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ABSTRACT

Gene expression in higher eukaryotic cells orchestrates interactions between thousands of
RNA binding proteins (RBPs) and tens of thousands of RNAs . The kinetics by which RBPs
bind to and dissociate from their RNA sites are critical for the coordination of cellular RNA-
protein interactions 2. However, these kinetic parameters were experimentally inaccessible in
cells. Here we show that time-resolved RNA-protein crosslinking with a pulsed femtosecond UV
laser, followed by immunoprecipitation and high throughput sequencing allows the
determination of binding and dissociation kinetics of the RBP Dazl for thousands of individual
RNA binding sites in cells. This kinetic crosslinking and immunoprecipitation (KIN-CLIP)
approach reveals that Dazl resides at individual binding sites only seconds or shorter, while the
sites remain Dazl-free markedly longer. The data further indicate that Dazl binds to many RNAs
in clusters of multiple proximal sites. The impact of Dazl on mRNA levels and ribosome
association correlates with the cumulative probability of Dazl binding in these clusters.
Integrating kinetic data with mRNA features quantitatively connects DazI-RNA binding to Dazl
function. Our results show how previously inaccessible, kinetic parameters for RNA-protein
interactions in cells can be measured and how these data quantitatively link RBP-RNA binding

to cellular RBP function.



The binding and dissociation of RBPs at their cognate RNA sites in cells are critical for the
regulation of gene expression 2. Yet, association and dissociation kinetics of RBPs at individual
binding sites in cells have not been experimentally accessible. RBP binding and dissociation
kinetics have only been measured in vitro, while in cells, only steady-state patterns of RNA-
protein interactions have been determined 25. For a small number of RBPs, equilibrium binding
parameters measured in vitro correlate with steady-state binding patterns in cells ”%. Although
these observations advanced understanding of RBP function, the inaccessibility of binding and
dissociation kinetics of RBPs in cells limits or even precludes the establishment of quantitative
connections between RBP-RNA interactions and cellular RBP function. Here, we measure
binding and dissociation kinetics of the RBP Dazl at thousands of individual binding sites in
cells. We then show how these kinetic parameters inform a quantitative understanding of the

cellular function of Dazl.

Time-resolved fs laser crosslinking in vitro

To measure binding and dissociation kinetics of proteins at individual RNA sites in cells, we
devised a time-resolved RNA-protein crosslinking approach (Fig.1a). Because kinetic
parameters in cells must be determined from the steady-state between free and RNA-bound
protein, a sufficient number of experimental constraints are required to calculate rate constants.
These constraints can be established by measuring crosslinking timecourses at different protein
concentrations and different crosslinking efficiencies (Fig.1b), while ensuring that crosslinking
rate constants are roughly equal or larger than dissociation and apparent association rate
constants. To achieve sufficiently fast protein-RNA crosslinking, we employed a pulsed
femtosecond (fs) UV laser (Fig.1c, Extended Data Fig.1a). Pulsed UV lasers had been shown
to efficiently photo-crosslink proteins to DNA through multi-photonic excitation of the

crosslinking species 12,

To examine the utility of a pulsed fs UV laser for determining binding and dissociation rate
constants of RNA-protein interactions, we performed time-resolved crosslinking reactions with
purified proteins and RNAs (Fig.1d,e). UV-mediated RNA degradation was reduced upon
irradiation with the fs laser, compared with a steady-state UV light source (Extended Data
Fig.1b). Although the photon density during the laser pulse is orders of magnitude greater,
compared with the steady-state UV light source, fewer photons are absorbed by the RNA over a

given amount of time (Extended Data Fig.1c). This is because fs pulses are emitted once per



millisecond and the cross-section for multi-photonic absorption is smaller than for single-

photonic absorption with a steady-state UV light source ™.

Crosslinking of the purified RNA-binding protein RbFox(RRM) to its cognate RNA with the fs
laser was markedly more efficient, compared with the steady-state UV source (Extended Data
Fig.1d-f). Observed crosslinking rates increased with laser power and protein concentration, as
expected (Fig.1d). We determined binding, dissociation and crosslinking rate constants for
RbFox(RRM)-RNA binding from the crosslinking timecourses at two different laser powers and
two different protein concentrations (Fig.1b,d,e, Supplementary Material Fig.S2). The
apparent affinity (K1) of RbFox(RRM) for its cognate RNA, calculated from association and
dissociation rate constants, was similar to the affinity measured by fluorescence anisotropy
(Fig.1e, Extended Data Fig.1i) and consistent with previously reported values '*. We next
determined binding, dissociation and crosslinking rate constants for a mutated RbFox™{(RRM)
15 and for the RNA binding protein DazI(RRM) "¢, using fs laser crosslinking (Fig.1e, Extended
Data Fig.1g,h). RNA affinities of these two proteins, calculated from the rate constants, were
also similar to affinities measured with fluorescence anisotropy (Fig.1e, Extended Data
Fig.1j,k). The data with three RBPs collectively indicate that binding and dissociation rate
constants for RNA-protein interactions can be determined by time-resolved, fs laser

crosslinking.

Laser crosslinking in cells

We adapted the time-resolved fs laser crosslinking approach to measure binding and
dissociation rate constants of the RNA-binding protein Dazl to individual RNA sites in mouse
GC-1 cells '8, Dazl is essential for male and female gametogenesis '®-?2. The protein contains
one RNA recognition motif (RRM), binds predominantly to 3'UTRs of mRNAs and regulates
mRNA stability, translation, or both 23, Dazl was expressed under the control of a doxycycline-
inducible promotor 7. Varying the doxycycline concentration allowed measurements at different
Dazl concentrations in GC-1 cells (Extended Data Fig.2a). To perform time-resolved fs laser
crosslinking experiments, cells were transferred to a quartz cuvette and under constant stirring
placed in the laser beam. Crosslinking measurements were performed with GC-1 cells
expressing two different Dazl concentrations and two different laser powers for 30, 180 and 680
s (Extended Data Fig.2b). We also measured the bulk degree of crosslinking at each time point

(Extended Data Fig.2c) and determined transcript levels at each Dazl concentration by RNA-



Seq. Approximately 10% of cells showed signs of physical damage after crosslinking, which is
comparable to cell damage by conventional steady-state UV-crosslinking (Supplementary
Material Table S4).

We prepared and sequenced cDNA libraries for each timepoint sample and for controls
without crosslinking (Extended Data Fig.2b, Supplementary Material Table S5, refs.?425).
Dazl crosslinking sites with the fs laser were virtually identical to sites identified by conventional
steady-state UV-crosslinking with respect to RNA types, location in 3'UTRs and crosslinking site
characteristics (Fig.2a, Extended Data Fig.2d-f, ref.'”). These data show that fs laser
crosslinking maintains the characteristics of crosslink sites seen with steady-state UV-
crosslinking. Our kinetic crosslinking and immunoprecipitation approach (KIN-CLIP) thus

faithfully maps Dazl binding sites.

To calculate association and dissociation rate constants for Dazl binding at individual binding
sites, we normalized the sequencing reads for each CLIP library to the bulk amount of
crosslinking, thereby converting sequencing reads into a concentration-equivalent of crosslinked
RNA at a given binding site (Fig.2b, Supplementary Material Table S6). This normalized read
coverage was used to calculate a dissociation rate constant (ksiss.), oObserved association rate
constants at low and high Dazl concentration (Kon™®%), k,n(##P32)) and crosslinking rate
constants for both laser powers (kx " ™), kx5 ™)) for each binding site. (Fig.2c, Extended
Data Fig.3a-k). Obtained rate constants faithfully described the experimental data (Fig.2c,
Extended Data Fig.3l,m, Supplementary Material Fig.S4).

Dazl-RNA binding kinetics in cells

For most binding sites (89%), the observed association rate constants at the 1xDazl
concentration were lower than those at the 4.2xDaz| concentration (Fig.2d). These data indicate
that only a small fraction of binding sites is saturated with Dazl at low protein concentration and
implies a population of free Dazl in the cell, at least at the high Dazl concentration. Although
85% of Dazl crosslinking sites showed the consensus 5'-GUU motif (Extended Data Fig.4a-d),
association and dissociation rate constants varied by several orders of magnitude (Fig.2e).
Association rate constants varied to a larger degree than dissociation rate constants (Fig.2e).
These observations suggest that Dazl binding and dissociation kinetics in cells depend not
exclusively on the consensus motif. An, Un and (GU), stretches were overrepresented in the

vicinity of binding sites with high association rate constants (Extended Data Fig.4e-p). No



further sequence signatures in the vicinity of crosslinking sites correlated with other rate
constants (Extended Data Fig.4i-p).

The dissociation rate constant for Dazl(RRM) in vitro (Fig.1e) is on the low end of the
spectrum of cellular dissociation rate constants (Fig.2e), indicating that Dazl dissociates from

most cellular binding sites more frequently than from its cognate RNA in vitro. Dazl resides at

most cellular binding sites for less than ts < 1s (Fig.2e). Binding events are infrequent and even

at high Dazl concentrations occur rarely more than six times per minute (Fig.2e). Accordingly,
the probability of Dazl to be bound at any time is less than 10% for many binding sites (Fig.2e).
This observation indicates that Dazl operates at a sub-saturating regime with respect to its
mMRNA targets in GC-1 cells. This notion is consistent with kinetic parameters of Dazl measured
in vitro (Fig.1e), and a cellular Dazl concentration roughly at or below its affinity in vitro 26. We
also determined a maximal fractional occupancy (®™?*, Fig.2e, Supplementary Material
Fig.S3), which describes the extent by which a given RNA site would be occupied at saturating
Dazl concentrations. The data suggest that most binding sites are not fully accessible for Dazl

binding during the course of the experiment.

Dissociation rate constants for binding sites did not vary significantly for different RNA classes
(Extended Data Fig.4s) or between mRNA 3'UTRs, 5’UTRs, introns and open reading frames
(Fig.2f). Association rate constants and binding probabilities, which depend on both, association
and dissociation rate constants, were higher for binding sites in 3’UTRs than for sites in &’
UTRs, introns and ORFs (Fig.2f), and higher in mRNAs, compared with other RNA classes
(Extended Data Fig.4q,r). The maximal fractional occupancy of binding sites did not
significantly vary in the different mMRNA regions (Fig.2f), but was higher in mRNA, compared
with other RNA classes (Extended Data Fig.4t). Because Dazl function has been linked to
binding in 3'UTRs "7, our data raised the possibility that association rate constants, binding
probabilities, or both, influence cellular roles of Dazl more than its residence time at the binding
sites. Collectively, the kinetic data revealed highly dynamic Dazl-RNA interactions with most

Dazl binding events being rare and transient.

Dazl binds mRNAs in clusters

To understand how Dazl regulates mRNA function in this highly dynamic fashion, we
examined the patterns of the kinetic parameters for all Dazl binding sites on each bound mRNA.

The maijority of Dazl binding sites are in 3'UTRs (Fig.2a), and frequently proximal to the



polyadenylation site (PAS, Extended Data Figs.2e, 5a). Most Dazl-bound mRNAs contained
multiple Dazl binding sites with an inter-site distance markedly smaller than expected by chance
(Fig.3a), even when distant to the PAS (Extended Data Figs.5b,c). This observation suggested
clustering of multiple Dazl binding sites on most 3'UTRs (Extended Data Fig.5d-g). The
number of binding sites within a 3’UTR cluster increased with proximity to the PAS (Fig.3b).
Dissociation rate constants and maximal fractional occupancies did not scale with the number of
binding sites in a cluster (Extended Data Fig.5i,j). However, association rate constants for
individual binding sites scaled with the number of binding sites in a cluster, regardless of the
distance of the cluster to the PAS. (Fig.3c). Binding probabilities showed a similar pattern

(Extended Data Fig.5h). These observations suggest cooperative association steps.

Kinetic parameters within clusters showed consistent patterns of moderate correlation
(Extended Data Fig.5k). However, fractional occupancies for binding sites within a given
cluster were closely correlated (Fig.3d, Extended Data Fig.5k), suggesting that binding site
context, possibly including RNA structure or proximal binding of other proteins, play a prominent
role in determining similar accessibility of binding sites within a cluster. This notion, together
with the scaling of association rate constants with the number of binding sites (Fig.3c), raised

the possibility that binding site clusters are important for Dazl function.

Clusters correlate with Dazl function

To test this hypothesis, we quantified Dazl binding in a given cluster by calculating a
cumulative binding probability (£B) from the kinetic constants of the binding sites in the cluster.
2B describes the probability that Dazl occupies at least one site in a given cluster at any given
time (Fig.4a). ZB increased with the number of binding sites in a cluster and with proximity to
the PAS (Extended Data Fig.6a,b). We compared 2B values in a given cluster to changes in
ribosome association and transcript levels at low and high Dazl concentrations (Fig.4b). Dazl
binding had been shown to increase transcript levels and ribosome association for many, but
not all MRNAs 7. At the high Dazl concentration, compared with the low Dazl concentration, we
detected an overrepresentation of clusters with high ¥B in mRNAs that increased in transcript
level, ribosome association, or both (Fig.4c, Extended Data Fig.6c,d). Clusters with low ¥B
values were overrepresented in mRNAs that decreased in transcript levels and ribosome
association at the high Dazl concentration (Fig.4c). We detected no comparable correlation
between the Dazl impact on transcript levels or ribosome association and binding probabilities

of individual binding sites, clusters with scrambled binding sites or with simultaneous occupancy
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of multiple binding sites in a given cluster (Extended Data Fig.6e-k). ZB values thus
instructively link binding kinetics to Dazl impact on mRNA function, further supporting the notion

that Dazl clusters are critical for the function of this RBP.

A Dazl regulatory program.

To delineate the connection between Dazl binding kinetics and Dazl impact on mRNA function
in more detail, we identified additional MRNA and Dazl cluster characteristics that correlated
with Dazl function. Besides 2B, we detected correlations for the number of binding sites in a
cluster, the difference in cumulative binding probabilities at low and high Dazl concentrations
(AXB), number of clusters in a 3'UTR, length of the 3’'UTR, and proximity of a cluster to the PAS
(Extended Data Fig.7). Some of these characteristics correlate with each other (R?< 0.6), but
each parameter contributes separately to the Dazl impact on mRNA function (Extended Data
Fig.8a-e). Proximity of Dazl binding to the PAS had been previously noted to influence Dazl

impact on mRNA function .

Principal component analysis and t-distributed stochastic neighbor embedding independently
identified 21 mRNA groups with a distinct combination of kinetic, cluster and mRNA
characteristics (Extended Data Fig.8b-e). Each of these 21 groups falls into a class of Dazl
impact on transcript level and ribosome association (Fig.4d, Extended Data Fig.8c-f,
Extended Data Fig.9). Translation efficiencies also vary for groups in mRNA classes where
mRNA level and ribosome association do not scale proportionally (Extended Data Fig.10a).
The mRNAs in each group belong to defined GO-terms (Fig.4d), and in many cases encode
proximal proteins in a given pathway (Extended Data Fig.8h). mRNA groups with high values
of 2B or AZB predominantly function in mRNA processing and transport, in DNA replication and
in cell cycle regulation. mMRNA groups with low 2B or A%B values are primarily associated with
mRNA decay, membrane transport and stress response (Fig.4d). Collectively, the results
indicate a link between the biological role of a given mRNA and Dazl binding kinetics, binding
site clusters, their location on the 3'UTR and mRNA features (Extended Data Figs.8h,9).
These characteristics represent a basic Dazl regulatory program that connects Dazl binding in
3’'UTRs to its impact on mRNA function (Fig.4d).

To quantify this regulatory program, we employed a multiple linear regression model (Fig.4e-
h; Extended Data Fig.10b-e, Supplementary Material Figs.S5-S7.). The model explains

changes in ribosome association, mRNA levels (Fig.4g,h), translation efficiencies and changes



in translation from luciferase reporters between low and high Dazl concentration (Extended
Data Fig.10f-h). The largest contribution is seen for the cumulative binding probabilities, which
derive from the kinetic parameters of Dazl binding, and for the numbers of Dazl clusters in the
3'UTR (Fig.4e,f, Extended Data Fig.10f). For mRNAs that increase in ribosome association,
the distance of the Dazl clusters to the PAS also has an effect (Fig.4e), consistent with
previously reported data '’. Collectively, our data show that Dazl impacts bound mRNAs in a

complex, yet tractable manner that depends prominently on kinetic parameters.

Discussion

We devised and applied a time-resolved crosslinking approach to measure cellular binding
and dissociation kinetics of RNA-protein interactions at individual binding sites on a
transcriptome-wide scale. Key to this KIN-CLIP approach is a pulsed fs UV laser, which
increases crosslinking efficiencies without altering RNA-protein crosslinking patterns, compared
with steady-state UV irradiation. KIN-CLIP should enable the biochemical characterization of
other RNA-protein interactions in cells. Our approach also provides a framework for obtaining
quantitative, steady-state protein-RNA binding information from CLIP with conventional
crosslinking sources. Moreover, combining time-resolved fs laser crosslinking and kinetic
analysis might allow quantitative, biochemical analysis of DNA-protein 2 and even of protein-

protein interactions 7 in cells.

For Dazl, KIN-CLIP reveals highly dynamic RNA binding. Dazl resides at individual binding
sites only seconds or shorter, while cognate sites remain free of Dazl for most of the time.
These findings are consistent with kinetic data for DazI-RNA binding in vitro and the notion that
cellular Dazl concentrations are sub-saturating relative to its RNA targets 2. Highly dynamic
binding allows for rapid changes in RNA binding patterns, which might be critical for Dazl
function. Since in vitro RNA binding kinetics of Dazl are similar to those of other RBPs ¢, many
of which might also operate in cells at sub-saturating concentrations relative to their RNA
targets 7, our findings raise the possibility that other RBPs bind their cognate RNA sites also
transiently and infrequently. If true for many RBPs, few regulatory RBPs and occasionally none

might be bound to a given mRNA at a given time.

Access to cellular kinetic data allows the decoding of a complex link between Dazl-RNA-
binding patterns and Dazl function. Dazl affects mMRNA level and ribosome association

according to a regulatory program that integrates the collective binding kinetics of Dazl at



multiple cognate sites in a cluster, the number of binding sites in a cluster, location of clusters
on the 3’'UTR, proximity to the PAS, and 3’'UTR length. Because our experimental and data
analysis approaches are applicable to other RBPs, KIN-CLIP provides a blueprint for delineating

regulatory programs for other RBPs.
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FIGURE CAPTIONS

Figure 1 | Time-resolved, fs laser RNA-protein crosslinking in vitro. a. Kinetic scheme for
RNA-protein binding and crosslinking. b. Reaction scheme ¢. Schematic of pulsed fs UV laser
crosslinking. d. RNA Crosslinking timecourses for RoFox(RRM) with fs laser at different laser
power and protein concentrations. Lines show the fit to the data in panel e. e. Rate constants for
association (kon), dissociation (ko) and crosslinking at both laser powers (kx ("™, kx ?6mW))
determined with the fs laser for RoFox(RRM), a mutated RbFox™(RRM), and Dazl(RRM).
Equilibrium dissociation constants (Kj2) for fs laser are calculated from these rate constants and
measured by fluorescence anisotropy (Extended Data Fig.1h-j). Errors mark one standard

deviation.

