ + εI is a bounded, invertible operator. By polar

decomposition, Dom(
√

Tε) = Dom(gε(R)) = Dom(h(R)).
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NC Lebesgue Decomposition 49

Let qε + m := qTε+I , and as before Qε := qSε
. Then for any x ∈ Dom(T1/2

ε ) =
Dom(h(R)) = Ran

(
h(R)−1

)
, x = h(R)−1x′, we have that

(qε +m)(x, x) = 〈h(R)x, (τ + εI)h(R)x〉F2
d
+ 〈x, x〉F2

d

= 〈x′, (τ + εI)x′〉F2
d
+ 〈h(R)−1x′, h(R)−1x′〉F2

d

= Qε(x
′, x′)

= 〈S1/2
ε h(R)x, S1/2

ε h(R)x〉.

It follows that the positive operators Tε + I and h(R)∗Sεh(R) define the same closed

quadratic form, and hence, by uniqueness (see [24, Chapter VI, Theorems 2.1, 2.23]) we

have that

h(R)∗Sεh(R) = Tε + I.

�

Consider the bounded, positive quadratic forms:

q−1
ε := q(I+Tε )−1 , and Q−1

ε = qS−1
ε

.

Since the Tε ≥ 0 are monotonically decreasing as ε ↓ 0, a result of Kato [24, Chapter

VI, Theorem 2.21] implies that the bounded operators 0 ≤ (I + Tε)
−1 are monotonically

increasing as ε ↓ 0. Moreover, (I +Tε)
−1 is a contraction and (I +Tε)

−1 converges in SOT

to (I+T)−1 as ε ↓ 0 by Proposition 7.12. Notice that Sε is positive and invertible for every

ε > 0, and positive and injective for ε = 0. Since Qε is monotonically decreasing, the net

Q−1
ε is a monotonically increasing net of bounded (but not uniformly bounded) positive

quadratic forms, and the 2nd monotone convergence theorem of B. Simon applies:

Theorem 7.16 ([32, Theorem S.14], [34, Theorem 3.1, Theorem 4.1]). Let (qk) be a

monotonically non-decreasing sequence of closed, positive, semi-definite quadratic

forms, which are densely defined in a Hilbert space, H. Let

Dom(q∞) := {x ∈
⋂

Dom(qk)

∣∣∣ sup qk(x, x) < +∞},

and set

q∞(x, y) := lim
n→∞qk(x, y); x, y ∈ Dom(q∞).
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50 M. T. Jury and R. T. W. Martin

Then q∞ is also positive semi-definite, and closed on Dom(q∞). If q∞ is densely defined

and if Tk, T∞ are the closed, densely defined, and positive semi-definite operators so

that qk = qTk
, q∞ = qT∞ , then Tk converges to T∞ in the strong resolvent sense.

Corollary 7.17. The quadratic form qμ is closable so that μ ∈ AC(A
†
d)+.

Proof. We have shown that (I + Tε) = h(R)∗Sεh(R), for any ε > 0. Since S1/2
ε h(R)

and h(R)∗S1/2
ε are closed and bounded below by 1 on their domains, it follows that

S−1/2
ε (h(R))−1)∗ is bounded and extends by continuity to a contraction. Given any free

polynomial, p ∈ C{z1, ..., zd},

q−1
ε (p, p) = Q−1

ε ((h(R)−1)∗p, (h(R)−1)∗p)

= Q−1
ε (ph, ph), ph := (h(R)−1)∗p ∈ C{z1, ..., zd}.

This remains bounded as ε ↓ 0, and,

D0 :=
∨

(h(R))−1)∗C{z1, ..., zd},

is dense in F2
d since h(R)−1 is right Smirnov, so that the free polynomials are a core for

its adjoint, and h(R)−1 is injective so that its adjoint has dense range [22, Corollary 3.13,

Corollary 3.15, Remark 3.16]. The previous Theorem 7.16 then implies that

Q−1
0 (x, y) := lim

ε↓0
Q−1

ε (x, y),

is a closed, densely defined, positive, semi-definite quadratic form on some form

domain Dom(Q−1
0 ) ⊇ D0. Since Q−1

0 is closed, it is the quadratic form of some closed

S̃−1
0 , and Theorem 7.16 implies that S−1

ε converges in the strong resolvent sense to S̃−1
0 .

