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ABSTRACT 

Gene expression in higher eukaryotic cells orchestrates interactions between thousands of 

RNA binding proteins (RBPs) and tens of thousands of RNAs 1. The kinetics by which RBPs 

bind to and dissociate from their RNA sites are critical for the coordination of cellular RNA-

protein interactions 2. However, these kinetic parameters were experimentally inaccessible in 

cells. Here we show that time-resolved RNA-protein crosslinking with a pulsed femtosecond UV 

laser, followed by immunoprecipitation and high throughput sequencing allows the 

determination of binding and dissociation kinetics of the RBP Dazl for thousands of individual 

RNA binding sites in cells. This kinetic crosslinking and immunoprecipitation (KIN-CLIP) 

approach reveals that Dazl resides at individual binding sites only seconds or shorter, while the 

sites remain Dazl-free markedly longer. The data further indicate that Dazl binds to many RNAs 

in clusters of multiple proximal sites. The impact of Dazl on mRNA levels and ribosome 

association correlates with the cumulative probability of Dazl binding in these clusters. 

Integrating kinetic data with mRNA features quantitatively connects Dazl-RNA binding to Dazl 

function. Our results show how previously inaccessible, kinetic parameters for RNA-protein 

interactions in cells can be measured and how these data quantitatively link RBP-RNA binding 

to cellular RBP function.    



3 
 

The binding and dissociation of RBPs at their cognate RNA sites in cells are critical for the 

regulation of gene expression 2. Yet, association and dissociation kinetics of RBPs at individual 

binding sites in cells have not been experimentally accessible. RBP binding and dissociation 
kinetics have only been measured in vitro, while in cells, only steady-state patterns of RNA-

protein interactions have been determined 2-6. For a small number of RBPs, equilibrium binding 
parameters measured in vitro correlate with steady-state binding patterns in cells 7,8. Although 

these observations advanced understanding of RBP function, the inaccessibility of binding and 

dissociation kinetics of RBPs in cells limits or even precludes the establishment of quantitative 

connections between RBP-RNA interactions and cellular RBP function. Here, we measure 

binding and dissociation kinetics of the RBP Dazl at thousands of individual binding sites in 

cells. We then show how these kinetic parameters inform a quantitative understanding of the 

cellular function of Dazl. 

 

Time-resolved fs laser crosslinking in vitro  

To measure binding and dissociation kinetics of proteins at individual RNA sites in cells, we 
devised a time-resolved RNA-protein crosslinking approach (Fig.1a). Because kinetic 

parameters in cells must be determined from the steady-state between free and RNA-bound 

protein, a sufficient number of experimental constraints are required to calculate rate constants. 

These constraints can be established by measuring crosslinking timecourses at different protein 
concentrations and different crosslinking efficiencies (Fig.1b), while ensuring that crosslinking 

rate constants are roughly equal or larger than dissociation and apparent association rate 

constants. To achieve sufficiently fast protein-RNA crosslinking, we employed a pulsed 
femtosecond (fs) UV laser (Fig.1c, Extended Data Fig.1a). Pulsed UV lasers had been shown 

to efficiently photo-crosslink proteins to DNA through multi-photonic excitation of the 

crosslinking species 9-12.  

To examine the utility of a pulsed fs UV laser for determining binding and dissociation rate 

constants of RNA-protein interactions, we performed time-resolved crosslinking reactions with 
purified proteins and RNAs (Fig.1d,e). UV-mediated RNA degradation was reduced upon 

irradiation with the fs laser, compared with a steady-state UV light source (Extended Data 

Fig.1b). Although the photon density during the laser pulse is orders of magnitude greater, 

compared with the steady-state UV light source, fewer photons are absorbed by the RNA over a 
given amount of time (Extended Data Fig.1c). This is because fs pulses are emitted once per 
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millisecond and the cross-section for multi-photonic absorption is smaller than for single-

photonic absorption with a steady-state UV light source 13.  

Crosslinking of the purified RNA-binding protein RbFox(RRM) to its cognate RNA with the fs 
laser was markedly more efficient, compared with the steady-state UV source (Extended Data 
Fig.1d-f). Observed crosslinking rates increased with laser power and protein concentration, as 

expected (Fig.1d). We determined binding, dissociation and crosslinking rate constants for 

RbFox(RRM)-RNA binding from the crosslinking timecourses at two different laser powers and 
two different protein concentrations (Fig.1b,d,e, Supplementary Material Fig.S2). The 

apparent affinity (K1/2) of RbFox(RRM) for its cognate RNA, calculated from association and 

dissociation rate constants, was similar to the affinity measured by fluorescence anisotropy 
(Fig.1e, Extended Data Fig.1i) and consistent with previously reported values 14. We next 

determined binding, dissociation and crosslinking rate constants for a mutated RbFoxmut(RRM) 
15 and for the RNA binding protein Dazl(RRM) 16, using fs laser crosslinking (Fig.1e, Extended 
Data Fig.1g,h). RNA affinities of these two proteins, calculated from the rate constants, were 

also similar to affinities measured with fluorescence anisotropy (Fig.1e, Extended Data 
Fig.1j,k). The data with three RBPs collectively indicate that binding and dissociation rate 

constants for RNA-protein interactions can be determined by time-resolved, fs laser 

crosslinking.         

              

Laser crosslinking in cells  

We adapted the time-resolved fs laser crosslinking approach to measure binding and 

dissociation rate constants of the RNA-binding protein Dazl to individual RNA sites in mouse 

GC-1 cells 17,18. Dazl is essential for male and female gametogenesis 19-22. The protein contains 

one RNA recognition motif (RRM), binds predominantly to 3'UTRs of mRNAs and regulates 

mRNA stability, translation, or both 23. Dazl was expressed under the control of a doxycycline-

inducible promotor 17. Varying the doxycycline concentration allowed measurements at different 
Dazl concentrations in GC-1 cells (Extended Data Fig.2a). To perform time-resolved fs laser 

crosslinking experiments, cells were transferred to a quartz cuvette and under constant stirring 

placed in the laser beam. Crosslinking measurements were performed with GC-1 cells 

expressing two different Dazl concentrations and two different laser powers for 30, 180 and 680 
s (Extended Data Fig.2b). We also measured the bulk degree of crosslinking at each time point 

(Extended Data Fig.2c) and determined transcript levels at each Dazl concentration by RNA-
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Seq. Approximately 10% of cells showed signs of physical damage after crosslinking, which is 
comparable to cell damage by conventional steady-state UV-crosslinking (Supplementary 
Material Table S4).  

We prepared and sequenced cDNA libraries for each timepoint sample and for controls 
without crosslinking (Extended Data Fig.2b, Supplementary Material Table S5, refs.24,25). 

Dazl crosslinking sites with the fs laser were virtually identical to sites identified by conventional 

steady-state UV-crosslinking with respect to RNA types, location in 3'UTRs and crosslinking site 
characteristics (Fig.2a, Extended Data Fig.2d-f, ref.17). These data show that fs laser 

crosslinking maintains the characteristics of crosslink sites seen with steady-state UV-

crosslinking. Our kinetic crosslinking and immunoprecipitation approach (KIN-CLIP) thus 

faithfully maps Dazl binding sites.   

To calculate association and dissociation rate constants for Dazl binding at individual binding 

sites, we normalized the sequencing reads for each CLIP library to the bulk amount of 

crosslinking, thereby converting sequencing reads into a concentration-equivalent of crosslinked 
RNA at a given binding site (Fig.2b, Supplementary Material Table S6). This normalized read 

coverage was used to calculate a dissociation rate constant (kdiss.), observed association rate 

constants at low and high Dazl concentration (kon
(1xDazl), kon

(4.2xDazl)) and crosslinking rate 

constants for both laser powers (kXL
(1 mW), kXL

(2.6 mW)) for each binding site. (Fig.2c, Extended 
Data Fig.3a-k). Obtained rate constants faithfully described the experimental data (Fig.2c, 
Extended Data Fig.3l,m, Supplementary Material Fig.S4).  

 

Dazl-RNA binding kinetics in cells  

For most binding sites (89%), the observed association rate constants at the 1xDazl 
concentration were lower than those at the 4.2xDazl concentration (Fig.2d). These data indicate 

that only a small fraction of binding sites is saturated with Dazl at low protein concentration and 

implies a population of free Dazl in the cell, at least at the high Dazl concentration. Although 
85% of Dazl crosslinking sites showed the consensus 5'-GUU motif (Extended Data Fig.4a-d), 

association and dissociation rate constants varied by several orders of magnitude (Fig.2e). 

Association rate constants varied to a larger degree than dissociation rate constants (Fig.2e). 

These observations suggest that Dazl binding and dissociation kinetics in cells depend not 

exclusively on the consensus motif. An, Un and (GU)n stretches were overrepresented in the 
vicinity of binding sites with high association rate constants (Extended Data Fig.4e-p). No 
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further sequence signatures in the vicinity of crosslinking sites correlated with other rate 
constants (Extended Data Fig.4i-p).  

The dissociation rate constant for Dazl(RRM) in vitro (Fig.1e) is on the low end of the 

spectrum of cellular dissociation rate constants (Fig.2e), indicating that Dazl dissociates from 

most cellular binding sites more frequently than from its cognate RNA in vitro. Dazl resides at 

most cellular binding sites for less than τB < 1s (Fig.2e). Binding events are infrequent and even 

at high Dazl concentrations occur rarely more than six times per minute (Fig.2e). Accordingly, 

the probability of Dazl to be bound at any time is less than 10% for many binding sites (Fig.2e). 

