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Abstract
Motivated by classical notions of partial convexity, biconvexity, and bilinear matrix
inequalities, we investigate the theory of free sets that are defined by (low degree)
noncommutative matrix polynomials with constrained terms. Given a tuple of sym-
metric polynomials �, a free set K is called �-convex if for all X ∈ K and isometries
V satisfying V ∗�(X)V = �(V ∗XV ), we have V ∗XV ∈ K. We establish an Effros–
Winkler Hahn–Banach separation theorem for �-convex sets; they are delineated by
linear pencils in the coordinates of � and the variables x .
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1 Introduction

Convexity is ubiquitous in quantitative sciences. A setC ⊂ R
g is convex if for any two

points in C the line segment connecting them lies entirely in C . Such sets, whenever
they are closed, are described by (possibly infinitely many) affine linear inequalities.
Convexity is fundamental inmany areas ofmathematics, including functional analysis,
optimization, and geometry [4]. The convex sets described by finitely many linear
inequalities are precisely the polytopes, a very restrictive class. A much bigger but
still very tractable class of convex sets C , which are the central objects in semidefinite
programing [5], are described by linear matrix inequalities (LMIs), i.e.,

C =
{
x ∈ R

g | A0 +
∑
j

A j x j � 0
}
,

where A j are self-adjoint d×d matrices and T � 0 means that the self-adjoint matrix
T is positive semidefinite. Such sets are called spectrahedra. They appear in several
branches of mathematics, e.g., optimization and algebraic geometry [5].

The linear pencil L(x) = A0 + ∑
j A j x j is naturally evaluated at tuples of self-

adjoint n × n matrices X by

L(X) = A0 ⊗ In +
∑
j

A j ⊗ X j

leading to the notion of a free spectrahedron

DL = (DL(n))n where DL(n) = {X ∈ Sn(C)g | L(X) � 0},

where Sn(C) denotes the set of all n× n self-adjoint matrices. Free spectrahedra arise
naturally in applications such as systems engineering and control theory [6]. They are
matrix convex sets [7,9,11,14,15,18,19,32] and are dual to operator systems and thus
intimately connected to the theory of completely positive maps [27]. Moreover, the
Effros–Winkler Hahn–Banach separation theorem [11] says that matrix convex sets
are determined by LMIs in much the same way that convex sets are determined by
linear inequalities.

Sets and functions that have some partial convexity or other geometric features,
say convex in some coordinates with the other held fixed, arise in applications. Free
noncommutative polynomials, and more generally free rational functions, arise in
engineering systems problems governed by a signal flow diagram. Typically, there are
two classes of variables. The system variables depend on the choice of system param-
eters and produce polynomial, or more generally rational, inequalities (in the sense
of positive semidefinite) in the state variables. The algebraic form of these inequali-
ties involves (matrix-valued) free polynomials or rational functions and depends only
upon the flow diagram, and not the particular choice of system variables. Convexity
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Noncommutative Partial Convexity 3139

in the state variables, for a given choice of system variables, is an important opti-
mization consideration. One way to study partial convexity is through bilinear matrix
inequalities (BMIs) [22]1. A BMI is an expression of the form

A0 +
∑

A j x j +
∑
k

Bk yk +
∑
p,q

Cpq xp yq � 0 (1.1)

for self-adjoint matrices A j , Bk,Cp,q [31]. Domains defined by BMIs are convex
in the x and y variables separately. The article [16] contains some noncommutative
results on partial convexity.

In analogy with matrix convexity and BMIs, it makes sense to consider matrix
polynomial inequalities built from a restricted set of predetermined polynomials giving
rise to the notion of �-convexity. One type of inequality we consider is of the form

I − Ax − By − Cy2 � 0.

Sets describable in this form are “convex in x” and unconstrained in y. That is, by
allowing extra nonlinear terms in thematrix inequality,we can isolate certain geometric
features of the domain. Allowing xy, yx as in (1.1), obtains a class of biconvex sets.

Often times in this setting, the results, while finite-dimensional in nature, require
working with operator inputs or coefficients for the inequalities, fitting in with larger
trends in matrix convexity [8,12,13,25,26] and the emerging area of free analysis
[1,3,21,28–30].

1.1 Free Polynomials and Their Evaluations

Let x = (x1, . . . , xg) denote a g-tuple of freely noncommuting variables. Let 〈x〉
denote the semigroup of words in x and we often use 1 to denote the unit ∅. Let C〈x〉
denote the algebra of finiteC-linear combinations of words in x . An element p ∈ C〈x〉
is a free polynomial, or just polynomial for short, and takes the form

p(x) =
∑

w∈〈x〉
pww, (1.2)

where the sum is finite and pw ∈ C. There is a natural involution ∗ on 〈x〉 determined
by x∗

j = x j for 1 ≤ j ≤ g and (wu)∗ = u∗w∗ for u, w ∈ 〈x〉. This involution
naturally extends to C〈x〉. For instance, for the polynomial p of Eq. (1.2),

p∗ =
∑

pww∗.

Since x∗
j = x j the variables x are referred to as symmetric variables.

Let S(C)g denote the sequence, or graded set, (Sn(C)g)∞n=1, where Sn(C)g is the
set of g-tuples (X1, . . . , Xg) of self-adjoint elements of Mn(C). Elements of C〈x〉 are
1 See also the MATLAB toolbox, https://set.kuleuven.be/optec/Software/bmisolver-a-matlab-package-
for-solving-optimization-problems-with-bmi-constraints.
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naturally evaluated at an X ∈ S(C)g. For a word

w = x j1 x j2 · · · x jN ∈ 〈x〉,

and X ∈ Sn(C)g,

w(X) = X j1 X j2 · · · X jN ∈ Mn(C).

Given p as in Eq. (1.2),

p(X) =
∑

w∈〈x〉
pww(X) ∈ Mn(C).

Thus p determines a (graded) function p : S(C)g → M(C), where M(C) is the
(graded) set M(C) = (Mn(C))n . Likewise a tuple p = (p1, . . . , pr) ∈ C〈x〉1×r =
M1,r(C〈x〉) determines a mapping p : S(C)g → M(C)r.

A polynomial is symmetric if it is invariant under the involution. As is well known,
p ∈ C〈x〉 is symmetric if and only if p(X)∗ = p(X) for all X ∈ S(C)g. In this case
p determines a mapping p : S(C)g → S(C)1.

Certain matrix-valued free polynomials will play an important role in this article.
A μ × μ matrix-valued free polynomial p ∈ Mμ(C〈x〉) takes the form of equation
(1.2), but now the coefficients pw lie in Mμ(C). Such a polynomial p is evaluated at
a tuple X ∈ Sn(C)g using the tensor (Kronecker) product as

p(X) =
∑

pw ⊗ w(X) ∈ Mμ(C) ⊗ Mn(C),

and p is symmetric if p(X)∗ = p(X) for all X ∈ S(C)g. Equivalently, p is symmetric
if pw∗ = p∗

w for all words w.