Figure 2 | Kinetics of DazIl-RNA binding and dissociation in cells. a. Distribution of CLIP
sequencing reads across RNA classes and mRNA regions for fs laser (4.2xDazl, 2.6 mW) and
conventional crosslinking (Stratalinker; 4.2xDazl). b. Normalized sequencing reads for the
3’'UTR of a representative transcript (Thbs1) at increasing crosslinking times (left side), different
protein concentrations and different laser power (right side, scale: normalized coverage = 11 for
all traces). Reads for conventional iCLIP are indicated below. ¢. Crosslinking timecourses for
two binding sites (1,2, panel b). Datapoints show the normalized read coverage (Lines: best fit
to the parameters in the table. Error bars: 95% confidence interval for normalized peak
coverage value, determined by minimizing X2. For crosslinking rate constants of all binding sites
see Suppl. Material Table S9). Each binding site was fitted independently using two mutually
exclusive methods. d. Association rate constants for 1xDazl and 4.2xDazl for all binding sites (N
=10,341). Arrows mark the confidence range for the rate constants. The diagonal line marks
equal rate constants at both Dazl concentrations. e. Transcriptome-wide distributions of
dissociation rate constants (kdiss.), association rate constants at high Dazl concentration
(kon*?®22)  binding probability (P*?P3), and maximal fractional occupancy (®™) for all Dazl
binding sites. Select dwell times of Dazl bound (7,) and away from binding sites (r7) are marked
(bin sizes for frequency distributions: Kgiss: 0.35s™, kon*2P3? : 0.015s", P+2Paz: 0 019, pmax:
0.02). f. Distributions of kinetic parameters for all binding sites in the indicated mRNA regions
(p-values: one way ANOVA, n.s.: not significant; for boxplots: vertical line: median, box limits:

interquartile range (IQR); whiskers 1.5x IQR)
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Figure 3 | Clustering of Dazl binding sites in 3’'UTRs. a. Distribution of Dazl binding sites in
3’'UTRs as function of the distance between neighboring binding sites. The grey line shows the
distribution if sites were randomly distributed across all 3’'UTRs (p value: t-test). b. Proximity of
clusters with varying number of binding sites to the PAS. c. Correlation between association
rate constants and number of binding sites in clusters. (p-values: one way ANOVA; for boxplots:
vertical line: median, box limits: interquartile range (IQR); whiskers 1.5x IQR). d. Heatmap

depicting correlation of values for maximal fractional occupancy in clusters with 6 binding sites.

Figure 4 | Link between Dazl-RNA binding and Dazl impact on mRNA function. a.
Distribution of cumulative binding probabilities (2B) for Dazl in all clusters (N = 1,690). b.
Changes in transcript levels (ARNA) and ribosome association (ARPF) between low and high
Dazl concentration for Dazl-bound mRNAs (N = 968). Data points represent averages from
triplicate ribosome profiling and RNAseq experiments '7. ¢. Correlation between cumulative
binding probabilities and functional mRNA classes. Colors correspond to the enrichment
(hypergeometric test, red: p < 0.05, shades of yellow: not enriched). d. Upper panel: Heatmap
of the Dazl regulatory program, linking functional mRNA classes to kinetic parameters (2B,
AZB), cluster characteristics (number of binding sites in cluster, cluster distance from PAS) and
3'UTR features (numbers of clusters, on 3’'UTR, 3'UTR length, transcript level), all shown in
terciles (Extended Data Fig.8f). Numbers mark the groups with characteristic combinations of
2B, AZB, cluster and mRNA features. Lower panel: Link between Dazl-code and Gene ontology
(GO) terms. e,f. Linear regression model linking the Dazl regulatory program to impact of Dazl
binding on changes in transcript levels (ARNA) and ribosome association (ARPF) (panel b).
Points represent the differential intercept (DI) linear coefficient (LC) (red: DILCs for transcript
levels and ribosome association that increase at high Dazl concentration, green: black: DILCs
for transcript levels and ribosome association that decrease at high Dazl concentration). g,h.
Correlation between experimental values for ARNA and ARPF and values predicted with the
linear regression model (R: adjusted linear correlation coefficient) for the test data set unseen
by the model (N = 492).
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EXTENDED DATA, FIGURE CAPTIONS

Extended Data Figure 1 | Time-resolved RNA-protein crosslinking with fs laser in vitro. a.
Schematics of fs laser setup. b. Degradation of RNA (38 nt) under steady-state and fs laser
illumination. Data points represent averages of 3 independent measurements. Error bars mark
one standard deviation. Lines show a linear trend. ¢. Dose absorbed over time for crosslinking
with conventional UV (Stratalinker, 200 mJ/cm?, A = 254 nm) and fs laser (2.6 mW) d.
Representative denaturing polyacrylamide gel electropherogram (PAGE) for a crosslinking
reaction of 50 nM RbFox(RRM) (laser: 2.6 mW) (lanes 5 — 12) and control reactions with RNA
only (lanes 1 — 3) and RbFox(RRM) only (lane 4), with (lanes 2-4) or without (lanes 1 and 5)
crosslinking. e. Representative denaturing PAGE for a crosslinking reaction of 50 nM
RbFox(RRM) with Stratalinker (200 mJ/cm?, A = 254 nm), lanes 4 - 8) and control reactions
(lanes 1 - 3). f. Timecourse of crosslinking reaction of 50 nM RbFox(RRM) with Stratalinker (200
mJ/cm?, A = 254 nm) vs. fs laser (Fig.1d). Datapoints are averages from triplicate experiments
(error bars: one standard deviation). g. RNA Crosslinking timecourses for Dazl(RRM) with fs
laser at different laser power and protein concentrations. Data points represent averages of 3
independent measurements (error bars: one standard deviation). Lines show the fit to the data
in Fig.1e. h. RNA Crosslinking timecourses for RoFox™{(RRM) with fs laser at different laser
power and protein concentrations. Data points represent averages of 3 independent
measurements (error bars: one standard deviation). Lines show the fit to the data in Fig.1e. i-k.
Binding isotherms for RbFox(RRM), RbFox™{RRM) and Dazl(RRM) to cognate RNAs
measured by fluorescence anisotropy. Experiments were performed multiple times, all
datapoints are shown. Apparent equilibrium binding constants (K2, Fig.1e) were calculated with

the quadratic binding equation.

Extended Data Figure 2 | Dazl-RNA crosslinking with fs laser in GC-1spg cells. a. Western
Blot of Doxycyline dependent Dazl expression in GC-1 cells. b. Schematic of the time-resolved
crosslinking approach in cells. Numbers mark the respective CLIP libraries. c¢. Representative
PAGE for bulk Dazl-RNA crosslinking. The intensity of crosslinked RNA (marked) is used to
convert NGS reads to a concentration-equivalent parameter (for bulk crosslinking intensities see
Supplementary Material, Table S6) d. Dazl binding sites identified by fs laser (KIN-CLIP) and
conventional UV crosslinking (iCLIP) on all RNAs and 3’'UTRs. e. Metagene distribution of Dazl
binding sites identified by KIN-CLIP and iCLIP on 3’'UTRs proximal to stop codon and PAS. The
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dotted lines mark the background of a random distribution of binding sites on 3'UTRs. f. CITS
(Crosslink Induced Truncation Site) analysis 22° of 6-mer and 4-mer enrichment at 5’-termini of
sequencing reads for KIN-CLIP (upper panels) and iCLIP (lower panels). The data indicate a
virtually identical sequence context of crosslinking sites for KIN-CLIP and iCLIP. Sequence
enrichment reflects the statistical overrepresentation of 6-mer and 4-mer sequences with
respect to randomized sequences (Z-score, 11 nucleotide region, £ 5 nt from the 5’-terminal

nucleotide).

Extended Data Figure 3 | Determination of kinetic parameters from fs laser, time-resolved
Dazl-RNA crosslinking in cells. a. Flowchart of the approach to calculate kinetic parameters
for individual DazI-RNA binding sites in cells (for details see Materials and Methods). Unless
otherwise stated, rate constants averaged from both approaches are used in subsequent data
analyses. b. Scaling of X2 with the number of iterative fitting cycles for analytical and numerical
approaches. c,d. Distribution of X2 at first and last (642) fitting cycle for analytical (c) and
numerical (d) approaches (COD: Coefficient Of Determination, R linear correlation coefficient).
e-i. Correlation of parameters calculated with analytical and numerical fitting procedures (R
linear correlation coefficient). j. Correlation between crosslinking rate constants for low and high
laser power. Rate constants are averaged from parameters obtained with numerical and
analytical approach. Crosslinking rate constants at higher laser power were larger than at lower
for 92% of binding sites. k. Confidence range for dissociation rate constants (for details see
Materials and Methods). I. Normalized read densities measured experimentally and calculated
from the kinetic parameters for all Dazl binding sites. m. Distribution of X2for experimental

values compared with values calculated with the kinetic parameters.

Extended Data Figure 4 | Kinetic parameters of Dazl binding sites and sequence context.
a-d. Sequences surrounding Dazl binding sites, arranged according to decreasing values for
kon™®2P32) | koo | k 28™W), and ™2 Sequences are aligned at the peak nucleotide (most
frequent crosslink site (+ 11 nt peak nucleotide), Extended Data Fig.2f, position 0). e-h.
Frequency of 6-mer sequences surrounding Dazl crosslink sites (+ 111 nt peak nucleotide) in
top and bottom 5% of sequences arranged according to the kinetic parameters in panels (a-d).
i-l. Relative frequency of 6-mer sequences in top and bottom 5% of sequences (panels e-h),
arranged according to the kinetic parameters in panels a-d. Sequences below the diagonal line

correspond to enrichment of a 6-mer in the top 5% versus the bottom 5%. (R linear correlation
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coefficient). As, Us and UsGU; are most enriched in the vicinity of the binding sites with the
fastest apparent association rate constants, compared to the binding sites with the slowest
apparent association rate constants. No comparable enrichment is seen for other kinetic
parameters. m-p. Relative frequency of 4-mers in top and bottom 5% of sequences arranged
according to the kinetic parameters in panels (a-d). g-t. Distribution of association and
dissociation rate constants, binding probabilities (P*-2P32)) and maximal fractional occupancy
(@™ for binding sites on different RNA classes. P values (one-way ANOVA, significant for p <
0.05) indicate inter-group differences. ®™2*, but not other parameters vary significantly for
different RNA classes (boxplots: vertical line: median, box limits: interquartile range (IQR);
whiskers 1.5x IQR).

Extended Data Figure 5 | Arrangement of 3’'UTR Dazl binding sites in clusters.

a. Arrangement of Dazl binding sites in 3’'UTRs. Binding sites are colored according to kon(*2?32)
and kiss. as indicated in the key panel. Right panel: number of clusters in corresponding 3’'UTR.
Colors mark number of binding sites in a cluster, as indicated in legend bar (right) (N = 1,313
3'UTRs, 1,690 clusters, 6,085 binding sites) b. Distribution of Dazl binding sites in 3’'UTRs
closer than 500 nt to PAS, as function of the distance between neighboring binding sites. The
grey line shows the distribution if sites were randomly distributed across all 3'UTRs (p value: t-
test). c. Distribution of Dazl binding sites in 3'UTRs farther than 500 nt from PAS, as function of
the distance between neighboring binding sites. The grey line shows the distribution if sites
were randomly distributed across all 3'UTRs (p value: t-test). d. Large windows: genome
browser traces of representative 3’UTRs with 5 clusters (Nucks1) and 2 clusters (D’'Rik,
D030056L22Rik). Bars show the normalized read coverage for 4.2xDazl, 2.6 mW laser and
680s crosslinking time. Numbers mark the distance between clusters. Small windows: zoom into
cluster 1 of Nucks1 with 3 binding sites and in cluster 1 of D’'Rik with 2 binding sites (numbers
mark the distance between binding sites). e. Number of clusters in 3’UTRs with Dazl binding
sites. Colors show the number of binding sites in a cluster as indicated in panel a. (red: 20;
cornsilk: 1). f. Distances between clusters in 3'UTRs with 2 to 4 clusters. Number 1 represents
the cluster most proximal to the PAS. g. Distribution of distances between neighboring binding
sites in clusters (2-9 binding sites). Number 1 represents the 3’ binding site (boxplots: vertical
line: median, box limits: interquartile range (IQR); whiskers 1.5x IQR). h-j. Correlation between
the number of binding sites for clusters proximal (blue: < 0.5 kb) and distant (red: = 0.5 kb) to

the PAS and (P“2®32) h), dissociation rate constants (kass. , i), and maximal fractional
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occupancy (®m j), for individual binding sites in a given cluster. P-values (one way ANOVA)
indicate significant inter-group differences for P03z gnd ®™2* but not for Kyiss. P*2P2?) and
®m depend on kon*2P32) which correlates with the number of binding sites in a cluster,
(Fig.3c). k. Correlation between kinetic parameters of individual binding sites in clusters with 6,
5, 4, and 3 binding sites. The Pearson correlation coefficient is indicated in the legend bar.

Binding site number 1 indicates the 3’ binding site in a cluster.

Extended Data Figure 6 | Link between Dazl binding in 3’UTRs and impact on mRNA level
and ribosome association. a. Correlation between cumulative binding probabilities (£B) and
number of binding sites in a cluster (N = 1,313 3'UTRs, 6,085 binding sites, 1,690 clusters), R?:
linear correlation coefficient). b. Correlation between 2B and distance of the cluster from the
PAS, R?: linear correlation coefficient). ¢. Correlation of B terciles (H: high; M: medium; L: low,
Fig.4a) and changes in ribosome association (ARPF, Fig.4b) for the corresponding transcripts
(N =968) between low (1xDazl) and high (4.2xDazl) concentration (P value: one-way ANOVA).
For UTRs with multiple clusters, the cluster closest to the PAS was utilized (boxplots: vertical
line: median, box limits: interquartile range (IQR); whiskers 1.5x IQR). d. Correlation of ¥B
terciles (H: high; M: medium; L: low, Fig.4a) and changes in transcript levels (ARNA, Fig.4b) for
the corresponding transcripts between low (1xDazl) and high (4.2xDazl) concentration (P value:
one-way ANOVA). For UTRs with multiple clusters, the cluster closest to the PAS was utilized.
e. Distribution of binding probabilities for individual Dazl binding sites in 3’'UTRs for transcripts in
THRH, THRM, TLRM, TLRL, TMRH, TMRL mRNA classes (Fig.4b). The dotted lines mark
terciles (H: high; M: medium; L: low), (for details, see Materials and Methods). f. Correlation
between binding probabilities for individual binding sites and functional mRNA classes (Fig.4b).
Colors mark the enrichment (hypergeometric test, red: p < 0.05, shades of yellow: not enriched,
see color bar). No significant enrichment is observed. g. Distribution of cumulative binding
probabilities for Dazl clusters in 3'UTRs with scrambled binding sites. The dotted lines mark
terciles (H: high; M: medium; L: low). h. Correlation between cumulative binding probabilities of
Dazl clusters with binding sites scrambled between clusters (panel g) and functional mMRNA
classes (Fig.4b). Colors mark the enrichment (hypergeometric test, Red: p < 0.05, shades of
yellow: not enriched, see color bar). No significant enrichment is observed. i. Correlation
between additive binding probabilities of two Dazl sites in a cluster and functional mMRNA
classes (hypergeometric test, red: p < 0.05, shades of yellow: not enriched, see color bar). For

clusters with > 2 binding sites, permutations of two sites were tested and sites with highest
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additive binding probability were selected. The model tests whether the additive binding
probability of any two Dazl binding sites in a given cluster can explain the impact of Dazl on the
transcript to the same extent as considering cumulative binding probabilities for the entire
cluster (Fig.4c). The model is only able to explain the TLRL, TLRM mRNA classes, which
frequently contain transcripts with clusters that have only few Dazl binding sites. j. Correlation
between conditional binding probabilities of two Dazl sites in a cluster (terciles) and functional
mMRNA classes (hypergeometric test, Red: p < 0.05, shades of yellow: not enriched, see color
bar). For clusters with > 2 binding sites, permutations of two sites were tested and combinations
of sites with the highest multiplicative binding probability were selected. The model tests
whether the conditional binding probability of any two Dazl binding sites (e.g. whether Dazl
needs to bind simultanously to both sites) in a given cluster can explain the impact of Dazl on
the transcript to the same extent as considering cumulative binding probabilities for the entire
cluster (Fig.4c). The model explains only mRNA classes which frequently contain transcripts
with Dazl clusters that have only few binding sites. For these clusters cumulative and conditional
binding probabilities scale similarly. The data suggest that simultaneous binding of Dazl to two
sites in a cluster is not required for general Dazl function. k. Correlation between conditional
binding probabilities of three Dazl sites in a cluster (terciles) and functional mRNA classes
(hypergeometric test, Red: p < 0.05, shades of yellow: not enriched, see color bar). For clusters
with > 3 binding sites, permutations of three sites were tested and combinations of sites with the
highest multiplicative binding probability were selected. The model tests whether the conditional
binding probability of three Dazl binding sites (e.g. whether Dazl needs to bind simultaneously to
three sites) in a given cluster can explain the impact of Dazl on the transcript to the same extent
as considering cumulative binding probabilities for the entire cluster (Fig.4c). The model
explains only mRNA classes which frequently contain transcripts with Dazl clusters that have
only few binding sites. For these clusters cumulative and conditional binding probabilities scale
similarly. The data suggest that simultaneous binding of Dazl to two or more sites in a cluster is

not required for Dazl function.

Extended Data Figure 7 | Link between Dazl clusters in 3’UTRs and impact on mRNA level
and ribosome association. a. Distribution of transcript levels at 4.2xDazl| b. Distribution of
3'UTR lengths 73031 For UTRs with multiple lengths, coordinates for the longest 3'UTR were
utilized. c. Distribution of distances of Dazl clusters from PAS. d. Distribution of differential

cumulative binding probability (AZB) for all Dazl clusters. The dotted lines mark terciles (H: high;
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M: medium; L: low). Terciles were defined by obtained standard deviations from the mean for
each feature described above. e. Link between Dazl impact on mRNA level and ribosome
association and cluster features (upper graphs: number of Dazl clusters in 3’'UTR: black line;
>B: blue vertical lines, lower end marking 2B at 1 x Dazl, upper end 2B at 4.2 x Dazl; middle
graphs: AZB for each cluster and number of Dazl binding sites in each cluster; Heatmaps below
the graphs: terciles of transcript features obtained from panels a-c. Each panel shows one
functional mMRNA class [defined in Fig.4b; first letter T: change in ribosome association, second
third letter R: change in transcript level upon increase in Dazl concentration. H-high (increase at
high Dazl concentration), M-medium (no change), L-low (decrease at high Dazl concentration)].
Functional classes not displayed contained too few or no transcripts (TLRH: 0, THRL: 2) or
showed no change in ribosome association and transcript level (TMRM). Numbers represent the

groups in the Dazl-code (Fig.4d). Clusters with 2B > 1 (N = 4) are not shown.

