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We extend the Lebesgue decomposition of positive measures with respect to Lebesgue
measure on the complex unit circle to the non-commutative (NC) multi-variable setting
of (positive) NC measures. These are positive linear functionals on a certain self-
adjoint subspace of the Cuntz—Toeplitz C*—algebra, the C*—algebra of the left creation
operators on the full Fock space. This theory is fundamentally connected to the repre-
sentation theory of the Cuntz and Cuntz-Toeplitz C*—algebras; any x—representation
of the Cuntz-Toeplitz C*—algebra is obtained (up to unitary equivalence), by applying a
Gelfand-Naimark-Segal construction to a positive NC measure. Our approach combines
the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue
decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel

Hilbert space theory, and NC Hardy space theory.

1 Introduction

The results of this paper extend the Lebesgue decomposition of any finite, positive,
and regular Borel measure, with respect to Lebesgue measure on the complex unit
circle, from one to several non-commutative (NC) variables. In [21], we extended the
concepts of absolute continuity and singularity of positive measures with respect to
Lebesgue measure, the Lebesgue decomposition, and the Radon-Nikodym formula of

Fatou's Theorem to the NC, multi-variable setting of “NC measures,” that is, positive
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2 M. T. Jury and R. T. W. Martin

linear functionals on a certain operator system, the free disk system. Here, the free disk
system, Ay + A%, is the operator system of the free disk algebra, Ay := Alg(I,L)~II'l, the
norm-closed operator algebra generated by the left free shifts on the NC Hardy space.
(Equivalently, the left creation operators on the full Fock space over C%.) We will recall
in some detail below why this is the appropriate (and even canonical) extension of the
concept of a positive measure on the circle to several non-commuting variables. The
primary goal of this paper is to further develop the NC Lebesgue decomposition theory
of an arbitrary (positive) NC measure with respect to NC Lebesgue measure (the “vacuum
state” of the Fock space), by proving that our concepts of absolutely continuous (AC) and
singular NC measures define positive hereditary cones, and hence that the Lebesgue
decomposition commutes with summation. That is, the Lebesgue decomposition of the
sum of any two NC measures is the sum of the Lebesgue decompositions. (Here, we say
a positive cone, P, C P, is hereditary in a larger positive cone P if p; € Py, and py > p
for any p € P implies that p € P,. The sets of AC and singular positive, finite, regular
Borel measures on the circle, D, with respect to another fixed positive measure, are
clearly positive hereditary sub-cones.) In this paper, we focus on positive NC measures
and their Lebesgue decomposition with respect to NC Lebesgue measure. The study
of complex NC measures and the Lebesgue decomposition of an arbitrary positive NC
measure with respect to another will be the subject of future research.

By the Riesz—Markov Theorem, any finite positive Borel measure, u, on 9D, can
be identified with a positive linear functional, /i on ¥ (D), the commutative C*—algebra
of continuous functions on the circle. By the Weierstrass Approximation Theorem,
€ (D) = (AD) + AD)*) "I~ where A(D) is the disk algebra, the algebra of all analytic
functions in the complex unit disk, I, with continuous extensions to the boundary.
In the above formula, elements of A(D) are identified with their continuous boundary
values and |- || ., denotes the supremum norm for continuous functions on the circle. The
disk algebra can also be viewed as the norm-closed unital operator algebra generated by
the shift, S := M,, A(D) = Alg(,S) 'l (with equality of norms). The shift is the isometry
of multiplication by z on the Hardy space, H?(D), and plays a central role in the theory
of Hardy spaces. Here recall that the Hardy Space, H?(DD), is the space of all analytic
functions in D with square-summable MacLaurin series coefficients (and with the ¢2
inner product of these Taylor series coefficients at 0 € ). The positive linear functional

[ is then completely determined by the moments of the measure u:

[1(S*) := / cFude).
oD
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NC Lebesgue Decomposition 3

The shift on H?(D) is isomorphic to the unilateral shift on EZ(NO), where Ny, the
non-negative integers, is the universal monoid on one generator. A canonical several-
variable extension of ZZ(NO) is then ¢2(F%), where F¢ is the free (and universal) monoid
on d generators, the set of all words in d letters. There is a natural d—tuple of isometries
on ¢%(F9), the left free shifts, L, 1 < k < d defined by L,e, = e;, where « € F< and {e,} is
the standard orthonormal basis. These left free shifts have pairwise orthogonal ranges
so that the row operator L := (L;,--- ,Lg) : 2(F) @ C¢ — ¢2(F?) is an isometry from
d copies of ¢2(F%) into one copy, which we call the left free shift. This Hilbert space
of free square-summable sequences can also be identified with an “NC Hardy Space”
of “non-commutative analytic functions” in an NC open unit disk or ball in several
matrix variables. Under this identification, the left free shifts become left multiplication
by independent matrix variables, see Section 2. The immediate analogue of a positive
measure in this NC multi-variable setting is then a positive linear functional, or NC
measure, on the free disk system, (A4 —i—Az)*”'”, where A, := Alg(,L)" Il is the free
disk algebra, the operator norm-closed unital operator algebra generated by the left
free shifts.

There is a fundamental connection between this work and the theory of row
isometries, that is, isometries from several copies of a Hilbert space into itself, or
equivalently to the representation theory of the important Cuntz-Toeplitz and Cuntz
C*—algebras. The Cuntz-Toeplitz C*—algebra, £; = C*(I, L), is the C*—algebra generated
by the left free shifts. This is the universal C*—algebra generated by a d—tuple of
isometries with pairwise orthogonal ranges, and the Cuntz C*—algebra, 0,4, is the
universal C*—algebra of an onto row isometry [6]. Namely, applying the Gelfand-
Naimark-Segal (GNS) construction to (u,A;), where u is any (positive) NC measure,
yields a GNS Hilbert space, Fé(u), and a x—representation T, of £, so that n,:=mr,L)
is a row isometry on Fé(u). A Lebesgue decomposition for bounded linear functionals
on the free disk algebra, A;, has been developed by Davidson, Li, and Pitts in the
theory of free semigroup algebras, that is, WOT—closed (weak operator topology closed)
operator algebras generated by row isometries [8, 10, 11]. Building on this, Kennedy has
constructed a Lebesgue decomposition for row isometries [26], and we will explicitly

work out the relationship between this theory and our Lebesgue decomposition.

1.1 Three approaches to Lebesgue decomposition theory

There are three approaches to classical Lebesgue decomposition theory of measures on

the circle, which will provide natural and equivalent extensions to NC measures.
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4 M. T. Jury and R. T. W. Martin

Let u be an arbitrary finite, positive, and regular Borel measure on 9D, and as
before, m denotes normalized Lebesgue measure on the circle. As we will prove, one can
construct the Lebesgue decomposition of u with respect to m using reproducing kernel
Hilbert space theory. Namely, setting H?(11) to be the closure of the analytic polynomials
in L?(u, D), let %JF(HM) be the space of all Cauchy transforms of elements in H?(u): if
h € H?(1),
€, 1)) = /a L h@no).

Dl—2z¢

Equipped with the inner product of H%(u), this is a reproducing kernel Hilbert space of

analytic functions in D, the classical Herglotz Space with reproducing kernel:

1H,(z) + H,(w)* _/ 1 1

1 P L U A
K (z,w) = o1 _221—;W“(d§)’

2 1 —zw*

and

1+2z¢

@)= [ ude) = 2€,1)@) - u(@D),
. ap 1 —2z¢ .

is the Riesz—Herglotz integral transform of u, an analytic function with non-negative

real part in D (see [14, Chapter 1], or [13, Chapter 1, Section 5]). It is not hard to verify that

domination of finite, positive, and regular Borel measures is equivalent to domination of

the Herglotz kernels for their reproducing kernel Hilbert spaces of Cauchy transforms:
O<upu<t’r» & K*<t’K’ t>0.

Moreover, by a classical result of Aronszajn, domination of the reproducing kernels K* <
t?K* is equivalent to bounded containment of the corresponding Herglotz spaces on
D, #*(H,) € #*(H,), and the least such t > 0 is the norm of the embedding map
e,: ST (H,) — J*(H,) [3, Theorem I, Section 7]. Absolute continuity of measures on 9D
can also be recast in terms of containment of reproducing kernel Hilbert spaces. Namely,
given two finite, positive, regular Borel measures A, u, recall that u is AC with respect
to A if there is a non-decreasing sequence of finite, positive, regular Borel measures pu,,,

which are each dominated by A, and increase monotonically to u:

0<p,=un My T 1,

2
My S ThA, t, > 0.
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NC Lebesgue Decomposition 5

Reproducing kernel Hilbert space theory then implies that each space of u,—Cauchy
transforms is contractively contained in the space of u—Cauchy transforms, and their

linear span is dense in %”*(HM) since the u,, increase to p,
+ — ot
\/ #t@H,)=2"H,).

Since each p, < t2X is dominated by 2, it also follows that each space of u,—Cauchy
transforms is boundedly contained in the space of A—Cauchy transforms, and the

intersection space:
int(u, 1) == T (H,) (| 47 H,),

is dense in the space of u—Cauchy transforms. In the case where A = m is normalized
Lebesgue measure, one can check that H,, = 1 is constant, so that " (H,,) = H2(D) is
the classical Hardy space of the disk. It follows that one can take this as a starting point,
and simply define a measure, u, to be AC or singular (with respect to m) depending on

whether the intersection space
int(u, m) := " (H,) [ |H2D),

is dense or trivial, respectively, in the space of u—Cauchy transforms. In this way,
one can develop Lebesgue decomposition theory using reproducing kernel techniques.
It appears that this approach is new, even in this classical setting, and as shown in
Corollary 8.5, this recovers the Lebesgue decomposition of any finite, positive, and
regular Borel measure on the unit circle with respect to normalized Lebesgue measure.

As discussed in the introduction, any positive, finite, regular Borel measure, u,
on 9D, can be viewed as a positive linear functional, &, on A(D) + A(D)*. Equivalently,
u (or ) can be identified with the (generally unbounded) positive quadratic or

sesquilinear form,
q,(a,,ay) := /BD a;(¢)ay(Q)pu(de); a,, a; € AD),

densely defined in H2(D). Applying the theory of Lebesgue decomposition of quadratic

forms due to B. Simon yields

4, = gc + s/
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6 M. T. Jury and R. T. W. Martin

where g, is the maximal positive form AC with respect to g,,, where m is normalized
Lebesgue measure, and g, is singular [34]. In this theory, a positive quadratic form
with dense domain in a Hilbert space, H, is said to be AC if it is closable, that is, it
has a closed extension. Here, a positive semi-definite quadratic form, g, is closed if its

domain, Dom(q), is complete in the norm

I llge1 = vqC ) + {0 dac

Closed positive semi-definite forms obey an extension of the Riesz representation
lemma: a positive semi-definite densely defined quadratic form, g, is closed if and only
if g is the quadratic form of a closed, densely defined, positive semi-definite operator,
T > 0:

q(h,g) = (v'Th, ﬁg)g{; h,ge Dom(vT) = Dom(g),

see [24, Chapter VI, Theorem 2.1, Theorem 2.23]. If g = q,,, we will prove that g, =g, .

and g, = g, where

w= /'Lac—"_//bsl

is the classical Lebesgue decomposition of u with respect to m, see Corollary 8.5.
Indeed, if one instead defines g, as a quadratic form densely defined in L%(3D), then
it follows without difficulty in this case that T is affiliated to L*°(0D) so that

9,(f.9) = /a @9 he)Pmdo)

where v/T1 = |h| € L%(3D). This shows that |h|? € L!(3D) is the Radon-Nikodym
derivative of u with respect to normalized Lebesgue measure, m. The Lebesgue
decomposition of quadratic forms in [34] is similar in this case to von Neumann's
proof of the Lebesgue decomposition theory [37, Lemma 3.2.3]. In [21], we applied this
quadratic form decomposition to the quadratic form, g,,, of any (positive) NC measure u
to construct an NC Lebesgue decomposition of u, u = u,, + g into AC and singular
NC measures p,, and pug, 0 < pge, ng < n, where g, = g, + g, is the Lebesgue
decomposition of the quadratic form g, [21, Theorem 5.9].

A 3rd approach to Lebesgue decomposition theory is to define a positive, finite,

regular, Borel measure px, on 9D to be AC if the corresponding linear functional /i on
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NC Lebesgue Decomposition 7

€ OD) = (AD) + AM*) 'l has a weak—* continuous extension to a linear functional
on (H®(D) + H®(D)*)~"k—* = L2°3D).

This notion of absolute continuity for bounded linear functionals on A, extends
the classical notion of absolute continuity of a measure with respect to normalized
Lebesgue measure on 9D, if one identifies finite positive Borel measures on 4D with
positive linear functionals on the classical Disk Algebra A; = A(D) C H*(D). Indeed, in
the case where d = 1, LY° = H*(D), and

—weak—x

(H*D) + H*(D)*) ~ L®(D),

a commutative von Neumann algebra. In this case, if i € (A(]D)"')Jr = ‘5(3[@)1 is any
positive linear functional, the Riesz—Markov Theorem implies it is given by integration
against a positive finite Borel measure, u, on 9D, and to say it has a weak—x continuous
extension to (H*(D) + HO"(ID))*)Er ~ L°°(8]D))1 is equivalent to /i being the restriction of a
positive ji € L®(3D); ~ L' (dD). Equivalently,

m(ds) , 3 n(ds)
m(d;)m(dg)' m—a.e., mdo)

n(dg) = e L' (3D),

that is, u is AC with respect to Lebesgue measure.

This definition of absolute continuity has an obvious generalization to the NC
setting of NC measures, that is, positive linear functionals on the free disk system, and
this gives essentially the same definition of absolute continuity for linear functionals on
the free disk algebra introduced by Davidson-Li-Pitts [10]. We will show that all three
of these approaches extend naturally to the NC setting and yield the same Lebesgue

decomposition of any positive NC measure with respect to NC Lebesgue measure.

2 Background: The Free Hardy Space

We will use the same notation as in [21], and we refer to [21, Section 2] for a detailed
introduction to the NC Hardy space and background theory.