1.2 0-Convex Sets

Let � = (γ1, . . . , γr) denote a tuple of symmetric free polynomials with γ j = x j for
1 ≤ j ≤ g ≤ r. We also use � : S(C)g → S(C)r to denote the resulting mapping,

�(X) = (γ1(X), . . . , γr(X)).

A pair (X , V ), where X ∈ Sn(C)g and V : C
m → C

n is an isometry, is a �-pair
provided

V ∗�(X)V = �(V ∗XV ).

Let C� denote the collection of �-pairs. For instance, if U is an n × n unitary matrix
and X ∈ Sn(C)g, then (X ,U ) is a �-pair.

A subset K ⊂ S(C)g is a sequence (K(n))n where K(n) ⊂ Sn(C)g for each n. A
subsetK ⊂ S(C)g is a free set if it is closed with respect to direct sums, simultaneous
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unitary similarity, and restrictions to reducing subspaces.2 A set K is a �-convex set
if it is free and if

X ∈ K and (X , V ) ∈ C� �⇒ V ∗XV ∈ K.

In the special case thatr = g (equivalently�(x) = x)�-convexity reduces to ordinary
matrix convexity.

Example 1.1 Consider the case of two variables (x, y) = (x1, x2) and � =
{x, y, y2}. For notational ease, we write y2-convex instead of {x, y, y2}-convex. A
pair ((X ,Y ), V ) is in C� if and only if the range of V reduces Y and, as shown in
Proposition 4.1, a free set K is y2-convex if and only if (X1,Y ), (X2,Y ) ∈ K(n)

implies ( X1+X2
2 ,Y ) ∈ K(n). Using either of these criteria, it is readily verified that,

for d a positive integer, the TV screen TVd = (TVd(n))n defined by

TVd(n) = {(X ,Y ) : I − X2 − Y 2d � 0} ⊂ Sn(C)2 (1.3)

is a free set that is y2-convex. Section 4 treats y2-convexity. In these directions, see
also [2,10,16]. ��
Example 1.2 Let � = {x, y, xy + yx, i(xy − yx))}. It is straightforward to verify that
((X ,Y ), V ) is a�-pair if and only if V ∗XYV = V ∗XV V ∗YV . Thus it is sensible, for
notational purposes, towrite xy in place of themore cumbersome (xy+yx, i(xy−yx))
and xy-convex in place of {x, y, xy + yx, i(xy − yx)}-convex. The convexity in
this example is intimately connected with Bilinear Matrix Inequalities (BMIs)3 as
explained in Sect. 2.2, which were previously studied in [22]. ��

Of course a theory of convexity should contain Hahn–Banach separation results.
In the case of matrix convex sets, this role is played by monic linear pencils and the
Effros–Winkler Matricial Hahn–Banach separation theorem [11], or just the Effros–
Winkler theorem for short. A monic linear pencil M ∈ Mμ(C〈x〉) is a symmetric
matrix-valued polynomial of the form

M(x) = Iμ +
g∑
1

A j x j ,

where A ∈ Sμ(C)g. We refer to μ as the size of the pencil M . The following version
of the Effros–Winkler theorem can be found in [17,19].

Theorem 1.3 If K ⊂ S(C)g is a closed matrix convex set containing the origin and if
Y /∈ K, then there is a monic linear pencil M such that M(K) � 0, but M(Y ) � 0.
Furthermore, if Y has size �, then M can be chosen to have size �.

2 Explicitly, if X ∈ K(n) and Y ∈ K(m), then X ⊕ Y ∈ K(n + m); if U is a n × n unitary, then
U∗XU = (U∗X1U , . . . ,U∗XgU ) ∈ K(n); and if K ⊂ C

n is k dimensional reducing subspace for X ,
then X |K ∈ K(k).
3 See for instance the MATLAB toolbox, https://set.kuleuven.be/optec/Software/bmisolver-a-matlab-
package-for-solving-optimization-problems-with-bmi-constraints.
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For �-convex sets, the analog of a monic linear pencil is a monic �-pencil—a
symmetric L ∈ Mμ(C〈x〉) of the form

L(x) = Iμ +
r∑
j=1

A jγ j (x),

where A ∈ Sμ(C)r. In Sect. 2, analogs of the Effros–Winkler theorem for �-convex
sets are established. For instance, a basic separation result that follows from Theo-
rem 2.4 is the following.

Theorem 1.4 Suppose K ⊂ S(C)g is �-convex, contains 0, and �(0) = 0. If the
matrix convex hull of �(K) ⊂ S(C)r is closed and if Y ∈ S�(C)g \ K(�), then there
is a monic �-pencil L of size � such that L is positive semidefinite on K, but L(Y ) is
not positive semidefinite.

Operator convexity is defined at the outset of Sect. 3. In the operator setting, the
closedness hypothesis on the (operator) convex hull of �(K) is not needed. It is closed
automatically by Theorem 3.3.

Theorem 1.5 (Theorem3.8) SupposeK is a bounded, strong operator topology closed,
�-convex set that contains 0 and�(0) = 0. If Y /∈ K, then there exists a positive integer
N and a monic �-pencil L of size N such that L takes positive semidefinite values on
K, but L(Y ) is not positive semidefinite.

Bydirect summing all�-pencilswith rational coefficients that are positive semidefi-
nite onK, one obtains a single operator�-pencil L with bounded coefficientswhenever
0 is in the interior of the convex hull of �(K). That is, by this routine argument we
obtain the following corollary.

Corollary 1.6 Suppose K is strong operator topology closed, �-convex, bounded, con-
tains 0, and �(0) = 0. Suppose also that 0 is in the interior of the convex hull of �(K).

Then there exists a monic operator �-pencil L such that K = {X : L(X) � 0}.
The hypotheses of Corollary 1.6 are met whenever the span of � does not contain

a positive polynomial, which is the content of Theorem 2.6. For example, this holds
whenever the coordinates of � are multilinear.

1.3 Reader’s Guide

Section 2 develops the framework of �-convexity. Section 2.1 discusses �-convex
hulls and proves an analog of the Effros–Winkler theorem for �-convex sets in Theo-
rem 2.4. Free semialgebraic sets and�-convex polynomials are introduced and treated
in Sect. 2.3. Section 3 deals with a more robust class of�-convex sets. Here, by adding
extra points, further structure is obtained. The article concludes with an investigation
of y2-convexity in Sect. 4.

The authors thank Bill Helton for his insights and helpful conversations and Tom-
Lukas Kriel for patiently explaining his results in [23].
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2 General Theory of 0-Convex Sets

We now introduce the basic notions related to �-convexity. The main result of this
section is Theorem 2.4, giving an Effros–Winkler type separation result for �-convex
sets. In Sect. 2.3, we touch upon �-convex polynomials, a topic we explore further in
the accompanying paper [20].

2.1 Convex Hulls

The �-convex hull of a free set K, the intersection of all �-convex sets containing
K, is denoted �-co(K). When r = g (and thus �(x) = x) �-co(K) is the ordinary
matrix convex hull of K, denoted matco(K).