However, by Lemma 7.13, Sε converges in the strong resolvent sense to S0, where S0 is

injective so that S−1
0 is densely defined and closed. In particular,

Sε(I + Sε)
−1 = I − (I + Sε)

−1 SOT→ S0(I + S0)−1.

However,

Sε(I + Sε)
−1 = Sε

(
(S−1

ε + I)Sε

)−1 = (I + S−1
ε )−1,
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NC Lebesgue Decomposition 51

for any ε ≥ 0. It follows that S−1
ε converges in the strong resolvent sense to S−1

0 , so

that S−1
0 = S̃−1

0 . That is, Q−1
0 is the quadratic form of S−1

0 . Hence, ph = (h(R)−1)∗p ∈
Dom(S−1/2

0 ) for any p ∈ C{z1, ..., zd}, and

q−1
0 (p, p) = q(I+T)−1(p, p)

= Q−1
0 (ph, ph)

= q
(S−1/2

0 )∗S−1/2
0

(ph, ph)

= 〈S−1/2
0 (h(R)−1)∗p, S−1/2

0 (h(R)−1)∗p〉F2
d
.

Hence, Y∗ := S−1/2
0 (h(R)−1)∗ is a contraction so that qYY∗ = q(I+T)−1 .

By polar decomposition, there is a unitary, U so that UY∗ = √
I + T

−1
. Recall

that,

Dom(h(R)∗) = Ran
(
(h(R)∗)−1

)
= Dom(S−1/2

0 ) = Ran
(
S1/2

0

)
,

so that the operator

(Y∗)−1 = h(R)∗S1/2
0 ,

is well-defined, closed, and densely defined, and (Y∗)−1 = √
I + TU. It follows that

qI+T = q(Y∗)−1Y−1 , so that for any x ∈ Dom(h(R)),

qT(x, x)+ 〈x, x〉F2
d
= q(Y∗)−1Y−1(x, x)

= qS0
(h(R)x, h(R)x)

= q(h−1)∗h−1(h(R)x, h(R)x)+ qτ (h(R)x, h(R)x)

= 〈x, x〉F2
d
+ qμ(x, x).

It follows that for all x ∈ Dom(h(R)), qT(x, x) = qμ(x, x), and since qT is closable, this

proves that qμ, with domain Dom(qμ) = Dom(h(R)) ⊃ C{z1, ..., zd} is a closable form. By

Theorem 5.4, μ is an absolutely continuous NC measure. �

Corollary 7.18. Any weak−∗ continuous NC measure μ ∈ WC(A
†
d)+ is an AC NC

measure, WC(A
†
d)+ ⊆ AC(A

†
d)+.
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52 M. T. Jury and R. T. W. Martin

Remark 7.19. The above result is in contrast to [16, Theorem 4.4], which implies that if

q is any closable quadratic form that is densely defined in a Hilbert space, H, that either

q is bounded, or q has a decomposition q = q1 + q2 where q1 is again closable, and q2 is

singular. Since the positive cone of all weak−∗ continuous NC measures is hereditary, if

q = qμ is not bounded, then q2 cannot be the quadratic form of an NC measure, γ , since

γ would necessarily be weak−∗ continuous so that q2 would be a closable quadratic

form by the above results. One can check that the decomposition in [16, Theorem 4.4]

applied to qμ can never yield L−Toeplitz forms q1 and q2.

It was observed already in [34, Section 2, Remark 2] that the set of all AC

(i.e., closable) positive semi-definite quadratic forms with dense domain in a separable

Hilbert space is not hereditary. It is the extra L−Toeplitz structure of the quadratic

forms we consider (i.e., the fact that our quadratic forms correspond to NC measures)

that ensures we obtain more precise analogues of Lebesgue decomposition theory.