Extended Data Figure 8 | The Dazl regulatory program. a. Pairwise correlation between Dazl
cluster features. Colors correspond to Pearson’s’ correlation coefficient. Cluster features are
marked as indicated on the right. b. Variance of data reflected in the eigenvalues of principal
component axes (N = 7) obtained by PCA. Each eigenvalue corresponds to a principal
component axis. Each axis reflects a linear combination of Dazl cluster features (N = 7),
obtained from panel (a). The eigenvalues and the corresponding principal component axis are
sorted according to the initial variance they represent. The first three principal component axes
explain roughly 90% variance. c. Biplots of Dazl cluster features (arrows) projected on the first
two principal components (PC1,2; panel b). Dots represent transcripts. Colors correspond to
terciles of the distributions of values for ARPF (H = High, M: Medium, L: Low, Fig.4b), ARNA (H
= High, M: Medium, L: Low, Fig.4b), Colors correspond to terciles of the distributions of values
for ARPF (TH = High, TM: Medium, TL: Low, Fig.4b), ARNA (RH = High, RM: Medium, RL:
Low, Fig.4b), and functional mRNA classes (THRH, THRM, TLRM, TLRL, TMRH, TMRL,
Fig.4b). Each arrow represents a cluster feature (labels as in panel (a)). Proximity of arrows
scales with correlation between the corresponding features. Arrows in the x-direction (positive or
negative) contribute to PC1, arrows in the y-direction (positive or negative) contribute to PC2.
Short arrows (transcript level, proximity to PAS) indicate that additional principal components
(PC3-7) are required to explain the corresponding feature. d. T-distributed Stochastic Neighbor
Embedding (t-SNE, Perplexity = 10, Iterations = 2,000) of cluster features (panel a). Identified

groups are marked 1-21. Each point represents a transcript. e. Biplots of Dazl cluster features
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(arrows) projected on three principal components (PC1,2,3, panel b). Dots represent transcripts.
Colors correspond to functional mMRNA classes (THRH, THRM, TLRM, TLRL, TMRH, TMRL,
Fig.4b). Separation of transcripts in 21 groups is marked as 1-21. f. Link of functional mMRNA
classes to kinetic parameters (2B, AZB), cluster features (number of binding sites in cluster,
proximity to PAS) and UTR features (numbers of clusters on UTR, UTR length, transcript level).
Left panel: enrichment of terciles (H, M, L; Fig.4a, Extended Data Fig.7a-d) for 2B, A%B,
number of binding sites in cluster, cluster distance from PAS, UTR length and transcript level in
group 1. Numbers and color indicate the degree of enrichment. The row on the left marks the
visualization of the Dazl code for group 1 that is used in Fig.4d. Right panel: enrichment of
terciles for the features indicated in the left panel for all groups (1-21). Functional mRNA classes
for the respective groups are shown on the bottom. g. Genome browser traces of representative
transcripts of select groups. MRNA classes are indicated. The y-axis represents normalized
coverage value. h. Mapping of transcripts from select groups on two biological networks.
Groups are colored as indicated in the legend. Proximity of transcripts of a given group in the

network indicates closely related biological functions.

Extended Data Figure 9 | Decision tree classification linking the Dazl code to functional
impact of Dazl binding. a. Decision tree classifier (Chi-squared automatic interaction detection
(CHAID) algorithm 323 of 7 features (2B, AZB, distance to PAS, 3'UTR length, transcript level;
Clust/UTR: number of clusters in a given 3'UTR, Extended Data Fig.8) in terciles (H: high, M:
medium, L: low, Extended Data Fig.7). Nodes (¢) mark the given feature and corresponding
partition (high, medium, low). Circles indicate the number of transcripts, donut graphs mark the
functional mMRNA classes, color coded as shown on the right. Circled numbers left to the
heatmap with the Dazl code (identical to that in Fig.4d) indicate the number of transcripts in a
given group. The decision tree was calculated by cross-tabulation of predictor variables
(transcripts, N = 413) with target variables (functional mMRNA classes THRH, THRM, TLRM,
TLRL, TMRH, TMRL, Fig.4b) followed by partitioning of predictor variables into statistically
significant subgroups (X2 test, for independence with significance threshold: 0.05 (ref.%,
Supplementary Material Table $10). b. Confusion matrix corresponding to the decision tree.
Validation 1 (N = 24 transcripts) and Validation 2 (N = 21 transcripts) are predictions for

transcripts that were not included in the decision tree classification.
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Extended Data Figure 10 | Linear regression models for linking the Dazl code to Dazl
impact on changes in transcript levels, ribosome association and translation efficiency.
a: Distribution of changes in translational efficiency values (ATE) between high and low Dazl
concentration for transcripts in the 21 groups of the Dazl regulatory program, defined in Fig 4d.
MRNA functional classes are defined in Fig.4b. The grey area in the plot center marks
unchanged ATE (95% confidence interval). p-values were calculated by one-way ANOVA of
inter-group variations for each mRNA functional class (boxplots: horizontal line: median, box
limits: interquartile range (IQR); whiskers 1.5x IQR). b. Linear Regression models tested.
(yellow: dummy coding, using terciles of the variables, Extended Data Fig.8. Red: no dummy
coding; use of continuous data. Grey: variable was omitted. c. adjusted R? for each model. d.
Differential Intercept Linear Coefficients (DILC) for each model. Grey boxes mark models
without the respective variable. e. Significance of each DILC for each model (White: p < 0.05 -
significant, Black p > 0.05 — not significant, p-values: student t-test on each coefficient term).
M1 is the only model with consistently significant DILCs. Models 24-27 include interaction terms
corresponding to 7 independent variable terms and test impact of multicollinearity. Interaction
terms for each of the models were as follows: M24: 3B | AXB and 2B | # binding sites in a
cluster. M25: 2B | AXZB. M26: 2B | AXB and ZB: Proximity from PAS. M27: 2B | Proximity to
PAS. Interaction terms are the cross product of encompassing independent variable terms and
were selected based on pairwise correlation coefficients (Extended Data Figure 8a). f: Linear
regression model linking the Dazl regulatory program to changes in translational efficiency
values (ATE) (panel a). Points represent the differential intercept (DI) linear coefficient (LC) (red:
DILCs for translational efficiencies that increase at high Dazl concentration, black: DILCs for
translational efficiencies that decrease at high Dazl concentration). g: Correlation between
experimental values for ATE and values predicted with the linear regression model (Adj. R:
adjusted linear correlation coefficient) for test dataset. h: Correlation between predicted values
for ARPF (N = 6) and changes in luciferase activity between high and low Dazl concentration for
reporter RNA constructs. Reporters were generated by appending the 3’'UTR of the respective
transcripts to a luciferase ORF, and measurements were performed as described in ref.17.
Naa40 and Ptma were part of model building data set (training data set). Calm2, Cxcl1, D’Rik

and Spp1 were part of the test dataset. (R: linear correlation coefficient).
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MATERIALS AND METHODS

Laser Setup

The cross-linking experiments were performed by using a Ti:Sapphire regenerative amplifier
laser system (Libra-HE, Coherent, Inc.; A = 800 nm (center wavelength, nominal), pulse width
<100 fs (Full Width at Half Maximum), 4.0 W at 1 kHz, contrast ratio > 1000:1 pre-pulse; >
100:1 post-pulse; root mean square (8 h) energy stability under stable environmental conditions
after system warmup < 0.5 %). The 800 nm fundamental beam was converted to the 270 nm
excitation beam by second harmonic sum frequency generation with an optical parametric
amplifier (TOPAS, Quantronix/Light Conversion)®-3". Contributions to the excitation beam from
other wavelengths were removed by a set of dichroic mirrors (A-filter) and a Glan-Taylor
polarizer ¥". The excitation beam was collimated to a spot size of 6.0 mm. The photon flux at the
sample was 1.25-10"® cm?s™ (2.6 mW) and 4.81:10"° cms™ (1 mW) at 270 nm with a pulse
duration of 200 (z 50) fs, assuming a Gaussian-shaped pulse . Stability of the laser output at A
= 270 nm was monitored with a silicon photodiode (S120VC, ThorLabs). The power of the
excitation beam was attenuated with a neutral density filter for the crosslinking experiments with
the average power of 2.6 mW and 1.0 mW. The crosslinking experiments were conducted in a 2
mm optical path length quartz cell with a maximum sample volume of 0.7 mL, placed orthogonal
to the excitation beam. Homogeneity of the sample in the cuvette was maintained with a Teflon-
coated magnetic stirring bar (Sterna Cells, Inc.) throughout the measurement. Temperature in
the cuvette before and immediately after measurements was monitored with a thermo-coupling

device.

RNA degradation measurements

Cy3 labelled RNA oligonucleotide was purchased from Dharmacon (Lafayette, Colorado). RNA
degradation by fs laser was measured for 0.15 pyM of 38 nt Cy3 labelled RNA substrate (V = 600
uL, 60 mM KCI, 6 mM HEPES-pH 7.5, 0.2 mM MgCl,, 5'-GCU UUA CGG UGC UUA AAA CAA
AAC AAA ACA AAA CAA AA-Cy3-3’), irradiated with the fs laser (2.6 mW) as described above
for 0, 100, 200, 300 and 680 s. RNA degradation by steady-state UV irradiation was measured
for 0.15 uM of the 38 nt Cy3 labelled RNA substrate (V = 50 yL ,60 mM KCI, 6 mM HEPES-pH
7.5, 0.2 mM MgCl.) irradiated in a Stratalinker (Fisher Scientific, 200 mJ/cm?) for same time
points. Following irradiation, samples were subjected to denaturing PAGE (4-12% Novex

NuPage Bis-Tris (Invitrogen), 60 min, 100 V). Samples on the gels were quantified using a
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Phosphorimager (GE) in fluorescence detection mode. Intact and degraded RNA bands were
quantified using the ImageQuantTL (GE) software. The fraction degraded RNA (Frac D) at each

time point was calculated according to:
Frac D =Ip - (Inp + Ip)” (Eq.1)

(Io: fluorescence intensity degraded RNA, Inp: fluorescence intensity non-degraded RNA)
Photons absorbed over time (Extended Data Fig.1b) were calculated according to '3

Dose absorbed = [I°t-a-(1-1074)]-(2.3-A) (Eq.2)
(I°= intensity of incident light in photons cm?2s™; t = duration of irradiation; A = absorbance of
protein-RNA solution in Absorbance Units (AU), 0 = mean cross section of absorption of nucleic
acids). For the fs laser: I°= 2:10%" photons cm? s (refs. %), Ax7o = 0.99 AU (Absorbance Units
of protein-RNA solution), o = 2.7 x 10" cm? molecule™ (ref.'®). For the steady-state UV
irradiation (Stratalinker, 400 mJ /cm?) I1° = 2 .10 photons cm™2s™, A0 =0.99 AU, 0 = 2.7 x 10°

7cm? molecule™ (ref.™).

Protein expression and purification

Mus musculus Dazl(RRM) (amino acids 32 - 117) was codon-optimized (Dapcel, OH) for
expression in E.coli. (Supplementary Material Table S1). The DNA construct was chemically
synthesized (Genscript, NJ) and cloned into a pET-22b vector with an N-terminal Hiss - Sumo
cleavable tag. Protein was expressed in E.coli (BL21) cells overnight at 19°C and purified
through Ni?* affinity column "6, Samples were dialyzed (20 mM HEPES, pH7.5, 100 mM NaCl),
the Hiss-Sumo tag was removed with Sumo protease (Ulp1) at 4°C overnight. DazI(RRM)
protein was further purified by gel filtration chromatography (Superdex 75) equilibrated in 20 mM
HEPES (pH 7.5), 100 mM NaCl, 5% (v/v) glycerol. Peak fractions were pooled and concentrated
with Amicon ultra centrifugal filters. RbFox(RRM) (amino acids 109-208) and RbFox™{(RRM)
(amino acids 109-208, R118D, E147R, N151S, E152T mutations) proteins were prepared as
described °. Protein concentrations were determined by UV absorbance at 280 nm and

validated with Bradford assays.

RNA-protein affinity measurements by fluorescence polarization

Purified proteins RbFox(RRM), RbFox™{RRM), Dazl(RRM) at different concentrations and
corresponding cognate 3’-Cy3 RNAs (20 nM, RbFox: 5-UCCUGCAUGUUUA-Cy3-3’, Dazl: 5'-
UUGUUCUUU-Cy3-3’, cognate motifs underlined; modified RNAs purchased from Dharmacon,
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Lafayette, Colorado) were incubated for 10 min (20 mM HEPES (pH 7.5), 100 mM NaCl and
0.01% (v/v) NP-40). Solutions were transferred to a 96-well plate (Greiner Bio-one), and
fluorescence polarization was measured in a Tecan M1000-Pro microplate reader (Tecan,
Switzerland). Plots of the fraction bound RNA vs. protein concentrations were fitted against the

quadratic binding equation using KaleidaGraph (Synergy, PA) 6.

(KirtRetPy) = \[{(KirtRitPo)® - 4xRoxPo}
2xRo

Fraction Bound = A x

(Eq.3)

(A: reaction amplitude, K1,2: apparent dissociation constant, Ro: RNA concentration, Po: protein

concentration)

fs laser RNA-protein crosslinking in vitro

Cy3 labelled RNA oligonucleotides corresponding to cognate sequences for RoFox(RRM) and
Dazl(RRM) (described above, 5 nM, final concentration) and protein (10 nM, 50 nM, final
concentration) were combined in a cuvette (V = 600 uL, 20 mM HEPES (pH 7.5), 100 mM NacCl,
5% (v/v) glycerol, 25°C) and incubated for 5 min. Longer incubation times did not change
results, indicating that equilibrium was reached. The solution in the cuvette was constantly
stirred during the reaction (200 rpm), using a magnetic stirbar. Laser power during the
measurement was monitored with a photodiode, as described above. Temperature in the
cuvette was measured before and after reactions. The RNA-protein mix was irradiated with the
UV laser at two different powers (1.0 mW and 2.6 mW, 270 nm). Each timepoint was measured
in a separate reaction, avoiding volume changes during the crosslinking experiment. Following
crosslinking, samples were removed from the cuvette and stored on ice. Crosslinked and non-
crosslinked RNA were separated on denaturing PAGE (4-12% Novex NuPage Bis-Tris gel, 200
V, 45 min). Fluorescence of crosslinked and non-crosslinked RNA in the gels was measured
with a Phosphorimager (GE) and quantified with the ImageQuant TL Software (GE). The

fraction cross-linked RNA (Frac XL) at each time point was calculated according to:

Frac XL = Ix. - (Ix + Inx)” (Eq.4)

(Ix.: fluorescence intensity crosslinked material, Inx: fluorescence intensity non-crosslinked

material).

Determination of kinetic parameters from RNA-protein crosslinking experiments in vitro.
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Timecourses at different protein concentrations and laser intensities were globally fit to a two-
step kinetic model (Fig.1a) using KinTek Global Kinetic Explorer (Kintek, Austin TX). Data fit
started from a pre-equilibrated mixture of protein and RNA, mirroring the experiments. Initial
conditions were identified from an array of different starting values for kon, kot and kx. Multiple
iterations were performed with various combinations of floating and fixed rate constants until the
best fit to all data sets was achieved (Fig.1e). The quality of the global fit was assessed by
computation of Chi-squared (X?) values with each parameter (Kon, Kot and kx) varied individually
(1D fit space, Supplementary Material Fig.S2a-c) and for co-variations of kon and ko (2D fits
pace, Supplementary Material Fig.S2d) Confidence intervals are given as upper and lower
bounds at 95% of the relative X2. To visually assess the quality of the fit, curves with calculated

rate constants were overlaid on experimental values.

Cell culture

GC-1spg cells with inducible DAZL expression were maintained in DMEM high glucose medium
(ThermoFisher) supplemented with 10% (v/v) Tet-system approved FBS (Clontech), 100 U/mL
penicillin, 100 mg/mL streptomycin, 5 mg/mL blasticidin, and 300 mg/mL Zeocin (all from
ThermoFisher) at 37°C, 5% (v/v) CO2 (ref.'”). Doxycycline induction of Dazl was performed and
lysates for generation of cDNA libraries and quantification of Dazl levels were prepared as
described 7. Equal amounts of protein were run on a SDS-PAGE (10% NEXT Gel, Amresco)
and transfered to a PVDF membrane. Western blotting was performed with anti-Dazl (Rabbit;
1:5000, US Biological) and anti-Hsp90 (Rabbit; 1:10,000; US Biological) antibodies.

Chemiluminescence was quantified with the ImagequantTL software.

fs laser crosslinking of GC-1 cells

GC-1spg cells (with doxycyline induction of Dazl expression) were grown in 150 mm plates to
70% confluency. Cells were rinsed with 2 mL PBS (per plate), scraped, re-suspended in 600 uL
PBS, transferred to the quartz cuvette and stirred with a magnetic stir bar (described above).
Crosslinking of the cell suspension was performed as described above at two laser powers (1.0
mW, 2.6 mW) in separate experiments for 30, 180 and 680 s (25°C). Each crosslinking reaction
contained a constant number of cells (6-10°). To generate sufficient material for timepoints with
low crosslinking yield, multiple identical experiments were conducted and pooled. Temperature
in the cuvette was measured before and after crosslinking (increase was less than 1°C after 680

s). Cell integrity after crosslinking was measured by Trypan-blue staining *° and cell counting in
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a hemocytometer. After crosslinking, cell suspensions were pelleted at 1,000 g for 5 min (4°C).
The pellet was suspended in PBS (3x dry volume). Cells were pelleted again (1,000 g for 5
min), the supernatant was removed, and pellets were frozen and stored at -80°C until further

processing.

cDNA library preparation

Cell lysates for each sample were split into two aliquots (A1, A2). RQ1 DNase (PromegaM6101)
and RNAse A (USB70194Y) were added at 1:100 (A1) and 1: 20,000 (A2). Over-digested
sample (A1) confirmed the size of the Dazl-RNA radioactive band on SDS-PAGE gel. The
under-digested cell supernatant from the under-digested sample (A2, equivalent to ~150 mg of
cell lysate) was mixed with protein G Dynabeads (ThermoFisher 10009D) with anti Daz!
antibody (Rabbit; 1:5000) in separate Eppendorf tubes for each sample (N = 16). Samples were
treated with CIP (Roche712023). RNA linker ligation and PNK (NEBM0201S) treatment were
performed as described '7. The supernatants were loaded onto separate Novex NuUPAGE 4-
12% Bis-Tris gels, and crosslinked material was transferred to a nitrocellulose membrane.
Samples were located on the membrane by autoradiography and RNA-Dazl complexes at 50 -
70 kDa (Dazl molecular weight; 37 kD) were cut. Nitrocellulose fragments were treated with
proteinase K (Roche1373196). Dazl bound RNA was isolated, reverse transcribed (SuperScript
1l; Invitrogen18080051), circularized and amplified to obtain 16 cDNA libraries. The RT primers
used contained iISP18 spacers and phosphorylated 5’ end for circularization of first strand cDNA
to generate PCR template without linearization 7. Unique molecular identifiers (UMIs,
randomized barcodes, 11 nt with 4 nt random nucleotides) were used to determine PCR
amplification artifacts (primer sequences: Supplementary Material Table S2). cDNA diversity
in each library was tested before next generation sequencing by cloning cDNA from each library
into pBS plasmid, subsequent transformation in competent cells, colony PCR and DNA
sequencing. lllumina Sequencing for all cDNA libraries was performed at the Case Western

sequencing core facility.

Measurement of bulk crosslinking

For each KIN-CLIP library, cells were cross linked and cell lysate was prepared as described
above. 200 pL aliquots (equivalent to 150 mg of cell lysate) for each KIN-CLIP sample were
treated with RQ1 DNase and RNAse (at 1: 20,000) as described above. Treated lysates were

28



centrifuged in a pre-chilled ultra-centrifuge, polycarbonate tubes, TLA 120.2 rotor at 30,000 rpm,
20 min, 75 pl of the supernatant were removed and RNA was 5’-radiolabeled with PNK.
Samples were run on a SDS-PAGE gel and transferred to a nitrocellulose membrane. The
radioactivity was measured by quantifying the intensity of the radioactive bands (using ImageJ

software). Lane background was used to normalize the band intensities.