Proposition 2.1 If K ⊂ S(C)g is a free set, then

�-co(K) = {V ∗XV : X ∈ K, (X , V ) ∈ C�}.
Proof Let K = {V ∗XV : X ∈ K, (X , V ) ∈ C�}. It is readily verified that K is a
�-convex set that containsK. On the other hand, by definition, �-co(K) must contain
K . ��
Proposition 2.2 Suppose K ⊂ S(C)g is a free set and X ∈ S(C)g. The point X is in
�-co(K) if and only if �(X) is in matco(�(K)). Equivalently,

�−1(matco(�(K))) = �-co(K).

Proof First suppose X ∈ �-co(K). By Proposition 2.1, there exists a Y in K and
an isometry V such that V ∗�(Y )V = �(V ∗YV ) and X = V ∗YV . Thus, �(X) =
V ∗�(Y )V , and therefore �(X) ∈ matco(�(K)).

Conversely, suppose �(X) ∈ matco(�(K)). There is a Y ∈ K and an isometry V
such that �(X) = V ∗�(Y )V . Comparing the first g coordinates gives X = V ∗YV
and hence (Y , V ) is �-pair. Since Y ∈ K and (Y , V ) is a �-pair, Proposition 2.1
implies X ∈ �-co(K). ��
Proposition 2.3 The projection of matco(�(K)) onto the first g coordinates is
matco(K).

Proof The setmatco(�(K)) ismatrix convex.Hence its projection onto the firstg coor-
dinates is matrix convex and containsK. Therefore this projection contains matco(K).
On the other hand, by definition, this projection must be contained in matco(K). ��

2.2 Hahn–Banach Separation and Pencils

As a special case of a matrix-valued free polynomial, a�-pencil (of size d) is a (affine)
linear pencil L in (γ1, . . . , γr)whose coefficients lie in Sd(C).Thus, there is a positive
integer d and A0, A1, . . . , Ar ∈ Sd(C) such that

L(x) = A0 +
∑

A jγ j (x). (2.1)
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Since A j ∈ Sd(C) and γ j are symmetric polynomials, L is symmetric, and hence
at times we refer to L as a symmetric �-pencil. The pencil L is monic if A0 = Id .
For example, in the case of two variables (x, y), a symmetric monic xy-pencil can be
expressed as

L(x, y) = I + Ax x + Ay y + Bxy + B∗yx,

where Ax , Ay are self-adjoint. A symmetric monic y2-pencil is of the form

L(x, y) = I + Ax x + Ay y + By2,

where Ax , Ay , and B are self-adjoint. In the special case that r = g (equivalently
�(x) = x), L(x) = I + ∑

A j x j is known as amonic linear pencil.
A pencil L with coefficients in Sd(C) as in Eq. (2.1) is evaluated at a tuple X ∈

Sn(C)g using the tensor product as

L(X) = A0 ⊗ In +
∑

A j ⊗ γ j (X) ∈ Sd(C) ⊗ Sn(C).

The free semialgebraic sets associated to a symmetric �-pencil L ,

D̂L := {X ∈ S(C)g : L(X) � 0} (resp.PL := {X ∈ S(C)g : L(X) � 0}),

are�-convex. A difficult question is to determine when a closed (resp. open)�-convex
set is the positivity (resp. strict positivity) set of a �-linear pencil.

Given a subset S ⊂ S(C)g, its (levelwise) closed matrix convex hull is denoted
by matco(S). Thus matco(S)(n) is the closure of matco(S)(n) in Sn(C)g. A routine
argument shows matco(S) is also matrix convex.

Theorem 2.4 Suppose K is �-convex, contains 0, and �(0) = 0. If Y ∈ S�(C)g and
�(Y ) /∈ matco(�(K))(�), then there exists a monic �-pencil L of size � such that
L(K) � 0, but L(Y ) � 0. In particular, if matco(�(K)) is closed, then for each
Y /∈ K(�) there exists a monic �-pencil L of size � such that L(K) � 0, but L(Y ) � 0.

Proof Since �(Y ) /∈ matco(�(K))(�) and matco(�(K)) is a closed matrix convex
subset of S(C)r containing 0, Theorem 1.3 implies there is a monic linear pencil

M(z) = I� +
r∑
j=1

A j z j

of size � such that M(Z) � 0 for all Z ∈ matco(�(K)), but M(�(Y )) � 0. Thus
L ′ = M◦� is amonic�-pencil of size � that is indefinite at Y and positive semidefinite
on K. Replacing L ′ by

L(z) = t I + (1 − t)L ′(z) = I� +
∑

t A j z j
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for small enough t ∈ (0, 1) produces a monic �-pencil of size � indefinite at Y such
that L(K) � 0.

To complete the proof, suppose matco(�(K)) is closed and Y /∈ K = �-co(K).
Since, by Proposition 2.2, �(Y ) /∈ matco(�(K)) = matco(�(K)) the existence of L
follows from what has already been proved. ��
Remark 2.5 In Theorem 2.4, matco(�(K)) can be replaced by any matrix convex set
R containing matco(�(K)) such that

�-co(K) = �−1(R ∩ range(�)).

This ambiguity complicates the problem of determining when a �-convex set is the
positivity set of a monic �-pencil. ��
Theorem 2.6 Suppose K is �-convex, contains 0, and �(0) = 0. The real span of
{γ j : 1 ≤ j ≤ r} contains a polynomial q ∈ C〈x〉 such that q(X) � 0 for X ∈ K if
and only if 0 is not in the interior of matco(�(K))(1) ⊂ R

r.

Proof Suppose 0 is not in the interior ofmatco(�(K))(1). In this case 0 is in the bound-
ary of matco(�(K))(1), since �(0) = 0. Hence, as matco(�(K))(1) is convex, there
exists a linear functional λ : R

r → R such that λ is nonnegative on matco(�(K))(1).
Thus λ(z) = ∑r

j=1 λ j z j for some λ j ∈ R. Set q = ∑r
j=1 λ jγ j .

Suppose n is a positive integer, Y ∈ Sn(C)g, and h ∈ C
n is a unit vector. Identify

h as an isometry h : C → C
n , let y = h∗�(Y )h and observe,

λ(y) =
r∑
j=1

λ j y j =
r∑
j=1

λ j h
∗γ j (Y )h

=h∗
⎡
⎣

r∑
j=1

λ jγ j (Y )

⎤
⎦ h = h∗q(Y )h.

(2.2)

If Y ∈ K(n) and h ∈ C
n is any unit vector then, by Proposition 2.1, y ∈

matco(�(K))(1). Thus,

0 ≤ λ(y) = h∗q(Y )h

and it follows that q(Y ) � 0. Hence q(Y ) � 0 on K.

To prove the converse, suppose 0 is in the interior of matco(�(K))(1) and q is in
the real span of {γ1, . . . , γr}. Thus there is a λ ∈ R

r such that q = ∑r
j=1 λ jγ j .