This observation indicates that Dazl operates at a sub-saturating regime with respect to its 

mRNA targets in GC-1 cells. This notion is consistent with kinetic parameters of Dazl measured 
in vitro (Fig.1e), and a cellular Dazl concentration roughly at or below its affinity in vitro 26. We 

also determined a maximal fractional occupancy (Φmax, Fig.2e, Supplementary Material 
Fig.S3), which describes the extent by which a given RNA site would be occupied at saturating 

Dazl concentrations. The data suggest that most binding sites are not fully accessible for Dazl 

binding during the course of the experiment.    

Dissociation rate constants for binding sites did not vary significantly for different RNA classes 
(Extended Data Fig.4s) or between mRNA 3’UTRs, 5’UTRs, introns and open reading frames 

(Fig.2f). Association rate constants and binding probabilities, which depend on both, association 

and dissociation rate constants, were higher for binding sites in 3’UTRs than for sites in 5’ 
UTRs, introns and ORFs (Fig.2f), and higher in mRNAs, compared with other RNA classes 

(Extended Data Fig.4q,r). The maximal fractional occupancy of binding sites did not 

significantly vary in the different mRNA regions (Fig.2f), but was higher in mRNA, compared 

with other RNA classes (Extended Data Fig.4t). Because Dazl function has been linked to 

binding in 3’UTRs 17, our data raised the possibility that association rate constants, binding 

probabilities, or both, influence cellular roles of Dazl more than its residence time at the binding 

sites. Collectively, the kinetic data revealed highly dynamic Dazl-RNA interactions with most 

Dazl binding events being rare and transient.    

 

Dazl binds mRNAs in clusters  

To understand how Dazl regulates mRNA function in this highly dynamic fashion, we 

examined the patterns of the kinetic parameters for all Dazl binding sites on each bound mRNA.  
The majority of Dazl binding sites are in 3'UTRs (Fig.2a), and frequently proximal to the 
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polyadenylation site (PAS, Extended Data Figs.2e, 5a). Most Dazl-bound mRNAs contained 

multiple Dazl binding sites with an inter-site distance markedly smaller than expected by chance 
(Fig.3a), even when distant to the PAS (Extended Data Figs.5b,c). This observation suggested 

clustering of multiple Dazl binding sites on most 3'UTRs (Extended Data Fig.5d-g). The 

number of binding sites within a 3’UTR cluster increased with proximity to the PAS (Fig.3b). 

Dissociation rate constants and maximal fractional occupancies did not scale with the number of 
binding sites in a cluster (Extended Data Fig.5i,j). However, association rate constants for 

individual binding sites scaled with the number of binding sites in a cluster, regardless of the 
distance of the cluster to the PAS. (Fig.3c). Binding probabilities showed a similar pattern 

(Extended Data Fig.5h). These observations suggest cooperative association steps.  

Kinetic parameters within clusters showed consistent patterns of moderate correlation 
(Extended Data Fig.5k). However, fractional occupancies for binding sites within a given 

cluster were closely correlated (Fig.3d, Extended Data Fig.5k), suggesting that binding site 

context, possibly including RNA structure or proximal binding of other proteins, play a prominent 

role in determining similar accessibility of binding sites within a cluster. This notion, together 
with the scaling of association rate constants with the number of binding sites (Fig.3c), raised 

the possibility that binding site clusters are important for Dazl function.   

 

Clusters correlate with Dazl function 

To test this hypothesis, we quantified Dazl binding in a given cluster by calculating a 

cumulative binding probability (ΣB) from the kinetic constants of the binding sites in the cluster.  

ΣB describes the probability that Dazl occupies at least one site in a given cluster at any given 
time (Fig.4a). ΣB increased with the number of binding sites in a cluster and with proximity to 

the PAS (Extended Data Fig.6a,b). We compared ΣB values in a given cluster to changes in 

ribosome association and transcript levels at low and high Dazl concentrations (Fig.4b). Dazl 

binding had been shown to increase transcript levels and ribosome association for many, but 

not all mRNAs 17. At the high Dazl concentration, compared with the low Dazl concentration, we 

detected an overrepresentation of clusters with high ΣB in mRNAs that increased in transcript 
level, ribosome association, or both (Fig.4c, Extended Data Fig.6c,d). Clusters with low ΣB 

values were overrepresented in mRNAs that decreased in transcript levels and ribosome 
association at the high Dazl concentration (Fig.4c). We detected no comparable correlation 

between the Dazl impact on transcript levels or ribosome association and binding probabilities 

of individual binding sites, clusters with scrambled binding sites or with simultaneous occupancy 
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of multiple binding sites in a given cluster (Extended Data Fig.6e-k). ΣB values thus 

instructively link binding kinetics to Dazl impact on mRNA function, further supporting the notion 

that Dazl clusters are critical for the function of this RBP. 

 

A Dazl regulatory program.  

To delineate the connection between Dazl binding kinetics and Dazl impact on mRNA function 

in more detail, we identified additional mRNA and Dazl cluster characteristics that correlated 

with Dazl function. Besides ΣB, we detected correlations for the number of binding sites in a 

cluster, the difference in cumulative binding probabilities at low and high Dazl concentrations 

(ΔΣB), number of clusters in a 3’UTR, length of the 3’UTR, and proximity of a cluster to the PAS 
(Extended Data Fig.7). Some of these characteristics correlate with each other (R2 ≤ 0.6), but 

each parameter contributes separately to the Dazl impact on mRNA function (Extended Data 
Fig.8a-e). Proximity of Dazl binding to the PAS had been previously noted to influence Dazl 

impact on mRNA function 17.   

Principal component analysis and t-distributed stochastic neighbor embedding independently 

identified 21 mRNA groups with a distinct combination of kinetic, cluster and mRNA 
characteristics (Extended Data Fig.8b-e). Each of these 21 groups falls into a class of Dazl 

impact on transcript level and ribosome association (Fig.4d, Extended Data Fig.8c-f, 
Extended Data Fig.9). Translation efficiencies also vary for groups in mRNA classes where 

mRNA level and ribosome association do not scale proportionally (Extended Data Fig.10a). 

The mRNAs in each group belong to defined GO-terms (Fig.4d), and in many cases encode 

proximal proteins in a given pathway (Extended Data Fig.8h). mRNA groups with high values 

of ΣB or ΔΣB predominantly function in mRNA processing and transport, in DNA replication and 

in cell cycle regulation. mRNA groups with low ΣB or ΔΣB values are primarily associated with 
mRNA decay, membrane transport and stress response (Fig.4d). Collectively, the results 

indicate a link between the biological role of a given mRNA and Dazl binding kinetics, binding 
site clusters, their location on the 3’UTR and mRNA features (Extended Data Figs.8h,9). 
These characteristics represent a basic Dazl regulatory program that connects Dazl binding in 
3’UTRs to its impact on mRNA function (Fig.4d).  

To quantify this regulatory program, we employed a multiple linear regression model (Fig.4e-
h; Extended Data Fig.10b-e, Supplementary Material Figs.S5-S7.). The model explains 

changes in ribosome association, mRNA levels (Fig.4g,h), translation efficiencies and changes 
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in translation from luciferase reporters between low and high Dazl concentration (Extended 
Data Fig.10f-h). The largest contribution is seen for the cumulative binding probabilities, which 

derive from the kinetic parameters of Dazl binding, and for the numbers of Dazl clusters in the 
3’UTR (Fig.4e,f, Extended Data Fig.10f). For mRNAs that increase in ribosome association, 

the distance of the Dazl clusters to the PAS also has an effect (Fig.4e), consistent with 

previously reported data 17. Collectively, our data show that Dazl impacts bound mRNAs in a 

complex, yet tractable manner that depends prominently on kinetic parameters.    

 

Discussion 

We devised and applied a time-resolved crosslinking approach to measure cellular binding 

and dissociation kinetics of RNA-protein interactions at individual binding sites on a 

transcriptome-wide scale. Key to this KIN-CLIP approach is a pulsed fs UV laser, which 

increases crosslinking efficiencies without altering RNA-protein crosslinking patterns, compared 

with steady-state UV irradiation. KIN-CLIP should enable the biochemical characterization of 

other RNA-protein interactions in cells. Our approach also provides a framework for obtaining 

quantitative, steady-state protein-RNA binding information from CLIP with conventional 

crosslinking sources. Moreover, combining time-resolved fs laser crosslinking and kinetic 

analysis might allow quantitative, biochemical analysis of DNA-protein 12 and even of protein-

protein interactions 27 in cells.  

For Dazl, KIN-CLIP reveals highly dynamic RNA binding. Dazl resides at individual binding 

sites only seconds or shorter, while cognate sites remain free of Dazl for most of the time. 
These findings are consistent with kinetic data for Dazl-RNA binding in vitro and the notion that 

cellular Dazl concentrations are sub-saturating relative to its RNA targets 26. Highly dynamic 

binding allows for rapid changes in RNA binding patterns, which might be critical for Dazl 
function. Since in vitro RNA binding kinetics of Dazl are similar to those of other RBPs 6, many 

of which might also operate in cells at sub-saturating concentrations relative to their RNA 

targets 7, our findings raise the possibility that other RBPs bind their cognate RNA sites also 

transiently and infrequently. If true for many RBPs, few regulatory RBPs and occasionally none 

might be bound to a given mRNA at a given time. 