8 The NC Lebesgue Decomposition

Theorem 8.1. If μ ∈ AC(A
†
d)+ is AC, then it is weak−∗ continuous so that the positive

cones of weak−∗ continuous and AC measures coincide.

Proof. That WC(A
†
d)+ ⊆ AC(A

†
d)+ was proven in Corollary 7.18. If μ is AC, then by

definition the intersection space:

int(μ, m) :=H +(Hμ)
⋂

H2(Bd
N
),

is dense in H +(Hμ), and the embedding, eac : int(μ, m) ↪→ H2(Bd
N
) � F2

d is densely

defined. As in the proof of Corollary 7.7, it is straightforward to verify that eac, with

domain int(μ, m) is closed. Notice also that eac is trivially a multiplier by the constant

NC function eac(Z) = In, for Z ∈ Bd
n. It follows that all of the kernel vectors K{Z, y, v}

belong to the domain of e∗ac, and that

e∗acK{Z, y, v} = Kμ{Z, y, v}.
It further follows that e∗ac intertwines L and Vμ:

e∗acLKZZ∗ = e∗ac(KZ − K0n
)

= Kμ
Z − Kμ

0n
= (Kμ

Z − Kμ
0n

)

= VμKμ
Z Z∗

= Vμe∗acKZZ∗.
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Since eac is closed and densely defined, so is its adjoint, and it follows that X := C∗μe∗ac

is a closed, densely defined intertwiner with dense range in F2
d(μ). By Lemma 7.3 and

Lemma 7.7, Ran (X)∩Dom(X∗) is dense in F2
d(μ), and every vector in this set is a weak−∗

continuous vector for μ. Since WC(μ) is always closed, it follows that F2
d(μ) = F2

d(μwc)

so that μ is a weak−∗ continuous NC measure. �

Definition 8.2. A vector x ∈ F2
d(μ) is a weak−∗ analytic vector for �μ if the free Cauchy

transform of x belongs to H2(Bd
N
).

Corollary 8.3. Any weak−∗ analytic vector for �μ is a weak−∗ continuous vector for

�μ, and the set of all weak−∗ analytic vectors for �μ is dense in F2
d(μac), the largest

�μ−reducing subspace of weak−∗ continuous vectors for �μ.

Proof. This follows immediately from the proof of the previous theorem. �

Theorem 8.4. A positive NC measure μ ∈ (A
†
d)+ is weak−∗ continuous if and only if it

is AC and weak−∗ singular if and only if it is singular. In particular, if

μ = μac + μs = μwc + μws,

are the Lebesgue decomposition and weak−∗ Lebesgue decomposition of μ, then μac =
μwc and μs = μws.

Proof. Corollary 7.18 and Theorem 8.1 imply that μ is weak−∗ continuous if and only

if it is AC. In particular, given any μ ∈ (A
†
d)+, F2

d(μwc) is the largest reducing subspace

of weak−∗ continuous vectors for �μ, and the previous theorem shows that F2
d(μac) ⊆

F2
d(μwc) so that μac ≤ μwc. Conversely, Corollary 7.18 shows that

H +(Hμwc
)
⋂

H2(Bd
N
),

is dense in H +(Hμwc
) so that by definition, H +(Hμwc

) ⊆H +(Hμac
) and μwc ≤ μac.

Comparing the two direct sum decompositions,

F2
d(μ) = F2

d(μac) ⊕ F2
d(μs)

= =

F2
d(μ) = F2

d(μwc) ⊕ F2
d(μws)

shows that F2
d(μs) = F2

d(μws), and we conclude that μs = μws. �
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The weak−∗ Lebesgue decomposition of any NC measure μ ∈ (A
†
d)+ clearly

recovers the classical Lebesgue decomposition of any finite, positive, regular Borel

measure on the circle (with respect to normalized Lebesgue measure), in the single-

variable case of d = 1. Since the weak−∗ Lebesgue decomposition and the Lebesgue

decomposition of any μ ∈ (A
†
d)+ are the same by the above theorem, it follows that our

reproducing kernel approach to Lebesgue decomposition theory provides a new proof of

Lebesgue decomposition of positive measures on the circle:

Corollary 8.5. Let μ be a positive, finite, and regular Borel measure on the unit circle

∂D. If μ = μac+μs, is the Lebesgue decomposition of μ into AC and singular parts, then,

H +(Hμ) =H +(Hμac
)⊕H +(Hμs

),

where

H +(Hμac
) =

(
H +(Hμ)

⋂
H2(D)

)−‖·‖Hμ
, and H +(Hμs

)
⋂

H2(D) = {0}.