View λ : R
r → R as the linear map λ(z) = ∑r

j=1 λ j z j . Since λ(0) = 0 and 0 is in
the interior of matco(�(K)), there exists y ∈ matco(�(K))(1) such that λ(y) < 0.
Since y ∈ matco(�(K))(1), by Proposition 2.1 there exists an n, a vector h ∈ C

n , and
Y ∈ K(n) such that y = h∗�(Y )h. Thus, by Eq. (2.2),

0 > λ(y) = h∗q(Y )h.

Therefore q(Y ) � 0 and the proof is complete. ��
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2.3 0-Convex Polynomials

A symmetric p ∈ Mμ(C〈x〉) is a �-convex polynomial if, for each (X , V ) ∈ C� ,

(Iμ ⊗ V )∗ p(X)(Iμ ⊗ V ) − p(V ∗XV ) � 0.

It is a �-concave polynomial if −p is �-convex.

2.3.1 Free Semialgebraic Sets

Given a symmetric polynomial p ∈ Mμ(C〈x〉) with p(0) � 0 and a positive integer
n, let

D̂p(n) = {X ∈ Sn(C)g : p(X) � 0}

and let Dp(n) denote the closure of

Pp(n) = {X ∈ Sn(C)g : p(X) � 0}.

Let D̂p denote the sequence (D̂p(n))n . Likewise let Pp = (Pp(n))n and Dp =
(Dp(n))n . The sets D̂p, Dp, and Pp are free analogs of basic semialgebraic sets. We
refer to all of these (possibly distinct) sets as free semialgebraic sets. As an example,
the sets TVd of (1.3) are free semialgebraic. The inequalities arising from signal flow
diagrams give rise to free semialgebraic sets, or more generally sets defined by rational
inequalities.

Free semialgebraic sets that have additional geometric properties, such as being
star-like, satisfy cleaner versions of our main results, e.g., Corollary 3.15. One of our
main goals along the lines of [17] is to develop constrained simple representations
of semialgebraic sets with certain geometric properties, that is, represent them as a
positivity set of a �-pencil.

Proposition 2.7 If p ∈ Mμ(C〈x〉) is a �-concave polynomial, then D̂p and Pp are
�-convex.

Proof If X ∈ D̂p and (X , V ) is a �-pair, then (Iμ ⊗V )∗ p(X)(Iμ ⊗V ) � 0 and, since
p is �-concave,

p(V ∗XV ) � (Iμ ⊗ V )∗ p(X)(Iμ ⊗ V ) � 0.

Therefore V ∗XV ∈ D̂p and hence D̂p is �-convex. The same argument shows Pp is
�-convex. ��

An f ∈ Mν×μ(C〈x〉) is a �-concomitant if

(Iμ ⊗ V )∗ f (X)(Iν ⊗ V ) = f (V ∗XV )

for every (X , V ) ∈ C� .
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Corollary 2.8 If f ∈ Mμ(C〈x〉) is a �-concomitant, then D̂ f and P f are �-convex.

Proof If f is a�-concomitant, then f is�-concave and hence Proposition 2.7 applies.
��

Remark 2.9 If L is a monic �-pencil and f j ∈ Mμ j×μ(C〈x〉) for j = 1, . . . , N are
�-concomitant, then

M(x) =

⎛
⎜⎜⎜⎝

IN

f1
...

fN
f ∗
1 . . . f ∗

N L

⎞
⎟⎟⎟⎠

is a �-concomitant. Hence DM is �-convex. By taking a Schur complement, DM =
Dp, for

p = L −
∑

f ∗
j f j ,

which has the form of a monic �-pencil minus a sum of hermitian squares of a �-
concomitant polynomials. ��

Rudimentary classification results for partially convex free polynomials exist
in [16]; several classes of �-convex functions for specific cases will be given in the
sequel [20].

3 The Operator Setting

In this section, the notion of �-convexity is extended to tuples of operators. While the
matrix case is our primary interest, apparent defects in the geometry, such as level sets
not “varying continuously,” necessitates an appeal to the penumbral operator case. We
will see in Sect. 3.4 that tools from the operator setting lead to results for matrix �-
convexity. The remainder of this section is organized as follows. Section 3.1 contains
preliminary results, including an analog of Proposition 2.2 (see Proposition 3.1) and
the key fact that, for a strong operator topology (SOT)-closed and bounded free set K,
the operator convex hull of �(K) and the �-operator convex hull of K are again SOT-
closed (see Theorem 3.3). Versions of the Effros–Winkler theorem for operator convex
sets and operator �-convex sets are established in Sects. 3.2 and 3.3, respectively. The
section concludes with the desired applications of operator �-convexity to matrix
�-convexity for free semialgebraic sets in Sect. 3.4.

3.1 Operator 0-Convexity and the Strong Operator Topology

Fix an infinite dimensional separable complexHilbert spaceH and let B(H)
g
sa denotes

the g-tuples of self-adjoint bounded operators onH. We equip B(H)
g
sa with the max-

imum norm ‖X‖ = max{‖X1‖, . . . , ‖Xg‖}. A subset K ⊂ B(H)g is a free set if it is
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closed under unitary similarity and closed under direct sums, whereH⊕H⊕· · ·⊕H
is identified with H.

By analogy with the matricial theory from Sect. 2, let � = (γ1, . . . , γr ) denote
a tuple of symmetric free polynomials with γ j = x j for 1 ≤ j ≤ g ≤ r, and let
� : B(H)

g
sa → B(H)rsa denote the resulting mapping on self-adjoint operator tuples.

As before, (X , V ) is called a �-pair provided X ∈ B(H)
g
sa , V : H → H is an

isometry, and

V ∗�(X)V = �(V ∗XV ).

Let C� denote the collection of (operator) �-pairs.
A free set K ⊂ B(H)

g
sa is called operator convex if whenever X ∈ K and V :

H → H is an isometry, then V ∗XV ∈ K. It is called operator �-convex if

X ∈ K and (X , V ) ∈ C� �⇒ V ∗XV ∈ K.

In the special case that r = g (equivalently �(x) = x) �-convexity reduces to
ordinary operator convexity. The operator �-convex hull of a free set K ⊂ B(H)

g
sa is

the intersection of all operator �-convex sets containing K and is denoted � -opco(K).

It is immediate that Propositions 2.1 and 2.2 have operator analogs.

Proposition 3.1 If K ⊂ B(H)
g
sa is a free set, then

� -opco(K) = {V ∗XV : X ∈ K, (X , V ) ∈ C�} and

�−1(opco(�(K))) = � -opco(K).

Wenow show that the operator convex hull of a boundedSOT-closed free set is again
SOT-closed, eliminating certain technical difficulties in absence of a Caratheodory-
type theorem for �-convexity. The proof uses a Heine–Borel type compactness
principle from operatorial noncommutative function theory, which was previously
applied by [24].

Lemma 3.2 ([24, Lemma 4.5 and Remark 4.6]) Let Xn be a bounded sequence of
operator tuples in B(H)g. Then there exists a sequence Un of unitary operators onH
and a subsequence along which U∗

n XnUn and U∗
n both converge in SOT.