Access to cellular kinetic data allows the decoding of a complex link between Dazl-RNA-

binding patterns and Dazl function. Dazl affects mRNA level and ribosome association 

according to a regulatory program that integrates the collective binding kinetics of Dazl at 
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multiple cognate sites in a cluster, the number of binding sites in a cluster, location of clusters 

on the 3’UTR, proximity to the PAS, and 3’UTR length. Because our experimental and data 

analysis approaches are applicable to other RBPs, KIN-CLIP provides a blueprint for delineating 

regulatory programs for other RBPs.  
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FIGURE CAPTIONS 

 

Figure 1 | Time-resolved, fs laser RNA-protein crosslinking in vitro. a. Kinetic scheme for 

RNA-protein binding and crosslinking. b. Reaction scheme c. Schematic of pulsed fs UV laser 

crosslinking. d. RNA Crosslinking timecourses for RbFox(RRM) with fs laser at different laser 

power and protein concentrations. Lines show the fit to the data in panel e. e. Rate constants for 

association (kon), dissociation (koff) and crosslinking at both laser powers (kXL
(1mW), kXL

(2.6mW)) 

determined with the fs laser for RbFox(RRM), a mutated RbFoxmut(RRM), and Dazl(RRM). 
Equilibrium dissociation constants (K1/2) for fs laser are calculated from these rate constants and 

measured by fluorescence anisotropy (Extended Data Fig.1h-j). Errors mark one standard 

deviation.  

 

Figure 2 | Kinetics of Dazl-RNA binding and dissociation in cells. a. Distribution of CLIP 

sequencing reads across RNA classes and mRNA regions for fs laser (4.2xDazl, 2.6 mW) and 
conventional crosslinking (Stratalinker; 4.2xDazl). b. Normalized sequencing reads for the 

3’UTR of a representative transcript (Thbs1) at increasing crosslinking times (left side), different 

protein concentrations and different laser power (right side, scale: normalized coverage = 11 for 
all traces). Reads for conventional iCLIP are indicated below. c. Crosslinking timecourses for 

two binding sites (1,2, panel b). Datapoints show the normalized read coverage (Lines: best fit 

to the parameters in the table. Error bars: 95% confidence interval for normalized peak 

coverage value, determined by minimizing X2. For crosslinking rate constants of all binding sites 
see Suppl. Material Table S9). Each binding site was fitted independently using two mutually 

exclusive methods. d. Association rate constants for 1xDazl and 4.2xDazl for all binding sites (N 

= 10,341). Arrows mark the confidence range for the rate constants. The diagonal line marks 
equal rate constants at both Dazl concentrations. e. Transcriptome-wide distributions of 

dissociation rate constants (kdiss.), association rate constants at high Dazl concentration 

(kon
4.2xDazl), binding probability (P4.2xDazl), and maximal fractional occupancy (Φmax) for all Dazl 

binding sites. Select dwell times of Dazl bound (τb) and away from binding sites (τf) are marked 

(bin sizes for frequency distributions: kdiss.: 0.35s-1, kon
4.2xDazl : 0.015s-1, P4.2xDazl: 0.019, Φmax: 

0.02). f. Distributions of kinetic parameters for all binding sites in the indicated mRNA regions 

(p-values: one way ANOVA, n.s.: not significant; for boxplots: vertical line: median, box limits: 

interquartile range (IQR); whiskers 1.5x IQR)   
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Figure 3 | Clustering of Dazl binding sites in 3’UTRs. a. Distribution of Dazl binding sites in 

3’UTRs as function of the distance between neighboring binding sites. The grey line shows the 
distribution if sites were randomly distributed across all 3’UTRs (p value: t-test).  b. Proximity of 

clusters with varying number of binding sites to the PAS. c. Correlation between association 

rate constants and number of binding sites in clusters. (p-values: one way ANOVA; for boxplots: 
vertical line: median, box limits: interquartile range (IQR); whiskers 1.5x IQR). d. Heatmap 

depicting correlation of values for maximal fractional occupancy in clusters with 6 binding sites. 

 

Figure 4 | Link between Dazl-RNA binding and Dazl impact on mRNA function. a. 

Distribution of cumulative binding probabilities (ΣB) for Dazl in all clusters (N = 1,690). b. 

Changes in transcript levels (ΔRNA) and ribosome association (ΔRPF) between low and high 

Dazl concentration for Dazl-bound mRNAs (N = 968). Data points represent averages from 
triplicate ribosome profiling and RNAseq experiments 17. c. Correlation between cumulative 

binding probabilities and functional mRNA classes. Colors correspond to the enrichment 
(hypergeometric test, red: p < 0.05, shades of yellow: not enriched). d. Upper panel: Heatmap 

of the Dazl regulatory program, linking functional mRNA classes to kinetic parameters (ΣB, 

ΔΣB), cluster characteristics (number of binding sites in cluster, cluster distance from PAS) and 

3’UTR features (numbers of clusters, on 3’UTR, 3’UTR length, transcript level), all shown in 
terciles (Extended Data Fig.8f). Numbers mark the groups with characteristic combinations of 

ΣB, ΔΣB, cluster and mRNA features. Lower panel: Link between Dazl-code and Gene ontology 
(GO) terms. e,f. Linear regression model linking the Dazl regulatory program to impact of Dazl 

binding on changes in transcript levels (ΔRNA) and ribosome association (ΔRPF) (panel b). 

Points represent the differential intercept (DI) linear coefficient (LC) (red: DILCs for transcript 

levels and ribosome association that increase at high Dazl concentration, green: black: DILCs 
for transcript levels and ribosome association that decrease at high Dazl concentration). g,h. 

Correlation between experimental values for ΔRNA and ΔRPF  and values  predicted with the 

linear regression model (R: adjusted linear correlation coefficient) for the test data set unseen 

by the model (N = 492).        
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EXTENDED DATA, FIGURE CAPTIONS 

 

Extended Data Figure 1 | Time-resolved RNA-protein crosslinking with fs laser in vitro. a. 

Schematics of fs laser setup. b. Degradation of RNA (38 nt) under steady-state and fs laser 

illumination. Data points represent averages of 3 independent measurements. Error bars mark 
one standard deviation. Lines show a linear trend. c. Dose absorbed over time for crosslinking 

with conventional UV (Stratalinker, 200 mJ/cm2, λ = 254 nm) and fs laser (2.6 mW) d. 

Representative denaturing polyacrylamide gel electropherogram (PAGE) for a crosslinking 

reaction of 50 nM RbFox(RRM) (laser: 2.6 mW) (lanes 5 – 12) and control reactions with RNA 

only (lanes 1 – 3) and RbFox(RRM) only (lane 4), with (lanes 2-4) or without (lanes 1 and 5) 
crosslinking. e. Representative denaturing PAGE for a crosslinking reaction of 50 nM 

RbFox(RRM) with Stratalinker (200 mJ/cm2, λ = 254 nm), lanes 4 - 8) and control reactions 
(lanes 1 - 3). f. Timecourse of crosslinking reaction of 50 nM RbFox(RRM) with Stratalinker (200 

mJ/cm2, λ = 254 nm) vs. fs laser (Fig.1d). Datapoints are averages from triplicate experiments 

(error bars: one standard deviation). g. RNA Crosslinking timecourses for Dazl(RRM) with fs 

laser at different laser power and protein concentrations. Data points represent averages of 3 

independent measurements (error bars: one standard deviation). Lines show the fit to the data 
in Fig.1e. h. RNA Crosslinking timecourses for RbFoxmut(RRM) with fs laser at different laser 

power and protein concentrations. Data points represent averages of 3 independent 
measurements (error bars: one standard deviation). Lines show the fit to the data in Fig.1e. i-k. 

Binding isotherms for RbFox(RRM), RbFoxmut(RRM) and Dazl(RRM) to cognate RNAs 

measured by fluorescence anisotropy. Experiments were performed multiple times, all 
datapoints are shown. Apparent equilibrium binding constants (K1/2, Fig.1e) were calculated with 

the quadratic binding equation.   

 

Extended Data Figure 2 | Dazl-RNA crosslinking with fs laser in GC-1spg cells. a. Western 

Blot of Doxycyline dependent Dazl expression in GC-1 cells. b. Schematic of the time-resolved 

crosslinking approach in cells. Numbers mark the respective CLIP libraries. c. Representative 

PAGE for bulk Dazl-RNA crosslinking. The intensity of crosslinked RNA (marked) is used to 

convert NGS reads to a concentration-equivalent parameter (for bulk crosslinking intensities see 
Supplementary Material, Table S6) d. Dazl binding sites identified by fs laser (KIN-CLIP) and 

conventional UV crosslinking (iCLIP) on all RNAs and 3’UTRs. e. Metagene distribution of Dazl 

binding sites identified by KIN-CLIP and iCLIP on 3’UTRs proximal to stop codon and PAS. The 
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dotted lines mark the background of a random distribution of binding sites on 3’UTRs.  f. CITS 

(Crosslink Induced Truncation Site) analysis 28,29 of 6-mer and 4-mer enrichment at 5’-termini of 

sequencing reads for KIN-CLIP (upper panels) and iCLIP (lower panels). The data indicate a 

virtually identical sequence context of crosslinking sites for KIN-CLIP and iCLIP. Sequence 

enrichment reflects the statistical overrepresentation of 6-mer and 4-mer sequences with 

respect to randomized sequences (Z-score, 11 nucleotide region, ± 5 nt from the 5’-terminal 

nucleotide).  