8.6 The cone of singular NC measures

We have seen that AC(A
†
d)+ = WC(A

†
d)+ is a positive hereditary cone. It remains to show

that Sing(A
†
d)+ = WS(A

†
d)+ is also a positive cone (that it is hereditary was already

proven in Lemma 4.11).

Lemma 8.7. If μ, λ ∈ (A
†
d)+, μ is singular and λ is type−L, then

H +(Hμ)
⋂

H +(Hλ) = {0}.

In particular, by Theorem 4.5, this implies that F2
d(μ+ λ) = F2

d(μ)⊕ F2
d(λ).

Proof. Consider the closure of the intersection space in H +(Hμ):

Intμ(λ) :=
(
H +(Hμ)

⋂
H +(Hλ)

)−‖·‖Hμ
.

By Corollary 6.23, if λ is pure type−L, then �λ is pure type−L, that is, �λ is unitarily

equivalent to L and hence has no direct summand of Cuntz type. By [20, Theorem

6.4], λ is not column extreme and H +(Hλ) then contains the constant functions so

that Proposition 4.8 applies. By Theorem 4.7 and Proposition 4.8, Intμ(λ) is closed and
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NC Lebesgue Decomposition 55

Vμ−reducing, so the orthogonal projection Pμ∩λ : H +(Hμ) → Intμ(λ) commutes with

Vμ, V∗μ. Let

eac : Intμ(λ) ↪→H +(Hλ)

be the densely defined embedding. As before (see the proof of Corollary 7.7), it is easy

to check that eac is closed on its maximal domain, Dom(eac) = H +(Hμ)
⋂

H +(Hλ). Also

as in the proof of Theorem 8.1, since eac is trivially a multiplier by the constant NC

function eac(Z) = In, it follows that e∗acKλ
α = Kμ∩λ

α , and e∗ac intertwines Vλ and Vμ|Intμ(λ):

e∗acVλKλ
ZZ∗ = VμKμ∩λ

Z Z∗ = Vμe∗acKλ
ZZ∗.

Since λ is AC, the vector I + Nλ ∈ F2
d(λ) is a WC vector and is in the range of a bounded

intertwiner, Y : F2
d → F2

d(λ), Yy = I + Nλ for some y ∈ F2
d. If the vector y is not L−cyclic,

then consider the L−invariant subspace

F2
dy :=

∨
Lαy.

(Here
∨

denotes closed linear span.) Then, since y is a cyclic vector for L|F2
dy⊗Cd , the NC

Beurling Theorem [11, Theorem 2.1], [2, Theorem 2.3] implies that

F2
dy = Ran

(
�y(R)

)
,

for some right-inner (isometric) �y(R) ∈ R∞d . Let y′ ∈ F2
d be such that �y(R)y′ = y and

define

X := C∗μe∗acCλY�y(R), Dom(X) := C{L1, ..., Ld}y′ ⊆ F2
d.

This operator is well defined since

XLαy′ = C∗μe∗acCλY�y(R)Lαy′

= C∗μe∗acCλYLαy

= C∗μe∗acCλ(L
α + Nλ)

= C∗μe∗acKλ
α

= C∗μKμ∩λ
α .
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The operator X is densely defined since y′ ∈ F2
d must be L−cyclic: if x ∈ F2

d is orthogonal

to
∨

Lαy′ then �y(R)x ⊥ Ran
(
�y(R)

)
so that x ≡ 0 since �y(R) is an isometry. Finally, X

is also closable. This is a consequence of a general fact: if T is a densely defined closed

operator, C is a bounded operator and TC is densely defined, then it is necessarily closed

on

{x ∈ Dom(C)| Cx ∈ Dom(T)}.