The free monoid, F¢, is the set of all words in d letters {1,...,d}. This is the
universal monoid on d generators, with product given by concatenation of words, and

unit @, the empty word containing no letters. The Hilbert space of square summable
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8 M. T. Jury and R. T. W. Martin
sequences indexed by F4, ¢2(F%), and the full Fock space over c4,

F2 ;:é(cd)k@:cea(cd@(cd@ocd)@(cd@(cd@cd)@m,
k=0

are naturally isomorphic. This isomorphism is implemented by the unitary map e
e ® Qe

1734
1 is the vacuum vector of the Fock space (which spans the subspace C C Fé). The free

i €{1,...,d}, and e; — 1 where {ej} denotes the standard basis of (Cd, and

square-summable sequences, ¢%(F%), can also be viewed as a Hilbert space of free NC
functions on an NC set [23, 30, 33]. Namely, we can identify any f € ¢2(F%) with a formal

power series in d non-commuting variables 3 := (G3;,...,34),

F© = fs*

ackd

Here, if « = i1y -+ -1, i € {1,...,d}, we use the standard notation 3* = 3; 3;, - - - 3;,- Foun-
dational work of Popescu has shown that if Z := (Z,...,Z;) : H ® Cc? - Kis any strict
(row) contraction on a Hilbert space, 3, then the above formal power series for f con-
verges absolutely in operator norm when evaluated at Z (and uniformly on compacta) [30,

33]. It follows that any f € ¢2(F%) can be viewed as a function in the NC open unit ball:
o
BE = I_l BY; B = ((C"X” ® Cle)l .
n=1

where Bﬁ is the set of all strict row contractions on C"™. Moreover, any such f is a
locally bounded free NC function, in the sense of [1, 23, 36]. That is, it respects the
grading, direct sums and the joint similarities which preserve its NC domain. Any locally
bounded free NC function (under mild, minimal assumptions on its NC domain) is
automatically holomorphic, that is, it is both Gateaux and Fréchet differentiable at any
point Z € IB%% and has a convergent Taylor-type power series expansion about any point
[23, Chapter 7). It follows that we can identify ¢2(F¢) with the NC or free Hardy space:

H*BY) == {f e Hol®BY) | f(2) = > f,2% D IfP <o t,
aeckd

the Hilbert space of all (locally bounded hence holomorphic) NC functions in the NC

unit ball IB%I‘\iI with square-summable Taylor-MacLaurin series coefficients. In the sequel,
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NC Lebesgue Decomposition 9

we will identify F2, ¢2(F%), and the NC Hardy space, HZ(IB%%), and use the terms Fock
space and NC Hardy space interchangeably.

As described in the introduction, the NC Hardy space is equipped with a
canonical left free shift, L := Mé, the row isometry of left multiplication by the NC
variables Z = (Z;,---,2Z;) € Bg. Each component left free shift, L, 1 < k < d, is
an isometry on HZ(]B%‘NZ) and these have pairwise orthogonal ranges. Viewing the L; as
isometries on ¢%(F¢), L e, = e,, and the L, are also unitarily equivalent to the left
creation operators on the Fock space, Fﬁ. One can also define isometric right multipliers,
Ry = M?k, the right free shifts (which append letters to the right of words indexing the
standard orthonormal basis), and these are unitarily equivalent to the left free shifts

via the transpose unitary on ¢2(F%), U,
UTea = ey,

where if « = i, ---i,, € F¢, then o' := i, ---i}, its transpose.

As in the single-variable setting, the free Hardy space H? (IB%%) can be equivalently
defined using (NC) reproducing kernel theory [5]. All non-commutative reproducing
kernel Hilbert spaces (NC-RKHS) in this paper will be Hilbert spaces of free NC
functions on the NC unit disk or ball, IB%I%. Any Hilbert space, H of NC functions on
]B%g, is an NC-RKHS if the linear point evaluation map, K : H — (C"*",tr,), is bounded
for any Z € IB%%. We will let K, the NC kernel map, denote the Hilbert space adjoint of

K3, and, for any y,v € C",
K{Z,y, v} :=K,(yv") € H.
Furthermore, given Z € Bg,y, veCtand W ¢ ]B%‘,in,x, u € C™ the linear map
KZ, W)[-]: cC™m . cnxm,
defined by
(v, K@, W)lvu*lx) e == (K{(Z,y, v}, K{W, X, u}) g,

is completely bounded for any fixed Z, W and completely positive if Z = W. This map is
called the completely positive non-commutative (CPNC) kernel of H. As in the classical
theory there is a bijection between CPNC kernel functions on a given NC set and NC-
RKHS on that set [5, Theorem 3.1], and if K is a given CPNC kernel on an NC set, we will
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10 M. T. Jury and R. T. W. Martin

use the notation 3, (K) for the corresponding NC-RKHS of NC functions. The NC Hardy
space, H? (IEB%), is then the non-commutative reproducing kernel Hilbert space (NC-RKHS)
corresponding to the completely positive non-commutative (CPNC) Szeg6 kernel on the
NC unit ball, B¢:

K@EZ W)= Y Z[W**  HABE) = H,(K).

ackd

All NC-RKHS in this paper will consist of free holomorphic functions in the NC
unit ball ]B%f\% so that any f € J(,,,(K) has a convergent Taylor-MacLaurin series at 0 € B¢,

f@=> zf; zeB,

ackd

and the linear coefficient evaluation functionals
by d
f—=fu o € F,

are all bounded. We will let K, denote the coefficient evaluation vector:

A

Koo )3ty = L () =For € €FY,

and we will typically write ¢, =: K. If K is the NC-Szegd kernel of the free Hardy space,
then

K,Z) = 2%,

that is, K, can be identified with the free monomial L*1 € F2.

If 7(,,.(K) is an NC-RKHS of NC functions on ]B%d, NC functions F, G on IB%I% are said
to be left or right NC multipliers, respectively, if for any f € I, ,(K), F - f, or f - G belong
to H,,.(K). As in the classical theory any left or right multiplier defines a bounded linear

operator on },.(K),
MEF)2) :=F2) f2Z), MEF2) :=Ff2)G2),

and under this identification the left and right multiplier algebras of J{(,,,(K) are unital

and closed in the weak operator topology (WOT). These NC multiplier algebras are
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NC Lebesgue Decomposition 11

denoted by Mult; (J(,,.(K)) or Multy (¥, (K)), respectively. The left multiplier algebra
of the free Hardy space provides an NC generalization of H*® (D) = Mult(H?(D)):

H®BE) := {f € Hol(BE) sup If (@) < oo t = Mult, (H*(BI)).
ZeIB%N

(If F e H*® (Bg), the operator norm of M{; is equal to the supremum norm of F(Z) over the
NC unit ball [33, Theorem 3.1].) This left multiplier algebra can also be identified with

LY := Alg(I, Ly, ..., Ly) "%~ = Alg(I,L,, ..., Lg) "7,

the (left) analytic Toeplitz algebra. Here, note that the weak operator (WOT) and weak—x
topologies coincide on L;O, [11, Corollary 2.12]. Here, and throughout, we write A, + AE
in place of (A4+A%) "Il to simplify notation. We also define RY = Alg(I, Ry, ..., Rg)~ "7,
the right free analytic Toeplitz algebra, and R} = U.(L})U; is the image of L
under adjunction by the transpose unitary of Fczi. As in [11, 29] a left (or right) free
multiplier of the free Hardy space will be called inner if the corresponding (left or
right) multiplication operator is an isometry, and outer if the corresponding (left or

right) multiplication operator has dense range.

3 Non-Commutative Measures

Definition 3.1. Let (AZi) , denote the set of all positive linear functionals on the (norm-
closure of the) operator system A, + A}, the free disk system. We will call such a

functional a non-commutative or NC measure.

Definition 3.2. A free holomorphic function, H in B¢, is a (right) NC Herglotz function
if the NC kernel

1
Kz, W) = SK@w [H@Z)() + OHW)*] = 0,

is a CPNC kernel on ]B%%, where K(Z, W) is the free Szeg6 kernel.

As in the classical setting, there is a natural bijection between NC Herglotz

functions and NC measures. Given any NC measure u € (AZi) 4, its moments define an
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12 M. T. Jury and R. T. W. Martin

NC Herglotz function:

H,(2) = pnD) +2 D 2" u(L*.
aF#D

Conversely, any NC Herglotz function has the MacLaurin series expansion,

H,(2) :=Hy+ Y Z°H,,
a#)

and setting

1
pg) =Re(Hy), and wpuy@L*) := EH;‘,
defines a (positive) NC measure [20]. (This Taylor—-Maclaurin series converges absolutely

in ]B%%, and uniformly on r]B%I‘é forany0 <r<1))

Remark 3.3. A locally bounded NC function, G, in IB%% is said to be a left NC Herglotz
function if K¢(Z, W)[-] := % (H@Z)KZ,W)[-1+ KZ, W)[-1H(W)*) is CPNC, and this is equiv-
alent to G(Z) having positive semi-definite real part for all Z € ]B%g, [21, Definition 3.3,

Section 3]. The transpose map
HZ) = ZZ"‘Ha — H'(Z) = ZZ“HO[-;-,
o o
defines a bijection between the left and right Herglotz classes. The left and right
Herglotz classes are, however, distinct, as the following example shows.

Example 3.4. Consider the NC polynomial B(Z) := \/ngz(fn — Z,). This is isometric

(inner) as a right multiplier,

1

V2

M, =B"(R) = —= (= — R)R,,

since

R R 1
B'(R)*B'(R) = 2R (2Iz2 — Ry — R}) Ry = Ipo.

1.20Z @unp Z| uo Jasn epuo|d Jo AlsiaAiun Aq 0191065/ EZBBUI/UIWI/EE0L 0 | /I0P/3]01B-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]



NC Lebesgue Decomposition 13

However, as a left multiplier, B(Z) has norm +/2:
1

IME = ﬁuLzapz—Ll)n
= L1y
- «/5 F2 1

1
— sup |, —Z]
\/E ZGE%; neN

1
—sup|1—z|=\/§.

zeD

IA

In the last line, < follows from von Neumann's inequality as Z; is a strict contraction,
and equality is achieved by choosing Z = (Z;,Z,) = (-r1,,,0,) for 0 < r < 1 and taking the
supremum. The fractional linear transformation u(z) := (1+z)(1—z)~! is a bijection from
the open unit disk, D onto the open right half-plane. Applied to operators, u implements
a bijection, the so-called Cayley transform, between contractive operators, T, with 1
not an eigenvalue of T, and closed, densely defined accretive operators, A = u(T) =
(I 4+ T)( — T)~! [35, Chapter IV.4]. Here, an operator is called accretive if its numerical
range is contained in the right half-plane. It follows, as described in [18, Section 4], that
the Cayley transform maps the closed unit ball of the left multiplier algebra of Fazl (the
left NC Schur class) onto the left NC Herglotz class, and similarly for the right NC Schur
and Herglotz classes.

If H(Z) = u (B(Z)), it follows that since B is in the right NC Schur class but not in
the left NC Schur class, that H is a right NC Herglotz function but not a left NC Herglotz

function. In particular, Re (H(Z)) will not be positive semi-definite for all Z € ]BIZN.

3.5 Non-commutative Lebesgue measure

Classically, the Riesz—Herglotz transform, H,,(z), of normalized Lebesgue measure, m
on 9D is the constant function H,, = 1. It is then natural to expect that in the NC multi-
variable theory, the role of normalized Lebesgue measure should be played by the unique

NC measure corresponding to the constant NC Herglotz function:

HZ) :=1,, ZecB%

The unique NC measure (which we also denote by m), m = uy, corresponding to the NC

function H(Z) = I, is the Fock space vacuum state:

m(La) = (1,La1>F2 - 80{,@'
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14 M. T. Jury and R. T. W. Martin

Definition 3.6. The vacuum state m < (Aji) + will be called (normalized) NC Lebesgue

measure.

3.7 Left regular represenations of the Cuntz-Toeplitz algebra

If n e (AZt)+' the GNS space Fg(u) is the the Hilbert space completion of A; modulo zero

length vectors with respect to the pre-inner product:
(ay,ay), = n(ajay); aj,a, € Ag.

Observe that this pre-inner product is well defined as the NC disk algebra, A;, has
the semi-Dirichlet property: A3 A, € (Ag + AZ)_”'” [9]. Indeed, it is easily checked that
pL)*q(L) € C{L} + C{L}*, for any free polynomials p and q. We will typically write a + N,
for the equivalence class of a in Fczl(,u), where N, S Aqg is the left ideal of all elements of

zero length. Moreover, the left regular representation: 7, Ag — L(Fé(u)),
o [o—
n,L*)a+N, :=L"a+N,

is completely isometric and extends uniquely to a x—representation of the Cuntz—

Toeplitz algebra £, = C*(I,L) on L(Fé(,u)). In particular,
M, =71, @) = (0, L)), s 7, Lg)) : F(1) ® CF — Fi(w),
is a (row) isometry, and we write (I, =7, (Lg)- Again, if d = 1 then

Fi(@) ~H*(w), and Tl > Mgz,
where (i is, as before, the positive linear functional corresponding to the positive

measure, u.

Remark 3.8. One can obtain (up to unitary equivalence) any cyclic row isometry
with the above construction, that is, any cyclic row isometry is the left regular
GNS representation coming from an NC measure. More generally, one can construct
any x—representation of the Cuntz-Toeplitz algebra (up to unitary equivalence), by
considering Stinespring-GNS representations of operator-valued NC measures, that is,

completely positive operator-valued maps on the free disk system [18, 20].
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NC Lebesgue Decomposition 15
3.9 Free Cauchy transforms

Given any NC Herglotz function, H, the corresponding NC-RKHS X, .(K¥) is then a
Hilbert space of NC holomorphic functions in ]B%g by NC-RKHS theory [5]. If 1 € (.A;)Jr is
the unique NC measure corresponding to H, we will usually write K¥ = K*, and we will
use the notation %*(HM) = H,,.(K*) for the right Free Herglotz Space of H, . Here, we
will also write H = H, (or sometimes u = uy). As described in [18, 20], if H = H, there
is a natural onto isometry, the (right) free Cauchy transform, €, : Fé(u) — ijF(HM),
defined as follows: for any free polynomial p € C{L,...,Lg} € Fé(u) and Z ¢ ]Bd,

€)@ = > Z°u(L*pL))

acFd

= > Z*(L"+N,,p(,)I+N,),. (3.1)

acFd

The final formula above extends to arbitrary x € Fé(u). See [20, 21] for more details.

3.10 Image of GNS row isometry under free Cauchy transform

The image of the GNS row isometry I1, under the free Cauchy transform is an isometry

on the free Herglotz space:
v, :=C,I,(C," (3.2)
The range R of the row isometry V, is

R = \/ (KH;L{Z, vy, v} _KH“{On,y, V}) — \/ Kf“, (3.3)
a#)

and for any Z € ]B%g, v,y e C",
v (KH“ Z,y,v} — K20, y, v}) — KHe(2, 7y, v). (3.4)
The image of Ran(V,) under (GM)* is

Fi(wo=\/L*+N,. (3.5)
aF#D
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16 M. T. Jury and R. T. W. Martin

IfF e %*(HM) is orthogonal to Ran(V,), then F is a constant NC function: for any
Z e ]B%g, F(Z) = I,F(0) that is, F = F(0) € C is constant valued. See [20, Section 4.4] for
details.

Remark 3.11. Recall that if 4 = m is normalized NC Lebesgue measure (the vacuum
state), then H,(2) =1, for any Z € Bg so that the NC Herglotz kernel, Ko» = K reduces
to the NC Szeg6 kernel and 7+ (H,,) = HZ(B%) is simply the free Hardy space. In this
case, V,, = Mg ~ L is the left free shift.

4 Cauchy Transforms of NC Measures

The goal of this section is to define AC and singular NC measures and to show that any
positive NC measure pu € (flzl)Jr has a unique Lebesgue decomposition, i = p,,+ i, into
AC and singular parts, ., tg € (AL)+.