 

Extended Data Figure 3 | Determination of kinetic parameters from fs laser, time-resolved 
Dazl-RNA crosslinking in cells. a. Flowchart of the approach to calculate kinetic parameters 

for individual Dazl-RNA binding sites in cells (for details see Materials and Methods). Unless 

otherwise stated, rate constants averaged from both approaches are used in subsequent data 
analyses. b. Scaling of Χ2 with the number of iterative fitting cycles for analytical and numerical 

approaches. c,d. Distribution of Χ2 at first and last (642) fitting cycle for analytical (c) and 

numerical (d) approaches (COD: Coefficient Of Determination, R2: linear correlation coefficient). 

e-i. Correlation of parameters calculated with analytical and numerical fitting procedures (R2: 

linear correlation coefficient). j. Correlation between crosslinking rate constants for low and high 

laser power. Rate constants are averaged from parameters obtained with numerical and 

analytical approach. Crosslinking rate constants at higher laser power were larger than at lower 
for 92% of binding sites. k. Confidence range for dissociation rate constants (for details see 

Materials and Methods). l. Normalized read densities measured experimentally and calculated 

from the kinetic parameters for all Dazl binding sites. m. Distribution of Χ2 for experimental 

values compared with values calculated with the kinetic parameters.  

 

Extended Data Figure 4 | Kinetic parameters of Dazl binding sites and sequence context. 
a-d. Sequences surrounding Dazl binding sites, arranged according to decreasing values for 

kon
(4.2xDazl), kdiss., kXL

(2.6mW), and Φmax. Sequences are aligned at the peak nucleotide (most 

frequent crosslink site (± 11 nt peak nucleotide), Extended Data Fig.2f, position 0). e-h. 

Frequency of 6-mer sequences surrounding Dazl crosslink sites (± 111 nt peak nucleotide) in 
top and bottom 5% of sequences arranged according to the kinetic parameters in panels (a-d). 

i-l. Relative frequency of 6-mer sequences in top and bottom 5% of sequences (panels e-h), 

arranged according to the kinetic parameters in panels a-d. Sequences below the diagonal line 

correspond to enrichment of a 6-mer in the top 5% versus the bottom 5%. (R2: linear correlation 
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coefficient). A6, U6 and U3GU2 are most enriched in the vicinity of the binding sites with the 

fastest apparent association rate constants, compared to the binding sites with the slowest 

apparent association rate constants. No comparable enrichment is seen for other kinetic 
parameters. m-p. Relative frequency of 4-mers in top and bottom 5% of sequences arranged 

according to the kinetic parameters in panels (a-d).  q-t. Distribution of association and 

dissociation rate constants, binding probabilities (P(4.2xDazl)) and maximal fractional occupancy 

(Φmax) for binding sites on different RNA classes. P values (one-way ANOVA, significant for p < 

0.05) indicate inter-group differences. Φmax, but not other parameters vary significantly for 

different RNA classes (boxplots: vertical line: median, box limits: interquartile range (IQR); 

whiskers 1.5x IQR).   

 

Extended Data Figure 5 | Arrangement of 3’UTR Dazl binding sites in clusters.  

a. Arrangement of Dazl binding sites in 3’UTRs. Binding sites are colored according to kon
(4.2xDazl) 

and kdiss. as indicated in the key panel. Right panel: number of clusters in corresponding 3’UTR. 

Colors mark number of binding sites in a cluster, as indicated in legend bar (right) (N = 1,313 
3’UTRs, 1,690 clusters, 6,085 binding sites) b. Distribution of Dazl binding sites in 3’UTRs 

closer than 500 nt to PAS, as function of the distance between neighboring binding sites. The 
grey line shows the distribution if sites were randomly distributed across all 3’UTRs (p value: t-

test). c. Distribution of Dazl binding sites in 3’UTRs farther than 500 nt from PAS, as function of 

the distance between neighboring binding sites. The grey line shows the distribution if sites 
were randomly distributed across all 3’UTRs (p value: t-test). d. Large windows: genome 

browser traces of representative 3’UTRs with 5 clusters (Nucks1) and 2 clusters (D’Rik, 

D030056L22Rik). Bars show the normalized read coverage for 4.2xDazl, 2.6 mW laser and 

680s crosslinking time. Numbers mark the distance between clusters. Small windows: zoom into 

cluster 1 of Nucks1 with 3 binding sites and in cluster 1 of D’Rik with 2 binding sites (numbers 
mark the distance between binding sites). e. Number of clusters in 3’UTRs with Dazl binding 

sites. Colors show the number of binding sites in a cluster as indicated in panel a. (red: 20; 

cornsilk: 1). f. Distances between clusters in 3’UTRs with 2 to 4 clusters. Number 1 represents 

the cluster most proximal to the PAS.  g. Distribution of distances between neighboring binding 

sites in clusters (2-9 binding sites). Number 1 represents the 3’ binding site (boxplots: vertical 
line: median, box limits: interquartile range (IQR); whiskers 1.5x IQR).  h-j. Correlation between 

the number of binding sites for clusters proximal (blue: < 0.5 kb) and distant (red: ≥ 0.5 kb) to 
the PAS and (P(4.2xDazl), h), dissociation rate constants (kdiss. , i), and maximal fractional 
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occupancy (Φmax, j), for individual binding sites in a given cluster.  P-values (one way ANOVA) 

indicate significant inter-group differences for P(4.2xDazl) and Φmax, but not for kdiss. P(4.2xDazl) and 

Φmax depend on kon
(4.2xDazl), which correlates with the number of binding sites in a cluster, 

(Fig.3c). k. Correlation between kinetic parameters of individual binding sites in clusters with 6, 

5, 4, and 3 binding sites. The Pearson correlation coefficient is indicated in the legend bar. 

Binding site number 1 indicates the 3’ binding site in a cluster.  

 

Extended Data Figure 6 | Link between Dazl binding in 3’UTRs and impact on mRNA level 
and ribosome association. a. Correlation between cumulative binding probabilities (ΣB) and 

number of binding sites in a cluster (N = 1,313 3’UTRs, 6,085 binding sites, 1,690 clusters), R2: 

linear correlation coefficient). b. Correlation between ΣB and distance of the cluster from the 

PAS, R2: linear correlation coefficient). c. Correlation of ΣB terciles (H: high; M: medium; L: low, 

Fig.4a) and changes in ribosome association (ΔRPF, Fig.4b) for the corresponding transcripts 

(N = 968) between low (1xDazl) and high (4.2xDazl) concentration (P value: one-way ANOVA). 

For UTRs with multiple clusters, the cluster closest to the PAS was utilized (boxplots: vertical 
line: median, box limits: interquartile range (IQR); whiskers 1.5x IQR).  d. Correlation of ΣB 

terciles (H: high; M: medium; L: low, Fig.4a) and changes in transcript levels (ΔRNA, Fig.4b) for 

the corresponding transcripts between low (1xDazl) and high (4.2xDazl) concentration (P value: 

one-way ANOVA). For UTRs with multiple clusters, the cluster closest to the PAS was utilized.  
e. Distribution of binding probabilities for individual Dazl binding sites in 3’UTRs for transcripts in  

THRH, THRM, TLRM, TLRL, TMRH, TMRL mRNA classes (Fig.4b). The dotted lines mark 

terciles (H: high; M: medium; L: low), (for details, see Materials and Methods). f. Correlation 

between binding probabilities for individual binding sites and functional mRNA classes (Fig.4b). 

Colors mark the enrichment (hypergeometric test, red: p < 0.05, shades of yellow: not enriched, 
see color bar). No significant enrichment is observed. g. Distribution of cumulative binding 

probabilities for Dazl clusters in 3’UTRs with scrambled binding sites. The dotted lines mark 
terciles (H: high; M: medium; L: low). h. Correlation between cumulative binding probabilities of 

Dazl clusters with binding sites scrambled between clusters (panel g) and functional mRNA 

classes (Fig.4b). Colors mark the enrichment (hypergeometric test, Red: p < 0.05, shades of 

yellow: not enriched, see color bar). No significant enrichment is observed.  i. Correlation 

between additive binding probabilities of two Dazl sites in a cluster and functional mRNA 

classes (hypergeometric test, red: p < 0.05, shades of yellow: not enriched, see color bar). For 

clusters with > 2 binding sites, permutations of two sites were tested and sites with highest 
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additive binding probability were selected. The model tests whether the additive binding 

probability of any two Dazl binding sites in a given cluster can explain the impact of Dazl on the 

transcript to the same extent as considering cumulative binding probabilities for the entire 
cluster (Fig.4c). The model is only able to explain the TLRL, TLRM mRNA classes, which 

frequently contain transcripts with clusters that have only few Dazl binding sites.  j. Correlation 

between conditional binding probabilities of two Dazl sites in a cluster (terciles) and functional 

mRNA classes (hypergeometric test, Red: p < 0.05, shades of yellow: not enriched, see color 

bar). For clusters with > 2 binding sites, permutations of two sites were tested and combinations 

of sites with the highest multiplicative binding probability were selected. The model tests 

whether the conditional binding probability of any two Dazl binding sites (e.g. whether Dazl 

needs to bind simultanously to both sites) in a given cluster can explain the impact of Dazl on 

the transcript to the same extent as considering cumulative binding probabilities for the entire 
cluster (Fig.4c). The model explains only mRNA classes which frequently contain transcripts 

with Dazl clusters that have only few binding sites. For these clusters cumulative and conditional 

binding probabilities scale similarly. The data suggest that simultaneous binding of Dazl to two 
sites in a cluster is not required for general Dazl function.  k. Correlation between conditional 

binding probabilities of three Dazl sites in a cluster (terciles) and functional mRNA classes 

(hypergeometric test, Red: p < 0.05, shades of yellow: not enriched, see color bar). For clusters 

with > 3 binding sites, permutations of three sites were tested and combinations of sites with the 

highest multiplicative binding probability were selected. The model tests whether the conditional 

binding probability of three Dazl binding sites (e.g. whether Dazl needs to bind simultaneously to 

three sites) in a given cluster can explain the impact of Dazl on the transcript to the same extent 
as considering cumulative binding probabilities for the entire cluster (Fig.4c). The model 

explains only mRNA classes which frequently contain transcripts with Dazl clusters that have 

only few binding sites. For these clusters cumulative and conditional binding probabilities scale 

similarly. The data suggest that simultaneous binding of Dazl to two or more sites in a cluster is 

not required for Dazl function.   