KIN-CLIP read processing, refinement and mapping

Raw sequencing reads were assessed for quality (FastQC,
https://www.bioinformatics.babraham.ac.uk) and de-multiplexed. Low-quality reads were
removed if < 80% of sequenced bases in a read had a PHRED quality score of < 25. De-
multiplexing and read filtering was performed with the FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/) using standard commands “°. Filtered reads were
stored in FASTQ format. Barcode and UMI (randomized 4nt sequence) were kept appended to
line 1 of the FASTQ for each read.

Read duplicates, as identified by UMIs were collapsed into a single read. Linkers and
concatamers were removed with the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/),
using permutations (N = 25) of linker sequences as target. Reads with = 15 nt were retained for
subsequent analysis. Processed reads were aligned against the mouse genome (mm10) by
using bowtie2 4! with the following settings for a 50 bp sequencing run: Number of mismatches
allowed in seed alignment during multi-seed alignment = 71, length of the seed substrings to
align during multi-seed alignment = 15, set a function governing the interval between seed
substrings to use during multi-seed alignment = S, 1,0.50, function governing the maximum
number of ambiguous characters (N’s and/or ‘.’s) allowed in a read as a function of read length
= L,0,0.15, disallow gaps within this many positions of the beginning or end of the read = 4, set
a function governing the minimum alignment score needed for an alignment to be considered
‘valid® =L, -0.6, -0.6, set the maximum ("MX’) and minimum ("MN") mismatch penalties, both
integers = 6,2, sets penalty for positions where the read, reference, or both, contain an
ambiguous character such as 'N* = 1, gap opening penalty = 5, gap extension penalty = 3,
attempt that many consecutive seed extension attempts to “fail" before Bowtie 2 moves on,
using the alignments found so far = 20, set the maximum number of times Bowtie 2 will ‘re-
seed’ reads with repetitive seeds = 3. End-to-end alignment mode was used. Only uniquely
mapped reads were retained. To evaluate the stringency of filtering and sequence alignment,

the fraction of uniquely mapped tags over all mapped reads was assessed “° by employing
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different permutations of read mapping parameters described above. In total, 55 parameter
permutations for mapping were tested. The setting yielding the largest number of uniquely
mapped reads is shown above. The BAM index of mapped reads corresponding to the 16 KIN-
CLIP libraries was then converted to BED/bedgraph using the standard command line version of
—bedtools (V2.29.1) and —samtools (V1.10) 2. Bedgraph files were visualized in the IGV 3.

Identification of KIN-CLIP peaks

Genomic coordinates of the 5’-terminal nucleotide (5'nt) of every mapped read were obtained.
Adjacent 5’nt were summed at single nucleotide resolution level by creating a sliding window of
11nt (stride = 1, steps = 5nt on either side or until no new reads were detected), with the 5'nt
position at the center. Crosslinking peaks were defined by plotting the distribution of the count of
5'nt reads in these windows for every location. The peak apex represents the coordinate for the
crosslinking peak and the associated coverage value. Error ranges for coverage values
corresponding to each crosslinking peak were defined as the 95% confidence interval from the
apex of crosslinking peaks. Coordinates of crosslinking peaks present in all KIN-CLIP libraries,
except at the zero timepoint were used to define Dazl binding sites for further analysis. For
peaks with coverage at the zero timepoint (~0.2% of peaks), the peak value at t = 0 was
subtracted from the KIN-CLIP peaks. Coverage values for each Dazl binding site were
converted into a concentration equivalent by normalizing to the amount of bulk crosslinked RNA
for each KIN-CLIP library (Supplementary Material Table S6). The normalized read coverage

values were used for calculating kinetic parameters and other subsequent analyses.

Analysis of read distribution

To annotate KIN-CLIP Dazl binding sites, RefSeq coding regions, 5’UTRs, 3'UTRs, ORF,
introns, and RNA types were obtained from the UCSC genome browser and intersected

individually with KIN-CLIP binding site coordinates using bedtools.

CITS analysis and sequence enrichment

Crosslink Induced Truncation Site (CITS) analysis was performed as described 26%°. Enrichment
of motifs at and around CLIP regions was performed using the EMBOSS tool Compseq #, R

package ‘randomizeR’ %5 and ‘Random’ 6 module in Python. To generate z-scores, shuffled
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control sets were generated for each dataset analyzed using Random module available in
Python (Shuffle N = 10,000).

Distribution of Dazl-RNA contacts in 3’'UTRs

Metagene analysis of Dazl-3’'UTR interactions was performed on 3’'UTRs as defined by PolyA-
Seq . To define 3'UTR length, coordinates from Refseq and Ensembl °3' were matched with
PolyA-Seq data '’. For transcripts with multiple 3'UTR length annotations, coordinates for the
longest 3’UTR were utilized. 3'UTRs that overlapped with intron sequences annotated in either
RefSeq or Ensembl were omitted. To calculate distances of binding sites to PAS and stop
codons, the distance between coordinates for each KIN-CLIP binding relative to the Stop codon
and to the PAS (10 nt window) was measured. For each 3'UTR, the random distribution of
binding sites was determined by scrambling all Dazl binding sites (1,000 times) in that 3'UTR
into all probable 10 nt bins in that 3'UTR and obtaining the average.

Calculation of kinetic parameters

Kinetic parameters were calculated from normalized peak coverage values for each Dazl
binding site (N = 10,341). A Dazl binding site was defined by the presence of more than 5
normalized sequencing reads in the library for the (4.2xDazl, 2.6 mW laser) 680 s timepoint,
within 11 nucleotides of the peak apex for the binding site in all libraries. Sites without
normalized reads for the 30s (1XDazl, 1.0 mW laser) timepoint were excluded, as it is not
possible to calculate meaningful kinetic parameters from such sparse data. Kinetic parameters
were calculated according to two different approaches: (i) a numerical and (ii) an analytical
method. Parameters from both methods were averaged for subsequent data analysis
(Extended Data Fig. 3).

Numerical approach

The numerical approach to calculate kinetic parameters is based on numerically fitting
crosslinking timecourses to the differential equations describing the Dazl-RNA binding and

crosslinking process (Fig.1a), according to:

d(c[i)tR) = kon(D)(R) — kaiss.(DR) — kxL(DR) (Eq.5)

d(DR*) _
ac

kx.(DR) (Eq.6)
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(DR: concentration of non-crosslinked DazI-RNA complex (for each binding site), DR*:
concentration of crosslinked Dazl-RNA complex (for each binding site), D: Dazl concentration,
R: RNA concentration (binding site), kon: association rate constant, kaiss.: dissociation rate

constant, kx.: crosslinking rate constant).

Because concentrations of free Dazl and RNA in the cell are experimentally
inaccessible, the second order association process (kon) was treated as pseudo-first order
reaction at each of the two Dazl concentrations. Accordingly, we calculated a pseudo first order
rate constant for each Dazl concentration (kon"™P32), k,n#2P32)) "and Kyiss., kx. '™V and ky (26mW)
for each binding site. Numerical fitting of timecourses of normalized read coverage for each
binding site (Fig.2c) was performed in R with packages deSolve (with ODE function) 47, ggplot2

48 reshape2 *° and rmarkdown *°.

The fitting strategy encompassed two steps: (i) estimation of parameter ranges following
a sequential parameter estimation procedure °! and (ii) fitting the timecourses using estimated
parameter ranges as input (Supplementary Material, Scheme 1). Estimation of parameter
ranges was also performed in two steps, (i,a) initial parameter range estimation for kon("32),
kon™®2P32) ks | ks ™) and ky ™) and (i,b) refinement of initial parameter range estimates
to obtain final parameter range estimates (Supplementary Material, Scheme 1). To estimate
initial parameter ranges, timecourses from reactions with 4.2xDazl at high laser power (2.6 mW)
and low laser power (1mW) were fit separately. Starting values were based on the kinetic
parameters measured in vitro (Fig.1; kon™3) = 0.0001 s, kon*#P32) = 0.0001 s, Kaiss. = 1 87,
kx. '™V) =1 s and kx ™) = 10 s'. Use of significantly different starting values did not yield
acceptable fits for the majority of binding sites). This step provided average initial values for
kon“?P22) and kgiss. @s well as initial values for kx "™V and kx 2™V, Next, timecourses at 1xDaz!
at high laser power (2.6mW) and low laser power (1mW) were fit separately, yielding average
initial values for kon"®2?) and kass. and initial values for kx."™¥) and kx ?®™). This process was
performed for each binding site until the X2was minimized (no change in X2 for 4 consecutive
cycles) or 1,000 fitting cycles were completed. The process provided 10,341 x 5 parameter
values, which were plotted as distribution (10,341 values for each parameter). The initial
parameter range estimate represents the 95% confidence interval from the mean of the

distribution for kon("®2) kon(4-2P32) feyeo k™) and ky 26MW) |

To refine parameter range estimates to obtain final parameter range estimates, the initial
parameter range estimates were used as input to fit multiple, random subsets of 2,000 randomly

selected binding sites. 10,000 iterations, each with a unique random subset of 2,000 binding
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were performed. Each iteration yielded a distribution. All 10,000 distributions were
superimposed and the median apex of all distributions was identified. The final parameter range
estimates represent the 95% confidence interval from the median apex of the averaged
distributions. The final parameter range estimate was about 35% smaller than the initial

parameter range estimate.

The estimated parameter ranges were used as input for fitting of the timecourses
(Supplementary Material, Scheme 1). We fitted timecourses for reactions at 4.2xDazl at the
different laser powers (1 mW, 2.6 mW), varying linked kon*#?22) and kgsss. (Which do not scale
with laser power), and differing kx.\" ™) and kx. ¢ ™). We then fit timecourses at 1xDazl at both
laser powers, varying linked kon!™P#?) and kgiss., and differing kx.' ™) and kx_ ¢ ™V). Utilizing
parameters obtained from these two steps we fit all 4 timecourses linking kon*?P2%) and kon(™*P22)
for differing laser powers, linking kx.?® ™), kx (' ™) for differing Dazl concentrations and linking
kdiss. for all conditions. The process of fitting all 4 timecourses for each binding site was repeated
642 times, after which x2 did not show significant fluctuation (< 5% for 4 consecutive cycles).
Obtained rate constants were used as final kinetic parameters for the numerical approach
(Extended Data Fig.3b-d).

Fitting quality was assessed by calculating chi-squared (x?) for each binding site, the
overall cumulative reduced chi-squared (x?) and the coefficient of determination/R? (COD)

according to:

2
=25 (Eq7)

(O: observed value, C: calculated value for each binding site (i). 0i?is the squared variance

between data points O, C);
=% (Eq.8)

[v: degree of free; equals (n — m), with n: number of observations (n = 16), m: number of fitted

parameters (m = 5)].

The coefficient of determination/R? (COD) was calculated using the standard method as
described %2. The COD describes correlation between calculated and observed timecourses. For
the last fitting cycle, COD = 0.92, X,? = 0.043 (Extended Data Fig.3c).

Analytical approach
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The analytical approach to calculate kinetic parameters is based on fitting of crosslinking
timecourses to explicit solutions of the system of differential equations (Eqs.5,6) for the kinetic
scheme (Fig.1a). To solve the system of differential equations, we considered that at any given
time (t) during crosslinking, the accessible fraction of a given Dazl binding site is either free (R),
occupied (DR) or crosslinked (DR*):

(R): + (DR)s + (DR); = 1 (Eq.9)

In addition, at t — «, 100% of the accessible fraction of a given Dazl binding site is
crosslinked. As described for the numerical approach, the second order association process

(kon) was treated as pseudo-first order process at each Dazl concentration.

Treating second order association process (kon) as pseudo-first order process, considering Eq.9

and rearranging Eq.5 yields:

da *
LP0 = kon[1 = [DR](ey — DR{yy ] = kaiss.[DR () — ki [DR] o (Eq.10)

Before crosslinking (t = 0), at steady-state of the binding reaction,

d(DR") -

" 0 (Eq.11)
because
kg =0 (Eq.12)
From Eq.5, we thus obtain:
0 = kon[R] — kaiss.[DR] (Eq.13)
which yields, after rearranging,
[DRIey = ;22— (Eq.14)

At t = oo, crosslinking is complete, and thus

d(DR) _

n 0 (Eq.15)
d(DR*) _
— -0 (Eq.16)
The boundary limits are:
lim= DR*; =0 (Eq.17)
lim= DR*,, =0 (Eq.18)



Equations 11-18 define the boundary conditions.

Crosslinking timecourses represent amount of crosslinked material at a given time (t),
expressed as normalized coverage value for each binding site [DR*]. [DR*]) depends on
amount of Dazl-RNA complex [DR] at the time (t) (Eq.6) and thus on kon, Kdiss. and kx.. Absolute
concentrations of [D], [R] and [DR] are not known in our system. To extract kon, Kdiss. and kx. for
each binding site from the crosslinking timecourses we integrate Eq.6 after appropriate
substitution of [DR]. To accomplish this, we take a second differential of Eq.10, considering the

boundary conditions (Eq.11-18). We obtain the general solution of the second order differential

equation:
d?(DR) d(DR) d(DR*) d(DR) d(DR)
a2z fonT g T kon a kaiss. a kxv it (Eq.19)
d*(DR) d(DR)
dt? = _(kon + kdiss. + kXL) dt + (kXLkon)[DR](t) (Eq20)

Equation 20 is a constant coefficient, homogenous, linear, second order differential equation

with two independent solutions (y7, y2) 3
y(t) = cly1(t) + c2y2(t) (Eq.21)

The coefficients ¢7 and ¢2 (by the principle of superposition) 5 are obtained after providing the
boundary conditions from equations 11-18. We identify a function y where a constant multiplied
by its second derivative y” plus another constant times y’ plus a third constant multiplied by y

equals zero %,
The exponential function
y = e™ (r. constant). (Eq.22)
has the property that its derivative is a constant multiple of itself:
y' =re™ (Eq.23)

Furthermore,

y'" =r2e™ (Eq.24)
Substituting these expressions into (Eq.20), we obtain:

ar’+br+c=0 (Eq.25)

Equation 25 is the auxiliary (characteristic) equation of the differential equation 20 (ref. %). The

equation is transformed into an algebraic equation by replacing
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d?(DR) _ .2

e , (Eq.26)
d(DR) _

and [DR] by 1.
The roots of Eq.25 are found by factoring 5°:

T1 — (kon+kdiss.+kXL) + \/(kon"'zkdiss."'kXL)z—4'(kXLkon[P]) (Eq28)

rz — (kon+kdiss.+kXL) _ \/(kon"'zkdiss."'kXL)z—4'(kXLkon[P]) (Eq29)
With Eq.21-29, the general solution of Eq.20 is %¢:

[DR];=c e™t + cye™t (Eq.30)

To obtain our observable [DR*], we integrate Eq.6 under consideration of the boundary
conditions (Eqs.11-18):

[DR*](ty — [DR*)0) = ks, [, [DR] sy dt (Eq.31)
Substituting [DR]: from Eq.30 yields
[DR*](ty = [DR"](0) = kxv [ric1(1 —e™f) + rpcp (1 — e™2h) (Eq.32)

Substituting ¢7 and c2 by providing the boundary conditions (Egs.11-18) and considering
(Egs.21-29), we obtain:

[DRNe) = ol =11 = 2 (A = et rp (1~ o) (1~ €™2) (Eq.33)

ontKdiss. kontkdiss.

Equation 33 is an explicit nonlinear equation of the form:

Y=f(p)+ ¢ (Eq.34)
t=(ts, t, ... .... . t;) are the independent variables (the normalized read coverage values at
different timepoints), 8 = (B4, B2, ... .... . Bn)’ are the parameters (Kon = Kon* 2™, kon™#, kx_ =

K 28 # e "MW H and Kaiss. = Kaiss ™, where #i represents the crosslinking conditions. ¢ is the
fitting error between observed and expected timecourses. f(t, 8) represents the functional

relationship between t, B and Y.

Equation 33, adapted to the different Dazl concentrations and different laser powers was
used to fit the crosslinking timecourses for each binding site. The resulting equations represent

the non-linear model:
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For 4.2xDazl, 2.6 m\W laser:

[DR* ] k2.6mW#1[ 1 —r(1l- kgemW#1 )(1 — erlt)+ (1 — kdzx# )(1 _ erzt)
(t) — XL k)z('fmw #1 1 kz 6mW M""‘cﬁés. 2 )42x #1+k #1

(Eq.35)

For 4.2xDazl, 1 mW laser:
1 k kon
[DR* ]y = kxi™ ™ [ — (1 - W)(l —enf)yrr(1- —k42x#2+k =) (1 —e™h)

(Eq.36)

For 1xDazl, 2.6 mW laser:

[DR* ] — k2 6mW#3[ 1 (- kgemW#3 )(1 _ erlt)+ (1 — k3% #3 )(1 _ erzt)
® k}z{.fmw#3 1 K2; 6mW#3+k #3 2 k1x#3+k #3

(Eq.37)
For 1xDazl, 1 mW laser:

1 Kim KIX#4
[DR*](p) = k™ M[w —n(1- W)(l — e (- ) - e

(Eq.38)

r1 and r2 are:

(b +hliss +hgy ) + J (it Khios +Hky ) ~4(ihy Kl
2

T'1=

(Eq.39)

(b +heliss +ry) — J (it khios +Hky ) = 4(ihy Kb
2

rz =

(Eq.40)

h represents 4.2xDazl #1 (Eq. 35), 4.2xDazl #2 (Eq.36), 1xDazl #3 (Eq.37) and 1xDazl #4
(Eq.38). i represents #1 (Eq.35), #2 (Eq.36), #3 (Eq.37) and #4 (Eq.38). j represents 2.6 mW #1
(Eq.35), 1 mW #2 (Eq.36), 2.6 mW #3 (Eq.37) and 1 mW #4 (Eq.38).

Timecourses for 4.2xDazl| at high laser (2.6 mW), 4.2xDazl| at low laser (1mW), 1xDazl| at high
laser power (2.6 mW) and 1xDazl at low laser power (1mW) were separately fit to the non-linear

model (Supplementary Material Scheme 2).

A matrix of initial parameters was obtained,
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4.2xDazl: 2.6 mW laser Kon*-2Paz)#1 fpss #1 K (26mW) #1

4.2xDazl: 1 mW laser Kon*20a2)#2 ey #2 Ky (1MW) #2
1xDazl: 2.6 mW laser Kon(1XP32) #3 Kaiss. ™ K (28MW)#3
1xDazl: 1 mW laser Kon(1XDa2!) #4 Kaiss.™ Ko, (1MW) #4

Next, a global datafit for all four timecourses (#1-4) for an individual binding site was performed.

Initial parameters were iteratively adjusted, considering the following criteria:

Kon+20a2) #1 ~ | (4.2xDaz)#2 (gt different laser powers)
KonPPa2) #3 = | (XDaz) #4 (4t different laser powers)
Kaiss.*" = Kaiss. ™ = Kaiss = Kaiss ™

Ky (28MW# = [y (26mW)#3 (9t 2.6 mW laser power)

Ky 1MW) #2 = [ (IMW)#4 (gt 2.6 mW laser power)

Fits were repeated until the best fit was reached (no change in X?for 4 successive fittings), as

measured by Chi-squared X2 minimization, according to:

Yi—f(x],
X = S, (L (Eq.41)
x;’is the row vector for the ith (i= 1, 2, ... , n; n = 10,341) observation. S is the parameter under
consideration. Y; is the estimated parameter value for the i, (i = 1, 2, ... , n; n = 10,341)

observation. o; is the variance between observed and estimated parameter values. f(x;’, 8)

represents the function for which x;”and 8 are measured.