Indeed, if pn(L)y′ ∈ Dom(X), pn ∈ C{z1, ..., zd} is such that pn(L)y′ → 0 and Xpny → g,

then since Y ′ := CλY�y(R) is bounded, Y ′pny′ → 0. Since e∗ac is the adjoint of the closed

operator eac, it is closed, and since yn := Y ′pny′ ∈ Dom(e∗ac) obeys yn → 0, and e∗acyn →
Cμg, it must be that g = 0. This proves that X is closable, and that C{z1, ..., zd}y′ is a core

for its closure, X, which is densely defined in F2
d.

For simplicity of notation, write X in place of its closure, X. One can check (using

that Intμ(λ) is reducing for Vμ) that X intertwines L and �μ. By Lemma 7.4, if X �= 0,

then Ran(X) ∩ Dom(X∗) ⊆ F2
d(μ) is a non-empty �μ−reducing subspace of weak−∗

continuous vectors. Since μ is weak−∗ singular, this is not possible and we conclude

that H +(Hμ)
⋂

H +(Hλ) = {0}. �

Corollary 8.8. Let μ ∈ Sing(A
†
d)+ be singular. If γ ∈ (A

†
d)+ is such that γ ≥ μ has

Lebesgue decomposition γ = γac + γs then μ ≤ γs.

If μ, λ ∈ (A
†
d)+ are NC measures so that λ dominates μ, μ ≤ t2λ for some t > 0,

then the bounded operator Dμ := E∗μEμ is λ−Toeplitz (and has norm at most t2), that is,

πλ(Lk)∗Dμπλ(Lj) = δk,jDμ,

and we have that

μ(a) = 〈I + Nμ, Dμπλ(a)(I + Nμ)〉λ; a ∈ Ad.

The positive semi-definite operator Dμ will be called the Arveson–Radon–Nikodym

derivative of μ with respect to λ. There is a special case where our Arveson–Radon–

Nikodym derivative belongs to the commutant of the GNS representation πμ, this

happens when �μ is a Cuntz row isometry (i.e., if μ is a column-extreme NC measure,

see [20]):
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Lemma 8.9. Let �, σ be row isometries on H, J, respectively, and suppose that X : H→
J is a bounded (�, σ)−intertwiner, X�α = σαX. If � is a Cuntz unitary then also

X∗σα = �αX∗,

so that D := X∗X belongs to the commutant of the von Neumann algebra generated by

�, vN(�), and D′ = XX∗ belongs to the commutant of vN(σ ).

Proof. Using that � is Cuntz,

X = X��∗ = σX ⊗ Id�∗.

Hence,

σ ∗X =

⎛⎜⎜⎝
σ ∗1 X

...

σ ∗dX

⎞⎟⎟⎠ = σ ∗σ(X ⊗ Id)�∗ =

⎛⎜⎜⎝
X�∗

1
...

X�∗
d

⎞⎟⎟⎠ .

This proves that X�∗
k = σ ∗k X, and taking adjoints yields the 1st claim:

�αX∗ = X∗σα.

The commutation formulas are then easily verified:

D�α = X∗X�α = X∗σαX = �αD.

Since D = X∗X ≥ 0, it follows that D also commutes with (�α)∗. Similarly,

D′σα = XX∗σα = X�αX∗ = σαD′.
�

Remark 8.10. There is a theory of absolute continuity, Radon–Nikodym deriva-

tives and Lebesgue decomposition for completely positive operator-valued maps on

a C∗−algebra initiated by Arveson [4, 15]. In this theory, if μ, λ are positive linear

functionals on a C∗−algebra E and μ ≤ λ, then the Arveson–Radon–Nikodym derivative

Dμ, defined as above, always belongs to the commutant of the left regular GNS

representation πλ.