 

Extended Data Figure 7 | Link between Dazl clusters in 3’UTRs and impact on mRNA level 
and ribosome association. a. Distribution of transcript levels at 4.2xDazl b. Distribution of 

3’UTR lengths 17,30,31. For UTRs with multiple lengths, coordinates for the longest 3’UTR were 
utilized. c. Distribution of distances of Dazl clusters from PAS. d. Distribution of differential 

cumulative binding probability (ΔΣB) for all Dazl clusters. The dotted lines mark terciles (H: high; 
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M: medium; L: low). Terciles were defined by obtained standard deviations from the mean for 
each feature described above.  e. Link between Dazl impact on mRNA level and ribosome 

association and cluster features (upper graphs: number of Dazl clusters in 3’UTR: black line; 

ΣB: blue vertical lines, lower end marking ΣB at 1 x Dazl, upper end ΣB at 4.2 x Dazl; middle 

graphs: ΔΣB for each cluster and number of Dazl binding sites in each cluster; Heatmaps below 
the graphs: terciles of transcript features obtained from panels a-c. Each panel shows one 

functional mRNA class [defined in Fig.4b; first letter T: change in ribosome association, second 

third letter R: change in transcript level upon increase in Dazl concentration. H-high (increase at 

high Dazl concentration), M-medium (no change), L-low (decrease at high Dazl concentration)]. 

Functional classes not displayed contained too few or no transcripts (TLRH: 0, THRL: 2)  or 

showed no change in ribosome association and transcript level (TMRM). Numbers represent the 
groups in the Dazl-code (Fig.4d). Clusters with ΣB > 1 (N = 4) are not shown.     

 

Extended Data Figure 8 | The Dazl regulatory program. a. Pairwise correlation between Dazl 

cluster features. Colors correspond to Pearson’s’ correlation coefficient. Cluster features are 
marked as indicated on the right. b. Variance of data reflected in the eigenvalues of principal 

component axes (N = 7) obtained by PCA. Each eigenvalue corresponds to a principal 

component axis. Each axis reflects a linear combination of Dazl cluster features (N = 7), 
obtained from panel (a). The eigenvalues and the corresponding principal component axis are 

sorted according to the initial variance they represent. The first three principal component axes 
explain roughly 90% variance. c. Biplots of Dazl cluster features (arrows) projected on the first 

two principal components (PC1,2; panel b). Dots represent transcripts. Colors correspond to 

terciles of the distributions of values for ΔRPF (H = High, M: Medium, L: Low, Fig.4b), ΔRNA (H 

= High, M: Medium, L: Low, Fig.4b), Colors correspond to terciles of the distributions of values 

for ΔRPF (TH = High, TM: Medium, TL: Low, Fig.4b), ΔRNA (RH = High, RM: Medium, RL: 

Low, Fig.4b), and functional mRNA classes (THRH, THRM, TLRM, TLRL, TMRH, TMRL, 

Fig.4b). Each arrow represents a cluster feature (labels as in panel (a)). Proximity of arrows 

scales with correlation between the corresponding features. Arrows in the x-direction (positive or 

negative) contribute to PC1, arrows in the y-direction (positive or negative) contribute to PC2. 

Short arrows (transcript level, proximity to PAS) indicate that additional principal components 
(PC3-7) are required to explain the corresponding feature. d. T-distributed Stochastic Neighbor 

Embedding (t-SNE, Perplexity = 10, Iterations = 2,000) of cluster features (panel a). Identified 

groups are marked 1-21. Each point represents a transcript. e. Biplots of Dazl cluster features 
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(arrows) projected on three principal components (PC1,2,3, panel b). Dots represent transcripts. 

Colors correspond to functional mRNA classes (THRH, THRM, TLRM, TLRL, TMRH, TMRL, 
Fig.4b). Separation of transcripts in 21 groups is marked as 1-21. f. Link of functional mRNA 

classes to kinetic parameters (ΣB, ΔΣB), cluster features (number of binding sites in cluster, 

proximity to PAS) and UTR features (numbers of clusters on UTR, UTR length, transcript level). 
Left panel: enrichment of terciles (H, M, L; Fig.4a, Extended Data Fig.7a-d) for ΣB, ΔΣB, 

number of binding sites in cluster, cluster distance from PAS, UTR length and transcript level in 

group 1. Numbers and color indicate the degree of enrichment. The row on the left marks the 
visualization of the Dazl code for group 1 that is used in Fig.4d. Right panel: enrichment of 

terciles for the features indicated in the left panel for all groups (1-21). Functional mRNA classes 
for the respective groups are shown on the bottom. g. Genome browser traces of representative 

transcripts of select groups. mRNA classes are indicated. The y-axis represents normalized 
coverage value. h. Mapping of transcripts from select groups on two biological networks. 

Groups are colored as indicated in the legend. Proximity of transcripts of a given group in the 

network indicates closely related biological functions.     

 

Extended Data Figure 9 | Decision tree classification linking the Dazl code to functional 
impact of Dazl binding. a. Decision tree classifier (Chi-squared automatic interaction detection 

(CHAID) algorithm 32-34 of 7 features (ΣB, ΔΣB, distance to PAS, 3’UTR length, transcript level; 
Clust/UTR: number of clusters in a given 3’UTR, Extended Data Fig.8) in terciles (H: high, M: 

medium, L: low, Extended Data Fig.7). Nodes (◊) mark the given feature and corresponding 

partition (high, medium, low). Circles indicate the number of transcripts, donut graphs mark the 

functional mRNA classes, color coded as shown on the right. Circled numbers left to the 
heatmap with the Dazl code (identical to that in Fig.4d) indicate the number of transcripts in a 

given group. The decision tree was calculated by cross-tabulation of predictor variables 

(transcripts, N = 413) with target variables (functional mRNA classes THRH, THRM, TLRM, 
TLRL, TMRH, TMRL, Fig.4b) followed by partitioning of predictor variables into statistically 

significant subgroups (Χ2 test, for independence with significance threshold: 0.05 (ref.35, 
Supplementary Material Table S10). b. Confusion matrix corresponding to the decision tree. 

Validation 1 (N = 24 transcripts) and Validation 2 (N = 21 transcripts) are predictions for 

transcripts that were not included in the decision tree classification.  
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Extended Data Figure 10 | Linear regression models for linking the Dazl code to Dazl 
impact on changes in transcript levels, ribosome association and translation efficiency. 

a: Distribution of changes in translational efficiency values (ΔTE) between high and low Dazl 

concentration for transcripts in the 21 groups of the Dazl regulatory program, defined in Fig 4d. 

mRNA functional classes are defined in Fig.4b. The grey area in the plot center marks 

unchanged ΔTE (95% confidence interval). p-values were calculated by one-way ANOVA of 

inter-group variations for each mRNA functional class (boxplots: horizontal line: median, box 
limits: interquartile range (IQR); whiskers 1.5x IQR). b. Linear Regression models tested. 

(yellow: dummy coding, using terciles of the variables, Extended Data Fig.8. Red: no dummy 

coding; use of continuous data. Grey: variable was omitted. c. adjusted R2 for each model. d. 

Differential Intercept Linear Coefficients (DILC) for each model. Grey boxes mark models 
without the respective variable. e. Significance of each DILC for each model (White: p < 0.05 - 

significant, Black p > 0.05 – not significant, p-values:  student t-test on each coefficient term). 

M1 is the only model with consistently significant DILCs. Models 24-27 include interaction terms 

corresponding to 7 independent variable terms and test impact of multicollinearity. Interaction 

terms for each of the models were as follows: M24: ΣB | ΔΣB and ΣB | # binding sites in a 

cluster. M25: ΣB | ΔΣB. M26: ΣB | ΔΣB and ΣB: Proximity from PAS. M27: ΣB | Proximity to 

PAS. Interaction terms are the cross product of encompassing independent variable terms and 
were selected based on pairwise correlation coefficients (Extended Data Figure 8a). f: Linear 

regression model linking the Dazl regulatory program to changes in translational efficiency 
values (ΔTE) (panel a). Points represent the differential intercept (DI) linear coefficient (LC) (red: 

DILCs for translational efficiencies that increase at high Dazl concentration, black: DILCs for 
translational efficiencies that decrease at high Dazl concentration). g: Correlation between 

experimental values for ΔTE and values predicted with the linear regression model (Adj. R: 
adjusted linear correlation coefficient) for test dataset. h: Correlation between predicted values 

for ΔRPF (N = 6) and changes in luciferase activity between high and low Dazl concentration for 

reporter RNA constructs. Reporters were generated by appending the 3’UTR of the respective 

transcripts to a luciferase ORF, and measurements were performed as described in ref.17. 