Obtained parameters were further refined by additional rounds of fitting using the
analytical, Levenberg-Marquardt (L-M) least squares algorithm, which combines the Gauss-
Newton and the steepest descent method *'. Utilizing the values obtained above, parameters for
timecourses at 4.2xDazl at high laser power (2.6 mW) and low laser power (1mW) were
adjusted together. kon“?P32)#2was increased or decreased (depending on initial values for a

iven binding site) in small increments (db) in order to move kon*?P32)#2 closer to kon*2P22)#1 gp
g g
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was set as 5% of kon*?P3)#2for g given binding site. Following each increment, the timecourse
was fitted to the non-linear model and X2 calculated. kqiss * and kx. '™V #2were floated during
the fitting. If X2 (b + db) = X? (b) for >3 consecutive fitting cycles, kon*??3)#' was increased or
decreased (depending on initial values) in small increments to improve fitting. This fitting

procedure was repeated for N = 642 cycles.

Next, the parameters for timecourses at 1xDazl at high (2.6 mW) and low laser power
(1mW) were adjusted, providing ko,*-2Paz)#1 [ (4-2xDazh#2 " j (1XDaz#3 gnd k,,(PPaz)#  Keeping the
adjusted kon constant (floating kxi), were subsequently adjusted Kaiss*', kaiss #, Kaiss.® and Kaiss®
(within 25% range of each other). Finally, kx. ?*™V)#! and ky_(6™")# were adjusted by
increasing or decreasing kon*?P22)# and ko,*-2P32)#jn small increments (db <5% of parameter
values) while maintaining kon(*2Pa2)#1 > (420320 #3 - Additionally, Kaiss*' and Kaiss. ™ were
increased or decreased in increments of db <1%. The same process was performed for
adjusting kon*2P3)#2 and k,,+-#P32)# Every parameter adjustment cycle was repeated 642
times after which X2 values computed in 4 successive iterations showed fluctuations of less than
5% for > 95% of binding sites.

Calculation of binding probabilities.

The binding probability (P) describes the probability by which the accessible fraction of a given

binding site is bound by Dazl. P for each Dazl concentration was calculated according to:

(4.2xDazl)
kon

P(4.2xDazl) = ki + g -2xDazD) (Eq42)
1SS. on
k(lxDazl)
P(lxDazl) = ki Ork(lxDazl) (Eq43)
1Ss. on

Calculation of fractional occupancy.

The fractional occupancy (®™#) describes the fraction of a given binding site that is occupied by
Dazl extrapolated to saturating concentrations. ®™#* is a measure of binding site accessibility
during the course of the experiment. @™ = 1 indicates complete accessibility, decreasing
values indicate decreasing accessibility. @™ was calculated by plotting the maximal amplitude
(a™®: probability of Dazl bound to the fraction of a given binding site that is accessible during

the course of the experiment, extrapolated to saturating concentrations of Dazl) vs. level of the

39



corresponding transcript (L, in RPKM) (Supplementary Material Figure S3). ®™#*corresponds

to the slope of the plots, and was calculated according to:
pmax = gmax. | -1 (Eq.44)

Reported ®™* values were normalized to a scale of zero to 1. To define a™®, apparent
association rate constants at both Dazl concentrations ko203, k(P were plotted against

the relative cellular Dazl concentrations ([Dazl]®, Supplementary Material Figure S3).
For binding sites where kon“2P34) k(P32 increased linearly with [Dazl]™":
amax = a(4.2xDazI) . (P(4.2xDazI)) -1 (Eq45)

a“42Pa2): normalized read density at the 30s time point for the timecourse with 4.2xDazl and 2.6
mW laser power for a given binding site, P4 .2x0az): binding probability at 4.2xDazl (Eq.42).

For binding sites where kon*29?), k,,("Pa?) increased with [Dazl]™ in a hyperbolic fashion, we
determined the maximal apparent binding rate constant k.n™ by fitting the plot of kon*-#P32),

kon™P32) ys_ [Dazl]™ to:

[Dazl]re!

Dazl)
k( = Jmax s
on [Dazl]rel+K’

on

(Eq.46)

(kon(P32): kon(1XP32D) - | (42xDazl) K gpparent relative binding constant)

The binding probability extrapolated to [Dazl]™® saturation (Pmax) is:

max

= fon __ (Eq.47)

P,
max max
kaiss.tkon

and

P
Xmax = X(4.2xDazl) ° P _— (Eq48)
(4.2xDazl)

A plot was defined as hyperbolic if kon™* < 4-Kon(#-2XP32)

Analysis of Variance (ANOVA):

One-way ANOVA was calculated in R using libraries — car °. Mean square differences between
and within groups were calculated. Obtained F values were compared with the critical value in
the F table to obtain p values ®. Inter-group differences were significant (p < 0.05) when the F

value exceeded the critical F value for the given degrees of freedom *°.
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Determination of distances between neighboring binding sites.

Distances between neighboring binding sites (genomic coordinates: mm10) were calculated
between first and last read coordinates of adjacent peaks recorded with a sliding window, (start:
| =0 (chr1), length = 2 nt, stride = 1 nt) for each transcript. The number of inter-site distances for
a given value was divided by the overall number of distances to yield the normalized frequency
(Fig.3a). The random distribution of inter-site distances was obtained by Monte Carlo
simulations (Fig.3a). A random binding site was defined as a genomic coordinate
encompassing a non-overlapping 5 nt long sequence (in the entire mouse transcriptome,
Fig.3a) within 500 nt of PAS, or excluding 500 nt proximal to PAS, (Extended Data Fig.5).
10,341 binding sites were randomly distributed over these windows, their distribution was
recorded and plotted as described above. Monte Carlo simulations (Vignette package in R

were carried out 1,000 times. Obtained distributions were averaged and plotted (Fig.3a).

Dazl cluster definition and distribution

A cluster of Dazl binding sites was defined by an inter-binding site distance of <40 nt and absence
of additional binding sites < 120 nt around the cluster. The distribution of clusters in 3'UTRs
(Fig.3b) was calculated by dividing the 3’UTRs in 100 nt bins, starting at the PAS. The number of
clusters in each bin was counted and the cumulative frequency of clusters with different numbers

of binding sites was plotted against the 3’UTR bins.

Calculation of cumulative and differential binding probabilities.

Cumulative binding probabilities (£B) for each cluster of Dazl binding sites were calculated

according to:

(4.2xDazl)

i kon i i
IB =YL, <cDmaX(l) . k(4.2xDa§l)) ) =Y (@D P pamyi) (Eq.49)

on(i) +Kdiss. (i)

[n: number of binding sites in a given cluster; i: individual binding site, ®™2: fractional
occupancy for the binding site (i); kon)*>P#): association rate constant at 4.2xDazl for the
binding site (i); kdiss.(i), dissociation rate constant for the binding site (i); P.2x0azi): binding
probability at 4.2xDazl) for the binding site (i)].
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The differential cumulative binding probabilities (AZB) for each cluster of Dazl binding sites

were:
n (4.2xDazl) k(lxDazl)
_ . on(i) . on(i)
AZB = Z D k(4-2XDaZD k k(lxDazl) k
i=1 on(i) * Kaiss.()  Kongy T Kdiss.()

n
= Z[q’maxm + (Pazxpaz (i) — Pxpam@)]
i=1

(Eq.50)

[Variables as above, kon()!""P2?): association rate constant at 1xDazl for the binding site (i);
Kdiss (), dissociation rate constant for binding site (i); P(1xpazi): binding probability at 1xDazl for
binding site (i)].

Ribosome Profiling and RNA-seq

Ribosome profiling and RNA—seq, performed in biological triplicates at both Dazl concentrations
was described . Deposited sequencing data (GEO: GSE108997) were analyzed as described

7. Averages from the triplicate datasets were used for subsequent data analysis.

Definition of functional mMRNA classes

Changes in ribosome protected fragments (ARPF) from 4.2xDazl to 1xDazl (RPKM) and
changes in transcript levels (ARNA) from 4.2xDazl to 1xDazl (RPKM) for each transcript with a
Dazl binding site, represented in all ribosome profiling and RNA-seq datasets were plotted
(Fig.4b). Low abundance transcripts (RPKMs.2xpaz < 6.0) were removed. ARPF and ARNA
distributions for Dazl bound transcripts were divided into terciles, based on testing the
significance (p < 0.05) of the deviation from the mean (H = High; ARPF = 1.063, ARNA = 1.088,
M = Medium; 1.063 < ARPF < 0.913, ARNA = 1.088 < ARPF £0.974, L = Low; ARPF =0.913,
ARNA = 0.974). Terciles for ARPF and ARNA yield nine functional mRNA classes (Fig.4b). The
HL and LH classes contained too few transcripts (< 10) for meaningful examination and were
therefore not considered in subsequent analyses. The MM class was not further considered
because neither ribosome occupancy nor transcript level changed significantly upon changes in

Dazl concentration.
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Enrichment Analysis

Statistical enrichment of clusters with high, medium and low cumulative binding probabilities
(2B, Fig.4a) in transcripts belonging to each of the functional mMRNA classesTHRH, THRM,
TMRH, TMRL, TLRM and TLRL (Fig.4c), was calculated with the cumulative distribution
function (CDF) of a hypergeometric distribution ¢! according to:

CIURS)
p = F(x|M, K, N) = X P (Eq.51)
™)

(M: number of total clusters in Dazl bound transcripts, K: number of clusters in each functional
mRNA class (THRH, THRM, TMRH, TMRL, TLRM and TLRL), N: number of clusters in a given
2B tercile (H, M, L), i: number of clusters with a 2B tercile in a given functional mRNA class (for
example, number of clusters with high ZB in THRH functional mRNA class). x represents a
cluster and F (x]M,K,N) is enrichment of x given M, Kand N (by Fishers’ t-test represented as
F). p is theLL hypergeometric p value of enrichment, based on the F-test 5') Hypergeometric

tests were performed with Scipy hypergeom module ¢ in Python 3.6.5.

PCA and t-SNE.

A data matrix (X) with the seven features of Dazl clusters and of transcripts with Dazl binding
sites in 3'UTR (number of clusters in 3’'UTR, ZB, AXB, number of binding sites in a cluster, UTR
length, proximity to PAS, transcript level), corresponding to each transcript, was generated. In
transcripts with multiple clusters in the 3’'UTR, ZB, AZB and number of binding sites in a cluster
represent values of the cluster closest to the PAS. Proximity to PAS in transcripts of multiple
clusters represents the median pattern for the clusters (for example, in a UTR with 5 clusters, 4
of which distant to the PAS, the median was considered distant to the PAS). The empirical
mean for each column of the data matrix was calculated (sample mean of each column, shifted
to zero to center data). Data were centered and scaled and a covariance matrix for the seven
features was calculated (Extended Fig. 8a). This covariance matrix was used to calculate
eigenvectors and eigenvalues, as described . Eigenvalues were sorted in descending order
and K largest eigenvalues were selected. K is the desired number of dimensions (Principal
Components) of a new feature subspace Y with K < n (K = 2 for Extended Fig.8c and K = 3 for
Extended Fig.8e). A projection matrix (W) was created from the selected (K) eigenvalues
through orthogonal transformation of the original dataset (X) in order to obtain a K-dimensional

feature subspace Y. Proportion of variance, cumulative variance, factor loadings and
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eigenvalues explained by each component were recorded (Supplementary Material Table
$11). Functional mRNA classes (Extended Fig.8¢c) and Dazl code groups (1 - 21, Extended
Fig.8e) were identified and mapped onto the feature space (Y) by k-means clustering ¢. PCA
was conducted in R using the prcomp() function. To visualize subgrouping within functional
mRNA classes (Extended Data Fig.8d), the Barnes-Hut t-SNE implementation in R % was used

with the recommended parameters (perplexity 5 - 30, iterations 5 - 3000) as described °¢.

Derivation of the Dazl regulatory program.

Seven features of Dazl clusters and of transcripts with Dazl binding sites in 3’'UTR (number of
clusters in 3’'UTR, ZB, AZB, number of binding sites in a cluster, UTR length, proximity to PAS,
transcript level) were utilized to further group transcripts in each functional mMRNA class
(Fig.4d). In transcripts with multiple clusters in the 3'UTR, ZB, AZB and number of binding sites
in a cluster represent values of the cluster closest to the PAS. Proximity to PAS in transcripts of
multiple clusters represents the median pattern for the clusters (for example, in a UTR with 5
clusters, 4 of which distant to the PAS, the median was considered distant to the PAS). PCA
and t-SNE independently identified 21 groups (1-21) in the 6 functional mMRNA classes
(Extended Data Figs.7,8). To create the Dazl code from identified groups 1-21, we first defined
terciles (High, Median, Low) for each of the 7 features of Dazl binding patterns (number of
clusters in 3’'UTR, ZB, A2B, number of binding sites in a cluster, UTR length, proximity to PAS,
transcript level) on the basis of significance testing (p < 0.05) for the deviation from the mean.
The number of clusters of each tercile type (H, M or L) for each of the 7 features was then
counted in each group. This yielded a data matrix with count of feature tercile (example: [group
1; 2B]; H=2, M =27, L = 8, Total = 37 Clusters, Extended Data Fig.8f). The tercile count per
feature (per group) was then normalized to total number of clusters in the group to obtain
fraction of each feature tercile in a group (example: [group 1; £B ]; H=0.05, M =0.73, L = 0.22,
Total = 37 Clusters). For every group, the tercile for a feature that encompassed >50% of the

clusters was utilized as the code for that group (Extended Data Fig.8f).

Multiple Linear Regression Analysis

Multiple linear regression (MLR) analysis was performed with “dummy coding”, e.g.
transformation of categorical independent variables into dichotomous variables ¢’. The

dependent variables, ARPF and ARNA, were used as continuous data, either separately or
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merged (Extended Data Fig.10). 45 models were formulated describing Dazl binding and
corresponding mRNA characteristics for various combinations of “dummy coded” independent
variables, “continuous” independent variables, “continuous” dependent variables (separate
ARPF and ARNA) and “merged” dependent variables (Extended Data Fig.10). Models were

progressively shortlisted and the best performing model (M1) was selected after 4 steps.

Step1. We utilized the best subsets regression procedure (Ref1) to identify all possible model

permutations of parameters (N = 45) that satisfied the following criterion:

1. Models contain n = 3 independent variables
Models account for Dazl kinetics and binding pattern along with RNA features.
Selected independent variables do not show multi collinearity (assessed by pairwise
correlation).
The data was randomly divided into training (70%, N = 699) and test set (30%, N = 492). The
training set was utilized to evaluate, estimate and identify the optimal models and cross-
validation was performed using the test set. Each model was regressed on associated
independent variables and adjusted R? and root mean standard errors (RMSE) were calculated

according to:

. 2 _ n-1 _ p2
Adjusted R? =1 - (- (m))u R?) (Eq.52)

(n =699, number of observations; k=7: number of independent variable terms). The root mean

standard error (i.e. estimated standard deviation; o2 of the error term u) was obtained as:

SSE
n—(k+1)

RMSE =

(Eq.53)

(n =699, number of observations; k=7: number of independent variable terms; SSE: sum of

squares error, difference between observed and predicted value).

As expected, the adjusted R?showed inverse correlation with RMSE.
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We selected the models with the highest adjusted R? (= 0.5) and lowest root mean standard
errors (RMSE; top 50%). We also examined models with R?2 0.5 despite low adjusted R?, high
RMSE according to:

_ SSR _ SSE
~ ssto SSTO

(Eq.54)

SSR (sum of squares due to regression; the sum of the differences between
the predicted value and the mean of the dependent variable, measures unexplained
variance) is equivalent to the distance from each point to the regression line. SSR was

calculated according to:

SSR= ) 0i—y')?
i

(Eq.55)

(yi= predicted value; y’' = mean)

SSTO (sample variance) was calculated according to:

SSTO = Z(xi —y")?

(Eq.56)
(yi= observed value; y’' = mean)

With this approach, we shortlisted 24 models with according to adjusted R2, RMSE and R?
values (Supplementary Material Fig.S4).

We next determined information criterion statistics (ICS) for these models. ICS combines the
SSE, number of parameters in the model, and sample size. We utilized three established
information criterion parameters %¢: Akaike’s Information Criterion (AIC), the Bayesian
Information Criterion (BIC) and Amemiya’s Prediction Criterion (APC), which were calculated

according to:
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AIC, = nIn(SSE) —nln(n) + 2(k + 1) (Eq.57)

BIC, = nIn(SSE) —nln(n) + (k+ 1) In(n) (Eq.58)

_ (n+k+1)
APCy = = SSE (Eq.59)

(n: sample size, k: number of predictor terms, e. g. k+1 = number of regression parameters in
the model, including the intercept). We compared all 24 models and ranked the models
according values for AIC, BIC and APC (lowest value — highest rank). At this stage, no model

was removed.

Step 2. Further shortlisting was performed by comparing information criteria with model fithess
parameters. To determine the fitness of the shortlisted models, two different hypothesis tests for

slopes were conducted. We first tested the hypothesis that at least one slope parameter is 0:

Hy: 1= B2 = ,B(n...) =0

H,: At least one B; # 0 (fori=1,2,n....) where a = 0.05 (Eq.60)

using the general linear F test (ANOVA F statistic) by obtaining error sum of squares (the
squared distances between the observed and predicted responses) for full (with all

independent variables) and reduced models (with intercept only). p values were computed.

We next tested the hypothesis that only one of the slope parameters is 0:

HO:BI =0

Hy: By # 0 wherea = 0.05 (Eq.61)

using t-test statistics for each independent variable in the model. p values were computed.
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Next, we compared information criterion parameters (AIC, BIC and APC), general linear F
statistic and t-test statistic values for all 24 models. We shortlisted the models with the lowest
AIC, BIC and APC values, most significant general linear F statistic and significant t-test statistic
for all associated independent variables were shortlisted (Supplementary Material Fig.S5). All
models satisfied the general linear F statistic condition, indicating that addition of selected
independent variables (i.e. features) increased the explanatory power of the models. 13 out of
24 models had significantly lower information criterion parameters (Supplementary Material
Fig.S5). We further assessed these 13 models according to obtained coefficients, standard
errors, t-statistic, p-value and confidence intervals for all the independent variables. 6 out of 13
models showed significant t-statistics (p-values) for all coefficient terms and the smallest

confidence interval ranges (Supplementary Material Fig.S5).

Step 3. To estimate the quality of the remaining 6 models, we tested 4 multiple linear regression

conditions (LINE conditions):

1. The mean of the response, E(Yi), at each set of values of predictors, (x1i, X2, X)) is a
Linear function of the predictors.

2. The errors, €, are Independent.

3. The errors, €, at each set of values of the predictors are Normally distributed.

4. The errors, €, at each set of values of predictors have Equal variance (c2).
To visually validate the LINE conditions (assessment of the distribution of errors), we recorded
residuals vs. predicted values, and plotted a histogram of residuals for each model
(Supplementary Material Fig.S6). We also performed the Kolmogorov-Smirnov Test (K-S test)
for all 6 models ®°. Three models, M1, M19 and M24 showed normal distribution of error
residuals, absence of outliers and equal variance and hence were selected for cross-validation

(Supplementary Material Fig.S6).

Step 4. These three models were validated using the test dataset (N = 492) and model M1 was
identified as the optimal model on the basis of smallest Mean Squared Prediction Error value
(MSPE) (Extended Data Figure 10e, Supplementary Material Fig.S7). This model (M1)
consisted of seven independent variables: number of clusters in 3UTR, B, AZB, number of
binding sites in a cluster, UTR length, proximity to PAS, transcript level all expressed as dummy

coded variables in terciles of their respective distributions.