Theorem 3.3 SupposeK ⊂ B(H)
g
sa is a free set. IfK is bounded and SOT-closed, then

opco(�(K)) and � -opco(K) are SOT-closed.

Proof By the set equality in Proposition 3.1, it suffices to show opco(�(K)) is SOT-
closed, since � is SOT-continuous on bounded sets as it is a free polynomial mapping.

SupposeY is in the SOT-closure of opco(�(K)).There exist isometries Vn and Xn ∈
K such that V ∗

n �(Xn)Vn
SOT→ Y . By Lemma 3.2 applied to (Vn, Xn) ∈ B(H)g+1,

there exist unitaries Un such that, after passing to a subsequence, U∗
n VnUn

SOT→ V ,

U∗
n XnUn

SOT→ X , and U∗
n

SOT→ W , where V ,W are isometries, and X ∈ K since K is
free and SOT-closed.
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Since U∗
n Vn = (U∗

n VnUn)U∗
n , we have U∗

n Vn
SOT→ VW and a fortiori that

V ∗
n Un

WOT→ W ∗V ∗. Moreover, �(U∗
n XnUn)U∗

n Vn
SOT→ �(X)VW since multipli-

cation is SOT-continuous on bounded sets. Note that if Sn
WOT→ S and Tn

SOT→ T , then

SnTn
WOT→ ST . Hence

Y = SOT-limn V
∗
n �(Xn)Vn

= SOT-limn V
∗
n Un�(U∗

n XnUn)U
∗
n Vn

= WOT-limn V
∗
n Un[�(U∗

n XnUn)U
∗
n Vn]

= W ∗V ∗[�(X)VW ] = (VW )∗�(X)VW .

Hence Y = (VW )∗�(X)VW ∈ opco(�(K)). ��
Remark 3.4 Note that, in the context of Theorem 3.3, as opco(�(K)) is convex and
SOT-closed, it is alsoWOT-closed. The proof that opco(�(K)) is SOT-closed shows in
fact that if P : B(H)

g
sa → B(H)rsa is any free polynomial mapping, then opco(P(K))

is SOT-closed. ��
Given a symmetric noncommutative polynomial p ∈ Mμ(C〈x〉), in addition to

D̂p, Pp, and Dp defined in Sect. 2.3.1, we consider the following sets describing its
positivity on the operator level:

D̂p = {X ∈ B(H)gsa : p(X) � 0};
Pp = {X ∈ B(H)gsa : p(X) � 0};
Dp = Pp

SOT
.

We also refer to all of these (possibly distinct) sets as free semialgebraic sets. Observe
that, whenever they are bounded,Dp and D̂p are SOT-closed and hence Theorem 3.3
applies.

3.2 The Effros–Winkler Theorem for Operator Convex Sets

We now show that a version of the Effros–Winkler theorem holds for bounded, SOT-
closed free sets in the operator convex case. In Sect. 3.3, we prove a version for operator
�-convex sets. Given a monic �-pencil L = IN + ∑

A jγ j of size N , or an operator
�-pencil L̃ = IH̃ + ∑

Bjγ j for a separable infinite dimensional Hilbert space H̃ and
Bj ∈ B(H̃)sa, its evaluation on operator tuples is defined as

L(X) = IN ⊗ IH +
∑

A j ⊗ γ j (X),

L̃(X) = IH̃ ⊗ IH +
∑

Bj ⊗ γ j (X),

respectively, for X ∈ B(H)
g
sa .
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The positivity set (resp. strict positivity set) of a �-pencil L in the operator setting
is

D̂L := {
X ∈ B(H)gsa : L(X) � 0

} (
resp.PL := {

X ∈ B(H)gsa : L(X) � 0
})

.

Theorem 3.5 Suppose K ⊂ B(H)
g
sa is operator convex, SOT-closed, and contains 0.

If Y /∈ K, then there is a positive integer N and a monic linear pencil

L = IN +
g∑
j=1

A j x j ,

where A j ∈ SN (C), such that L(K) � 0, but L(Y ) � 0.
In particular, K is the intersection

⋂
D̂L , where the intersection is over monic

linear pencils L such that D̂L ⊃ K.
Finally, if � is a positive integer,F is an �dimensional subspace ofH andY = Y ′⊕0

with respect to the orthogonal decomposition F ⊕ F⊥ of H, then L can be chosen
to have size �.

The proof of Theorem 3.5 uses Proposition 3.7 below, which in turn uses the fol-
lowing Lemma.

Lemma 3.6 If K ⊂ B(H)
g
sa is operator convex and contains 0, then K is closed under

conjugation by contractions: if X ∈ K, C ∈ B(H), and ‖C‖ ≤ 1, then C∗XC ∈ K.
In particular, if P ∈ B(H) is a projection and Y ∈ K, then PY P = Y ′ ⊕ 0 ∈ K.

Proof If X ∈ K, then Z :=
(
X 0
0 0

)
∈ K. For a contraction C, define the isometry

W :=
(

C
(1 − C∗C)1/2

)
.

Now, C∗XC = W ∗ZW ∈ K. ��
To a free subsetK ⊂ B(H)

g
sa weassociate amatrix convex setKmat. Given a positive

integer n, let Kmat(n) denote the set of tuples X ∈ Sn(C)g of the form V ∗YV , where
V : C

n → H is an isometry and Y ∈ K. Note that, by Lemma 3.6, VV ∗ Y V V ∗ ∈ K
and hence if Y ′ ∈ Kmat, then Y ′ ⊕ 0 ∈ K.

Proposition 3.7 If K ⊂ B(H)
g
sa is operator convex, SOT-closed, and contains 0, then

(a) Kmat is a closed matrix convex set containing 0;
(b) K = {Y ′ ⊕ 0 | Y ′ ∈ Kmat}SOT ;
(c) if Y /∈ K, then there is an N and an isometry V : C

N → H so that V ∗YV /∈
Kmat(N );

(d) if Y ′ ∈ SN (C)g and Y ′ ⊕ 0 /∈ K, then there is a monic linear pencil M of size N
such that M(K) � 0, but M(Y ′) � 0.
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Proof A routine argument shows Kmat is (a free set and) matrix convex. If (Ym) is a
sequence from Kmat(n) that converges to Y , then (Ym ⊕ 0) is a sequence from K that
converges in norm, and hence in SOT, to Y ⊕0. It follows that Y ∈ Kmat(n) and hence
Kmat is closed.