In our theory, since Ad is not a C∗−algebra, this fails to be true in general. If λ

is such that �λ is not a Cuntz row isometry, and λ ≥ μ, the Arveson–Radon–Nikodym
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derivative Dμ is a positive semi-definite λ−Toeplitz contraction, but it is generally not in

the commutant of �λ. For example, if λ = m is NC Lebesgue measure and μ = mx where

x = x(R)1 and x(R) ∈ R∞d is bounded, then μ is dominated by m and the Arveson–Radon–

Nikodym derivative Dμ = x(R)∗x(R) is not in the commutant of Ed = C∗(I, L) where here

we are identifying �m � L. Indeed, the commutant of C∗(I, L) is trivial.

Proof (of Corollary 8.8). Since AC and weak−∗ continuous are the same, we have

that Pac = PL + PC−L = Pwc, where PL, PC−L are the �γ−reducing projections onto the

type−L and Cuntz type−L subspaces of F2
d(γ ). We first prove that DμPC−L = 0. Define

E := EμPC−L, and D := EE∗, a positive semi-definite contraction on F2
d(μ). Observe that

E : F2
d(γ ) ↪→ F2

d(μ) intertwines the Cuntz unitary �C−L := �γ PC−L and the row isometry

�μ. By Lemma 8.9, D = EE∗ = EμPC−LE∗μ is in the commutant of the von Neumann

algebra generated by �μ,

D�α
μ = �α

μD.

It follows that if we define

ϕ(Lα) := 〈I + Nμ, D�α
μ(I + Nμ)〉μ,

then ϕ ∈ (A
†
d)+ and ϕ ≤ μ. Indeed, if p(L)∗p(L) = u(L)∗ + u(L) for free polynomials p, u,

then if we extend ϕ to A∗d in the canonical way by

ϕ(a∗) := ϕ(a)∗,

then

ϕ(p∗p) = 〈I + Nμ, Du(�μ)(I + Nμ)〉μ + 〈I + Nμ, Du(�μ)(I + Nμ)〉μ
= 〈I + Nμ, D

(
u(�μ)∗ + u(�μ)

)
(I + Nμ)〉μ (Since �∗

μ commutes with D.)

= 〈I + Nμ, Dp(�μ)∗p(�μ)(I + Nμ)〉μ (Since �μ is a row isometry.)

= 〈I + Nμ, p(�μ)∗Dp(�μ)(I + Nμ)〉μ ≥ 0.

This proves that ϕ is positive so that ϕ ∈ (A
†
d)+ is an NC measure. Also since D is a

positive contraction, it is clear that ϕ ≤ μ. However, by construction,

ϕ(Lα) = 〈PC−LE∗μ(I + Nγ ), �α
γ PC−LE∗μ(I + Nγ )〉γ ,
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is an AC NC measure since any vector in the range of PC−L is a WC vector. Since ϕ is

also dominated by the singular NC measure μ, Lemma 4.11 implies that ϕ ≡ 0, and

PC−LE∗μ = 0 so that PC−LDμ = PC−LE∗μEμ = 0.

Now consider λ := γL, the type−L part of γ . By Proposition 8.7, we have that

H +(Hλ)
⋂

H +(Hμ) = {0}. Define,

ϕ(Lα) := (γL + μ)(Lα) = 〈I + Nγ , (Dμ + PL)�α
γ (I + Nγ )〉.

It follows that Dϕ = Dμ + PL and Dϕ = E∗ϕEϕ where Eϕ = C∗ϕe∗ϕCγ is a bounded embedding

of norm at most
√

2, and eϕ : H+(Hϕ) ↪→ H +(Hγ ) is the bounded embedding of norm at

most
√

2. However, by Proposition 8.7,

H +(Hϕ) �H +(Hμ)⊕H +(Hλ),

so that eϕ � eμ ⊕ eλ must be a contraction since both eμ and eλ are contractive

embeddings. (Here, recall that we defined λ := γL.) This proves that D = Dμ + PL is a

contraction. In particular, for any x ∈ F2
d(γL) = F2

d(λ),

0 ≤ 〈x, Dx〉γ = 〈x, Dμx〉γ + 〈x, x〉γ ≤ 〈x, x〉γ ,

and this proves that DμPL = 0.