Naa40 and Ptma were part of model building data set (training data set). Calm2, Cxcl1, D’Rik 

and Spp1 were part of the test dataset. (R: linear correlation coefficient).  
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MATERIALS AND METHODS 

 

Laser Setup 

The cross-linking experiments were performed by using a Ti:Sapphire regenerative amplifier 

laser system (Libra-HE, Coherent, Inc.; λ = 800 nm (center wavelength, nominal), pulse width 

≤100 fs (Full Width at Half Maximum), 4.0 W at 1 kHz, contrast ratio > 1000:1 pre-pulse;  > 

100:1 post-pulse; root mean square (8 h) energy stability under stable environmental conditions 

after system warmup < 0.5 %). The 800 nm fundamental beam was converted to the 270 nm 

excitation beam by second harmonic sum frequency generation with an optical parametric 

amplifier (TOPAS, Quantronix/Light Conversion)36,37. Contributions to the excitation beam from 

other wavelengths were removed by a set of dichroic mirrors (λ-filter) and a Glan-Taylor 

polarizer 37. The excitation beam was collimated to a spot size of 6.0 mm. The photon flux at the 

sample was 1.25·1016 cm-2s-1 (2.6 mW) and 4.81·1015 cm-2s-1 (1 mW) at 270 nm with a pulse 

duration of 200 (± 50) fs, assuming a Gaussian-shaped pulse 38. Stability of the laser output at λ 

= 270 nm was monitored with a silicon photodiode (S120VC, ThorLabs). The power of the 

excitation beam was attenuated with a neutral density filter for the crosslinking experiments with 

the average power of 2.6 mW and 1.0 mW. The crosslinking experiments were conducted in a 2 

mm optical path length quartz cell with a maximum sample volume of 0.7 mL, placed orthogonal 

to the excitation beam. Homogeneity of the sample in the cuvette was maintained with a Teflon-

coated magnetic stirring bar (Sterna Cells, Inc.) throughout the measurement. Temperature in 

the cuvette before and immediately after measurements was monitored with a thermo-coupling 

device. 

 
RNA degradation measurements 

Cy3 labelled RNA oligonucleotide was purchased from Dharmacon (Lafayette, Colorado). RNA 

degradation by fs laser was measured for 0.15 μM of 38 nt Cy3 labelled RNA substrate (V = 600 

µL, 60 mM KCl, 6 mM HEPES-pH 7.5, 0.2 mM MgCl2,  5'-GCU UUA CGG UGC UUA AAA CAA 

AAC AAA ACA AAA CAA AA-Cy3-3’), irradiated with the fs laser (2.6 mW) as described above 

for 0, 100, 200, 300 and 680 s. RNA degradation by steady-state UV irradiation was measured 

for 0.15 μM of the 38 nt Cy3 labelled RNA substrate (V = 50 μL ,60 mM KCl, 6 mM HEPES-pH 

7.5, 0.2 mM MgCl2) irradiated in a Stratalinker (Fisher Scientific, 200 mJ/cm2) for same time 

points. Following irradiation, samples were subjected to denaturing PAGE (4-12% Novex 

NuPage Bis-Tris (Invitrogen), 60 min, 100 V). Samples on the gels were quantified using a 
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Phosphorimager (GE) in fluorescence detection mode. Intact and degraded RNA bands were 

quantified using the ImageQuantTL (GE) software. The fraction degraded RNA (Frac D) at each 

time point was calculated according to: 

Frac D = ID · (IND + ID)-1  (Eq.1) 

(ID: fluorescence intensity degraded RNA, IND: fluorescence intensity non-degraded RNA)  

 Photons absorbed over time (Extended Data Fig.1b) were calculated according to 11,13  

Dose absorbed = [I0·t·σ·(1-10-A)]·(2.3·A)   (Eq.2) 

(I0 = intensity of incident light in photons cm-2 s-1; t = duration of irradiation; A = absorbance of 

protein-RNA solution in Absorbance Units (AU), σ = mean cross section of absorption of nucleic 

acids). For the fs laser: I0 = 2·1027 photons cm-2 s-1 (refs. 9,13), A270 = 0.99 AU (Absorbance Units 

of protein-RNA solution), σ = 2.7 x 10-17 cm2 molecule-1  (ref.13). For the steady-state UV 

irradiation (Stratalinker, 400 mJ /cm2) I0 = 2 .1015 photons cm-2 s-1,  A270 = 0.99 AU, σ = 2.7 x 10-

17 cm2 molecule-1 (ref.13). 
 

Protein expression and purification  

Mus musculus Dazl(RRM) (amino acids 32 - 117) was codon-optimized (Dapcel, OH) for 

expression in E.coli. (Supplementary Material Table S1). The DNA construct was chemically 

synthesized (Genscript, NJ) and cloned into a pET-22b vector with an N-terminal His6 - Sumo 
cleavable tag. Protein was expressed in E.coli (BL21) cells overnight at 19°C and purified 

through Ni2+ affinity column 16. Samples were dialyzed (20 mM HEPES, pH7.5, 100 mM NaCl), 

the His6-Sumo tag was removed with Sumo protease (Ulp1) at 4°C overnight. Dazl(RRM) 

protein was further purified by gel filtration chromatography (Superdex 75) equilibrated in 20 mM 

HEPES (pH 7.5), 100 mM NaCl, 5% (v/v) glycerol. Peak fractions were pooled and concentrated 

with Amicon ultra centrifugal filters. RbFox(RRM) (amino acids 109-208) and RbFoxmut(RRM) 

(amino acids 109-208, R118D, E147R, N151S, E152T mutations) proteins were prepared as 

described 15. Protein concentrations were determined by UV absorbance at 280 nm and 

validated with Bradford assays. 

 

RNA-protein affinity measurements by fluorescence polarization  

Purified proteins RbFox(RRM), RbFoxmut(RRM), Dazl(RRM) at different concentrations and 

corresponding cognate 3’-Cy3 RNAs (20 nM, RbFox: 5′-UCCUGCAUGUUUA-Cy3-3’, Dazl: 5′-

UUGUUCUUU-Cy3-3’, cognate motifs underlined; modified RNAs purchased from Dharmacon, 
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Lafayette, Colorado) were incubated for 10 min (20 mM HEPES (pH 7.5), 100 mM NaCl and 

0.01% (v/v) NP-40). Solutions were transferred to a 96-well plate (Greiner Bio-one), and 

fluorescence polarization was measured in a Tecan M1000-Pro microplate reader (Tecan, 

Switzerland). Plots of the fraction bound RNA vs. protein concentrations were fitted against the 

quadratic binding equation using KaleidaGraph (Synergy, PA) 16. 

1/2 0 0 1/2 0 0 0 0

0

2(K +R +P ) - {(K +R +P )  - 4×R ×P }
Fraction Bound = A × 

2×R
  (Eq.3) 

(A: reaction amplitude, K1/2: apparent dissociation constant, R0: RNA concentration, P0: protein 

concentration) 

 
fs laser RNA-protein crosslinking in vitro  

Cy3 labelled RNA oligonucleotides corresponding to cognate sequences for RbFox(RRM) and 

Dazl(RRM) (described above, 5 nM, final concentration) and protein (10 nM, 50 nM, final 

concentration) were combined in a cuvette (V = 600 μL, 20 mM HEPES (pH 7.5), 100 mM NaCl, 

5% (v/v) glycerol, 25°C) and incubated for 5 min. Longer incubation times did not change 

results, indicating that equilibrium was reached. The solution in the cuvette was constantly 

stirred during the reaction (200 rpm), using a magnetic stirbar. Laser power during the 

measurement was monitored with a photodiode, as described above. Temperature in the 

cuvette was measured before and after reactions. The RNA-protein mix was irradiated with the 

UV laser at two different powers (1.0 mW and 2.6 mW, 270 nm). Each timepoint was measured 

in a separate reaction, avoiding volume changes during the crosslinking experiment. Following 

crosslinking, samples were removed from the cuvette and stored on ice. Crosslinked and non-

crosslinked RNA were separated on denaturing PAGE (4-12% Novex NuPage Bis-Tris gel, 200 

V, 45 min). Fluorescence of crosslinked and non-crosslinked RNA in the gels was measured 

with a Phosphorimager (GE) and quantified with the ImageQuant TL Software (GE). The 

fraction cross-linked RNA (Frac XL) at each time point was calculated according to:   

Frac XL = IXL · (IXL + INX)-1  (Eq.4) 

(IXL: fluorescence intensity crosslinked material, INX: fluorescence intensity non-crosslinked 

material).  