Multiple regression on a training data set of N = 699 was performed according to:
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(Y’: predicted dependent, continuous variable (ARPF and ARNA) or predicted dependent,
merged continuous variable, b=o.. 7 : differential intercept linear coefficients, X(n: independent
variables, u: error term). The differential intercept linear coefficients (DILC) associated with each
dummy coded/continuous independent variable terms are the expected difference in the mean
of the outcome for that variable, compared to the reference group (TMRM class), with all other
predictors constant 875 The "b," values represent regression weights that were computed by

minimization of the sum of squared deviations:

=1 (Y Y)? (Eq.63)

(n =699, sample size of training data set, Y;: observed value for the dependent variable ARPF

and ARNA). The optimal regression model was:

ARPF= 1.01 + (cluster) _+O(.)(')O32LI:L'+ (bind. prob.) fg:g;j; + (4bind. prob.) :3351: +

. . Hi . —0.005H!
(#bind. sites) j(jff;w + (dist. PAS) +3(§’fio + (UTR len) 395+ (RPKM)(-0.00004) + 0.07

ARNA= 1.01 + (cluster) _+%%%""+ (bind. prob)) *%5" 4 (Abind. prob)) 293" +

—0.003, —0.02 1, +0.01 1,

(#bind. sites) *004" + (dist. PAS) , #0014 (UTR len)*§:87+(RPKM)(-0.000007) + 0.06
(Eq.64)

(o = Mttt _ ety

The model was evaluated on a test data set (N = 492, 30% of the data; Fig.4). Regression

analysis was performed using Scikit-learn ”" and Statsmodels "2 modules in Python 3.6.5.

Decision Tree Classifier
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We employed a Chi-squared Automatic Interaction Detection (CHAID) algorithm, which makes
no assumption about underlying data >4, in order to determine how categorical independent
variables (seven transcript and cluster features, above) best combine to predict the functional
MRNA classes. A data matrix was formed using classes of Y (transcript and cluster features) as
columns and categories of the predictor X (functional mRNA classes) as rows. The expected
cell frequencies under the null hypothesis were estimated as described 73. The observed cell
frequencies and the expected cell frequencies were then used to calculate Pearson chi-squared
statistic, according to:

—1 2
X =y v, St (Eq.65)

mU

(nw is the observed cell frequency for cell (x, = I | y»=j). mu is the estimated expected cell

frequency for cell (x,= /| y» = j) from independence model >4,
The p value is:
p = Pr(x5 > x°) (Eq.66)
Xp? follows a Chi-squared distribution with degrees of freedomd = (J—-1) (/- 1)
Pr: probability. The adjusted p-value is calculated as Bonferroni multiplier ™.

CHAID analysis was performed using CHAID 5.3.0 (ref.”®) in Python 3.6.5.

Gene Ontology Analysis

GO term analyses for transcripts in groups 1-21 (Fig.4d) was performed with REACTOME (refs.
77.78) using a hypergeometric statistical test and Benjamini and Hochberg FDR correction
(significance level of 0.05) to identify enriched terms after multiple testing correction 7°.
Redundant GO terms were merged to create a parent term. Transcripts for each Dazl group (1-
21) were clustered using Ward’s minimum variance method in R 8 and plotted as a heatmap
using ggplot2 “8 (Fig.4d).

Pathway Analysis

Pathways (Extended Data Fig.8h) were obtained from REACTOME 77’8, mRNA classes were

mapped on pathways with Cytoscape 8'.
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Luciferase Reporter Measurements

Luciferase reporters were generated as previously described . Briefly, DAZL target 3’UTRs
with at least 100 nt of downstream sequence were cloned into the pRL-TK vector (Promega),
replacing the SV40 late poly(A) region. Transfections and luciferase assays were also
performed as previously described 7. GC-1 spg cells were induced with doxycycline as
described above. After 24 hours, pRL-TK 3'UTR reporters and pGL4.54[luc2/TK] (Promega)
firefly luciferase control plasmids were transfected into GC-1 spg cells using Lipofectamine 2000
(Thermofisher). The media was replaced after 4-6 hours and cells were harvested after 24
hours. Dual luciferase assays were performed using the Dual-Luciferase Reporter Assay
System (Promega) according to manufacturer’s instructions. Renilla luciferase levels were

normalized to firefly luciferase activity.
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Supplementary Table S1 | Codon optimized Mus musculus Dazl (RRM) DNA construct

(amino acids 32 -117) and primers for cloning.

Dazl (RRM) DNA construct

Sacl and Xhol restriction sites are underlined. Complete DNA construct was purchased from
Genscript.

GGAAATATAGAGCTCTTGCCGGAAGGCAAGATCATGCCGAACACCGTATTCGTAGGAGGAATAG
ACGTACGCATGGACGAAACCGAAATCCGCTCTTTTTTCGCACGCTACGGCTCTGTAAAGGAGGT
TAAAATAATCACGGACAGAACGGGGGTTTCGAAAGGCTACGGATTCGTCTCTTTCTACAACGAT
GTTGACGTTCAGAAAATAGTAGAGTCTCAGATAAACTTTCATGGGAAGAAACTGAAGCTGGGCC
CGGCTATCCGCAAACAATAATGACCTCGAGGGCTGCAA

Primers for cloning

Sacl and Xhol restriction sites are underlined.

Dazl Forward

5" -GGAAATATAGAGCTCTTGCCGGAAGGCAAGATCATGC
Dazl Reverse

5’ -TTGCAGCCCTCGAGGTCATTATTGTTTGCGGATA



Supplementary Table S2 | Sequencing adapters and primers.

RNA linkers (Dharmacon)
RL5: 5-OH AGG GAG GAC GAU GCG G 3-OH
RL5D: 5-OH AGG GAG GAC GAU GCG Gr(N)r(N) r(N)r(N)G 3-OH

RL3: 5-P GUG UCA GUC ACU UCC AGC GG 3’-puromycin

DNA primers (Operon)
DP5: 5-AGG GAG GAC GAT GCG G-3

DP3: 5-CCG CTG GAA GTG ACT GAC AC-3’

Solexa Fusion Primers (Operon)

SSP1: 5-CTA TGG ATA CTT AGT CAG GGA GGA CGA TGC GG-3'

Circularization RT primer (Dharmacon)

5’Phos/(GGTTA)(CCGCATCGTCCTCCCT)(CCCTATAGTGAGTCGTATTA)/iISp18/CACTCA/iSp18/(CCGCTGGAA
GTGACTGACAC)3

Antisense DP5 Antisense T7 Promoter DP3

1) 5’Phos-GNNNN CGTGAT CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA - iSp18 - CACTCA -iSp18 —
CCGCTGGAAGTGACTGACAC

2) 5’Phos-GNNNN ACATCG CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA -iSp18 - CACTCA -iSp18 —
CCGCTGGAAGTGACTGACAC

3) 5’'Phos-GNNNN GCCCTA CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA -iSp18 - CACTCA -iSp18 —
CCGCTGGAAGTGACTGACAC

4) 5’Phos-GNNNN TGGTCA CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA - iSp18 - CACTCA -iSp18 —
CCGCTGGAAGTGACTGACAC

5) 5Phos-GNNNN CACAGT CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA -iSp18 - CACTCA -iSp18 —
CCGCTGGAAGTGACTGACAC

6) 5’Phos-GNNNN ATTGGC CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA -iSp18 - CACTCA -iSp18 —
CCGCTGGAAGTGACTGACAC

Complementary barcode sequence
1) ATCACGNNNNG...............
2) CGATGTNNNNG...............
3) TAGGGCNNNNG..............
4) TGACCANNNNG..............
5) ACTGTGNNNNG..............

6) GCCAATNNNNG..............



Time (s) Dazl: 4.2x Dazl: 4.2x Dazl: 1x Dazl: 1x Stratalinker
L: 2.6 mW L:1TmW L: 2.6 mW L:1mW
0 5-10° 6-10° 4-106 3106 5-10°
30 3106 3.6-10° 4106 8-10° 5-106
180 1.9-10° 2.4-10° 4-10° 5-106 5-106
680 0.6-10° 1.2-106 2:106 3108 5-108

Supplementary Table S3 | Number of cells used in each crosslinking experiment

(L: laser power)




Time (s) Dazl: 4.2x Dazl: 4.2x Dazl: 1x Dazl: 1x Stratalinker
L: 2.6 mW L:1TmW L: 2.6 mW L:1TmW
30 88% 98% 80% 91% 91%
180 79% 92% 82% 87% 84%
680 87% 81% 93% 91% 83%

Supplementary Table S4 | Cell Viability after each crosslinking experiment

(L: laser power). Cell viability was measured by Trypan-blue staining and cell counting in a

hemocytometer (Materials and Methods).




680 s 180s 30s 0 680 s 180s 30s 0 680 s 180s 30s 0 680 s 180 s 30s 0
Conditi Dazl: 4.2x Dazl: 1x Dazl: 4.2x Dazl: 1x
onditions
Laser: 2.6 mW Laser: 2.6 mW Laser: 1 mW Laser: 1 mW
Post
processed [3,372,238| 466,053 | 357,206 | 13,800 | 545,542 | 283,506 | 150,313 | 12,720 | 249,005 | 364,176 | 141,804 | 15,650 | 394,016 | 227,026 | 175,420 | 8,730
reads @
::\{/I:apdpseg) 1,140,415| 341,785 | 214,324 828 256,405 | 172,939 | 111,232 865 186,754 | 185,730 | 90,755 1,001 165,487 | 154,378 | 112,269 567
% Reads
Mapped 33.81 73.33 60.00 6.0 47.00 61.00 74.00 6.8 75.00 51.00 64.00 6.4 42.00 68.00 64.00 6.5
ijcf;?;g” 089 | 228 | 256 1 288 | 222 | 311 1 184 | 217 22 1 188 | 254 3 1
Reads - Peak
Intersection © 252,932 | 185,659 | 173,943 0 204,474 | 86,071 | 92,228 0 153,860 | 48,334 | 74,552 0 79,527 | 11,271 14,910 0

Supplementary Table S5 | Sequencing and read processing statistics.

@ Post processed reads: Reads remaining after de-multiplexing, adapter removal and PCR duplicate collapsing.
®) Mapped reads: Reads mapped to mouse genome (mm10).

© Correction factor: Intensity per read obtained by normalizing number of reads per condition with total crosslinked RNA.

@ Reads-Peak intersection: Number of reads corresponding to Dazl binding site peaks common to all KIN-CLIP conditions.




680s 180 s 30s 0 680s 180 s 30s 0 680s 180 s 30s 0 680s 180 s 30s 0
Dazl: 4.2x Dazl: 1x Dazl: 4.2x Dazl: 1x
Conditions
Laser: 2.6 mW Laser: 2.6 mW Laser: 1 mW Laser: 1 mW
CrosleIJiI:kin 1.012+ | 0.775+ | 0.537 £ 105 0.722+ | 0.384 £ | 0.346 105 0.343+ | 0.403+ | 0.199 105 0311+ | 0.392+ | 0.336 105
Intensity (1096) 0.25 0.22 0.07 0.19 0.11 0.07 0.10 0.07 0.07 0.11 0.07 0.06

Supplementary Table S6 | Bulk crosslinking intensity for each crosslinking condition.

Bulk crosslinking (AU; pixel density as described in Image J) was measured as described in Materials and Methods. The errors

associated with intensity represent deviation in bulk cross linking as obtained by measuring bulk cross linking for at least three

replicates for each time point.




GC1 Replicate 1

GC1 Replicate 2

GC1 Replicate 3

Post processed Reads®

1,351,295

910,651

996,650

Mapped Reads ®

123,851

59,674

71,288

Supplementary Table S7 | Sequencing and read processing statistics for iCLIP experiments.

@ Reads remaining after adapter removal and PCR duplicate collapsing.

(®) Reads mapped to mouse genome (mm9).
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Supplementary Figure S1 | Gel Source data for images shown in
Extended Data Figures 1d,e and Extended Data Fig.2d.
Green solid rectangle: gel regions shown in the Extended Data Figures.
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Supplementary Figure S2 | fs laser crosslinking fit space parameters.

1D Fit space analysis (KINTEK) for obtained kinetic parameters (kon, kx>%™, korand k™) for
(a). RoFox(RRM), (b) RbFoxM“(RRM) and (c) Dazl(RRM). (Fig.1e). The relative X? represents
the smallest (optimal) X2 divided by the X? obtained for the entire thermodynamic model. For the
optimal parameter value, the relative X? = 1. Horizontal lines mark the 95% confidence interval.
d. 2D Fit space analysis of the relative X? of co-varying kon and k.. Both rate constants are
constrained for all 3 proteins with a well-defined local minimum (red).
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Supplementary Figure S3 | Determination of fractional occupancy (®™*)

Maximal amplitude (a™@: probability of Dazl bound to the fraction of a given binding site that is
accessible during the course of the experiment, extrapolated to saturating concentrations of

Dazl) plotted vs. level of the corresponding transcript (RPKM). Eq.44 (Materials and Methods) is
used to calculate the maximal fractional occupancy (®™#).
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Supplementary Figure S4 | Impact of rate constant variation on crosslinking time
courses.

(@) Time courses for Dazl binding sites with differing k. values (highlighted; high,
medium and low range of the distribution of k values) and similar values for other rate
constants. (b) Time courses for Dazl binding sites with differing values for k,,("xPaZ) (s1)
(left) and k,,(+2Daz) (s-1) (right), and similar values for other rate constants. (c) Time
courses for Dazl binding sites with differing values for k,@6mW) (s-1) (left) and k,(1-0mW) (s-
) (right) and similar values for other rate constants. Points mark the experimental
normalized peak coverage value (error bars: 95% confidence interval for normalized
peak coverage value, determined by minimizing X?), lines show the curves with
calculated rate constants.
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Supplementary Figure S5 | Generation of the Multiple Linear Regression Models.

(a) Flowchart for the development of the multiple linear regression (MLR) models. (b)
Adjusted R? values for all selected candidate models (N = 45). (c) Root Mean Squared
Error (RMSE) values for all selected candidate models (N = 45). (d) R? values for all
selected candidate models (N = 45). Models with adjusted R?2 0.5, lowest 50% RMSE
and/or R?> 0.5 were shortlisted (N = 24, grey area). Red dots: ARNA; Black dots: ARPF.
(e-g) Information criterion statistics (ICS) for models with separate ARNA and ARPF
terms (N = 15; Extended Data Figure 10b-e). ICS for models with merged ARNA and
ARPF (N = 8; not shown) was carried out in the similar manner. (e) Models with lowest
Akaike’s Information Criterion (AIC) and (f) Bayesian Information Criterion (BIC) are
marked (N = 9; arrows). (g) Models with lowest Amemiya’s Prediction Criterion (APC) are



selected (lowest 30%). 13 models remain after ICS criterion (9 with separate ARNA and
ARPF and 4 with merged ARNA and ARPF, not shown). (h) F-statistic for models with
separate ARNA and ARPF. All models satisfied general linear F-statistic condition (F-
statistic > 15). Heatmap on the right show shortlisted models (N = 6) with significant t-
tests for majority of independent variable terms (at least 60%, p < 0.05, black), lowest ICS
and significant F-test statistic (N = 6).
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f) Upper panels: Standardized residuals versus average predicted ARNA and ARPF
values for models remaining after significance testing (N = 6, Supplementary Materials
Fig.S4). p-value: Kolmogorov-Smirnov Test (K-S test) for error normality. p < 0.05
indicates normal distribution of error residuals (Models M1, M19, M24). Lower panels:

Histogram of error residuals for models remaining after significance testing (N = 6,

Supplementary Materials Fig.S4). (g) Correlation between experimental values for
ARPF (top panel) and ARNA (bottom panel) (training data set, N = 699; 60%) and values
calculated with the linear regression model (R: adjusted linear correlation coefficient) for

models shortlisted in panels a-f.



a b c d

Linear Regression Models Adjusted R2 Linear Coefficients Signtif:ca? ce
Dummycoding 025 0.75 01 0 401 . (t-tes )n
Oves Mo o [ Signif. Not signif.
Merged ARPF and ARNA Merged ARPFIARNA-Merged-High ARPF/ARNA-Merged-Low P (0

M28 ||

M29 || H
M30 ||
M31 ]
M33 O H
M36 ||
mM37 ||
M42
M43
— e pa—
59253 cpse EB@E2sT ERREYE
ERgiese ERgiess ERgeds: E"B3:s8s
=) N 2a 22 = NSa 23 2 3’%05: c I35 298 %
£ 5283 £ I35 2837 - c S x £ ‘» £ > &
p c S = p c >x = (2] '—_-é‘,_o o w = E 9
4 = £ F © o = 2 EF © o) 1] 7 2 o E D @2
0] ] @ o) 7] %) = o ED 2 17 L . c
b o ED 2 > E.EDC 3 5= ®© =] 2 3 S
E: % 3 g 3 > 3 g 3 L E S & F
S » 2 = S .2 = g - o : T
g g o g T a c c € %
o0 p=}
S o = m 2 @ z g
=z : =z : 1S
€ 1S S >
=} =} = z
=z =z

Supplementary Figure S7 | MLR models for merged ARPF and ARNA terms

(a) Linear Regression models tested (M28 — M45). (Yellow: dummy coding, using terciles
of the variables, Extended Data Fig.8. Red: no dummy coding; use of continuous data.
Grey: variable was omitted. ARPF and ARNA were merged by normalizing both, ARPF
and ARNA to a scale of 0-1 and then multiplying [ARPF X (ARNA — 0.01]. The merged
terms are distinct from the translation efficiency (ATE). (b) Adjusted R? for each model.
(c) Differential Intercept Linear Coefficients (DILC) for each model. (d) p-values of t-test
for each independent variable (N = 7) for all models. Black: p < 0.05; white: p > 0.05.
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Steps for the numerical fitting of crosslinking timecourses to calculate kinetic parameters. Square boxes represent KIN-CLIP conditions (red).



Point-by-point Response to Referee Comments.

We thank the referees for their encouraging and constructive comments, which have helped to
make the manuscript clearer and stronger.

Referee Comments are black, our responses are in red and captions for figures are in purple.

Referee #1:
Summary

In their manuscript, Sharma and colleagues describe the development of KIN-CLIP, which
allows to determine kinetics of protein-RNA interactions in living cells. To this end, they use
time-resolved UV crosslinking of proteins to RNA. They first validate that time-resolved UV
crosslinking enables kinetic studies on protein-RNA interaction in vitro. They then move on to
study binding kinetics of the RNA-binding protein Dazl in mouse cells. They use the kinetic data
to study properties of Dazl binding clusters and predict Dazl-mediated RNA and ribosome
regulation based on KIN-CLIP parameters and additional features.

General appraisal

In my opinion, the authors made an outstanding effort to pull this project and to develop a
technology that allows to determine kinetics of protein-RNA interactions in living cells. The
application in form of the Dazl code is less convincing for me (see comments below). | think
overall the manuscript is a great scientific contribution and | recommend publication in Nature.
However, | would ask to fully address the following comments before publication.

Major comments

1) In vitro crosslinking: In the current format it is difficult to grasp the main concept of how to
deduce kinetics from the UV time course experiments. | think it would be important to briefly
explain in the main text how to deduce constants from the data. A little schematic on this in Fig.
1d would also be helpful. It would be good to explain why different time points and different
protein concentrations are needed. (In the current version of the manuscript the focus lies on
explaining why the laser is less harmful for the RNA, which is less relevant for the rest of the
manuscript.)

We have now included a brief explanation of why the calculation of the kinetic parameters
requires the measurement of crosslinking timecourses under different reaction conditions. We
have also included a small scheme in Figure 1, as suggested. A detailed description of how the
kinetic data are calculated from the timecourses is provided in the Materials and Methods.