As discussed in Section 1.1, domination and absolute continuity of any finite,
positive, regular Borel measure, ¢, on D, can be described in terms of the intersection
of the RKHS of u—Cauchy transforms with the Hardy space, H2(D). In particular,
domination of measures is equivalent to domination of the reproducing kernels for their
spaces of Cauchy transforms so that the following NC analogue of a reproducing kernel

theory result due to Aronszajn applies, see [27, Theorem 5.1] [3, Theorem I, Section 7]:

Theorem 4.1. Let K;,K, be CPNC kernels on an NC set, Q. Then K; < t?K, for some
t > 0 if and only if

g{nc(Kl) - :an(KZ)'

and the norm of the embedding e : ,,.(K;) — ¥, .(K;) is at most ¢.
Here, recall that an NC set is any subset of the NC universe, (Cg = |_|,‘3L°:1 C*n @

C!*d which is closed under direct sums.

Moreover, as in the single-variable setting, domination of (positive) NC measures
U, A € (AL) + is equivalent to domination of the NC kernels for their spaces of Cauchy
transforms: if u, A € (Azl)Jr are positive NC measures and u is dominated by 2, that is,
there is a t > 0 so that u < t?A, then there is a linear embedding, E, : Fﬁ(k) — thi(u)
defined by

Eu(p(L) +N)L) =p(L) +N ’ p € (C{le rzd}r
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NC Lebesgue Decomposition 17

with norm at most t.

Lemma 4.2 ([21, Lemma 5.3]). Given pu, A € (A;)Jr, there is a t > 0 so that K* < t2K* if
and only if u < 2. If 41 < t?1, then the linear embeddings e, : " (H,) < 2 (H,) and
E, : F5(1) <= F5(n) have norm at most ¢ > 0 and are related by

_ ok ok
E, =C/e,C;.
Motivated by the discussion of Section 1.1, we define the following:

Definition 4.3. A positive NC measure p € (AZi)Jr is AC (with respect to NC Lebesgue
measure, m) if the intersection of its space of Cauchy transforms, 57+ (H ), with the free
Hardy space is dense:

I,

A(H,) = (;zﬂ+(HM) ks (]Bag))
The NC measure u is singular (again with respect to NC Lebesgue measure) if
int(u, m) := " (H,) ﬂ H*(BY) = (0).

The sets of all AC and singular positive NC measures will be denoted by AC(A;)Jr
and Sing(A;) 4, respectively.

Here, recall that ## " (H,,) = H 2 (IB%I%). Corollary 8.5 will show that this definition
recovers the classical Lebesgue decomposition of any finite, positive and regular Borel
measure on the circle with respect to Lebesgue measure, in the single-variable setting.

Our goal now is to decompose any positive NC measure, u € (/lji)Jr into AC and
singular parts by considering the intersection of the space of NC u—Cauchy transforms
with the NC Hardy space. For any (positive) NC measures ju,A, one has that H,,, =
H, + H,, and it follows that the NC Herglotz kernel of the NC measure y := u + A obeys

KY (2, W) = K*(Z, W) + K*(Z, W).
In particular, one can prove the following NC analogue of a result on sums of

reproducing kernels due to Aronszajn (applied to the special case of NC Herglotz Spaces),
[3, Section 6], [27, Theorem 5.7]:
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18 M. T. Jury and R. T. W. Martin
Theorem 4.4. If u, A € (AL)Jr then 7" (H,,,) = #*(H,) + #*(H,) and the NC
reproducing kernel of %*(HMH) is KHt*(Z, W) = K*(Z, W) + K*(Z, W). The norm of any
he %JF(HMH) is

Ihll%,,, = min { 1hy i, + IRoliF, | By € 4 (H,), hy € 7 (H,y), and h = hy + hz} :
In particular,

Jf’L(HHH) ~ %JF(HM) ® A" (H,)

if and only if the intersection space

int(u,2) = AT (H,) (| AT H,) = (0}, is trivial.

Applying the inverse free Cauchy transform, one has %+(Hu+/\) o~ %*(HM) <)
H*(H,) if and only if

Fi(u+3) = F3(0) ®@ F5().

Proof. The proof is similar to the classical RKHS result, see [27, Theorem 5.7]. Since

H, ., = H,+H,,it follows as in the classical theory that K***(Z, W) = K*(Z, W) +

K*(Z, W), that HAT(H, ;) = A T(H,) + " (H,), and that the map W from #*(H, ;)
into the direct sum 7 (H,) ® 7" (H,) defined by

WKL = Kb @ K},
is an isometry onto the subspace
S:= \/K“{Z,y, v} ®KMZ,y,v),
with orthogonal complement
St=(fo—fIf e H,) ()| H).

In particular, one has the direct sum decomposition if and only if the intersection space

is trivial. u
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NC Lebesgue Decomposition 19

Theorem 4.5. Given any two (positive) NC measures u,A € (A;) 4. the intersection

space
int(u, 1) = 2 (H,) (| 27 H,),
is both V, and V; co-invariant, and

V;;Iint(u,k) = V;f |int(M,A)'
Lemma 4.6. Lethe HO](B%) ® C%. Then Zh (Z) = 0,, for all Z € B¢ implies that h = 0.

Proof. This follows from basic NC analytic function theory. Let g(Z) = Zh(Z) €
Hol(IB%), so that g = 0. Any g € Hol (]B%g) has the Taylor-Taylor series expansion
about 0,
o
1 ok
9(2) = E(azg)(On),
k=0

where

’

t=0

d
0z9)(W) = ag(W +tZ)

is the Gateaux derivative of g at W in the direction of Z, and the 8§ are the higher order

Gateaux derivatives. This is a homogeneous polynomial decomposition, setting
9*@) = 959)(0,),

each g® (Z) is a homogeneous free polynomial of degree k. It follows that if

hq
and each hj(Z) is the sum of homogeneous polynomials hJ(.k) (Z), then,

9"@ =2 V@) 4+ Z2h V@2 k=1
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20 M. T. Jury and R. T. W. Martin

Since g vanishes identically, so do all of the g®(Z) = (359)(0,)), for k > 0. It further
follows that each of the hJ(.k) vanishes identically. Indeed, one easy way to see this is that

each h](.k) is a homogeneous free polynomial in the Fock space F?, and

h(k)
1
g®@=an@;  hP@) =
(k)
hd

It follows that each h® is in the kernel of the left free shift. Since the left free shift is

an isometry, each hj(.k) = 0 vanishes identically for 1 <j < d. [ |

Proof (of Theorem 4.5).  If f € #*(H,) (| #*(H,) then observe that

ZV,H@2) = (V,KzzZ'f
= Ky — Ky )'f =f@) —f(0y) (By Equation 3.4)

= Z(V;)(2).
By the previous lemma, it follows that
Vi hH@) =i NH@);  1<k<d,

agree so that V', f = v Wf € #F(H,)NAT(H,) foreach 1 < k < d, and the intersection

space is both V, and V, —co-invariant. |

Theorem 4.7. If M is a closed subspace of %JF(HH), which is reducing for V , then

there exists an NC measure y < u such that
M=2#" (H,).

Proof. It is easier to work in the Fé(u) model, the conclusions then carry over to
%JF(HM) via the NC Cauchy transform. If M C Fé(u) is any reducing subspace for n,,
letting P be the orthogonal projection on M, we can define a new NC measure y by the

formula

y(L*) = (I +N,, PG I +N,), = [+N,PL*+N,), «cF.

1.20Z @unp Z| uo Jasn epuo|d Jo AlsiaAiun Aq 0191065/ EZBBUI/UIWI/EE0L 0 | /I0P/3]01B-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]



NC Lebesgue Decomposition 21

We extend y in the natural way to a linear functional on the free disk system by
y((L*)*) = y(L**. It remains to check that y is a positive linear functional. By [18,
Lemma 4.6], any positive element in the free disk system is the norm-limit of sums
of squares of free polynomials, so that it suffices to check that y(p(L)*p(L)) > 0
for any p € C{3;,...,34}. Given any p € C{3;,....34}, let u € C{3;,...,34) be such that
pL)*p(L) = u(L) + u(L)*. Using that the orthogonal projection, P, commutes with the
GNS representation I, it is then not difficult to verify that

ye@)'p@) = yud)*+ywd)

= (pM+N,,Pp@)+N)), =0,

so that y € (A;)Jr. It is then evident M is isometrically identified with Fg(y) and that
the image of M C Fé(u) under the Cauchy transform is equal to 32”+(Hy). In particular,
Y < U u

Proposition 4.8. Given A, u € (A;)Jr, if ##*(H,) contains the constant NC functions,
then " (H,) " #* (H,) is reducing for V,,.

Clearly, this applies to A = m since H? (Bf\%) = #*(H,,) contains the constant NC

functions.

Proof. Theorem 4.5 shows that this intersection space is co-invariant for V,. Con-
versely, given f € " (H,) (\ #¢" (H,), observe that

Zif (2)
(V3 1) (2) = (V; 1f)(0y),

(V, 1 H@) — (V1 )(0y)

so that, (V,1f)(2) = (V, 1f)(2) + I,

where ¢ := (Vﬂlkf)(O) — (¥, xf)(0) is constant. Since 't (H,) contains all the constant NC

functions, it follows that
V, iof € 1 H,) ﬂ ST (H)

also belongs to the intersection space. |
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22 M. T. Jury and R. T. W. Martin

Theorem 4.9. Any positive NC measure u € (Aji)+ has the Lebesgue decomposition
W = Mge + g Where O < pu,.. s < p are the (positive) AC and singular NC measures
defined by

AH, ) = (%—i_(HM) mHz(Bg))—”‘”Hu ,
and
AT H,) =T H)e N H, ).
Both #*(H,, ) and 7#*(H, ) are reducing for V, and

%4_ (HH) = %+ (Hﬂac) ® %4_ (Hﬂs)'

The direct sum decomposition of this theorem implies, by inverse Cauchy

transform, that
F3(10) = F3(1tae) ® F(1k),
and these orthogonal subspaces are both reducing for IT ,.
Proof. This is an immediate consequence of Theorem 4.7 and Proposition 4.8. |
Theorem 4.10. The set AC(A;)Jr is a positive cone.
Proof. Supposethat i, u € AC(AZZ)Jr and let y = A 4+ u. Then by Theorem 4.5,
HTH,) = AT H) + AT H),

and both %”(HA),%“L(HM) are contractively contained in %*(Hy) by Theorem 4.1,
so that any h € JFF(HV) can be decomposed as h = f + g for f € j‘FF(HM) and
g € ST (H,). Since both A and p are AC, there is a H,—norm convergent sequence
) C %”JF(HM) ﬂHz(]B%I‘\iI) so that f,, — f in %”J’(HM). Similarly, there is a sequence
(9,) C %+(HA)HH2(B§) so that g, — g in " (H,). Let €,/ € be the contractive
embeddings of s# (HM),%”*(HA) into %*(Hy). The sequence,

hy = e, fn +€,9, € 2 (H,) [ |HABS),
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NC Lebesgue Decomposition 23

is then Cauchy in %“L(Hy),

1hy —hpllg, = le,(fn—Ffdlle, +1€.9n — 9m)lle,

IA

Forany Z € IB%d,
h,(2) = f,(2) + 9,(2) — f(2) + g(2) = h(2),
and it follows that h is the limit of the Cauchy sequence (h,,). This proves that
H*BE) (| 21 H,),
is dense in %”JF(HV), and y = A 4+ u is then an AC NC measure. |

Lemma 4.11. The set of singular NC measures is hereditary: if u € Sing(AL)Jr, A is any

positive NC measure and p > A, then A is also singular.

Proof. If A is not singular then u > A > A, # 0. It follows that
{0y St H,, ) (H: B c 2t H,),

so that the space of free Cauchy transforms of x has non-trivial intersection with the

free Hardy space. This contradicts the assumption that u is singular. |

5 AC Measures and Closable L—Toeplitz Forms

Any positive NC measure p € (A;)+ can be identified with a densely defined, positive
semi-definite quadratic form, g, on the Fock space. In [21], we applied B. Simon'’s
Lebesgue decomposition theory for quadratic forms to g, [34, Section 2] to construct
an NC Lebesgue decomposition of any NC measure into AC and singular parts. In
this section, we prove that this “Lebesgue form decomposition” of any u € (fl;)Jr and
the Lebesgue decomposition developed in the previous section using (NC) reproducing
kernel techniques are the same. We refer to [21, Section 4] for more detail on the
quadratic forms arising from NC measures, and to [24], [32, Section VIIL.6], for the theory

of unbounded sesquilinear forms in Hilbert space.
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24 M. T. Jury and R. T. W. Martin

Definition 5.1. A densely defined positive semi-definite quadratic (sesquilinear) form,
q, with dense domain Dom(q) := A, C Fé is called an L—Toeplitz form if there is a

(positive) NC measure, u € (A;)+, so that
q(a,,ay) = i ((@a;@)*ay (L) =: q,(a,ay); ay,a, € Ag.

Given any positive semi-definite quadratic form, g, with dense form domain
Dom(q) = Az C Fé, we define the (generally non-positive) linear functional, g :
‘Ad =+ ‘Ag —> C, bY

g(a; +a3) :=q(1,ay) +q(ay, ).

Recall that we defined closed positive semi-definite quadratic forms in
Subsection 1.1, and that a positive semi-definite quadratic form, g, with dense domain

in ¥ is closed if and only if
qh,g) =qu(h,g) = (\/Zh, x/Zg):H; g,h € Dom(q) = Dom(«/Z),

for some closed, positive, semi-definite operator A. A positive quadratic form, g, is
closable if it has a closed extension. If q is closable, then it has a minimal closed
extension, g, with Dom(q) € ¥ equal to the set of all h € H so that there is a sequence
h,, € Dom(qg), such that h, — h and (h,,) is Cauchy in the norm of H(g + 1). A dense set
D C Dom(q) is called a form core for a closed form q if D is a dense linear subspace
in H(g + 1). If q is closable with closure (minimal closed extension) g, then Dom(q) is
a form core for g [24, Chapter VI, Theorem 1.21]. If g = g, is a closed, positive, semi-
definite quadratic form, then D is a form core for g if and only if D is a core for +/A. In

particular, Dom(A) is a form core for g.

Definition 5.2. A closed, positive semi-definite operator T with domain Dom(T) C Fé
will be called L—Toeplitz if:

1. A, € Dom(+/T) and C{3,, ..., 34} € Dom(+/T) is a core for /T,

2. The associated quadratic form

qr(a,,ay) = (ﬁal(L)l,ﬁaz(L)l)Fg; a,,ay € Ag

is L—Toeplitz.
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Remark 5.3. If T is a bounded L—Toeplitz operator, then

so that T is multi-Toeplitz in the sense of Popescu, see [29, Section 1.1].