 

Determination of kinetic parameters from RNA-protein crosslinking experiments in vitro. 
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Timecourses at different protein concentrations and laser intensities were globally fit to a two-
step kinetic model (Fig.1a) using KinTek Global Kinetic Explorer (Kintek, Austin TX). Data fit 

started from a pre-equilibrated mixture of protein and RNA, mirroring the experiments. Initial 

conditions were identified from an array of different starting values for kon, koff and kxl. Multiple 

iterations were performed with various combinations of floating and fixed rate constants until the 
best fit to all data sets was achieved (Fig.1e). The quality of the global fit was assessed by 

computation of Chi-squared (Χ2) values with each parameter (kon, koff and kxl) varied individually 
(1D fit space, Supplementary Material Fig.S2a-c) and for co-variations of kon and koff (2D fits 

pace, Supplementary Material Fig.S2d) Confidence intervals are given as upper and lower 

bounds at 95% of the relative X2. To visually assess the quality of the fit, curves with calculated 
rate constants were overlaid on experimental values.   

 

Cell culture 

GC-1spg cells with inducible DAZL expression were maintained in DMEM high glucose medium 

(ThermoFisher) supplemented with 10% (v/v) Tet-system approved FBS (Clontech), 100 U/mL 

penicillin, 100 mg/mL streptomycin, 5 mg/mL blasticidin, and 300 mg/mL Zeocin (all from 

ThermoFisher) at 37°C, 5% (v/v) CO2 (ref.17). Doxycycline induction of Dazl was performed and 

lysates for generation of cDNA libraries and quantification of Dazl levels were prepared as 

described 17. Equal amounts of protein were run on a SDS-PAGE (10% NEXT Gel, Amresco) 

and transfered to a PVDF membrane. Western blotting was performed with anti-Dazl (Rabbit; 

1:5000, US Biological) and anti-Hsp90 (Rabbit; 1:10,000; US Biological) antibodies. 

Chemiluminescence was quantified with the ImagequantTL software. 

 

fs laser crosslinking of GC-1 cells 

GC-1spg cells (with doxycyline induction of Dazl expression) were grown in 150 mm plates to 

70% confluency. Cells were rinsed with 2 mL PBS (per plate), scraped, re-suspended in 600 μL 

PBS, transferred to the quartz cuvette and stirred with a magnetic stir bar (described above). 

Crosslinking of the cell suspension was performed as described above at two laser powers (1.0 

mW, 2.6 mW) in separate experiments for 30, 180 and 680 s (25°C). Each crosslinking reaction 

contained a constant number of cells (6·105). To generate sufficient material for timepoints with 

low crosslinking yield, multiple identical experiments were conducted and pooled. Temperature 

in the cuvette was measured before and after crosslinking (increase was less than 1°C after 680 

s). Cell integrity after crosslinking was measured by Trypan-blue staining 39 and cell counting in 
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a hemocytometer. After crosslinking, cell suspensions were pelleted at 1,000 g for 5 min (4°C). 

The pellet was suspended in PBS (3x dry volume). Cells were pelleted again (1,000 g for 5 

min), the supernatant was removed, and pellets were frozen and stored at -80°C until further 

processing.  

 

cDNA library preparation 

Cell lysates for each sample were split into two aliquots (A1, A2). RQ1 DNase (PromegaM6101) 

and RNAse A (USB70194Y) were added at 1:100 (A1) and 1: 20,000 (A2). Over-digested 

sample (A1) confirmed the size of the Dazl-RNA radioactive band on SDS-PAGE gel. The 

under-digested cell supernatant from the under-digested sample (A2, equivalent to ~150 mg of 

cell lysate) was mixed with protein G Dynabeads (ThermoFisher 10009D) with anti Dazl 

antibody (Rabbit; 1:5000) in separate Eppendorf tubes for each sample (N = 16). Samples were 

treated with CIP (Roche712023). RNA linker ligation and PNK (NEBM0201S) treatment were 

performed as described 17. The supernatants were loaded onto separate Novex NuPAGE 4-

12% Bis-Tris gels, and crosslinked material was transferred to a nitrocellulose membrane. 

Samples were located on the membrane by autoradiography and RNA-Dazl complexes at 50 - 

70 kDa (Dazl molecular weight; 37 kD) were cut. Nitrocellulose fragments were treated with 

proteinase K (Roche1373196). Dazl bound RNA was isolated, reverse transcribed (SuperScript 

III; Invitrogen18080051), circularized and amplified to obtain 16 cDNA libraries. The RT primers 

used contained iSP18 spacers and phosphorylated 5’ end for circularization of first strand cDNA 

to generate PCR template without linearization 17. Unique molecular identifiers (UMIs, 

randomized barcodes, 11 nt with 4 nt random nucleotides) were used to determine PCR 
amplification artifacts (primer sequences: Supplementary Material Table S2). cDNA diversity 

in each library was tested before next generation sequencing by cloning cDNA from each library 

into pBS plasmid, subsequent transformation in competent cells, colony PCR and DNA 

sequencing. Illumina Sequencing for all cDNA libraries was performed at the Case Western 

sequencing core facility.  

 

Measurement of bulk crosslinking  

For each KIN-CLIP library, cells were cross linked and cell lysate was prepared as described 

above. 200 μL aliquots (equivalent to 150 mg of cell lysate) for each KIN-CLIP sample were 

treated with RQ1 DNase and RNAse (at 1: 20,000) as described above. Treated lysates were 
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centrifuged in a pre-chilled ultra-centrifuge, polycarbonate tubes, TLA 120.2 rotor at 30,000 rpm, 

20 min, 75 μl of the supernatant were removed and RNA was 5’-radiolabeled with PNK. 

Samples were run on a SDS-PAGE gel and transferred to a nitrocellulose membrane. The 

radioactivity was measured by quantifying the intensity of the radioactive bands (using ImageJ 

software). Lane background was used to normalize the band intensities. 

 

KIN-CLIP read processing, refinement and mapping  

Raw sequencing reads were assessed for quality (FastQC, 

https://www.bioinformatics.babraham.ac.uk) and de-multiplexed. Low-quality reads were 

removed if ≤ 80% of sequenced bases in a read had a PHRED quality score of ≤ 25. De-

multiplexing and read filtering was performed with the FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) using standard commands 40. Filtered reads were 

stored in FASTQ format. Barcode and UMI (randomized 4nt sequence) were kept appended to 

line 1 of the FASTQ for each read.  

Read duplicates, as identified by UMIs were collapsed into a single read. Linkers and 

concatamers were removed with the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), 

using permutations (N = 25) of linker sequences as target. Reads with ≥ 15 nt were retained for 

subsequent analysis. Processed reads were aligned against the mouse genome (mm10) by 

using bowtie2 41 with the following settings for a 50 bp sequencing run: Number of mismatches 
allowed in seed alignment during multi-seed alignment = 1, length of the seed substrings to 

align during multi-seed alignment = 15, set a function governing the interval between seed 

substrings to use during multi-seed alignment = S,1,0.50, function governing the maximum 

number of ambiguous characters (N’s and/or ‘.’s) allowed in a read as a function of read length 
= L,0,0.15, disallow gaps within this many positions of the beginning or end of the read = 4, set 

a function governing the minimum alignment score needed for an alignment to be considered 
`valid` = L, -0.6, -0.6, set the maximum (`MX`) and minimum (`MN`) mismatch penalties, both 

integers = 6,2, sets penalty for positions where the read, reference, or both, contain an 

ambiguous character such as `N` = 1, gap opening penalty = 5, gap extension penalty = 3, 

attempt that many consecutive seed extension attempts to `fail` before Bowtie 2 moves on, 
using the alignments found so far = 20, set the maximum number of times Bowtie 2 will `re-

seed` reads with repetitive seeds = 3. End-to-end alignment mode was used. Only uniquely 

mapped reads were retained. To evaluate the stringency of filtering and sequence alignment, 

the fraction of uniquely mapped tags over all mapped reads was assessed 40 by employing 
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different permutations of read mapping parameters described above. In total, 55 parameter 

permutations for mapping were tested. The setting yielding the largest number of uniquely 
mapped reads is shown above. The BAM index of mapped reads corresponding to the 16 KIN-

CLIP libraries was then converted to BED/bedgraph using the standard command line version of 

–bedtools (V2.29.1) and –samtools (V1.10) 42. Bedgraph files were visualized in the IGV 43.  

 

Identification of KIN-CLIP peaks 

Genomic coordinates of the 5’-terminal nucleotide (5’nt) of every mapped read were obtained.  

Adjacent 5’nt were summed at single nucleotide resolution level by creating a sliding window of 

11nt (stride = 1, steps = 5nt on either side or until no new reads were detected), with the 5’nt 

position at the center. Crosslinking peaks were defined by plotting the distribution of the count of 

5’nt reads in these windows for every location. The peak apex represents the coordinate for the 

crosslinking peak and the associated coverage value. Error ranges for coverage values 

corresponding to each crosslinking peak were defined as the 95% confidence interval from the 

apex of crosslinking peaks. Coordinates of crosslinking peaks present in all KIN-CLIP libraries, 

except at the zero timepoint were used to define Dazl binding sites for further analysis. For 
peaks with coverage at the zero timepoint (~0.2% of peaks), the peak value at t = 0 was 

subtracted from the KIN-CLIP peaks. Coverage values for each Dazl binding site were 

converted into a concentration equivalent by normalizing to the amount of bulk crosslinked RNA 
for each KIN-CLIP library (Supplementary Material Table S6). The normalized read coverage 

values were used for calculating kinetic parameters and other subsequent analyses. 