If Y ′ ∈ Kmat, then Y ′ ⊕ 0 ∈ K as already noted. Conversely, given X ∈ K and
a sequence Pn of finite rank projections onto the first n basis vectors of H, we have

PnX Pn
SOT→ X , PnX Pn ∈ K by Lemma 3.6 and PnX Pn has the form Yn ⊕ 0 for

Yn ∈ Kmat(n). Item (b) follows.
Item (c) follows from item (b).
To prove item (d), since Y ′ ⊕ 0 /∈ K, it follows that Y ′ /∈ Kmat(N ). Since Kmat is

closed and matrix convex, Theorem 1.3 implies there is a monic linear pencil M of
size N such that M(Kmat) � 0, but M(Y ′) � 0. By item (b) and SOT-continuity of
M, it follows that M(K) � 0. ��
Proof of Theorem 3.5 By Proposition 3.7, there is an N and an isometry V : C

N → H
such that Y ′ = V ∗YV /∈ Kmat(N ). Hence Y ′ ⊕ 0 /∈ K and therefore, by Proposition
3.7(d), there is a monic linear pencil M of size N such that M(K) � 0, but M(Y ) =
M(Y ′) ⊕ I � 0.

To prove the last statement, note that, given the form of Y and the hypotheses of
the theorem, Y /∈ K if and only if Y ′ /∈ Kmat(�). ��

3.3 Hahn–Banach Separation for Operator 0-Convex Sets

Combining Theorems 3.3 and 3.5 yields Theorem 3.8 below. It may be seen as an
improvement of Theorem 2.4 for bounded, SOT-closed operator �-convex sets since
it does not require that the (operator) convex hull of �(K) be closed a priori.

Theorem 3.8 Suppose K ⊂ B(H)
g
sa is SOT-closed, operator �-convex, bounded, and

that 0 ∈ opco(�(K)). For each Y /∈ K, there is a positive integer N an a monic linear
pencil

M = IN +
r∑
j=1

A j x j ,

of size N such that M(opco(�(K))) � 0, but M(�(Y )) � 0. Thus the �-pencil
L = M ◦ � = IN + ∑

A jγ j is positive semidefinite on K, but L(Y ) � 0.
In particular,K = ⋂

D̂L , where the intersection is over all monic�-pencils L such
that D̂L ⊃ K.

Finally, suppose 0 ∈ K and that�(0) = 0. If � is a positive integer,F is an � dimen-
sional subspace of H and Y = Y ′ ⊕ 0 with respect to the orthogonal decomposition
F ⊕ F⊥ of H, then L and M can be chosen to have size �.

Proof The assumptions imply opco(�(K)) is a bounded, operator convex set contain-
ing 0. It is SOT-closed by Theorem 3.3. If Y /∈ K = � -opco(K), then by the set
equality in Proposition 3.1, �(Y ) /∈ opco(�(K)). Therefore, by Theorem 3.5, there
exists a positive integer N and a monic linear pencil
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M = IN +
r∑
j=1

A j x j

of size N such that M � 0 on opco(�(K)), but M(�(Y )) � 0.
In the case of the final assertion, �(Y ) = �(Y ′) ⊕ �(0) = �(Y ′) ⊕ 0. Since �(Y ′)

has size � and �(Y ) /∈ opco(�(K)), the monic �-pencil L can be chosen to have size
� by Theorem 3.5. ��
Remark 3.9 In Theorems 3.5 and 3.8, while the convex sets consist of operator tuples,
outliers are separated from these sets by a monic pencil of finite size; that is, a matrix
pencil. In the particular cases described in their final statements, the theorems assert
further control over this finite size. ��
Lemma 3.10 For an SOT-closed operator convex set K ⊂ B(H)

g
sa, the following are

equivalent.

(i) 0 is in the (norm) interior of K;
(ii) there is a constant C such that if L = I + ∑

A j x j is monic linear pencil that is
positive semidefinite on K, then ‖A j‖ < C for all j ;

(iii) there is an ε > 0 such that ±εe j ∈ K, where e j ∈ B(H)
g
sa has k-th entry 0 if

k �= j and I if k = j .

Further, if M is a monic linear pencil such that M(K) � 0, then M � 0 on int(K).

Proof The implication (i) implies (iii) is evident. To pass from item (iii) to item (ii),
choose C = 1

ε
.

Now suppose item (i) does not hold; that is 0 is not in the norm interior of K. Given
δ > 0, there is a tuple Y /∈ K with ‖Y‖ < δ. By Theorem 3.5, there is a monic linear
pencil L = I + ∑

A j x j of finite size such that L � 0 on K, but L(Y ) � 0. Since
I � −∑

A j ⊗ Y j and

−
∑

A j ⊗ Y j � ‖
∑

A j ⊗ Y j‖ I �
∑

‖A j‖ ‖Y j‖ I � δ
∑

‖A j‖ I ,

it follows that there is a j such that ‖A j‖ ≥ 1
gδ
. Hence item (ii) does not hold and the

proof that items (i), (ii), and (iii) are equivalent is complete.
To complete the proof, suppose X ∈ K and M(X) � 0, but M(X) � 0. Thus,

there is a nonzero vector h such that 〈M(X)h, h〉 = 0. Since M is monic linear,
〈M(t X)h, h〉 = ‖h‖2 − t‖h‖2. Hence, 〈M(t X)h, h〉 < 0 for t > 1. Thus X is not in
the interior of K. ��

In Corollary 3.11 below, the topological notions of boundary and interior are with
respect to the relative norm topology on B(H)

g
sa . Note that, in the case r = g (equiva-

lently�(x) = x) the condition of Eq. (3.1) in Corollary 3.11 is automatically satisfied.

Corollary 3.11 Suppose K ⊂ B(H)
g
sa is SOT-closed, operator �-convex, bounded,

contains 0, and �(0) = 0. Suppose also that 0 is in the (norm) interior of opco(�(K))

and that
int(K) ⊂ �−1(int(opco(�(K)))). (3.1)
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If Y is in the (norm) boundary of K, then there exists a monic operator �-pencil
L = I + ∑

A jγ j such that L(X) � 0 for all X in the interior of K and such that
L(Y ) is not bounded below by any positive multiple of the identity.

Proof There is a sequence (Yn) from B(H)
g
sa such that Yn /∈ K and (Yn) → Y in norm.

By the first statement in Theorem 3.8, there are monic linear pencils Mn of finite size
such that Mn(opco(�(K))) � 0, but Mn(�(Yn)) � 0. Since 0 is in the (norm) interior
of opco(�(K)), Lemma 3.10 implies M := ⊕

n Mn defines a monic pencil whose
coefficients are bounded operators on a separable Hilbert space. Put L := M ◦ �.

By construction, M � 0 on opco(�(K)). By Lemma 3.10 applied to opco(�(K)),
it follows that M(Z) � 0 for Z ∈ int(opco(�(K))). By the inclusion in (3.1), if
X ∈ int(K), then �(X) ∈ int(opco(�(K))), and M(�(X)) = L(X) � 0.

Finally, we show L(Y ) is not bounded below by a positive multiple of the identity.
Since the sequence Yn tends to Y in norm, �(Yn) → �(Y ) in norm. As Mn(�(Yn)) is
a summand of M(�(Yn)), it follows that M(�(Yn)) � 0. Since M(�(Yn)) converges
to M(�(Y )) in norm, there does not exist an ε > 0 such that L(Y ) = M(�(Y )) � ε.