In [34, Section 2], B. Simon proved that any densely defined and positive
semi-definite quadratic form, g, acting in a Hilbert space H, has a unique Lebesgue

decomposition:
q4=dgc tqs

where g, is the maximal closable form dominated by g, and g, = g — q,.. It follows that

any u € (AL)Jr has the Lebesgue form decomposition:

1= Qg+ 4 (5.1)

where q,., g, are (a priori not necessarily positive) linear functionals on the free disk
system, see Definition 5.1. By [21, Equation (5.2)], the NC measure g, € (A[Ti)Jr is given
by the formula:

Que @) = (I + N, ), @~ DT T+ N,y o)) o (5.2)

where Q is the orthogonal projection onto the kernel of the contractive embedding
E : F(Zi(u +m) — Fﬁ. In [21, Theorem 5.9], we proved that g,, and g, are positive NC
measures, so that this yields a “quadratic form” Lebesgue decomposition of © and an
alternative definition of “absolutely continuous” and “singular” positive NC measures.
(The next theorem shows that these potentially different decompositions and definitions

are the same.)

Theorem 5.4. An NC measure u € (AZ,)Jr is AC if and only if g, > 0 is a closable
quadratic form. If x« is AC and g = gy is the closure of g,,, then the positive semi-definite

operator T is L—Toeplitz.

Proof. By [21, Corollary 5.6], an NC measure pu € (A;)+ generates a closable quadratic
form, g, if and only if the intersection of the space of NC Cauchy transforms of u +m
with the NC Hardy space is dense in s#+ (Hyym) that is, if and only if © + m is an AC

NC measure in the sense of Definition 4.3.
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26 M. T. Jury and R. T. W. Martin

We claim that u + m is AC if and only if u is AC so that these two definitions of
absolute continuity are equivalent. First, by Theorem 4.10, AC(A;) 4 is a positive cone
so that if u is AC, so is i + m. Conversely, if u + m is AC, this is equivalent to a, being
a closable quadratic form, so that g, =: gy is the quadratic form of a unique, positive
semi-definite, L—Toeplitz T > 0, and C{3;,...,34} is a core for JT by [21, Theorem 5.8].
Suppose that x € Dom(T) C Dom(ﬁ”). Then since C{3,,...,34} is a core for VT, we can

find a sequence of free polynomials, p,,, so that
p, — x, and +Tp, - VTx.

In particular, the sequence p, (L) + N, is Cauchy in Fczi(u) and converges to a vector

X € Fa(u):
1P = P + Nyl = INT@n = D) lpz — 0.

It follows that we can identify Dom(T) with a linear subspace (generally non-closed),
D, (T) C F3(n). We claim that any vector y € D, (T) is such that €,y € H? (BY). Indeed, as
above, given y € D, (T), there is a vector y € Dom(T) and a sequence of free polynomials
p, so that p, — y, ¥Tp, — Ty, and p,(L) + N, — y in F5(u). The free Cauchy

transform of y is

€, @)

>z (MEI+N,),y),

acld
= lim Zz"(n;‘i(l +N,),p,(L)+N,),
= li%nZZ“(ﬁLo‘l,ﬁpn(L)l)Fé
= D ZWTL*1L,VT{)p
= ZZ"‘(L“I, T)V/)F[zi.
= (Ty2).
Since Ty € H? (Bl‘\i) = Ffi this proves our claim. Moreover, by general facts about closed

operators, Dom(T) is a core for /T, and it follows that DM(T) is norm-dense in Fé(u).
This proves that

At H,) (H BY),
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is dense in ,%”JF(HM), so that u is, by definition, an AC NC measure. [ |

Theorem 5.5. Given u € (A:;)Jr, the Lebesgue form decomposition and Lebesgue
decomposition of u coincide. That is, the quadratic form of u,, is the maximal closable

quadratic form bounded above by g,,.

Lemma 5.6. Given u € (Aji)+ with Lebesgue decomposition u = p,, + ug, if A = p+m,

then A has Lebesgue decomposition:

A= g tMm+ pg .
———— ——
=Aac =As

Proof. By Theorem 4.5,

AV H) = ATH,, )+ AT Hy)+ATH),),
N e’

=H2(B)
and each of the spaces of this decomposition is contractively contained in #* (H, ), with

A = u + m. Since AC(AEZ)Jr is a positive cone, by Theorem 4.10, px ., + m is AC. One can

show, as in the proof of Theorem 4.10,
2 md
H*(By) N %JF(HMCJFm),
is dense in the subspace

)

and it follows that u,, + m < (u 4+ m),, = A, Also, since ug is the singular part of p,
we know that both

A (ug) [V (1ge) = (0},
by Theorem 4.9, and

A (ug) [V HABE) = {0},
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28 M. T. Jury and R. T. W. Martin

by definition. We claim also that
A (ug) (A Hy, ) = {0).
Indeed, we have as above that
HYH,, m) =T H,, ) +H B,
as vector spaces, so that if f € 7 (ug) N %+(HMaC+m), then
f=g9+h gext®,, ) heH BY.
However, this would imply that

f-g=heH*®BYH (" H,) " H,,),

ac

by the definition of the AC part of u, so that g,f — g, and hence f belong to ‘%+(Hu ).
Since the Herglotz space of u,. is by construction orthogonal to %”*(HMS), f =0, and

ac

this proves that the intersection of J#*(H, ) with /#*(H,_,,,) is empty. By Theorem

4.4, we then have the direct sum decompositions:

HYH) =HTH,, ) © ATH,)
=%+(Hxac) @ %—i_(Hks)'

The 1st decomposition, implies, in particular, that %”*(HMC +m) 1s contained isometri-

cally in s#*(H,), and since u,, +m < A, it is contained isometrically inside %JF(HAM).

ac’

However, by definition, s#*(H, )N H? (]B%g) is dense in s (H, ), and

Y H,, ) (| H* B

IN

H*(BY) (5.3)

N

H* B + 7 H,,)

ac

_ +
= H(H satm)?
so that

A ) (VAT Hy o)
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is dense in #*(H, ). Since these are both closed subspaces, it must be that A,, =

Hee +mand ug = Ag. |

Proof (of Theorem 5.5). It remains to prove that if u = u,, + u, is the Lebesgue
decomposition of u of Theorem 4.9, that u,, generates the largest closable quadratic
form bounded above by u, so that u,. = g,. and the Lebesgue decomposition and
Lebesgue form decompositions of u coincide. Let e : Hz(Bg) = AT (H,) — %+(Hu+m)
be the contractive embedding (since m < u + m). By Lemma 4.2,
E = C,,e"Cpim,
and it follows that the kernel of E is the kernel of *C,_ .
By Theorem 4.4, /' *(H, ) = 2"H, )+ H? (BI%) and the NC Hardy space is
contractively contained in /#*(H, ,,,). Furthermore, by Theorem 4.10, j1,, + m is an
AC NC measure so that HZ(IB%I%) - HZ(]B%I‘\%) N %J’(Huaﬁm) is norm-dense in the space of

(1ge+m)—Cauchy transforms. Since the previous lemma implies that (u+m),, = py+m,

it follows that the range of e is contained in and norm-dense in /¥ (H, ) so that
Ran (e) = " (H,m),,)-
Consequently, and again by the previous lemma,
Ran(e) = Ker(e*) = #F (Hyyymy,) = #F(H,),
and
Ker(E) = FA(uy).

By Formula (5.2), it follows that g,, = 14,. |

6 Lebesgue Decomposition of Row Isometries

The concept of absolute continuity, singularity, and Lebesgue decomposition for
bounded linear functionals on A, was first defined and studied in the context of
free semigroup algebra theory [8, 10, 26]. Recall, a free semigroup algebra is any WOT

closures unital operator algebra generated by a row isometry. If I1 is a row isometry on
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30 M. T. Jury and R. T. W. Martin

a Hilbert space, H, we denote the free semigroup algebra of I1 by

F4(11) := Alg(, 1)~ "Or,

As proven in [11], the weak—s*, and WOT closures of A, coincide so that the left free

analytic Toeplitz algebra, L = H* (Bg), is a free semigroup algebra.

Definition 6.1 (see [10, Definition 2.1] and [11, Theorem 2.10]). A bounded linear
functional ¢ € A(Ti is weak—x* continuous if it has a weak—x* continuous extension to
LOO

.

Theorem 6.2 ([11, Theorem 2.10]). A bounded linear functional ¢ € AL is weak—x

continuous if and only if there are vectors, x,y € Fé so that

¢(@) =my,(a) = (x,al)y)pz-

A natural extension of the above definition to (positive) NC measures on the free

disk system is then:

Definition 6.3. A bounded positive linear functional (or NC measure) ¢ € (A;)Jr is
weak—x* continuous if it has a weak—* continuous extension to the (left) Toeplitz System
(LY + (LZ‘))*)_WMIC_’k = (Ag+AY) . Let WC(AL)+ denote the positive cone of all

weak—x* continuous NC measures.

—weak—x*

Clearly, WC(A:;)Jr is a positive cone since positive linear combinations of positive
weak—x* continuous linear functionals are again weak—x* continuous and positive. We
will prove that any (positive) NC measure is weak—x continuous in the above Davidson—

Li-Pitts sense if and only if it is AC in the sense of Definition 4.3, see Theorem 8.4.

Definition 6.4. A representation = : A; — £L(J) on a separable Hilbert space, ¥, is
called x—extendible if and only if it is the restriction of a unital x—representation of the
Cuntz-Toeplitz C*-algebra, £, = C*(I,L) to A .

A unital homomorphism 7 : A; — £(H) is x—extendible if and only if IT; =
(L) is a row isometry. The following concept of a weak—x* continuous vector will be

important for our investigations:
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Definition 6.5 ([10, Definition 2.4]). A vector h € H is called a weak—x continuous (WC)

vector for a *—representation, =, of €, if

Pp(L*) = (h, T (L)*h)gq,

is a weak—x* continuous functional on A,. The set of all weak—x* continuous vectors for

7 is denoted by WC(rr), or WC(p) if 7 = 7, is the GNS representation of an NC measure.

Definition 6.6 ([10, Definition 2.6]). A bounded linear map X : Fé — X is called
an intertwiner for a x—extendible representation 7 if XL* = TI1*X. The set of all

intertwiners is denoted x () (or x (u) if # = 7, for an NC measure ).

Weak—+ continuous vectors are characterized by the following theorem
[10, Theorem 2.71:

Theorem 6.7. Let m be a x—extendible representation of A, on H. Then WC(r) is a
1 := n(L)—invariant, closed subspace and WC(r) = X(n)Fé. Given any x,y € WC(r),

ByyPL) = (X, w(PIL)Y)gc; P € Cayredgh
defines a weak—sx* continuous functional on A,.

In [26], M. Kennedy extended and applied these notions to develop a Lebesgue
decomposition of row isometries. Namely, let IT denote an arbitrary row-isometry on a
Hilbert space J. By the Kennedy—Wold-Lebesgue decomposition I1 and H decompose as
direct sums:

=M1, & &Iy & gy,

on
H=T & & Hyy @ Hay,

where I1; is pure type—L, I1,_; is called Cuntz type—L, Il is purely singular or of von
Neumann type, and I1;; is of dilation type. These classes of row isometries are defined

as follows:

Definition 6.8. A row isometry, I1, on K is:

1. type—L if it is unitarily equivalent to a vector-valued left free shift L ® I for

some Hilbert space X.
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2. Cuntz type—L if it is an onto row isometry (also called a Cuntz unitary)
and the free semigroup algebra generated by I1, F¢(IT) = Alg(, 1)~ W7, is
isomorphic to LY, that is, if the map IT; +— L; extends to a completely
isometric isomorphism and weak—x continuous homeomorphism of F¢(IT)
onto LY.

3. weak—x continuous (WC), if it is a direct sum of type-L and Cuntz type-L
row isometries.

4. von Neumann type if it has no weak—x continuous restriction to an invariant
subspace.
dilation type if T1 has no direct summand, which is one of the previous types.
weak—x singular (WS) if I1 is a direct sum of von Neumann and dilation-type

row isometries.

Remark 6.9. Von Neumann and dilation-type row isometries are necessarily Cuntz

unitary. Any dilation-type row isometry can be decomposed in the form:

T 0
I1~ ,
* LQ®Iy

(so that the restriction of IT to an invariant subspace is unitarily equivalent to several
copies of L). As shown in [26], IT is of von Neumann type if and only if the WOT—closed
algebra generated by IT (i.e., the free semigroup algebra of I1) is self-adjoint, that is,
a von Neumann algebra. Von Neumann type row isometries are at this point rather
mysterious and poorly understood. There is essentially only one known example of a
von Neumann type row isometry due to C. Read [7, 31], which constructs an example of
a two-component row isometry I1 = (I1;, I[1,) on a separable Hilbert space, 3, so that the
WOT—closed algebra generated by I1 is all of £(J). In particular, it is unknown whether

one can generate other types of von Neumann algebras in this way.

Remark 6.10. In the free semigroup algebra literature, several variations of the
concept of a weak—sx* continuous row isometry (as we have defined it above) or
x—representation of £,; were introduced in [10] to describe when the weak—x closure
of a free semigroup algebra of a row isometry or Cuntz-Toeplitz x—representation is
similar in structure to L%, see [10, Theorem 3.4]. There is also no clear consensus on
terminology see for example, [10, Theorem 3.4] and [26, Definition 3.2, Definition 3.6].

Eventually, the work of several authors showed that all these variations of type—L row
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isometries were the same [10, Definition 3.1, Theorem 3.4], [26, Definition 3.2, Definition
3.6, Theorem 4.16], [12]:

Theorem 6.11. Let I1 be a row isometry on a Hilbert space, H. The following are

equivalent:

1. IIis weak—x* continuous.
2. The representation L, +— II; induced by IT is the restriction to A; of a
weak—x* continuous representation of LY.

3. Every vector in H is a weak—x= continuous vector for I1, H = WC(IT).

Proof. The equivalence of the 1st two items is [26, Theorem 4.16] (see also Definitions
3.2 and 3.6). If IT is a weak—x* continuous row isometry (as we have defined it) then the
fact that WC(IT) = H follows from [10, Theorem 3.4], or equivalently from [26, Theorem
4.17], which proves the stronger statement that H is spanned by wandering vectors
for I1.

Conversely, the main result of [12] is that if H = WC(II), then the infinite
ampliation, N ~ne T2 (g is a weak—x* continuous row isometry. In this case, as
observed in [12], the weak—x* closure of the free semigroup algebra of I is completely
isometrically isomorphic and weak—#x homeomorphic to the free semigroup algebra
of T1© (recall a general free semigroup algebra is a priori only WOT—closed, not
necessarily weak—x closed, by definition), and hence to L‘C’f, since T is weak—=x
continuous. However, this implies that the representation = : A; — £(J) induced by II,
m(Ly) := I, is the restriction of a weak—sx* continuous representation of L3, and hence
by [26, Definition 3.2, Definition 3.6, Theorem 4.16], the free semigroup algebra of IT is
isomorphic to L. As described in [12] algebraic isomorphism necessarily implies the
much stronger property that they are completely isometrically isomorphic and weak—x

homeomorphic. By Definition 6.8 above, I1 is then a weak—* continuous row isometry.ll

We now apply the Kennedy-Wold-Lebesgue decomposition of row isometries to

(positive) NC measures:

Definition 6.12. Given u € (Aji)Jr, we say u is one of the six types of Definition 6.8
if its GNS row isometry I, is of that corresponding type. The Kennedy-Wold-Lebesgue

decomposition of u is

U= up+ Ue_r + Kyy + Kairr
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where each Kiype € (A;) 4+ is positive and bounded above by x and

F2(1) = F5(), ® FA(Wo_r ® FAG) oy ® F5(10) gits

is the Kennedy-Wold-Lebesgue direct sum decomposition. If P;,P,_;, Py, Py; are the

corresponding reducing projections,
/“Ltype(') = (I + NM’ jTM()Ptype(I + NM))H’

where (-, '>u is the GNS inner product of x and type € {L,C — L, wc, vN, dil, ws}.