We also considered the note on the RNA degradation data and we agree with the reviewer — the
data is technical in nature, although the documentation of limited RNA degradation is essential.
We have therefore moved these data to Extended Figure 1, thereby focusing Figure 1 better on
the main narrative of the manuscript.



2) Kinetics in cells:

A) | was surprised by the extremely low errors estimated for the different constants (often
<10%). This is surprising since measurements used as input such as total crosslinking signal on
the membrane might not be very precise. In this context it would be very important to provide
information on the reproducibility of the obtained data from replicate experiments. Also, the
authors should double check the error models.

The errors for individual rate constants cover a range from less than 5% to sometimes 50% of
the reported value. In our estimate this data range does not indicate very low errors.

The crosslinking measurements, which were used to determine the overall crosslinking
efficiency for each respective CLIP library, were performed in several replicates. We have now
provided the information on the replicates in Supplementary Material Table S6.

We have also verified the error models. The standard errors for rate constants indicate the
bounds of the respective fitting quality, as assessed by minimized X2. We have noted this in the
caption for Fig.2c.

The error models are described in the Materials and Methods section, equation 7 for the
numerical fit:

.2
=25 (Eq7)

i

and by equation 41 for the analytical fit:

X = S, Ly (Eq.41)
The errors mark lower and upper bounds for the rate constants at a 95% confidence interval
(CI). In other words, these errors describe how well the models fit the given data for a binding
site and how much fluctuation in rate constants (95% ClI) will still yield the same fit. A low range
for 95% ClI for the errors for a given rate constant indicates a constrained fit, a larger range
indicates a poorer fit. Error distributions for both numerical and analytical fits are also shown in
the form of reduced/minimized X?in Extended Data Figure 2 c, d.

B) It is convincing to see that about 85% of Dazl binding sites contain a GUU motif. However, it
is difficult to understand that there is only very weak difference e.g. in the comparison of motif
enrichment comparing binding sites with top and bottom scoring rate constants. In this context it
might be good to validate that the constants obtained in vivo to show correlation with affinities
obtained in vitro. Would there be an RNA Bind-N-Seq dataset (or similar) available for
comparison?

We agree with the reviewer - the small difference in motif enrichment comparing binding sites
with top and bottom scoring rate constants is notable. This result suggests that Dazl displays
high selectivity for its cognate GUU motif in cells.

We have measured affinity, association and dissociation rate constants of Dazl(RRM) in vitro for
an RNA with the cognate GUU motif (Fig.1, Extended Data Fig.1). These in vitro kinetic
parameters are within the range of parameters measured for the Dazl binding sites in the cell
(Fig.2e), and we note this in the text.



Unfortunately, no RNA Bind-n-seq dataset is available for Dazl. However, there is a RNA Bind-
n-Seq dataset in the Encode Database for a human Dazl ortholog Daz3, which is 92%
homologous to Dazl (Fig.R1). The data for Daz3 reveal a clear GUU consensus motif —
essentially all RNA variants that were identified in RNA Bind-n-Seq experiments to bind Daz3
contain the GUU core consensus. These data are consistent with very high inherent selectivity
of Daz3 towards the GUU core motif.

Daz3 (5mers) These data clearly raise the possibility that Dazl also
shows high inherent selectivity for the GUU core motif, but
% Sequences  Motif definitive conclusions based on data with a Dazl ortholog
00— .. might be premature. We have spent considerable effort to
80L 1 =z establish a Bind-n-Seq or a related approach for Dazl but
avWWo have not been successful. This is because Dazl(RRM) has
° proven uncooperative in approaches based on gel
separation or filter binding to separate bound vs. unbound
substrate species. Although these experimental challenges
are consistent with very high inherent selectivity (i.e. only
few of the randomized substrate variants are bound, which
is difficult to measure reliably), meaningful conclusions
about the inherent binding selectivity of Dazl (in vitro) are
oo : premature until a reliable Bind-n-Seq approach for Dazl
can be established.
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Figure R1 | Bind-n-Seq data for Daz3
from the Endcode project. The bar shows ~ While it remains to be shown what feature(s) determine(s)

the distribution of sequence variants with a given rate constant at a given binding site, our results
the motifs indicated on the right (Figure suggest that the number of surrounding Dazl binding sites
adapted from: (i.e., Dazl clusters) impact association rate constants. We

https://www.encodeproject.org/experiments  show this data in Figure 3¢ and Extended Data Figure
JENCSRA49VKY/ ) Bl

C) | was surprised to see that the distribution of binding constants is relatively narrow. This
could be due to the initial selection of binding sites. Hence weaker binding sites might be
underrepresented in the dataset. Including such weaker sites might also help to observe
features that differ for high-affinity binding sites.

Our KIN-CLIP analysis includes > 90% of sites with corresponding sites in CLIP data (Extended
Data Figure 2d). We had to exclude sites with low coverage values (< 5 reads at high laser
power and high Dazl concentration at late timepoints, and sites without reads at low Dazl, low
laser power, early timepoints time points), because it is not possible to calculate meaningful
kinetic parameters from such sparse data.

Since we considered the vast majority of binding sites, it is unlikely that our analysis is markedly
affected by binding site selection. We are confident that the resulting distribution of binding rate
constants, which ranges over three orders of magnitude (Fig.2e) provides an unbiased view of
the kinetic landscape. We nevertheless appreciate the reviewer's comment and have now
specifically noted in the manuscript that our KIN-CLIP analysis includes > 90% of sites with
CLIP reads and is thus unlikely to be biased by binding site selection criteria.



3) Comparison of Dazl binding to the different transcript regions:

A) Introns are present mostly in the nucleus, whereas the other regions are dominant in the
cytoplasm. Also, it is likely that Dazl concentration is very different for nuclear and cytoplasm.
Will this affect calculation of the different constants?

Intracellular differences in Dazl concentration (e.g. nucleus vs. cytoplasm) is reflected in
association rate constants (and parameters that include association rate constants, e.g. P, B
and 2B) and does not affect the calculation of rate constants.

B) The authors use Bowtie2, a mapper that is not splicing-aware. Hence will reads be
systematically lost in the region of the ORF compared to the 3'UTR?

We used Bowtie2 to ensure back-compatibility of our data with previous published CLIP data for
Dazl. Exon-exon spanning reads represent less than 0.1% of the total CLIP reads. The data are
thus not unduly biased by using Bowtie2.

4) Dazl binds mRNA in clusters. It is interesting that clusters with more binding sites have higher
kon rates, but ko rates are not affected. It would be nice to present some interpretation.

The scaling of association rate constants with the number of binding sites in clusters (Fig.3c)
reflects a cooperative association process of Dazl protomers within a given cluster. That is, a
bound Dazl protomer increases the binding of other protomers in the cluster. However, multiple
bound protomers appear not to slow dissociation of Dazl from an individual binding site.

5) Clusters correlate with Dazl function. It is great to see that the cumulative Dazl binding
probability correlates with the different regulatory classes (RNA and RPF). In my understanding
the cumulative binding probability could maybe also be approximated with normal CLIP-seq
data. Have the authors correlated cumulative binding probability with different scores for iCLIP
signal normalized for expression (e.g. PureCLIP score, etc.)? This would give a better idea of
the benefit of KIN-CLIP over normal CLIP. Or alternatively the authors could use the KIN-CLIP
data to suggest how to use normal CLIP data in the best way. | think that will be very useful for
the RNA community, where the majority of groups will only be able to perform normal CLIP
experiments.

This is great point. It was our initial motivation for the presented work to obtain quantitative
information from “conventional” CLIP approaches. However, the nature of the crosslinking
process precludes a straightforward solution. This is because the extent of crosslinking for a
protein at a given binding site depends on crosslinking time, crosslinking efficiency, association
and dissociation rate constants and the accessibility of the binding for the protein over the
course of the crosslinking experiment. These parameters cannot be deconvoluted in a single
point measurement, neither absolutely nor relatively (e.g. comparing relative binding parameters
for binding sites).

To illustrate this point, we have prepared a series of plots of KIN-CLIP (cumulate binding
probability) and iCLIP parameters, normalized for expression (Figure R2). No significant
correlation is seen between the iCLIP density, normalized to RNA expression levels, and
binding probability (Fig.R2a, b), which is not unexpected. PURECLIP scores also show no
correlation (not shown).
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Figure R2 | Link between KIN-CLIP and iCLIP
data. a. iCLIP read density normalized to mRNA
expression level (X-axis) plotted versus binding
probability calculated from KIN-CLIP data (Y-
axis). No apparent correlation is detected. b.
iCLIP read density as tags per Dazl-binding
cluster, normalized to mRNA expression level
(X-axis) plotted versus binding probability per
Dazl cluster, calculated from KIN-CLIP data (Y-
axis). No apparent correlation is detected c.
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There is a correlation (R? = 0.52) between iCLIP read density and KIN-CLIP read density at high
protein concentration and high laser power at the shortest timepoint (Fig.R1¢c, d). This KIN-CLIP
density is linked but does not equal to the fraction of bound protein at steady state. At high
crosslinking efficiency, protein bound to a given site is rapidly crosslinked. However, the KIN-
CLIP read density is also influenced by binding probability and binding site accessibility, and
therefore, the KIN-CLIP read density at high laser power cannot be directly interpreted in a
mechanistically meaningful manner.

In addition to binding probability and binding site accessibility, iCLIP read density is influenced
by the crosslinking rate constant. As we have shown, this rate constant varies for individual
binding sites, but the range of this variation is comparably small (Extended Data Figure 3i). For
this reason, we see the noted correlation between the iCLIP and the KIN-CLIP read density
(Fig.R2). If the range of crosslinking rate constants for individual bindings sites would be larger,
which is a possibility for other proteins, the correlation would diminish. For proteins other than
Dazl, crosslinking rate constants for individual binding sites in cells are not known, and it is thus
not possible to estimate to which extent iCLIP read densities of single point measurements are
even residually reflective of binding probabilities.

Unless drastic simplifications of the crosslinking process are stipulated, such as equal or similar
crosslinking efficiency for all binding sites and equal binding site accessibility, we do not see a
possibility to use single point CLIP measurements to even semi-quantitatively estimate binding
probabilities. Yet, as the correlation in Fig.R2 shows, there can be quantitative information in
conventional CLIP data, although one would have to present this with the appropriate caveats
and stipulations.

Notwithstanding these considerations, it is in principle possible to obtain rigorous quantitative
information from traditional CLIP approaches. Experiments would need to be conducted
analogously to the KIN-CLIP approach — at multiple timepoints at different protein concentration
and at different crosslinking efficiencies. Since the crosslinking rate constant would be slower
than association and dissociation rate constants, those two parameters cannot be
deconvoluted, but a quantitative binding probability (related to affinity) can be determined. This



would be an extremely useful quantitative parameter for RNA-protein binding in cells. We have
now noted this in the discussion.

Although space constraints preclude a detailed discussion of how our study can guide
experiments aimed at obtaining quantitative information from conventional CLIP approaches, we
agree with the reviewer that it will be very useful for the RNA community to outline principles of
how to make conventional CLIP approaches quantitative. However, we feel this is best
accomplished in a separate manuscript dedicated to this topic.

6) The Dazl code:

(A) I am not sure if in the current setup it can be really called cracking the code. | would tone
this down.

We appreciate the reviewer’s point. “Code” conveys certainty about an outcome based on a set
of rules. Although we are confident that the set of rules we have delineated are a major step
towards a “code” for Dazl, we have toned down the term accordingly. We now use “regulatory
program”, which does not suggest certainty, but still reflects the high degree of explanatory
power of our model. We have changed the corresponding passages in the manuscript.

(B) The authors observe a nice correlation between the predicted and the experimental
RPF/RNA changes. Did the authors control for overfitting? It would be important to leave out
part of the data and use this for testing after fitting.

Yes, we have carefully controlled for overfitting. We kept 30% (N = 492) of data set for model
cross-validation to assess overfitting, as well as over parametrization and to evaluate model
quality. We realize that we did not explain the model part in sufficient detail, as also noted by
reviewer 3.

We have now improved this section of the ms. We have updated the Materials and Methods
section to describe model building, selection and validation (including controls for overfitting) in
more detail, also in response to a comment by reviewer 3. We also have updated the plots in
Fig 49, h where we now show the test datasets, rather than the training sets and we provide
Root Mean Prediction Error (RMPE) and adjusted R? values for test data (Extended Data
Figure 10, Fig 49, h). Finally, and also in response to the comment by reviewer 3, we now
describe the steps of model building, refinement and selection in more detail in the Materials
and Methods section, in Extended Figure 10 and in additional schemes in the Supplementary
Materials (Suppl. Materials Figures S$5-S7).

(C) I am confused about the data points shown in Fig. 4g,h. Shouldn’t they be the same points
as in Fig. 4b? However, the distribution is clearly shifted, with the majority of data points having
values around 1.1 instead of 1.

We thank the reviewer for catching this. This was on error. The plots showed the training data set
earlier. As noted above, we have now updated the plots and show the predictive power of our
model using appropriate test data set unseen to the model.



(D) In the t-SNE analysis shown in Ext. Data Fig. 8d, the points from the different classes (HH,
HM,...) completely separate, and there is not a single RNA going into the wrong cluster. | find
this very unlikely, since the different categories (HH, HM,...) are not separated at all in Fig. 4b,
and the boundaries between them are set more or less arbitrarily.

For the visual depiction shown in

b Extended Data Figure 8 for t-SNE

mRNAdlass analysis, we first performed hierarchical
6 clustering of the 7 characteristics that
I constitute the Dazl regulatory program
EEI and identified 21 subgroups (Fig.R3).
We utilized a smoothened version of
this hierarchical clustering, where we
defined a subgroup based on the
maijority of a given characteristics in
each subgroup. Accordingly, the RNA
subgroups are completely separated in
the t-SNE plot.

The reviewer's comment prompted us
to re-think the smoothing approach and
we have replaced the smoothened t-
SNE plot in Extended Data Figure 8d
with a t-SNE plot of un-smoothened
data. This does not alter the clear
emergence of 21 subgroups in the t-
SNE analysis, while more directly
reflecting underlying data.
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Figure R3 | Hierarchical clustering of mRNA features and KIN-CLIP
parameters (a) and correlation of these parameters with the
functional mRNA classes (b).

7) To make the manuscript and the data accessible to the community, it will be important to
make the code more accessible and well documented. Currently, it is hard to use. Also, it would
be important to make the model for the fitting of the kinetic parameters available.

We annotated the code in more detail. We have also uploaded the code for fitting of the kinetic
parameters available on Github. In addition, we are happy to provide more specific information
upon request.



Minor

The authors could check, as a control, that the calculated rates do not correlate with RNA
expression levels, since the crosslinking signal of individual transcripts correlates with RNA
expression. Kinetic rates should be independent of transcript levels?

The rate constants do not correlate with RNA expression levels (Fig.R4). This is expected.
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Figure R4 | Plots of rate constants (a-e) and binding probability (f) vs. mRNA level.

Fig. 2e: Are those really frequencies or rather densities? If it is frequencies, it would be good to
indicate the bin size.

The curves show frequencies. We have added the bin size definitions in the Figure caption.

The colors in some of the figures are not suitable for color-blind people.
We thank the reviewer for pointing this out. We have updated the figures accordingly.

Consideration for normalization to crosslink signal: | think it is important that for this
normalization the majority of reads map to the genome.

The majority of reads did map to the genome, although the actual numbers varied for the
different libraries (Suppl. Material Table S6). However, it is not critical for the normalization that
the majority of the reads map to the genome. This is because, as per our analysis, unmapped
reads are predominantly adapter concatamers and other “artificial” reads that are generated
during the cDNA library generation process. These reads are therefore not part of the
crosslinked material. Accordingly, our normalization is for mapped reads, as those represent the
physically crosslinked RNA. We note that each KIN-CLIP experiment (e.g. each crosslinking
timepoint and condition) is normalized to its own bulk-crosslinking parameter, which were
determined in multiple replicates.



Also, | wondered if for the higher protein concentration all material is pulled down. Otherwise,
this normalization might be distorted.

Complete pulldown of crosslinked material and in fact of all Dazl, crosslinked and non-
crosslinked was carefully optimized. The exact conditions are given in the ms.

Is there a difference in library sizes between the datasets? What are the overall read numbers?
In this context, it would be good to have scales for the y-axes in the genome browser shots in
Fig. 2b. Also, there is not information of the iCLIP only libraries generated, with details in the
number of reads obtained.

There are differences in the library sizes. Overall read numbers are given in Supplementary
Materials (Supplementary Material Table S5). Fig.2b shows identical scales for the
normalized reads. We added the scale information in the figure caption (Normalized coverage =
11 for all traces). We have added the sequencing statistics information for the iCLIP libraries as
Supplementary Material Table S7.

Is there any characteristic feature in the sites only recovered by iCLIP/KIN-CLIP? It would be
interesting to see whether the sites that appear exclusively in iCLIP are lost in the KIN-CLIP due
to a refinement of the crosslinking or just experimental variance.

We appreciate this question. We had not looked at potential differences in the features of sites
unique in either the iCLIP or the KIN-CLIP data sets, but have now interrogated the respective
datasets (Fig.R5).

a RNA type mRNA region b

Antisense +11nt from crosslink site
RNA ORF 3UTR iCLIP only  KIN-CLIP only
iCLIP only sites uuc uGuu
(N = 654) uuu uu
Introns ) AGAA uuu
SUTR cucu AGCC
CCCuU U
Antisense linc ucuu UUCA
RNA RNA ORF UGGA uccu
KIN-CLIP only sites 3UTR Buug cBAU
N = 2234
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Figure R5 | Characteristics of Dazl binding sites for site detected only in iCLIP or in KIN-CLIP datasets. a. RNA classes
and mRNA regions for iCLIP only and KIN-CLIP only binding sites. b. Most frequent sequence motifs at iCLIP only and KIN-CLIP
only binding sites. ¢-g. Site features for iCLIP only and KIN-CLIP only binding sites. All plots were generated as described in the
Materials and Methods Section.



The majority of reads for both datasets is in mRNAs, a smaller percentage in nhon-coding RNAs
(Fig.R4a). In mRNAs most reads are in 3’'UTRs, and the most notable difference is a larger
fraction of reads in introns in the KIN-CLIP only dataset (Fig.R4a). A higher fraction of binding in
introns is consistent with higher crosslinking efficiency, which enables the capture of binding
sites in RNA regions that do not accumulate at high levels and might escape detection by
conventional crosslinking. We also analyzed sequence characteristics of both datasets at the
crosslinking site and detected no significant differences (Fig.R4b). We finally interrogated
MRNA features for the datasets (Fig.R4c-g). Here we find that mRNAs in the KIN-CLIP only
dataset have a markedly lower expression level, compared to the RNAs in the iCLIP only
dataset (Fig.R4c). This observation is perhaps expected, given the higher crosslinking
efficiency of the fs-laser crosslinking approach, which allows capture of crosslink for less
abundant RNAs. Other RNA features do not significantly differ between the datasets
(Fig.R4d,e). We also do not see differences in the datasets with respect to impact of Dazl on
MRNA expression levels (ARNA) and translation state (ARPF) (Fig.R4f, g). In sum, the analysis
of the iCLIP only and KIN-CLIP only datasets reveals no notable differences, aside from the
perhaps expected greater sensitivity of the fs laser crosslinking approach. We can therefore
conclude that sites absent in either KIN-CLIP or the iCLIP dataset are not lost due to refinement
of the crosslinking but rather due to experimental variance.