��
Remark 3.12 In the case of y2-convexity and without hypotheses that guarantee a
uniform bound on the coefficients, it is not clear how to avoid, in the proof of Corol-
lary 3.11 and after scaling, having the pencils Ln = Mn ◦ � converge to a �-pencil L
that is not equivalent to a monic �-pencil, such as

L(x, y) =
(
1 y
y y2

)
,

which is always positive semidefinite, but never positive definite. We view this as a
symptom of the fact that the image of � in this case lies in the boundary of its operator
convex hull. The same issue arises in describing operator �-convex sets defined by a
single (operator-valued) monic �-pencil. ��

3.4 Applications of Theorem 3.8 to Matricial 0-Convexity

We say p ∈ Mμ(C〈x〉) is regular ifDp = D̂p, the set D̂p is bounded andDp = D̂p.
It is clear that Dp ⊂ D̂p and Dp ⊂ D̂p. However equality may not hold: consider

p(x) = −(1− x2)2. An example of a regular polynomial is p(x, y) = 1− x2 − y2d .
A simple and natural geometric sufficient condition for regularity may be described

as follows. We say p ∈ Mμ(C〈x〉) is star-like if the set D̂p is bounded and if X ∈
B(H)

g
sa and p(X) � 0, then p(t X) � 0 for all 0 ≤ t < 1. If p is star-like and

D̂p �= ∅, then p(0) � 0.

Example 3.13 For d a positive integer, p(x, y) = 1 − x2 − y2d is star-like since

p(t(x, y)) = (1 − t2) + t2 p(x, y) + t2(1 − t2d−2)y2d .

Thus, if p(X ,Y ) � 0, then p(t(X ,Y )) � 1 − t2 for 0 ≤ t < 1.
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Proposition 3.14 If p ∈ Mμ(C〈x〉) is star-like, then p is a regular polynomial.

Proof Clearly, tD̂p ⊂ intDp for 0 < t < 1, and X = limt↗1 t X . Similarly, the
matrix case holds. ��

For a regular polynomial p, Corollary 3.15—a separation result for Dp under the
assumption that Dp is operator �-convex—is an immediate consequence of Theo-
rem 3.8.

Corollary 3.15 Let p ∈ Mμ(C〈x〉) be a regular polynomial such that Dp is operator
�-convex with 0 ∈ Dp and suppose �(0) = 0. If Y ∈ S�(C)g and Y /∈ Dp(�),

then there is a monic �-pencil L of size � such that L � 0 on Dp but L(Y ) � 0. In
particular,Dp = ∩D̂L , where the intersection is over all monic �-pencils L such that
L(Dp) � 0.

Example 3.16 In light of Example 3.13 and Corollary 3.15, if p(x, y) = 1− x2 − y2d

and (X ,Y ) /∈ Dp, then there is a monic y2-pencil L such that L � 0 on Dp and
such that L(X ,Y ) � 0. Hence Dp = ∩D̂L , where the intersection is over all monic
y2-pencils L that are positive semidefinite onDp. This example is explored further in
Proposition 4.2.

If p is regular with p(0) = 1 and Dp is operator xy-convex (see Example 1.2),
then Corollary 3.15 says Dp arises from Bilinear Matrix Inequalities (BMIs). In this
case more can be said.

Proposition 3.17 Suppose p ∈ Mμ(C〈x〉) is regular, p(0) � 0, and Dp is operator
xy-convex. If � is a positive integer and Y is in the boundary of Dp(�), then there is
a monic xy-pencil L of size � such that L(X) � 0 for X in the interior of Dp, but
L(Y ) � 0.

Lemma 3.18 If p ∈ Mμ(C〈x〉) and p(0) � 0, then there is a constant β such that if

L(x, y) = I + Ax + By + Cxy + C∗yx,

is a monic xy-pencil that is positive semidefinite on Dp, then

‖A‖, ‖B‖, ‖C + C∗‖, ‖C − C∗‖ ≤ β.

Proof Since p(0) is positive, there is an ε > 0 such that (±ε, 0), (0,±ε),±(ε,−ε) ∈
Dp(1) and ±(X ,Y ) ∈ Dp(2), where

(X ,Y ) =
((

0 ε

ε 0

)
,

(−ε 0
0 ε

))
.

It follows that ‖A‖, ‖B‖ ≤ 1
ε
. Likewise,

0 � L(ε, ε) + L(−ε,−ε) = 2I + ε2(C + C∗)
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and

0 � L(ε,−ε) + L(−ε, ε) = 2I − ε2(C + C∗).

Thus ‖C + C∗‖ ≤ 2
ε2

. Further,

0 � L(X ,Y ) + L(−(X ,Y )) = 2I + ε2(C − C∗)
(

0 1
−1 0

)
.

Hence ‖C −C∗‖ ≤ 2
ε2
. Thus, there is a constant β such that if L is a monic xy-pencil

and L is positive semidefinite on Dp, then the coefficients of L are all bounded (in
norm) by β. ��
Lemma 3.19 Suppose S ⊂ SN (C)2. If L is a monic xy-pencil that is positive semidef-
inite on S, then L is positive definite on the interior of S.

Proof Suppose L is a monic xy-pencil,

L(x, y) = I + Ax + By + Cxy + C∗yx,

that is positive semidefinite on S. Arguing by contradiction, suppose (X ,Y ) is in the
interior of S, but L(X ,Y ) � 0. Hence there is a vector h such that ‖h‖ = 1 and
L(X ,Y )h = 0. Set

q1(t) =〈L(t X , tY )h, h〉
=1 + t〈[A ⊗ X + B ⊗ Y ]h, h〉 + t2〈[C ⊗ XY + C∗ ⊗ Y X ]h, h〉.

Thus q1 is quadratic, q1(0) = 1, q1(1) = 0, and q1(t) ≥ 0 for t near 1. Hence the
coefficient of t2 is positive; that is

α := 〈[C ⊗ XY + C∗ ⊗ Y X ]h, h〉 > 0.

Let

q2(t) =〈L(t X ,Y )h, h〉
=〈L(X ,Y )h, h〉 + (t − 1)[〈A ⊗ X h, h〉 + α]
=(t − 1)[〈A ⊗ X h, h〉 + α].

Since q2(t) ≥ 0 for t real and near 1,

〈A ⊗ X h, h〉 + α = 0 (3.2)

A similar argument shows,

〈B ⊗ Y h, h〉 + α = 0. (3.3)
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Combining Eqs. (3.2) and (3.3) gives,

−〈A ⊗ Xh, h〉 = −〈B ⊗ Yh, h〉 = α > 0.

Since 〈L(X ,Y )h, h〉 = 0, it follows that α = 1. Hence,

q3(t) := t
〈
L
(
t X ,

1

t
Y

)
h, h

〉 = 2t − t2 − 1 = −(t − 1)2.