The weak—x* Lebesgue decomposition of u is then

W= pp + pe_g + Moy T Rgip = Hye T Kys

=Uwc = Uws

Hwer Mws € (AZZ)Jr are called the weak—sx* continuous and weak—x* singular parts of u,
respectively, and are both bounded above by . We will let WC(AQ) iy WS(AL) + denote
the sets of weak—* continuous and weak—x* singular NC measures, respectively.
Similarly, we write FA(11) ¢ := F3(w) ®F3(10)c_g and FZ(w) s = FA(1),n OF5 (W) gy
so that Fé(u)wc and thi(u)ws are reducing subspaces for I1, with orthogonal projections

ch =P ®PC—L’PWS = VN@Pdil and then
2, 2 2
Fi(u) = Fg(1W) e ® Fg(it)yys-

The spaces F3 (Wype and Fé(utype) are naturally isomorphic. We will ultimately
show that u,,. = p, and u,,, = i, so that Lebesgue decomposition and weak—sx

Lebesgue decomposition of any positive NC measure coincide.

Corollary 6.13. The weak—x* continuous subspace, Fé(uwc) - Fé(u), is the largest
I1,—reducing subspace of weak—x continuous vectors for u. The I1,—invariant sub-

space of WC vectors for p is WC(i) = FA(1t,,,0) @ (FA(1gy) N WC(w)) .
This is an immediate consequence of Theorem 6.11 and the definitions.

Remark 6.14. It is natural that the weak—s% continuous part of an NC measure u
should include u; + uc_;, and that the weak—sx singular part of u should include pu .

It may not seem immediately obvious that the dilation part of u should be included in
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the singular part of u since any dilation-type row isometry has a weak—* continuous
restriction to an invariant subspace by definition (i.e., it has weak—* continuous
vectors). However, our results will show that this definition is consistent and justified.

Ifue (AIi)Jr is an NC measure, our weak—s* Lebesgue decomposition of u differs
from the Lebesgue decomposition for “'Ad' as defined in [10, Proposition 5.9]. Indeed,
by [10, Proposition 5.2, Proposition 5.9], the Davidson-Li-Pitts Lebesgue decomposition

of u as a functional on A is u = i, + ft;, Where
PoweL*) = (I, T, QycD),,  and i, (LY) = (I, 11,Qy,),,,

QWC

for Ty and Q,,; = I — Q. This differs from our weak—x* Lebesgue decomposition, in

is the projection onto the invariant subspace of all weak—x* continuous vectors

general, since our P, = P; + P._; < Q,,.. The decompositions are the same if and only
if IT,, has no direct summand of dilation type.

As Theorem 8.4 will show, the u,,, from our decomposition is the maximal
weak—+ continuous functional that is both positive and bounded above by the original
NC measure . One can check that if 4 is a positive NC measure, that (since Q. is
I, —invariant) the functional f,,. extends to a positive NC measure on A4 + Aj:

Lycl@*a) = (I+N,, Qe (a*a)OWC(I—kNM))M.

m

However, the operator
nu(a)*n”(a) — QWCnM(a)*nM(a)OWC,

need not be positive semi-definite, so that (&, need not be bounded above by the
original NC measure u. Indeed, since our ., = p,. is the maximal AC NC measure
bounded above by u (see Theorem 8.4), it must be that (i, is not bounded above by

unless iy, = fye (= Rge) and (Pye =) Py = Q. is reducing for I1,.

Corollary 6.15. An NC measure u € (AZZ)Jr is weak—x continuous if and only if it is
given by a positive vector functional on the Fock space, that is, u = m, , = m, , > 0 for

x,y € F4 where

my ., (LY) := (x, L“y)Fé .
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Equivalently, © is weak—x continuous if and only if T, is a weak—x continuous row

isometry.

Any strictly positive L—Toeplitz operator that is bounded above and below has

an analytic outer factorization:

Theorem 6.16 (Popescu [29, Theorem 1.5]). Any positive L—Toeplitz T € L(Ffl) that is
bounded below, T > €I, can be factored as T = F(R)*F(R) for some outer F € R7’.

If T > 0 is an arbitrary positive semi-definite L—Toeplitz operator, it is still

possible to obtain an asymmetric factorization T = F(R)*G(R) = G(R)*F(R) with
F,Ge Rg":

Lemma 6.17 ([25, Lemma 3.2, Lemma 3.3]). Ifd > 2, RY + (RY)* is precisely equal to
the set of bounded L—Toeplitz operators and any bounded L—Toeplitz operator, T, can
be factored as T = F(R)*G(R) for F,G € R%, which are bounded below. If T > 0, and
A(R)*A(R) =1+ T, one can choose

F(R):=R,A(R)+R,, and G(R)=R,A(R)—R,,

so that

F(R)*F(R) = GR)*G(R) =2I+ T >2I, and
FR'GR)=I+T—-I=T>0.
Proof (of Corollary 6.15). If u € (A;) + is weak—x* continuous, then by [11, Theorem
2.10], it is given by a vector state on the Fock space, u = m, , forx,y € thi. Alternatively,
if u is weak—=* continuous, then by the GNS representation,

W@ = [+ N, %I +N),)),,

so that by Definition 6.5, I+N, is a weak—# continuous vector for I,. Theorem 6.7 then

implies that there is a bounded intertwiner, X : F3 — F2(u) and a vector y € F2 so that

I+N, =Xy.
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Hence,

w@ = (Xy,m,(a)Xy),

v, X"Xa(L)y) 2,

and since XLY = I'IZX is an intertwiner, X*X = T > 0 is a bounded positive semi-definite
L—Toeplitz operator. By Lemma 6.17, there are F,G € RY so that F(R)*G(R) = X*X.
Setting f := F(R)y and g := G(R)y, we obtain

1@ = (f,aL)g)p = mp (@),

and u is a vector state on the Fock space. Conversely, any positive vector state on the
Fock space is clearly weak—= continuous.

If 4 = m, , is weak—sx* continuous (and positive), it is clear that the map IT; +— L;

X,y
extends to a weak—x homeomorphism since this is a WOT and hence weak—:* continuous
functional on L(Fé). Hence, Hu is weak—x* continuous. If HM is weak—x* continuous,
Theorem 6.11 implies that F4(u) = WC(I1,,) so that every h € F5(u) is weak—s continuous
for I'IM. In particular, since I + Nu is a weak—x continuous vector for I'I#, we can repeat

the above argument to show that u = my /4 is a vector state, hence weak—x continuousl

Lemma 6.18. The positive cone of all weak—x* continuous NC measures A € (Aii)Jr
is hereditary: if A, A € (A;)Jr, A is weak—x continuous and A < A then A is also

weak—x*continuous

Proof. If A is weak—x continuous, then by Theorem 6.7, there is an intertwiner X
and ay € F5 so that Xy = 1 € F5(A) and A(a) = (y, X*XaL)y)p = (Xy, 75 (@)XY) .
Now, assuming that A < A, there is a positive A-Toeplitz contraction D = EJE, (i.e.,
7 (Ly)* Dy (Ly) = ;D) so that

AMa) = (1,Dr, (a)1), = (Xy, D, (@)Xy), = (v, X*DXa(L)y)p.

Since D is A-Toeplitz and X is an intertwiner, X*DX is L-Toeplitz, and by Lemma 6.17,
X*DX = X(R)*Y(R) for some X(R), Y(R) € R7. It follows that 1 = ms g is also a vector
state, with f = X(R)y, g = Y(R)y, so that it is also weak—x continuous. |
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Remark 6.19. A natural question is whether any positive weak—s* continuous func-

tional 4 = m, , on the free disk system necessarily has the symmetric form u = m;, :=

xy
my, , for some h € F3. We will say that a positive weak—x continuous NC measure is
asymmetric if there is no h € FZ so that u = my , = myp, and symmetric if x = y, and
we write m, = m, , in this case. It is a curious fact that if x is of Cuntz type—L then no

such h exists, so that u is asymmetric, see Corollary 6.22.

Theorem 6.20. If u = m, is symmetric and weak—sx* continuous, then u is type—L.
Assuming that x = x(R)1 where x(R) is outer, the distance from I + N, to Fﬁ(mx)0
is [x(0)].

Recall here that F3(m,), denotes the closed linear span of the non-constant free
monomials in Fé(mx), see Equation (3.5). In the above statement, for x € F2, x(R) will

generally be a closed, unbounded right multiplier.

Remark 6.21. There is no loss in generality in assuming that x is outer. By Davidson-
Pitts [11, Corollary 2.3], any x € Fé factors as x = O(R)y, where y € Fczl is L—cyclic,
that is, right outer, and ®(R) = Mg+ is right inner, that is, an isometry, so that for any
a,,ay € Ag,
m,(aiay) = {(a;(L)x, ay(L)X)pe
= (a;L)y, O©R)*O(R)a,(L)y) 2

= (a1(D)y, ay(L)y)p2 = my(ajay).
Proof. Define U, : F4(u) — F3 by
U (L +N,) := L*x € F}.

This is an isometry, which is onto since x is L—cyclic (since x(R) is outer). It follows that
UM, Ug =L, so that I1, is pure type—L, and hence I1, is not Cuntz.

x tu¥x

However, we can say more: consider,
A, := inf |0 —p@)+N, |3,
xi= ot I — p(L)) i

this is the distance (squared) from I + N, to Fczz(ﬂ)o = \/a#Q,(L"‘ +N,). Hence, A, = 0
if and only if the distance from I + Nu to Fczi(y,)0 vanishes, that is, if and only if u is
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column extreme in the sense of [20, Definition 6.1, Theorem 6.4]. Then, calculating as in
[29, Theorem 1.3],

. 2
Ay = p(lggoII(I—p(UM))(I+NM)IIM

= inf | - p@)x|?
p(O):O”( p( ))X”Fg

= inf ||x - Lq@)x]%,
qeCizy,-34)®9CE d

= inf |x-— Ly||12‘,2 (Since x is cyclic.)
yeF3®Cd d

= ||P% x||?
” Ran(L) ”Fé

2

= ||P{1}X||F§

= |x(0))%.
||

Corollary 6.22. If u € (A;)Jr is column-extreme (i.e., IT, is Cuntz) and weak—sx*

"
continuous, then there is no x € F2 so that u = m,.

There are many examples of AC and column-extreme u € (AZi) 4 see, for example,
[10, Example 2.11]. (This provides an example of a cyclic and AC Cuntz row isometry,
which is therefore not unitarily equivalent to copies of the left free shift. The fact that
it is cyclic implies that it is unitarily equivalent to the GNS row isometry of a Cuntz

type—L NC measure.)

Corollary 6.23. 1, is of pure type—L if and only if u = m, is symmetric and weak—x

continuous.

Proof. One direction is in the proof of the previous theorem, Theorem 6.20. Namely, if
w = my, then I1, is of type—L.

Conversely, if I1, is type—L, then I, is unitarily equivalent to copies of L. But,
since I1, has a cyclic vector, it is unitarily equivalent to L. If U : Fé — Fé(u) is the
unitary so that UL, = xr, (Ly)U, then, choosing h € Ffi so that Uh =1+ N, yields

wl* = (I+N,05I+N)),
= (Uh,TI%UR),

= (L) = my, (LY.
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6.24 Type—L NC measures: the Helson-Lowdenslager approach

Given an NC measure u € (.Aji)Jr, let P, denote the orthogonal projection of F(Zi(u)
onto Fé(u)0 = \/aﬂ(L"‘ + N,). The next two results are motivated by [17, Chapter 4,

Section 1]:
Lemma 6.25. There is a constant ¢ > 0 so that
AmL) = (U —Py)I+ N, I —P)UI+N)),,

where m is (normalized) NC Lebesgue measure.
Proof. This follows immediately from the fact that Ffl(u)o is I1 M—invariant so that

(—=Py)I+ N, I —PUI+N)), =T —Po)(I+NM)||i5a,m = *m(L),
with ¢ = ||(I—P0)(I+Nu)||. |

Define the co-isometry W : F3(u) — F3(m) = F3 with initial space

Ker(W)" = \/ %I — P))I +N,),
@
WI%Py(I+N,) = cL* + N,, = cL°1. (6.1)
Proposition 6.26. The vector P& I+N,) is wandering for IT u SO that
Ker(W)' = (P{NE4Py T+ N,))}.

The subspace Ker(W)* is IT ,—reducing, the restriction of I1, to Ker(W)' is unitarily

equivalent to L, and W*W = P;, the projection onto the type—L part of Fczi (w).
Proof. The vector w := POL(I +N,) is wandering since,
1 1 2
(4Py(I+N,), AP (I + N,)) = 8, 4c°.

The subspace Ker(W)* is I1,—invariant, by construction. Suppose that h € Ker(W), so

that for any o € F¢,

0= (h,NI%I - Py)I+N,)),.
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For any o # 0,

(h, 7, L*I — P)I +N,)), = (I — PPTI%h, I+ N,),, =0,

since HM(L“)h € Fczz(ﬂ)o for any « # @. Since h € Ker(W) was arbitrary, it follows that

Ker(W)" = \/ 7, (Aq + AT — P)I +N,),

is I, —reducing.

Since W*W is reducing for I1,, and generated by the wandering vector P(J)' I+N,),
it follows that W*W < P;. However, the vector I + Nu is cyclic for I'IM so that P; (I + Nu)
is also cyclic for the type—L row isometry I1;, and hence the wandering space of I1; is
one-dimensional. Since P& (I+N,) € Ran(W*W) < Fczi(pLL) is wandering for I, it spans

the wandering space for IT;, and we obtain that Ker(W)* = F2(up). [ ]

7 Weak—x* Versus Absolute Continuity

In this section, we prove that any weak—s* continuous NC measure is an AC NC measure.

7.1 NC measures dominated by NC Lebesgue measure

Proposition 7.2. Suppose that u € (flzi)+ is dominated by m, u < t?m. Then u is both
AC and weak—sx continuous. If E, = (C*)*e}C,, : F2 — F%(w), then E, is a bounded

intertwiner with dense range and norm at most ¢.