In conclusion, DμPac = 0 so that Dμ = DμPac + DμPs = DμPs, and μ ≤ γs. �

Corollary 8.11. The sets AC(A
†
d)+ and Sing(A

†
d)+ of absolutely continuous and singular

positive NC measures on the free disk system are positive hereditary cones.

Proof. The set of positive AC NC measures, AC(A
†
d)+, is a hereditary positive cone

by Lemma 6.18. Lemma 4.11 also proved that Sing(A
†
d)+ is hereditary in (A

†
d)+, and it

remains to show the set of singular NC measures is a positive cone.

Suppose that μ1, μ2 ∈ Sing(A
†
d)+ are singular and let γ = μ1 + μ2. Then by

Corollary 8.8, if Pac, Ps denote the Lebesgue decomposition reducing projections for �γ ,

Pac = (Dμ1
+ Dμ2

)Pac = 0,

so that Iγ = Ps and γ = μ1 + μ2 is singular. �
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Corollary 8.12. Let μ ∈ (A
†
d)+ be a positive NC measure. The following are equivalent:

1. μ ∈ AC(A
†
d)+ is AC.

2. H +(Hμ)
⋂

H2(Bd
N
) is dense in H +(Hμ).

3. The GNS row isometry �μ is weak−∗ continuous, that is, the direct sum of

type−L and Cuntz type−L row isometries.

4. Every vector x ∈ F2
d(μ) is a weak−∗ continuous vector for μ.

5. The quadratic form qμ with form domain Ad1 ⊂ F2
d is closable.

Corollary 8.13. Given an NC measure μ ∈ (A
†
d)+, the following are equivalent:

1. μ ∈ Sing(A
†
d)+ is singular.

2. H +(Hμ)
⋂

H2(Bd
N
) = {0}.

3. F2
d(μ+m) = F2

d(μ)⊕ F2
d.

4. �μ is the direct sum of dilation type and von Neumann type row isometries.

5. qμ with dense form domain Ad1 ⊆ F2
d is a singular form.

Corollary 8.14. If μ, λ ∈ (A
†
d)+ with (unique) Lebesgue decompositions μ = μac + μs,

λ = λac + λs then

(μ+ λ)ac = μac + λac, and (μ+ λ)s = μs + λs.

Proof. Set γ := μ+λ = (μac+λac)+ (μs+λs) = γac+γs. Then by maximality μac+λac ≤
γac, and also by Corollary 8.11 and Corollary 8.8, since μs + λs is singular, μs + λs ≤ γs,

and it follows that equality must hold in both cases. �

Example 8.15 (A singular NC measure of dilation type). Recall that there is a natural

bijection between (positive) NC measures and (right) NC Herglotz functions, μ ↔ Hμ.

The transpose map † also defines a natural involution that takes the right NC Herglotz

class onto the left NC Herglotz class of all locally bounded NC functions in Bd
N

with

non-negative real part, see [21, Section 3.9]. The Cayley transform then implements a

bijection between the left NC Schur class of contractive NC functions in Bd
N

and and the

left NC Herglotz class. If μ ∈ (A
†
d)+ is the (essentially) unique NC measure corresponding

to the contractive NC function B ∈ [H∞(Bd
N
)]1, we write μ = μB, and μB is called the NC

Clark measure of B, see [21, Section 3] for details.

By [21, Corollary 7.25], if B ∈ [H∞(Bd
N
)]1 is inner, then its NC Clark measure is

singular, so that its GNS representation �B := �μB
is a Cuntz row isometry that can be
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decomposed as the direct sum of a dilation-type row isometry and a von Neumann type

row isometry. For example, the left NC inner function B(Z) = Z1 has NC Clark measure

μ = μB:

μ(Lα) =
{

0 2 ∈ α

1 2 /∈ α
; α ∈ F2,

and μ(I) = 1. This is a “Dirac point mass” at the point (1, 0) ∈ B2
1 on the boundary, ∂B2

N
of

the NC unit ball. One can verify that for this example L2 + Nμ is a wandering vector for

�μ, and that the von Neumann part of of �μ vanishes, so that the singular NC measure

μ = μB is purely of dilation type.
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