The nucleotide color code in Ext. Data Fig. 4 does not match with the standard (A-Green, C-
Blue, G- Yellow, T- Red).

We have changed the color code accordingly.

There is no information of the iCLIP-only libraries generated, with details in the number of reads
obtained.

We have included this information for the iCLIP libraries as Supplementary Material Table S7.

Referee #2:

This manuscript introduces and applies what could be a tremendously important new method for
monitoring the kinetics and equilibria (or steady state) of intermolecular interactions in cells. The
method, deceptively simple, is to monitor the time dependence of UV crosslinking from a
femtosecond pulsed laser, with the increase in crosslinked product reflecting a combination of
the rate constants for association and dissociation as well as the rate of crosslinking from the
bound species. After introducing the method in vitro using the RNA-binding proteins
RbFox(RRM) and Dazl, the authors use an antibody pull-down and next-gen sequencing to
monitor the kinetics of RNA binding by Dazl on a genome-wide scale. From the in vivo assays,
the authors report a number of new discoveries. There is substantial variability in the binding
rate constants for different Dazl binding sites, exceeding the variability in dissociation rate
constants. Further, the binding rate constants do not seem to track with sequences but instead
track together with neighboring sites, suggesting that there are major differences in RNA
accessibility that impact binding frequencies. The majority of sites are not saturated with protein,
and individual binding events are relatively short-lived (~1 s), indicating tremendous potential for
Dazl binding to respond rapidly at global or local levels to changes in conditions, RNA
accessibility, or Dazl expression level. Dazl binding sites appear to be organized in clusters, and
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the authors use their binding data to develop a model in which the frequency of Dazl binding to
at least one site within a cluster is tightly linked to the regulatory effects of Dazl on translation
and/or RNA decay.

The work builds in interesting ways on previous work of others that mapped Dazl binding sites
genome-wide and probed the effects of Dazl binding. The overall presentation of the work, in
clarity, organization, and economy, is outstanding.

Although the biological insights are significant, the most enduring value of the work likely lies in
the introduction of the time-resolved UV crosslinking method. The method can be applied in a
straightforward way to any RNA-binding protein and presumably to DNA-binding proteins as
well. In my opinion, it is likely to be a game changer for quantitative research in protein-nucleic
acid interactions in cells. This is probably the most important paper | have read this year.

Overall, the authors should be commended for this terrific idea and for bringing it to fruition while
also going most of the way toward establishing and benchmarking a robust infrastructure that
will serve as a blueprint for future applications of the method. Importantly, the authors varied
both the Dazl expression level and the crosslinking power, in addition to the exposure time, to
establish constraints on the three rate constants that govern the overall behavior. They provide
considerable detail on the methods of the analysis and the outcomes. The strategy and all of
this information will be tremendously valuable for other who seek to apply the method to their
own systems.

Nevertheless, there are some points about the method that are not completely clear. Although
the method is conceptually straightforward, it is not at all trivial to perform the experiments in a
way that defines the binding rate constant and particularly for the dissociation rate constant,
even in the simple experiments with just one target in vitro. If the crosslinking rate constant (kxI)
is much smaller than the dissociation rate constant (kdiss), the measurement will report on the
binding equilibrium but not the rate constants. If kxl is much larger than kdiss, the measurement
will report on the pseudo-first order binding rate constant (kon) or kxI, whichever is smaller, or
some combination of the two, but it will not give direct information on kdiss, as dissociation does
not happen to a significant extent. Perhaps information on kdiss is provided indirectly, because
a fast phase of crosslinking could reflect protein that was already bound at time zero and
therefore define the binding equilibrium, while the slower phase could define the binding rate
constant of additional protein. With both the equilibrium and the kon values defined, the
measurements would constrain kdiss. It is also possible that measurements under conditions
such that kxl is similar in magnitude to koff would provide information that would define koff. As
described further below, in some cases it is not clear from the manuscript how the
measurements constrain the rate constants, through the scenarios described above (or perhaps
in other ways?).

We appreciate the reviewer's comment. Subsets of experiments provide only compound
parameters, as the reviewer notes. However, the rate constants are linked to each other in a
predictable manner, as outlined in the Materials and Methods section. Through variation of
reaction conditions, the individual rate constants can be calculated. Key for this analysis is the
variation of protein concentration and crosslinking power in a manner that each condition results
in a timecourse that is sufficiently different from the timecourses under the other conditions. For
example, if the crosslinking rate constant is too large at all laser powers, no differences in the
timecourses would be detected and it would not be possible to calculate sufficiently constrained
rate constants. In our case, timecourses at all conditions in vitro show sufficient differences for
all conditions for the tested proteins, and well constrained rate constant can thus be calculated,
as outlined in more detail in the responses to the following comments.
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1. In vitro measurements: There is currently insufficient detail about how (and how well) the
kinetic parameters are constrained in the in vitro experiments. Although the equilibrium values
are benchmarked against another method, the values of the rate constants are not. While the
addition of an alternative method to benchmark the kinetics measurements would be one way to
strengthen the work, in my opinion it is not essential. However, in the absence of another
method, it is especially critical to show how the measurements provide reliable values of the
rate constants. The fit space profiles are included in Fig. S1, but these are 1D explorations of
space and do not rule out the possibility that the measurements constrain the binding
equilibrium but not the rate constants, which might vary together over a large range without
impacting the fit. One possibility would be to evaluate the 2D fit space and include the results of
co-varying kon and kdiss.

We see the reviewer’s point and appreciate the suggestion. We have evaluated the 2D fit space
(Fig.R6) and find that rate constants are sufficiently constrained in an independent manner.
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Figure R6 | 2D fit space analysis. a. Relative X2 of co-varying ko and ko. Both rate constants are constrained for all
3 proteins with a well-defined local minimum (red). b. Values for lower and upper bounds obtained with the analysis.

The results rule out a scenario where both rate constants vary together over a large range
without impacting the fit. We have now included these data in the Supplementary Material
Figure S2, together with the 1D Fitspace analysis.
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We have also measured the dissociation rate constant for RoFox"VT(RRM), which is possible

manually through pulse chase experiments monitored by PAGE (Fig.R7). The measured
dissociation rate constant is similar to the rate constant
obtained by crosslinking, providing additional evidence that

a rate constants obtained by time-resolved crosslinking provide
Bound | i reliable parameters. It is unfortunately not possible to perform
Free RNA - e - similar measurements for Dazl with available means, since it
0 _———"14 has not been possible to establish conditions for gel shifts for
Time (min) the protein.
b

Figure R7 | Direct measurement of RbFox"T(RRM) dissociation rate

0.8 ky=0.05£0.01s" ] constant. a. PAGE for pulse chase reaction of and RbFox"WT(RRM) dissociation

timecourse. Bound RNA (radiolabeled) was identical to that used in Fig.1, chase

RNA was identical to the bound RNA, but not radiolabeled. Substrate RNA (final

concentration 1 nM) was incubated with RbFoxWT(RRM) (final concentration 20

nM) for 30 minutes. Chase RNA (final concentration 1 uM) was added, and

aliquots were removed at the indicated times, stored on ice and subsequently

R T S S R loaded on 8% non-denaturing PAGE b. Timecourse of the reaction in panel a. The
Time (min) solid line marks a fit against the integrated first order rate constant, the error range

indicates the fitting error.

Fraction RNA Bound

It would also be very helpful to include as a supporting figure all of the time traces and the
accompanying fits by the simulation. They are currently shown in Fig. 1 for the wild-type
RbFox(RRM) but not for the other two proteins.

We show these time traces and the corresponding fits in Extended Data Figure 1g, h.

In addition, there is not much detail on how the global fitting by simulation was done. Does the
simulated crosslinking begin from a pre-equilibrated mixture of protein and RNA (as in the
experiment)? As noted above, under some conditions this might give clear fast and slow
phases, which could be quite informative.

We apologize for the lack of detail on this topic. We have now included a more detailed
description of the fitting procedure in the Materials and Methods Section. The global datafit was
performed as in the experiment, starting from a pre-equilibrated mixture.

2. In vivo measurements: For these measurements, there is a lengthy and thorough section
describing the analysis, and the methods and use of statistics and uncertainties seems to be
appropriate. Still, it would be helpful to see representative examples of the data for a few
individual sites presented in the same format as the in vitro binding measurements (as in Fig.
1d) and to get a more intuitive sense of how the measurements constrain the rate constants.
These plots could be shown with a simulation curve overlaid using the determined rate
constants. For many of the sites, it seems that the crosslinking rates are much greater than the
dissociation rates, perhaps even at the lower laser power, and it is not clear to me how the
measurements define kdiss.

We agree with the reviewer. Additional representative examples for individual binding sites are
beneficial. Space limitations prevent us from showing these data in the extended Data Figures
and we have therefore added a Supplementary Materials Figure (Supplementary Materials
Figure S4) that displays timecourses (with the associated data fits) for 15 additional examples.
We picked the examples for a low, medium and high value of each of the respective

13



parameters, to emphasize how these parameters are reflected in the experimental data. We feel
these examples are an instructive and nicely intuitive way to assess the link between
experimental data and kinetic parameters, and we appreciate the suggestion to include these
data.

In addition, we illustrate the impact of varying parameters on a specific example (Fig.R8). The
data show variation of the timecourses for a range of dissociation and crosslinking rate
constants, illustrating that the measured timecourses allow the determination of the dissociation
and crosslinking rate constants.
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Figure R8 | Impact of rate constant variation on timecourses. The left panel shows the experimental data. The other panels
show simulated timecourses (dotted lines) with changed dissociation and crosslinking rate constants, as indicated in the table.

We note that a certain number of rate constants are outside the range where they can be
properly constraint. We have marked the corresponding confidence ranges in Fig.2, and
Extended Data Fig.3, and described in the Materials and Methods how we calculated the
confidence ranges.

3. Laser power and crosslinking rate: For the in vitro experiments, when the laser power is
increased 2.6-fold, the measured crosslinking rates increase by more than 40-fold to >2 s(-1). Is
that expected? For the in vivo experiments, the crosslinking rates are much larger than those in
vitro, with the peak at the higher laser power centered at ~100 s(-1), 40-fold(ish) greater than
the same laser power in vitro. Is that expected? | am also a bit confused about how the
crosslinking rate can really be constrained at 100 s(-1) when the first time point is taken at 30 s.
But perhaps this comes from information about the binding equilibrium, which together with the
crosslinking rate may define the observed crosslinking time dependence under some conditions.

The non-linear increase of the crosslinking rate constant with the laser power is expected
because the fs-laser crosslinking is a multi-photon process, which scales non-linearly with
power. Re. constraints of the crosslinking rate constants at the chosen timepoints: the reviewer
is correct; the corresponding information comes from the binding equilibrium. The newly
included Supplementary Material Figure S4, which shows more examples of crosslinking
timetraces and Fig.R8 (above) further clarify this point.
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Minor points

1. Line 105, “Association and dissociation rate constants varied by several orders of
magnitude.": Based on Fig. 2e and elsewhere, it seems like the binding rate constants vary
quite a bit more than the dissociation rate constants, which is quite interesting, and it may be
worth re-wording this sentence to include the difference.

We have re-worded the passage accordingly.

2. Lines 151-153: The statement that the fractional occupancy of sites within a cluster often
trended together is quite interesting because it suggests that the context of the sequence — i.e.
which cluster it is part of — is as important or more important for binding than the RNA
sequence, at least the sequence beyond the GUU motif. | wonder if this point can/should be
expanded in a sentence or two? It certainly seems like an important topic for future work.

We have re-worded the passage accordingly.

3. I am confused about Ext. Data Fig. 6b. How does the cumulative binding probability exceed
1? | must be misunderstanding something, but | don’t know what. Also, is there a normalization
for cluster size in this analysis? If not, it would seem that the correlation of binding probability
with proximity to the polyadenylation site may arise because those closer to this site tend to
have more binding sites per cluster.

The cumulative binding probability, i.e., the addition of the binding probabilities for each binding
can exceed 1. Values greater than 1 indicate that more than 1 Dazl is bound at all times in a
given cluster. Theoretically, there is no upper limit, and multiple Dazl could be bound at any
given time. For a single binding site, however, the binding probability cannot exceed 1.

In the analysis in Fig.6, no normalization for cluster size was included. The reviewer is correct
that clusters more proximal to the PAS contain on average more binding sites. We directly show
this correlation in Extended Data Fig.6a. However, the number of binding sites in a cluster and
the proximity to the cluster to the PAS are not redundant. Not all clusters that are proximal to
PAS have a high number of binding sites and vice versa. In addition, cumulative binding
probability can be high for clusters with few binding sites, and low for clusters with many binding
sites. The non-redundant impact of number of binding sites and PAS proximity for Dazl function
is also apparent in the regression models for Dazl function (Extended Data Fig.10b) where we
show how systematic removal of parameters diminishes the predictive power of the model.
These observations mean that both, number of binding sites and proximity to the PAS contribute
independently to Dazl function, despite their correlation.

4. P. 31, halfway down, “kxI(1 mW) and kxI(2.6 mW) were then averaged.”: Maybe this is a
typo? The crosslinking rates for the two laser powers should definitely be different from each
other, and indeed are reported as being quite different from each other, so it does not seem
appropriate or useful to average them.

Thanks for pointing this out. We have corrected the passage, which now reads: “Timecourses at
1xDazl and high laser power (2.6mW) and low laser power (1mW) were fit separately, yielding
average initial values for kon(1xDazl) and kdiss and initial values for kXL(1mW) and
kXL(2.6mW).”
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Also on p. 31, a few lines up, it seems to indicate that the starting estimates of the crosslinking
rates were 1 s(-1) for 2.6 mW and 10 s(-1) for 1 mW. | am guessing that it was actually the
reverse and that this is a typo.

Thanks for noticing. This was a typo. We have corrected it.

Referee #3:

This manuscript from Sharma et al. is an important piece of work that will be of broad interest to
the RNA community. Here, the authors developed a second-generation CLIP method called
“KIN-CLIP” that makes use of a powerful laser to rapidly crosslink protein and RNA. By using
this laser, the authors can infer kinetic binding values from CLIP libraries, allowing them to gain
access to biochemical coefficients of protein—RNA interactions in living cells. Similar strategies
have recently been applied to the microRNA field, but this is the first such approach to
investigate RNA-binding proteins and to define biochemical coefficients purely from in vivo
measurements. The authors apply this method to the RNA-binding protein DAZL, which is
important for gametogenesis and mediates post-transcriptional regulation. Using their method,
the authors find that DAZL dissociates quickly, sites spend most of their time unbound by DAZL,
and features of efficacious sites. The authors combine features into a linear regression model to
predict impact of binding on gene expression. This method will be very important to many in the
community and opens up new areas of RNA biology. Nonetheless, | have some concerns about
the paper (especially surrounding figure 4) that need to be addressed before | can support
publication:

Major comments:

1. Does the scaling of association rate constants with the number of binding sites occur in vitro?
More generally, how much of the differences in binding between different clusters can be
recapitulated in vitro with just the RNA and DAZL (as opposed to binding being influenced by
other proteins and the cellular milieu)?

We have not examined whether the scaling of association rate constants with the number of
binding sites occurs in vitro, because this is not currently feasible, as it has not been possible to
purify recombinant full-length Dazl. The protein, like many other RBPs, contains low complexity,
most likely unstructured C and N-termini that cause irreversible aggregation in attempts to purify
the protein, which we have encountered. The recombinant Dazl RRM, which we did test in vitro
(Fig.1), is unlikely to show the cooperativity in the association process seen in the cell.

2. In Fig. 4, the analyses should be repeated, but this time looking at directly ATE. As I'm sure
the authors are aware, RPF values are mix of translational changes and RNA changes (as
evidenced by the strong correlation between ARNA and ARPF in Fig. 4b); this makes analysis
with RPF values hard to interpret. For instance, how much of the changes in RPF values with
high and low Dazl are explained by changes in RNA levels? Are there any other features that
explain changes in TE? To put it another way, currently there is limited evidence that consider
RPF changes in addition to RNA changes meaningfully impacts their predictive models.

We appreciate the reviewer’s point and are grateful for the suggestion. We have repeated the
analysis with the ATE values, which isolates and thus emphasizes the role of Dazl in translation
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regulation. We have included the new data in Extended Data Fig.10. The analysis with the ATE
values reveals statistically significant differences in the ATE values for different mRNA groups of
the Dazl regulatory program within a given mRNA class. These differences are not automatically
expected within each mRNA functional class. The ATE analysis thus provides further,
independent functional validation of the Dazl regulatory program. We have also established the
regression model based on ATE values, which we show as well in Extended Data Figure 10,
(due to space constraints in the main figures). The correlation coefficient is somewhat lower
than for the ARNA and ARPF values, but this is expected, given that ATE values are compound
parameters calculated from both, RNA and RPF values.

We would like to retain our analysis using ARNA and ARPF values to emphasize the impact of
Dazl on both, translation and RNA level. As the reviewer notes, these two effects are difficult to
disentangle for certain scenarios (e.g. increase or decrease in both, RPF and RNA), although
they are clear for other cases (e.g. no change in RNA but changes in RPF, no change in RNA —
but changes in RPF). Using just ATE foregoes the impact on RNA levels.

We have amended the text, highlighting the ATE analysis.

3. In considering poly(A) sites, how were genes with multiple 3' UTR isoforms dealt with?

For transcripts with multiple 3’'UTR length annotations, preference was given to annotation
obtained from polyA-Seq (Ref.17). In cases when polyA-Seq annotation for a given 3’'UTR was
absent, coordinates with the longest 3'UTR annotation were utilized. We have noted this
information now in the Materials and Methods Section.

4. Much of the model building in Fig. 4 is hard to understand. For example, how much data was
held back to test the regression model? Similarly, how was the goodness of the models
measured? Ext. Data Fig. 10 suggests that M1 was chosen because all seven features were
significant, but with the underlying methods missing, this is very hard to interpret.

We appreciate the reviewer’s point and agree that the information on the model building and
selection was insufficient. We have markedly expanded the description of the model building in
the Materials and Methods Section and have included two additional Supplementary Figures
(Supplementary Material Figures S5, S6) outlining the model building and evaluation process
along with model quality control data.

5. A major weakness of the paper is that the authors do not test their predictions of DAZL
binding and effects with reporters or alternative measurements.

We have now included data for six luciferase reporter constructs (Extended Data Fig.10h).
Each of these reporter constructs contains the 3’'UTR of a different mRNA that vary in their
scores for the of Dazl effect on ARPF, which is a proxy for change in protein production. The
change in luciferase activity measured with the reporters correlates very well with the predicted
change in ARPF (R? = 0.8, Extended Data Fig.10h). These data provide an independent test of
our model through the measure of luciferase activity with non-endogenous RNAs. We note that
the reporters were used and measurements were performed in a previous study (Ref.17).
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Minor comments:

1. The use of several abbreviations (like HH) is not intuitive for the reader and make Fig. 4
challenging to interpret.

We appreciate the reviewer's comment. We see that H, M, L can be confused with the same
designation for the group characteristics. We have changed the mRNA class labels to a four
letter “code™: T for ARPF and R for ARNA and H — high, M- medium, L — low, for the
corresponding changes (e.g. THRM). We have also color coded the labels. We trust this change
makes interpretation easier.

2. The color choice in the top panel of Fig. 4d is not intuitive (e.g., a graded color scheme would
be much better), and additionally this scheme, and others, does not use an accessible palette.

We thank the reviewer for pointing this out. We have changed the color schemes in Figure 4
and others accordingly.
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