Proof. If y is dominated by m, then it is weak—+ continuous since the positive cone
WC(A;)+ is hereditary by Lemma 6.18. It is AC, by definition since %”J“(HM) C HZ(IB%I%)
by Theorem 4.1. The statement about the intertwiner E, follows immediately from
Lemma 4.2. |

An arbitrary weak—* continuous NC measure u € WC(A;) , is generally not
dominated by m, and it is natural to ask whether the previous Cauchy transform
intertwining results can be extended to this general case. This is possible, if one allows

for unbounded intertwiners:

Definition 7.3. Let 1 be a row isometry on a Hilbert space J. A closed, operator X :
Dom(X) — H, with dense domain in Ffl is called an intertwiner if Dom(X) is L—invariant

and

XLpx = M Xx; x € Dom(X).
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Lemma 7.4. Let IT be a row isometry on a Hilbert space ¥, and let X : Dom(X) — H be
a closed, densely defined intertwiner, Dom(X) C Fé. Any vector y € Ran (X) N Dom(X*)

is a weak—x* continuous vector for IT.

Proof. If X is densely defined and closed, then its adjoint, X* is also densely defined
and closed, and X*X is densely defined, closed, and positive semi-definite. Furthermore,
Dom(X*X) € Dom(X) is a core for X (hence dense in Fczi)' If y € Dom(X*X) then Xy <
Dom(X*) N Ran (X), and

Xy, I°Xy) ¢ = (X*Xy, L") 2

is a weak—x* continuous functional so that Xy is a weak—x continuous vector, by

definition. ]

7.5 Symmetric AC functionals

Before tackling the fully general case of an asymmetric weak—s* continuous NC measure,
first suppose that u = m, = m, , is a symmetric positive weak—x continuous functional,
where x € Fczi. The results of [19, 22] show that one can define x(R), where x(R)1 = x
as a densely defined, closed, and potentially unbounded right multiplier in the Fock
space with symbol in the (right) free Smirnov class Ji{;r(R), the set of all ratios of
bounded right multipliers, B(R)A(R)™!, with outer (dense range) denominator. We will
write x(R) ~ R3’ to denote that x(R) is an unbounded right multiplier affiliated to the
right free analytic Toeplitz algebra R (i.e., it commutes with the left free shifts). The
potentially unbounded L—Toeplitz operator T := x(R)*x(R) is then well-defined, closed,
positive semi-definite and densely defined.

Given x(R) ~ R, there is an essentially unique choice of A,B € [R7’]; so that
x(R) = B(R)A(R)™!, and if ©,(R) denotes the two-component column with entries A, B,
then ©,(R) is an isometric right multiplier (right-inner) from one to two copies of the NC
Hardy space and Ran (0, (R)) = G(x(R)), the graph of x(R) [22, Corollary 4.27, Corollary
5.2]. Moreover, x = x(R)1 belongs to F2 if and only if A™' := A(R)™'1 € F2. In this
case, L7’1 € Dom(x(R)) [22, Lemma 5.3]. We can further assume that C{3y,...,34} is a
core for x(R) (if not, define X(R) as the closure of x(R) restricted to C{3;,...,34}), so that
for any y € Dom(x(R)), there are free polynomials p,, € C{3;,...,34} so that p, — y and

x(R)p,, = x(R)y. Recall, by Remark 6.21, we can assume without loss in generality that

1.20Z @unp Z| uo Jasn epuo|d Jo AlsiaAiun Aq 0191065/ EZBBUI/UIWI/EE0L 0 | /I0P/3]01B-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]



NC Lebesgue Decomposition 43

x is outer, that is, L—cyclic, or equivalently, x(R) has dense range. Let U, : Fé(u) — Fé
be defined by

U (L* + N, = L*x.
This is clearly an isometry, and since x is assumed to be outer, it is onto Fé.

Theorem 7.6. Letu=m, € WC(A;)Jr be a symmetric weak—* continuous NC measure,

where x € F; is outer. A vector y, € F5(u) is such that €,y, € H%(BY) if and only if

m
U,y, =:y € F5 belongs to Dom(x(R)*).

Since U, and €, are unitary and Dom(x(R)*) is dense, it follows that if u = m,,

is symmetric and weak—:* continuous then
€, UsDom(x(R)*) = H*(B) (| " (H,)
is dense in ,%”JF(HM) sothat u=m, € AC(A;)Jr is an AC NC measure.

Proof. Suppose that y € Dom(x(R)*), and consider GM Uiy e (H,). Then,

(c.uy)@ = > zumia+n,), vy,

> 2 (U, @ +N,).V)p
ZZO‘ (L*x, Y>F§

Zza (L1, X(R)*Y) gz

This shows that C, Uy has the same NC MacLaurin coefficients as x(R)*y € F2, and
hence belongs to H2(BZ).

Conversely, suppose that y, € Fé(u) is such that h := €y, belongs to Hz(Bg).
Then, setting y = UsY i

h(2) D 29T +N,),y,),

22U+ N,), Upy, )z
> z%(1x,y) P2

> Z%(x(R)L1,y) 52

1.20Z @unp Z| uo Jasn epuo|d Jo AlsiaAiun Aq 0191065/ EZBBUI/UIWI/EE0L 0 | /I0P/3]01B-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]



44 M. T. Jury and R. T. W. Martin
Identifying h with an element of F2, the Fourier coefficients of h are

hy i= (L*1,h) = (x(R)L*1,y) g2,

and it follows that for any p € C{3;, ..., 34},
<P(L)1,h>p§ = (X(R)p(L)LY)Fg-

Since free polynomials are a core for x(R), this proves that y € Dom(x(R)*) and that
x(R)*y = h. [ |

Corollary 7.7. If u = m, is a symmetric weak—s* continuous NC measure, the

X

intersection space

A% H,) (|H*BE) =: Dom(e,,)

is dense in %J“(HM) and the embedding e, : Dom(e,) — Hz(]B%g) is densely defined and

closed. That is, any symmetric weak—s* continuous NC measure is AC.

Proof. The domain of e, is dense by the previous proposition. It remains to show
that e, is closed. If f,, — f in %+(HM) and e”fn — g in F?, then in particular,
@) = (e,f)(Z) — g2) for g € Fé and also f,,(Z) — f(2) so that f(Z) = g(Z) and
f et ®H,) NH*BI) = Dom(e,,). [}

Corollary 7.8. The unbounded operator X, = (Gu)*e;‘; : HZ(IB%I%) — Fé(,u) is a closed,
(generally unbounded) intertwiner with dense range and every vector in the dense set
Dom(X};) N Ran (Xu) is a weak—x continuous vector for u. Equivalently, the embedding

E, =X,Cp: F2(m) — F3(u) is closed, densely defined and has dense range.

Lemma 7.9. Let T be a closed, densely defined linear operator on Dom(T) € K. If
Ran (T) is dense, then Dom(T*) N Ran (T) is dense and contains the dense linear space
Ran (T(I + T*T)7}).

Proof. Set Ap:=T+ T*T)~!, this is a strictly positive contraction [28, Theorem 5.19].
Moreover, Ran (A7) is a core for T, so that the set of all pairs (x, Tx), for x € Ran (Ay), is
dense in the graph of T. In particular, given any Ty € Ran (T), one can find (x,,, Tx,,) with
x, € Ran (A7) so that x, — y and Tx,, — Tx. Since we assume that Ran (T) is dense it

follows that TA; = T(I + T*T)~! also has dense range. Moreover, again by [28, Theorem
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5.19], TAy is a contraction and Ran (A7) = Dom(T*T) so that Ran (TA;) C Dom(T*). In
conclusion, Ran (TA;) € Ran (T) N Dom(T*) is dense. [ |

Proof (of Corollary 7.8). The proof goes through as in the case where u is
dominated by m, using that X is closed operator, as in Lemma 7.4. In particular,
HZ(B%) N %+(HM) = Dom(e,,) is dense, and e, is by definition injective on its domain,
and closed by Corollary 7.7. It follows that ej; is also closed, densely defined and has
dense range, so that Ran(X),) is also dense in Fg(,u). Since X, is a closed operator with
dense range, the previous general lemma shows that Dom(X;)ﬂRan(XM) is dense. Lemma

7.4 now implies that every vector in this dense set is a weak—* continuous vector. |

7.10 Asymmetric AC functionals

Even more generally, suppose that u € WC(A;) + 1s an arbitrary weak—x continuous NC
measure. By Corollary 6.15, u = m,, =m, . > 01is a vector state on the Fock space with
X,y € Fczi

Lemma 7.11. Anyu € WC(AZZ)Jr has the form

w(L*) = (b, TL R,

where h is outer, that is, L—cyclic, and t > 0 is a bounded, positive semi-definite

L—Toeplitz operator.

Proof. This is as in the proof of Corollary 6.15. Since u is weak—#* continuous, every
vector in Fé(u) is a weak—x* continuous vector. In particular, thereisa g € Fé(u), and a
bounded intertwiner X : F5 — F5(u) so that Xg =T+ N,. Since g € F3, g = g(R)1, where
g(R) ~ R3’ is an unbounded right multiplier, and g(R) has the Smirnov factorization
g(R) = N(R)D(R)™!, where N,D € [Rflo]l, and D is outer. If ®(R)F(R) is the inner-
outer factorization of N(R), set h := F(R)D(R)~!1 € F2, and 7 := OR)*X*XO(R) > 0,

a bounded, positive semi-definite L—Toeplitz operator. Then,

(L)

(I+N,, %I +N,)),
= (Xg,T1},Xg),
= (ORI X" XL*OR)h)p2

= (h, ‘[Lah)Fé.
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For any € > 0, define u, € WC(A;)+ by
u (L) = (h, (v + GI)Lamei- (7.1)
Since 7 + €I is bounded below, Theorem 6.16 implies that it is factorizable:
T +el =A_(R)*A,(R),

for some outer A (R) € RY’. Hence, setting g, := A (R)h € F%, u, = m, is a symmetric

Je
vector state, so that u, is AC for any € > 0 by Theorem 7.7.

Proposition 7.12. Let T, be the closed, positive semi-definite L—Toeplitz operator so
that gr,_is the closure of the form generated by u.. Then T, is convergent in the strong
resolvent sense to a closed, positive semi-definite L—Toeplitz T, where g is the closure
of the AC part of g,,.

This proposition is a straightforward consequence of the monotone convergence
theorem for decreasing nets of positive semi-definite quadratic forms, due to B. Simon
[34, Theorem 3.2]. Recall here that a sequence of closed, positive, semi-definite operators
T, is said to converge to a closed, positive, semi-definite operator T > 0 in the strong

resolvent (SR) sense, if
180 _
a+1,) B a+n,
where SOT denotes the strong operator topology [32, Chapter VIIIL.7].

Proof. Observe that the positive semi-definite forms g, := g, all have the free

polynomials, C{3;, ..., 34}, as a common form core, that

a. (.9 — q,([p. 9,

as € | 0, and that the g, are monotonically decreasing as ¢ | 0. The propo-
sition statement is now an immediate consequence of [34, Theorem 3.2] (see also
[32, Theorem S.16]). [ |

Our goal now is to show that u is AC by showing that gy is the closure of g,,.

The strategy is to “peel off” the adjunction by h(R) and its adjoint from T, + I, and to
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consider the invertible, positive operators:
S, :=h®R H*h®R) ' +r4+el; €>0, (7.2)
with common domain
Dom(S,) = Dom((h(R)"1)*h(R)™!) = Ran (h(R)h(R)*).
(Given any closed, self-adjoint operator S, and a bounded self-adjoint operator A4, it is
straightforward to verify that S+ A is closed, and self-adjoint on Dom(S).) Since each of
the S, is invertible, the quadratic forms of their inverses are a monotonically increasing
net of positive quadratic forms, and we can then apply B. Simon's 2nd monotone con-
vergence theorem for increasing sequences of quadratic forms to conclude, ultimately,

that g, = qr.

For any € > 0 consider the positive quadratic form Q, := Qg :

Q. (x,x) = (h(R)*IX,h(R)flx)Fg + (x,(t + EI)X)Fg

x € D =Dom(h(R)"!) = Ran (h(R)),

where h is as above, in Equation (7.1). This is well defined since h(R) is outer, where
h = h(R)1 (note that h(R)~! is also outer). Further observe that

Dom(S!/?) = Dom(h(R)"!) = Ran (h(R)),

for every € > 0 and that S, is bounded below by €I.

Lemma 7.13. The strictly positive L—Toeplitz operators S, converge in the strong

resolvent sense to
So=h®R H*R®R) ' +7>0.

Proof. Since all of the S, have the same domain for ¢ > 0, fix any x € Dom(S,) =
Dom(S,) = Dom((h(R)"!)*h(R)™!), and observe that

S.x = (h(R)"H)*h(R)x + (r + eD)x,
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which clearly converges to Syx as € | 0. By [32, Theorem VIII.25 (a)], S, converges to S,

in the strong resolvent sense. |

Lemma 7.14. For any ¢ > 0, the operator Si/zh(R) is closed on Dom(hk(R)), and

(Se/*hR)* = h(BY*se'?.

Proof. First, Ran (h(R)) = Dom(S.’?) so that S/?h(R) is densely defined. If h(R)"'x, —
y, and Sgl/zh(R)h(R)‘lxn — g, then x,, — x is convergent since S, > €I is bounded below.
Since h(R)~! is closed on Ran (h(R)), it follows that x € Dom(h(R)~!) = Ran (h(R)) and
h(R)~'x = y. Also, S/? is closed so that Si/zxn — SH?x = g. Since x € Dom(h~}), it then

follows that

g =SY2x = SY2n(R)h(R)'x = SY2h(R)y,

proving that Sél/zh(R) is closed on this domain.

To prove the 2nd statement, fix x € Dom((Si/zh(R))*) and consider any y =

h(R)"lg € Dom(SY*h(R)). Then,

((SY2hR))*x,y) = (x,S!%g),

holds for any g € Dom(h(R)~!), so that x € Dom(Sel/Z) and the above is equal to

(S/%x, g) = (S/*x, h(R)y).

Again, this holds for every y € Dom(h) = Ran (h_l) so that Si/zx € Dom(h(R)*), and the

above is equal to
(h(R)*S¢/%x, ),
proving the 2nd claim. |
Lemma 7.15. Forany e > 0, T, +I = h(R)*S_h(R), and Dom(T.'*) = Dom(h(R)).
Proof. The last statement is essentially by definition, T, = g.(R)*g.(R), where

g.(R) :=A_(R)h(R), and A, (R)*A_(R) = 7 + €l is a bounded, invertible operator. By polar
decomposition, Dom(,/T,) = Dom(g, (R)) = Dom(h(R)).
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Let g. + m := qr, 41+ and as before Q, := gs, - Then for any x € Dom(Tel/z) _

Dom(h(R)) = Ran (h(R)™!), x = h(R)"'x/, we have that
@G +mx,x) = (hR)x,(t+ GI)h(R)X>F§ + (X, X)p2
= (¥, +eDx)p + (h(R)"'x, h(R)—lx/>F§
= Q.(x,x)

= (SY2n(R)x, S}?h(R)x).

It follows that the positive operators T, + I and h(R)*S _h(R) define the same closed
quadratic form, and hence, by uniqueness (see [24, Chapter VI, Theorems 2.1, 2.23]) we
have that

h(R)*S_h(R) =T, + 1.