On the other hand, (t X , 1
t Y ) ∈ S for t real and near 1 and hence q3(t) ≥ 0 for such t

and we have reached a contradiction. Thus, L(X ,Y ) � 0. ��
Proof of Proposition 3.17 Suppose Y is in the boundary of Dp(�). Thus, there is a
sequence (Yn) converging to Y with each Yn /∈ Dp(�). By Corollary 3.15, there
exists monic xy-pencils Ln of size � such that Ln is positive semidefinite on Dp and
Ln(Yn) � 0. Since the coefficients of Ln all have size � and are, by Lemma 3.18,
uniformly bounded, by passing to a subsequence if necessary, we may assume Ln

converges (coefficient-wise) to a monic xy-pencil L of size �. Thus L is positive
semidefinite on Dp and Ln(Yn) converges to L(Y ). Hence L(Y ) � 0 and, since L
is monic and L(Dp) � 0, Lemma 3.19 implies L � 0 on the interior of Dp and the
proof is complete. ��

4 y2-Convex Sets

This section treats y2-convex sets, where it is shown that a free setK ⊂ S(C)g×S(C)h

is y2-convex if and only if, for each n and Y ∈ Sn(C)h, the slice {X : (X ,Y ) ∈ K(n)}
is convex in the ordinary sense. It is also shown that the y2-convex sets TVd of equation
(1.3) are the positivity set of a single (finite) y2-pencil. By comparison, as noted in
Example 3.16, the general theory only guarantees that TVd = Dp is the intersection
of, possibly infinitely many, positivity sets of (finite) monic y2-pencils.

Suppose S ⊂ S(C)g × S(C)h and write elements Z of S(n) as Z = (X ,Y ) with
X ∈ Sn(C)g and Y ∈ Sn(C)h. In the case S is free, it is called convex in x if, for each
n and Y ∈ Sn(C)h, the slice

S[Y ] := {
X ∈ Sn(C)g : (X ,Y ) ∈ S(n)

} ⊂ Sn(C)g,

is convex (in the usual sense as a subset of Sn(C)g). In this setting y2-convex means
�-convex for

� = {
x1, . . . , xg, y1, . . . , yh, y

2
1 , . . . , y

2
h

}
.

Proposition 4.1 A free set S ⊂ S(C)g × S(C)h is y2-convex if and only if it is convex
in x.
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Proof SupposeS is a y2-convex free set. Fix n and E ∈ Sn(C)h. Given A, B ∈ Sn(C)g

such that (A, E), (B, E) ∈ S(n), observe that, since S is a free set

(X ,Y ) := (A, E) ⊕ (B, E) =
((

A 0
0 B

)
,

(
E 0
0 E

))
∈ S(2n).

Since S is y2-convex and, for 0 ≤ t ≤ 1, V = (√
t In

√
1 − t In

)∗
is an isometry

satisfying V ∗Y 2V = (V ∗YV )2 (so that ((X ,Y ), V ) is a y2-pair),

V ∗(X ,Y )V = (t A + (1 − t)B, E) ∈ S(n).

Thus S is convex in x .
Now suppose S is a free set that is convex in x . To prove S is y2-convex, suppose

(X ,Y ) ∈ S(n + m) and V : C
n → C

n+m is an isometry such that ((X ,Y ), V ) is a
y2-pair. Explicitly V ∗Y 2V = (V ∗YV )2 and thus the range of V reduces Y . Hence,
with respect to the direct sum C

n ⊕ C
m ,

(X ,Y ) =
((

X11 X12
X∗
12 X22

)
,

(
Y11 0
0 Y22

))
.

Letting U denote the unitary matrix,

U =
(
In 0
0 −Im

)
,

U∗(X ,Y )U ∈ S(n + m) since free sets are closed under unitary similarity. Since S
is convex in x , the slice S[Y ] is convex and thus

(X ′,Y ′) := 1

2
[U∗(X ,Y )U + (X ,Y )] =

((
X11 0
0 X22

)
,

(
Y11 0
0 Y22

))
∈ S(n + m).

Finally, sinceC
n ⊕{0} reduces (X ′,Y ′) and free sets are closed with respect to restric-

tions to reducing subspaces, (X11,Y11) ∈ S(n) and hence S is y2-convex. ��

A fundamental question is: if K is free semialgebraic and �-convex, then is K the
positivity set of (a) a �-concomitant or, more restrictively, (b) a �-pencil? Since, for
positive integers d, the symmetric polynomial x2+ y2d is y2-convex, p = 1−x2− y2d

is y2-concave and hence, by Proposition 2.7, D̂p = TVd is y2-convex.

Proposition 4.2 For d ∈ N and pd = 1 − x2 − y2d , there is a monic y2-pencil Ld of
size d + 1 such that D̂Ld = D̂pd .
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Proof The pencils L1 and L2 are trivial to construct. For d = 3, 4 one can take

L3(x, y) =

⎛
⎜⎜⎝

1 0 0 x
0 1 y y2

0 y 1 + y2 y
2

x y2 y
2 1 + y2

4

⎞
⎟⎟⎠ ,

L4(x, y) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 x
0 1 y 0 y2

0 y y2 + 1 y 0
0 0 y y2 + 1 1

8

(−4y2 − 5
)

x y2 0 1
8

(−4y2 − 5
) 5y2

8 + 89
64

⎞
⎟⎟⎟⎟⎠

.

That L4 is not monic is easily remedied since its constant term is positive definite.
A recipe for constructing such pencils is the following. Fix d. For 0 ≤ k ≤ d − 2,

set

αk =
√
d − 1 − k

d − 1
, c0 = 1, and ck = αk

αk−1
if k > 0.

Then
∏k

j=1 c j = αk . Let q = √
d − 1(y2 − 1) and let

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0
−c1y 1 0 0 . . . 0
0 −c2y 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 0 0 · · · −cd−2y 1
α0q α1yq α2y2q . . . . . . αd−2yd−2q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Md×(d−1)(C).

Then

WW ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −c1y 0 0 0 . . . q
−c1y 1 + c21 y

2 −c2y 0 0 . . . 0
0 −c2y 1 + c22 y

2 −c3y 0 . . . 0
.
.
.

. . .
. . .

. . .
. . .

. . .
.
.
.

0 0
. . .

. . . 1 + c2d−3y
2 −cd−2y 0

0 0 0
. . . · · · 1 + c2d−2y

2 0
q 0 0 0 · · · 0 q2(

∑d−2
j=0 α2

j y
2 j )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Md (C).
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Next observe, for 0 ≤ k ≤ d − 4,

0 = α2
k − 2α2

k+1 + α2
k+2

0 = α2
d−3 − 2α2

d−2.

Hence

q2
( d−2∑

j=0

α2
j y

2 j
)

= (d − 1) − dy2 + y2d .

Let

M = WW ∗ +
(
0d−1,d−1 01,d−1

0d−1,1 1 − y2d

)
.

Finally, set

Ld =

⎛
⎜⎜⎜⎜⎜⎝

1
(
0 0 . . . x

)
⎛
⎜⎜⎜⎝

0
0
...

x

⎞
⎟⎟⎟⎠ M

⎞
⎟⎟⎟⎟⎟⎠

.

Now Ld is not monic but its constant term is positive definite, so a simple scaling
produces an equivalent monic linear pencil. ��
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