Consider the bounded, positive quadratic forms:
-1 o— d O*l —
qe = q(I+T€)71, an € = qsé—l

Since the T, > 0 are monotonically decreasing as ¢ | 0, a result of Kato [24, Chapter
VI, Theorem 2.21] implies that the bounded operators 0 < (I 4+ T.)~! are monotonically
increasing as € | 0. Moreover, (I + Te)_1 is a contraction and (I + Tg)_1 converges in SOT
to (I+T)~! as € | 0 by Proposition 7.12. Notice that S, is positive and invertible for every
€ > 0, and positive and injective for € = 0. Since Q, is monotonically decreasing, the net
Q_! is a monotonically increasing net of bounded (but not uniformly bounded) positive

quadratic forms, and the 2nd monotone convergence theorem of B. Simon applies:

Theorem 7.16 ([32, Theorem S.14], [34, Theorem 3.1, Theorem 4.1]). Let (q;) be a
monotonically non-decreasing sequence of closed, positive, semi-definite quadratic

forms, which are densely defined in a Hilbert space, H. Let
Dom(q,) :={x € n Dom(qk)‘ sup g (x,x) < +oo},

and set

dooX ) = lim gp(x,y); X,y € Dom(qy).
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Then g, is also positive semi-definite, and closed on Dom(q,,). If q,, is densely defined
and if T}, T, are the closed, densely defined, and positive semi-definite operators so

that gy = qr,, 4 = qr,,, then T} converges to T, in the strong resolvent sense.

Corollary 7.17.  The quadratic form g, is closable so that p1 € AC(AE)JF.

Proof. We have shown that (I + T,) = h(R)*S.h(R), for any ¢ > 0. Since St'’h(R)

and h(R)*Sgl/2 are closed and bounded below by 1 on their domains, it follows that
Se 1/2 (h(R))"1)* is bounded and extends by continuity to a contraction. Given any free

polynomial, p € C{3y, ..., 34},

'v.p) = QY (LR H*p, (R(R)1)*p)

Q- pp.py),  Ppi=(RABRH*D e Clay, iyl

This remains bounded as € | 0, and,

Dy = \/ (RR) )Ty, .34,
is dense in Fg since h(R)~! is right Smirnov, so that the free polynomials are a core for

its adjoint, and h(R)~! is injective so that its adjoint has dense range [22, Corollary 3.13,

Corollary 3.15, Remark 3.16]. The previous Theorem 7.16 then implies that

Q! x,y) :=lim Q-1 (x,y),

0 ( y) )0 € ( Y)

is a closed, densely defined, positive, semi-definite quadratic form on some form
domain Dom(Qal) 2 D,. Since Oal is closed, it is the quadratic form of some closed
561, and Theorem 7.16 implies that S;! converges in the strong resolvent sense to 561.
However, by Lemma 7.13, S, converges in the strong resolvent sense to Sy, where S, is
injective so that Sy ! is densely defined and closed. In particular,

_ _1 Sor _

S I+S) ' =1-1+5)"'> SyT+ Sy~

However,

-1
S.I+S) =5, ((S;1 +I)SE) = @+sH7,
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for any € > 0. It follows that S_! converges in the strong resolvent sense to Sy, so
that Sal = 3’51. That is, 051 is the quadratic form of Sal. Hence, p;, = (h(R)"1)*p €
Dom(Sal/z) for any p € C{3;,...,34}, and

2" (p.p)

q(I+T)*1 (p,p)
= Oal(ph,ph)
= q(sal/z)*sal/z (ph:ph)

= (82 R® P, Sy AR T D).

Hence, Y* := Sgl/z(h(R)—l)* is a contraction so that gyy+ = qq)-1-

By polar decomposition, there is a unitary, U so that UY* = /I + T . Recall
that,

Dom(h(R)*) = Ran ((h(R)")"") = Dom(s;"/%) = Ran (/%)
so that the operator
1/2

(Y9! = h(R)*S, ",

is well-defined, closed, and densely defined, and (Y"1 = JT+ TU. 1t follows that
4r+r = q(y+)-1y-1, 80 that for any x € Dom(h(R)),

qr(x, x) + (x, X)Fé qy+-1y-1(X, X)
= gs,(h(R)x, h(R)x)
= g1yt (MB)X, A(R)X) + g, (M(R)X, h(R)X)

= (X,X)Fé +q,x, X).
It follows that for all x € Dom(h(R)), gp(x,x) = q,(x,x), and since g is closable, this

proves that 4, with domain Dom(q,) = Dom(h(R)) D C{3;,...,34} is a closable form. By

Theorem 5.4, u is an absolutely continuous NC measure. [ |

Corollary 7.18. Any weak—# continuous NC measure u € WC(A;)+ is an AC NC
measure, WC(A])), € AC(A]),.
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Remark 7.19. The above result is in contrast to [16, Theorem 4.4], which implies that if
q is any closable quadratic form that is densely defined in a Hilbert space, K, that either
q is bounded, or g has a decomposition g = q; + g, where g, is again closable, and g, is
singular. Since the positive cone of all weak—:* continuous NC measures is hereditary, if
q = g, is not bounded, then g, cannot be the quadratic form of an NC measure, y, since
vy would necessarily be weak—+ continuous so that g, would be a closable quadratic
form by the above results. One can check that the decomposition in [16, Theorem 4.4]
applied to g, can never yield L—Toeplitz forms g, and g,.

It was observed already in [34, Section 2, Remark 2] that the set of all AC
(i.e., closable) positive semi-definite quadratic forms with dense domain in a separable
Hilbert space is not hereditary. It is the extra L—Toeplitz structure of the quadratic
forms we consider (i.e., the fact that our quadratic forms correspond to NC measures)

that ensures we obtain more precise analogues of Lebesgue decomposition theory.

8 The NC Lebesgue Decomposition

Theorem 8.1. If u € AC(A;)Jr is AC, then it is weak—x continuous so that the positive

cones of weak—x* continuous and AC measures coincide.

Proof. That WC(A2)+ C AC(A;)Jr was proven in Corollary 7.18. If u is AC, then by

definition the intersection space:
int(u, m) := 2 (H,) (| H* B,

is dense in %*’(HM), and the embedding, e, : int(u,m) — HZ(IB%gI) ~ Fé is densely

defined. As in the proof of Corollary 7.7, it is straightforward to verify that e,,, with
domain int(u, m) is closed. Notice also that e, is trivially a multiplier by the constant
NC function e, (Z) = I, for Z ¢ IB%%. It follows that all of the kernel vectors K{Z,y, v}

belong to the domain of €}, and that

eacK(Z,y, v} =K*{Z,y,v}.
It further follows that e intertwines L and V;:

e, LK, Z* e, (K, — Ko,)

= K —Kgn = (K, —Kgn)
w
= VK, Z*

= Ve, K;Z"
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Since e, is closed and densely defined, so is its adjoint, and it follows that X := C},ej,
is a closed, densely defined intertwiner with dense range in Fé(u). By Lemma 7.3 and
Lemma 7.7, Ran (X) NDom(X*) is dense in Ffi(u), and every vector in this set is a weak—x*
continuous vector for u. Since WC(u) is always closed, it follows that Ffi(,u) = Fé(uwc)

so that u is a weak—x* continuous NC measure. |

Definition 8.2. Avectorx € Fé(u) is a weak—x analytic vector for I, if the free Cauchy

transform of x belongs to H? (Bg).

Corollary 8.3. Any weak—=x analytic vector for I1, is a weak—x* continuous vector for
mn, and the set of all weak—x analytic vectors for n, is dense in Fé(uac), the largest

I1, —reducing subspace of weak—x continuous vectors for I1,,.
Proof. This follows immediately from the proof of the previous theorem. |

Theorem 8.4. A positive NC measure u € (A;)+ is weak—x continuous if and only if it

is AC and weak—sx singular if and only if it is singular. In particular, if
M= get s = Rye T Rws:

are the Lebesgue decomposition and weak—x Lebesgue decomposition of u, then u,, =

Pwe and pg = pyq.

Proof. Corollary 7.18 and Theorem 8.1 imply that u is weak—x continuous if and only
if it is AC. In particular, given any u € (A;)Jr, Fé(,uwc) is the largest reducing subspace

of weak—sx continuous vectors for I1,, and the previous theorem shows that F2(1ge) S

F2(jiy) SO that pug, < i, Conversely, Corollary 7.18 shows that
AT H,, ) (HABY),

is dense in " (H,, ) so that by definition, % (H, )< " (H,, ) and py. < g

Comparing the two direct sum decompositions,

Fi(w) = Fi(ug) @ Filuy)
| Il

Fi(w) = Fi(twe) © Fi(iys)

shows that F3(u,) = F2(11,,,), and we conclude that pg = . [
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The weak—* Lebesgue decomposition of any NC measure u € (A;) 4 clearly
recovers the classical Lebesgue decomposition of any finite, positive, regular Borel
measure on the circle (with respect to normalized Lebesgue measure), in the single-
variable case of d = 1. Since the weak—* Lebesgue decomposition and the Lebesgue
decomposition of any u € (AL)Jr are the same by the above theorem, it follows that our
reproducing kernel approach to Lebesgue decomposition theory provides a new proof of

Lebesgue decomposition of positive measures on the circle:

Corollary 8.5. Let u be a positive, finite, and regular Borel measure on the unit circle

oD. If u = u,, + 1, is the Lebesgue decomposition of u into AC and singular parts, then,

HTH,) = AT (H,,)dHTH,),

where
A, = (#rE) E®) ™, and @, (HD) = (0).

8.6 The cone of singular NC measures

We have seen that AC(A;) 4= WC(A;) 4 is a positive hereditary cone. It remains to show
that Sing(AL)+ = WS(AZl)Jr is also a positive cone (that it is hereditary was already

proven in Lemma 4.11).
Lemma 8.7. If u, A€ (A;)Jr, w is singular and X is type—L, then
At H,) ()" (H,) = {0).
In particular, by Theorem 4.5, this implies that FA(u + 1) = F(u) ® F5()).

Proof. Consider the closure of the intersection space in %”*(HM):
—l-ll7
Int,(4) = (@) (2 @)

By Corollary 6.23, if A is pure type—L, then II, is pure type—L, that is, I1, is unitarily
equivalent to L and hence has no direct summand of Cuntz type. By [20, Theorem
6.4], A is not column extreme and J#*(H,) then contains the constant functions so

that Proposition 4.8 applies. By Theorem 4.7 and Proposition 4.8, Int,, (1) is closed and
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V,—reducing, so the orthogonal projection P, : %*(HM) — Int, (1) commutes with
VW VZ' Let

€qc - Int, () — A (H,)

be the densely defined embedding. As before (see the proof of Corollary 7.7), it is easy
to check that e, is closed on its maximal domain, Dom(e,,) = j’ﬂ“(HM) N 2 (H,). Also
as in the proof of Theorem 8.1, since e, is trivially a multiplier by the constant NC

. . A TRV . . .
function e, (Z) = I,,, it follows that e} K = Ky *, and ey, intertwines V; and V, |py )

es Vi KyZ' =V, Ky Z" =V, el K3z .

Since A is AGC, the vector I + N, € Fczi(k) is a WC vector and is in the range of a bounded
intertwiner, Y : F5 — F2()), Yy = I + N, for some y € F3. If the vector y is not L—cyclic,

then consider the L—invariant subspace
Féy = \/ L%y.

(Here \/ denotes closed linear span.) Then, since y is a cyclic vector for L|F§ the NC

y®(cdl
Beurling Theorem [11, Theorem 2.1], [2, Theorem 2.3] implies that

F2y = Ran (@Y(R)) ,

for some right-inner (isometric) ©,(R) € Ry. Let y’ € Fé be such that ®,(R)y’ = y and

define
X :=Cles.C, YO, (R),  Dom(X):=C{Ly, ... Ly}y <Fj.
This operator is well defined since
XL'y = €he;.C, YO, (RLY
= CegC YLy
= GZeZCGA(L“ +N,)
= (t’;’;ej;CKé

_ * U NA
= CKIM
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The operator X is densely defined since y’ € Fé must be L—cyclic: if x € Fé is orthogonal
to \/ Ly’ then ©,(R)x L Ran (G)Y(R)) so that x = 0 since 0, (R) is an isometry. Finally, X
is also closable. This is a consequence of a general fact: if T is a densely defined closed
operator, C is a bounded operator and TC is densely defined, then it is necessarily closed

on
{x € Dom(C)| Cx € Dom(T)}.

Indeed, if p,,(L)y’ € Dom(X), p,, € C{3;,....34} is such that p,(L)y’ — 0 and Xp,,y — g,
then since Y’ := €, YO, (R) is bounded, Y'p,y’ — 0. Since e, is the adjoint of the closed

operator e, it is closed, and since y,, := Y'p,y’ € Dom(e},) obeys y,, — 0, and e}, .y,, —

ac’
€,g, it must be that g = 0. This proves that X is closable, and that C{3,, .34}y’ is a core
for its closure, X, which is densely defined in F3.

For simplicity of notation, write X in place of its closure, X. One can check (using

that Int, (1) is reducing for Vu) that X intertwines L and I1,. By Lemma 7.4, if X #£0,

then Ran(X) N Dom(X*) C Fczl(,u) is a non-empty Hﬂ—reducing subspace of weak—x
continuous vectors. Since u is weak—sx* singular, this is not possible and we conclude
that % (H,) 2" (H,) = {0}. [ |

Corollary 8.8. Let u € Sing(fl:;)Jr be singular. If y € (Aji)+ is such that y > u has
Lebesgue decomposition y = y,, + v, then u < y,.

If u, A € (AZZ)Jr are NC measures so that A dominates u, & < t2A for some t > 0,

then the bounded operator D,, := E} E, is A—Toeplitz (and has norm at most t?), that is,
nk(Lk)*Dﬂnk(Lj) = 81D,
and we have that
u(a) = (I+NM,DﬂnA(a)(1+NM))A; aecAg.

The positive semi-definite operator D, will be called the Arveson-Radon-Nikodym
derivative of p with respect to A. There is a special case where our Arveson—-Radon-
Nikodym derivative belongs to the commutant of the GNS representation r,, this
happens when I, is a Cuntz row isometry (i.e., if 4 is a column-extreme NC measure,

see [20]):
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Lemma 8.9. Let I, 0 be row isometries on H, J, respectively, and suppose that X : H —

J is a bounded (I1, o) —intertwiner, XT1¢ = ¢®X. If IT is a Cuntz unitary then also
X*o® = 1*X*

so that D := X*X belongs to the commutant of the von Neumann algebra generated by
I1, vN(IT), and D’ = XX* belongs to the commutant of vN(o).

Proof. Using that IT is Cuntz,
X = XIIT* = 0X®IdH*.

Hence,
o' X XTI}
o*X = =00 (X QIyI* =
aéX XHZ

This proves that XTI} = 07X, and taking adjoints yields the 1st claim:
M*x* = X*o“.
The commutation formulas are then easily verified:
DIT* = X*XTI* = X*0*X = 11°D.
Since D = X*X > 0, it follows that D also commutes with (I1%)*. Similarly,

D'o% = XX*0% = XT1*X* = o*D’.
[ ]

Remark 8.10. There is a theory of absolute continuity, Radon-Nikodym deriva-
tives and Lebesgue decomposition for completely positive operator-valued maps on
a C*—algebra initiated by Arveson [4, 15]. In this theory, if u,A are positive linear
functionals on a C*—algebra € and p < A, then the Arveson-Radon-Nikodym derivative
D,, defined as above, always belongs to the commutant of the left regular GNS
representation 7, .

In our theory, since A, is not a C*—algebra, this fails to be true in general. If A

is such that IT, is not a Cuntz row isometry, and A > u, the Arveson-Radon-Nikodym
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derivative D, is a positive semi-definite A—Toeplitz contraction, but it is generally not in
the commutant of I, . For example, if A = m is NC Lebesgue measure and x = m, where
x = x(R)1 and x(R) € R}’ is bounded, then  is dominated by m and the Arveson-Radon-
Nikodym derivative D u = x(R)*x(R) is not in the commutant of £; = C*(I, L) where here

we are identifying I1,, ~~ L. Indeed, the commutant of C*(I, L) is trivial.

Proof (of Corollary 8.8). Since AC and weak—x continuous are the same, we have
that P, = P, + P;_; = P, where P;,P;_; are the I1,—reducing projections onto the
type—L and Cuntz type—L subspaces of Fé(y). We first prove that D, P;_; = 0. Define
E:=E,P;p, and D := EE*, a positive semi-definite contraction on Fé(u). Observe that
E : F5(y) < F5(w) intertwines the Cuntz unitary I;_; := I1,P;_; and the row isometry
I,. By Lemma 8.9, D = EE* = E,P;_(E} is in the commutant of the von Neumann
algebra generated by I,

a _ o
DI = M4D.

It follows that if we define
p(LY) = (I+NM,DHﬁ(I+NM))W

then ¢ € (fl;l)Jr and ¢ < . Indeed, if p(L)*p(L) = u(L)* + u(L) for free polynomials p, u,

then if we extend ¢ to A} in the canonical way by
p@) = p@",

then

@(p*p)

T+ N, Du(l,)T +N,)),, + (I + N, Du(, )T +N,)),

= (I+N,D (u(HM)* + u(l'[ll)) I+N))), (Since HZ commutes with D.)
= (I +NM,Dp(1'IM)*p(1'IM)(I +N,)), (Since n, is a row isometry.)

= (I+N,,p(1,)*Dp(I,)I +N,)), = O.

This proves that ¢ is positive so that ¢ € (Azi)Jr is an NC measure. Also since D is a

positive contraction, it is clear that ¢ < u. However, by construction,

(p(La) = <PC_LE;(I+NV)I H‘;{/PC—LEZ(I+NV)>V’
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is an AC NC measure since any vector in the range of P,_; is a WC vector. Since ¢ is
also dominated by the singular NC measure p, Lemma 4.11 implies that ¢ = 0, and
P;_,E} =0sothatP;_ D, =P, [E*E, =0.

Now consider A := y;, the type—L part of y. By Proposition 8.7, we have that
AT (H,) (2 (H,) = {0}. Define,

(L") = (y, + L") =(I+N,, (D, +P)I +N,)).

It follows that D, = D, + P; and D, = EZE, where E, = Cge;C,, is a bounded embedding
of norm at most v/2, and e, AL (H,) — HT (H,) is the bounded embedding of norm at
most +/2. However, by Proposition 8.7,

HT(H,) ~ AT (H,) & H"(H)),

so that e, >~ e, ® e; must be a contraction since both e, and e, are contractive

"
embeddings. (Here, recall that we defined A := y;.) This proves that D = D, + P, is a

contraction. In particular, for any x € F3(y;) = F5()),

0 < (x,Dx), = (x,D,x), + (x,X), < (X,X),,
and this proves that D, P, = 0.
In conclusion, D, P,, = 0so that D, =D P, .+ D, P; =D, P, and u < y;. u

Corollary 8.11. The sets AC(A(E) 4 and Sing(A;) , of absolutely continuous and singular

positive NC measures on the free disk system are positive hereditary cones.

Proof. The set of positive AC NC measures, AC(A;)+, is a hereditary positive cone
by Lemma 6.18. Lemma 4.11 also proved that Sing(flzi)Jr is hereditary in (A;)Jr, and it
remains to show the set of singular NC measures is a positive cone.

Suppose that p;, u, € Sing(A;)+ are singular and let y = pu; + uy. Then by
Corollary 8.8, if P,

ac' Ps denote the Lebesgue decomposition reducing projections for IT,,

P,e= D, +D,,)P, =0,

so that I, = P; and y = pu; + u, is singular. |
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Corollary 8.12. Letpu € (A;l)Jr be a positive NC measure. The following are equivalent:
1. ueACAY), is AC.
2. T (H,) H?BE) is dense in 777 (H,).
3. The GNS row isometry n, is weak—* continuous, that is, the direct sum of
type—L and Cuntz type—L row isometries.
Every vector x € Fczl(y,) is a weak—x continuous vector for u.

5. The quadratic form g, with form domain A41 C Fé is closable.

Corollary 8.13. Given an NC measure u € (A;) +. the following are equivalent:
1. ne Sing(A;)+ is singular.
A (H,) NHABY) = (0).
F3(u +m) = F5(u) @ F3.
I1, is the direct sum of dilation type and von Neumann type row isometries.

ok W N

q,, with dense form domain A;1 € Fé is a singular form.

Corollary 8.14. If u, ) € (AZZ)Jr with (unique) Lebesgue decompositions p = g, + K,
A=Az, + Ag then

(W +Wge = Mae + rger and  (w+ N5 = pg + A

Proof. Sety :=pu+xi = (ug+Arz)+(Us+Ay) =Y.+ Vs Then by maximality p,,+2,, <
Y4 and also by Corollary 8.11 and Corollary 8.8, since ug + A is singular, ug + A5 < v,
and it follows that equality must hold in both cases. |

Example 8.15 (A singular NC measure of dilation type). Recall that there is a natural
bijection between (positive) NC measures and (right) NC Herglotz functions, © < H,.
The transpose map 1 also defines a natural involution that takes the right NC Herglotz
class onto the left NC Herglotz class of all locally bounded NC functions in IB%%I with
non-negative real part, see [21, Section 3.9]. The Cayley transform then implements a
bijection between the left NC Schur class of contractive NC functions in IB%% and and the
left NC Herglotz class. If u € (AZ)Jr is the (essentially) unique NC measure corresponding
to the contractive NC function B € [H* (]B%f\i])]l, we write 4 = up, and up is called the NC
Clark measure of B, see [21, Section 3] for details.

By [21, Corollary 7.25], if B € [H"O(IB%I%)]1 is inner, then its NC Clark measure is

singular, so that its GNS representation I := I1,, is a Cuntz row isometry that can be
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decomposed as the direct sum of a dilation-type row isometry and a von Neumann type

row isometry. For example, the left NC inner function B(Z) = Z, has NC Clark measure

n = Ug:

o 0 2€a 9
nl®) = ; a el
1 2¢a

and u(I) = 1. This is a “Dirac point mass” at the point (1,0) € B? on the boundary, 815%12\] of
the NC unit ball. One can verify that for this example L, + N, is a wandering vector for
I1,, and that the von Neumann part of of I1,, vanishes, so that the singular NC measure

1 = ug is purely of dilation type.

Funding

First named author (Michael T. Jury) partially supported by National Science Foundation (NSF)
grant DMS-1900364.

References

[1] Agler, J. and J. E. McCarthy. “Global holomorphic functions in several non-commuting
variables.” Canad. J. Math. 67 (2015): 241-85.

[2] Arias, A. and G. Popescu. “Factorization and reflexivity on Fock spaces.” Integral Equ. Oper.
Theory 23 (1995): 268-86.

[3] Aronszajn, N. “Theory of reproducing kernels.” Trans. Amer. Math. Soc. 68 (1950): 337-404.

[4] Arveson, W. B. “Subalgebras of C*-algebras.” Acta Math. 123 (1969).

[6] Ball, J. A., G. Marx, and V. Vinnikov. “Noncommutative reproducing kernel Hilbert spaces.”
J. Funct. Anal. 271 (2016): 1844-920.

[6] Cuntz, J. “Simple C*-algebras generated by isometries.” Comm. Math. Phys. 57 (1977): 173-85.

[7]1 Davidson, K. R. “%() is a free semigroup algebra.” Proc. Amer. Math. Soc. 134 (2006):
1753-7.

[8] Davidson, K. R., E. Katsoulis, and D. R. Pitts. “The structure of free semigroup algebras.” J.
Reine Angew. Math. 533 (2001): 99-126.

[9] Davidson, K. R. and E. G. Katsoulis. “Dilation theory, commutant lifting and semicrossed
products.” Doc. Math. 16 (2011): 781-868.

[10] Davidson, K. R., J. Li, and D. R. Pitts. “Absolutely continuous representations and a
Kaplansky density theorem for free semigroup algebras.” J. Funct. Anal. 224 (2005):
160-91.

[11] Davidson, K. R. and D. R. Pitts. “Invariant subspaces and hyper-reflexivity for free semi-
group algebras.” Proc. Lond. Math. Soc. 78 (1999): 401-30.

[12] Davidson, K. R. and D. Yang. “A note on absolute continuity in free semigroup algebras.”
Houston J. Math. 34 (2008): 283-8.

1.20Z @unp Z| uo Jasn epuo|d Jo AlsiaAiun Aq 0191065/ EZBBUI/UIWI/EE0L 0 | /I0P/3]01B-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]



62 M. T. Jury and R. T. W. Martin

[13]
(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

de Branges, L. Hilbert Spaces of Entire Functions. Englewood Cliffs, NJ: Prentice-Hall, 1968.
de Branges, L. “Square-Summable Power Series.” https://www.math.purdue.edu/~branges/
square-summable.pdf, 2015.

Gheondea, A. and A. S. Kavruk. “Absolute continuity for operator valued completely positive
maps on C*-algebras.” J. Math. Phys. 50 (2009).

Hassi, S., Z. Sebestyén, and H. de Snoo. “Lebesgue type decompositions for nonnegative
forms.” J. Funct. Anal. 257 (2009): 3858-94.

Hoffman, K. Banach Spaces of Analytic Functions. Englewood Cliffs, NJ: Prentice-Hall,
1968.

Jury, M. T. and R. T. W. Martin. “Non-commutative Clark measures for the free and Abelian
Toeplitz algebras.” J. Math. Anal. Appl. 456 (2017): 1062-100.

Jury, M.T. and R. T. W. Martin. “The Smirnov classes for Drury—-Arveson and Fock space.”
Indiana Univ. Math. J. (2018): in press.

Jury, M.T. and R. T. W. Martin. “Column-extreme multipliers of the free Hardy space.”
J. Lond. Math. Soc. 20 (2020): 457-89.

Jury, M.T. and R. T. W. Martin. “Fatou’s theorem for non-commutative measures.” (2019):
preprint arXiv:1907.09590.

Jury, M. T. and R. T. W. Martin. “Operators affiliated to the free shift on the free Hardy
space.” J. Funct. Anal. 277 (2019): 108285.

Kaliuzhnyi-Verbovetskyii, D. S. and V. Vinnikov. Foundations of Free Noncommutative
Function Theory, vol. 199. Providence, RI: American Mathematical Society, 2014.

Kato, T. Perturbation Theory for Linear Operators. New York, NY: Springer, 1980.

Kennedy, M. “Wandering vectors and the reflexivity of free semigroup algebras.” J. Reine
Angew. Math. 2011 (2011): 47-53.

Kennedy, M. “The structure of an isometric tuple.” Proc. Lond. Math. Soc. 106 (2013):
1157-77.

Paulsen, V. and M. Raghupathi. An Introduction to the Theory of Reproducing Kernel
Hilbert Spaces. Cambridge Studies in Advanced Mathematics. Cambridge, United Kingdom:
Cambridge University Press, 2016.

Pedersen, G. K. Analysis Now. New York, NY: Springer, 1989.

Popescu, G. Entropy and Multivariable Interpolation. Providence, RI: American Mathemati-
cal Society, 2006.

Popescu, G. “Free holomorphic functions on the unit ball of B(H)"." J. Funct. Anal. 241 (2006):
268-333.

Read, C. J. “A large weak operator closure for the algebra generated by two isometries.”
J. Operator Theory 54 (2005): 305-16.

Reed, M. and B. Simon. Methods of Modern Mathematical Physics, vol. 1. Functional
Analysis. San Diego, CA: Academic Press, 1980.

Salomon, G., O. Shalit, and E. Shamovich. “Algebras of bounded noncommutative analytic
functions on subvarieties of the noncommutative unit ball.” Trans. Amer. Math. Soc. 370
(2018): 8639-90.

1.20Z @unp Z| uo Jasn epuo|d Jo AlsiaAiun Aq 0191065/ EZBBUI/UIWI/EE0L 0 | /I0P/3]01B-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]


https://www.math.purdue.edu/~branges/square-summable.pdf
https://www.math.purdue.edu/~branges/square-summable.pdf

(34]

[35]

[36]

[37]

NC Lebesgue Decomposition 63

Simon, B. “A canonical decomposition for quadratic forms with applications to monotone
convergence theorems.” J. Funct. Anal. 28 (1978).

Sz.-Nagy, B. and C. Foias. Harmonic Analysis of Operators on Hilbert Space. New York, N.Y:
American Elsevier Publishing Company, Inc, 1970.

Taylor, J. L. “Functions of several noncommuting variables.” Bull. Amer. Math. Soc. 79 (1973):
1-34.

von Neumann, J. “On rings of operators II1.” Ann. Math. 41 (1940): 94-161.

1.20Z @unp Z| uo Jasn epuo|d Jo AlsiaAiun Aq 0191065/ EZBBUI/UIWI/EE0L 0 | /I0P/3]01B-80UBAPE/UIWI/WOD dNO"dIWSpEI.//:Sd)Y WO} POPEOjUMO(]



	Lebesgue Decomposition of Non-Commutative Measures
	1 Introduction
	1.1 Three approaches to Lebesgue decomposition theory

	2 Background: The Free Hardy Space
	3 Non-Commutative Measures
	3.5 Non-commutative Lebesgue measure
	3.7 Left regular represenations of the Cuntz--Toeplitz algebra
	3.9 Free Cauchy transforms
	3.10 Image of GNS row isometry under free Cauchy transform

	4 Cauchy Transforms of NC Measures
	5 AC Measures and Closable L-Toeplitz Forms
	6 Lebesgue Decomposition of Row Isometries
	6.24 Type -L NC measures: the Helson--Lowdenslager approach

	7 Weak-* Versus Absolute Continuity
	7.1 NC measures dominated by NC Lebesgue measure
	7.5 Symmetric AC functionals
	7.10 Asymmetric AC functionals

	8 The NC Lebesgue Decomposition
	8.6 The cone of singular NC measures