 

Analysis of read distribution 

To annotate KIN-CLIP Dazl binding sites, RefSeq coding regions, 5’UTRs, 3’UTRs, ORF, 

introns, and RNA types were obtained from the UCSC genome browser and intersected 
individually with KIN-CLIP binding site coordinates using bedtools.  

 

CITS analysis and sequence enrichment 

Crosslink Induced Truncation Site (CITS) analysis was performed as described 28,29. Enrichment 

of motifs at and around CLIP regions was performed using the EMBOSS tool Compseq 44, R 

package ‘randomizeR’ 45 and ‘Random’ 46 module in Python. To generate z-scores, shuffled 
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control sets were generated for each dataset analyzed using Random module available in 

Python (Shuffle N = 10,000). 

 

Distribution of Dazl-RNA contacts in 3’UTRs 

Metagene analysis of Dazl-3’UTR interactions was performed on 3’UTRs as defined by PolyA-

Seq 17. To define 3’UTR length, coordinates from Refseq and Ensembl 30,31 were matched with 

PolyA-Seq data 17. For transcripts with multiple 3’UTR length annotations, coordinates for the 

longest 3’UTR were utilized. 3’UTRs that overlapped with intron sequences annotated in either 

RefSeq or Ensembl were omitted. To calculate distances of binding sites to PAS and stop 

codons, the distance between coordinates for each KIN-CLIP binding relative to the Stop codon 

and to the PAS (10 nt window) was measured. For each 3’UTR, the random distribution of 

binding sites was determined by scrambling all Dazl binding sites (1,000 times) in that 3’UTR 

into all probable 10 nt bins in that 3’UTR and obtaining the average.  

 

Calculation of kinetic parameters  

Kinetic parameters were calculated from normalized peak coverage values for each Dazl 

binding site (N = 10,341). A Dazl binding site was defined by the presence of more than 5 

normalized sequencing reads in the library for the (4.2xDazl, 2.6 mW laser) 680 s timepoint, 

within 11 nucleotides of the peak apex for the binding site in all libraries. Sites without 

normalized reads for the 30s (1XDazl, 1.0 mW laser) timepoint were excluded, as it is not 

possible to calculate meaningful kinetic parameters from such sparse data. Kinetic parameters 

were calculated according to two different approaches: (i) a numerical and (ii) an analytical 

method. Parameters from both methods were averaged for subsequent data analysis 

(Extended Data Fig. 3).      

Numerical approach  

The numerical approach to calculate kinetic parameters is based on numerically fitting 

crosslinking timecourses to the differential equations describing the Dazl-RNA binding and 
crosslinking process (Fig.1a), according to:  

𝑑𝑑(𝐷𝐷𝐷𝐷)
𝑑𝑑𝑑𝑑

= 𝑘𝑘on(𝐷𝐷)(𝑅𝑅) −  𝑘𝑘diss.(𝐷𝐷𝐷𝐷) −  𝑘𝑘XL(𝐷𝐷𝐷𝐷)         (Eq.5) 

𝑑𝑑(𝐷𝐷𝐷𝐷∗)
𝑑𝑑𝑑𝑑

=  𝑘𝑘XL(𝐷𝐷𝐷𝐷)                     (Eq.6) 
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(DR: concentration of non-crosslinked Dazl-RNA complex (for each binding site), DR*: 

concentration of crosslinked Dazl-RNA complex (for each binding site), D: Dazl concentration, 
R: RNA concentration (binding site), kon: association rate constant, kdiss.: dissociation rate 

constant, kXL: crosslinking rate constant).  

Because concentrations of free Dazl and RNA in the cell are experimentally 
inaccessible, the second order association process (kon) was treated as pseudo-first order 

reaction at each of the two Dazl concentrations. Accordingly, we calculated a pseudo first order 
rate constant for each Dazl concentration (kon

(1xDazl), kon
(4.2xDazl)), and kdiss., kXL

 (1mW) and kXL 
(2.6mW) 

for each binding site. Numerical fitting of timecourses of normalized read coverage for each 

binding site (Fig.2c) was performed in R with packages deSolve (with ODE function) 47, ggplot2 
48, reshape2 49 and rmarkdown 50.  

The fitting strategy encompassed two steps: (i) estimation of parameter ranges following 

a sequential parameter estimation procedure 51 and (ii) fitting the timecourses using estimated 
parameter ranges as input (Supplementary Material, Scheme 1). Estimation of parameter 

ranges was also performed in two steps, (i,a) initial parameter range estimation for kon
(1xDazl), 

kon
(4.2xDazl), kdiss., kXL

 (1mW) and kXL 
(2.6mW), and (i,b) refinement of initial parameter range estimates 

to obtain final parameter range estimates (Supplementary Material, Scheme 1). To estimate 

initial parameter ranges, timecourses from reactions with 4.2xDazl at high laser power (2.6 mW) 

and low laser power (1mW) were fit separately. Starting values were based on the kinetic 
parameters measured in vitro (Fig.1; kon

(1xDazl) = 0.0001 s-1, kon
(4.2xDazl) = 0.0001 s-1, kdiss. = 1 s-1, 

kXL
 (1mW) = 1 s-1 and kXL 

(2.6mW) = 10 s-1. Use of significantly different starting values did not yield 

acceptable fits for the majority of binding sites). This step provided average initial values for 
kon

(4.2xDazl) and kdiss. as well as initial values for kXL
(1mW) and kXL

(2.6mW). Next, timecourses at 1xDazl 

at high laser power (2.6mW) and low laser power (1mW) were fit separately, yielding average 
initial values for kon

(1xDazl) and kdiss. and initial values for kXL
(1mW) and kXL

(2.6mW). This process was 

performed for each binding site until the Χ2 was minimized (no change in Χ2 for 4 consecutive 

cycles) or 1,000 fitting cycles were completed. The process provided 10,341 x 5 parameter 

values, which were plotted as distribution (10,341 values for each parameter). The initial 

parameter range estimate represents the 95% confidence interval from the mean of the 
distribution for kon

(1xDazl), kon
(4.2xDazl), kdiss., kXL

(1mW) and kXL
(2.6mW) . 

To refine parameter range estimates to obtain final parameter range estimates, the initial 

parameter range estimates were used as input to fit multiple, random subsets of 2,000 randomly 

selected binding sites. 10,000 iterations, each with a unique random subset of 2,000 binding 
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were performed. Each iteration yielded a distribution. All 10,000 distributions were 
superimposed and the median apex of all distributions was identified. The final parameter range 

estimates represent the 95% confidence interval from the median apex of the averaged 
distributions. The final parameter range estimate was about 35% smaller than the initial 

parameter range estimate.   

The estimated parameter ranges were used as input for fitting of the timecourses 
(Supplementary Material, Scheme 1). We fitted timecourses for reactions at 4.2xDazl at the 

different laser powers (1 mW, 2.6 mW), varying linked kon
(4.2xDazl) and kdiss. (which do not scale 

with laser power), and differing kXL
(1 mW)

 and kXL
(2.6 mW). We then fit timecourses at 1xDazl at both 

laser powers, varying linked kon
(1xDazl) and kdiss., and differing kXL

(1 mW)
 and kXL

(2.6 mW). Utilizing 

parameters obtained from these two steps we fit all 4 timecourses linking kon
(4.2xDazl) and kon

(1xDazl) 

for differing laser powers, linking kXL
(2.6 mW), kXL

(1 mW) for differing Dazl concentrations and linking 

kdiss. for all conditions. The process of fitting all 4 timecourses for each binding site was repeated 

642 times, after which χ2 did not show significant fluctuation (< 5% for 4 consecutive cycles). 

Obtained rate constants were used as final kinetic parameters for the numerical approach 
(Extended Data Fig.3b-d).  

Fitting quality was assessed by calculating chi-squared (χ2) for each binding site, the 

overall cumulative reduced chi-squared (χν
2) and the coefficient of determination/R2 (COD) 

according to:  

χ2 = ∑ (𝑂𝑂𝑖𝑖−𝐶𝐶𝑖𝑖)2

𝜎𝜎𝑖𝑖
2𝑖𝑖

               (Eq.7) 

(O: observed value, C: calculated value for each binding site (i). σi
2 is the squared variance 

between data points O, C);  

χ𝑣𝑣2 = χ2

𝑣𝑣
              (Eq.8) 

[v: degree of free; equals (n – m), with n: number of observations (n = 16), m: number of fitted 

parameters (m = 5)]. 

The coefficient of determination/R2 (COD) was calculated using the standard method as 

described 52. The COD describes correlation between calculated and observed timecourses. For 
the last fitting cycle, COD = 0.92, Χv

2 = 0.043 (Extended Data Fig.3c). 

 

Analytical approach  
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The analytical approach to calculate kinetic parameters is based on fitting of crosslinking 

timecourses to explicit solutions of the system of differential equations (Eqs.5,6) for the kinetic 
scheme (Fig.1a). To solve the system of differential equations, we considered that at any given 

time (t) during crosslinking, the accessible fraction of a given Dazl binding site is either free (R), 

occupied (DR) or crosslinked (DR*):  

(𝑅𝑅)𝑡𝑡  +  (𝐷𝐷𝐷𝐷)𝑡𝑡  + (𝐷𝐷𝐷𝐷)𝑡𝑡∗  =  1                                       (Eq.9) 

In addition, at t → ∞, 100% of the accessible fraction of a given Dazl binding site is 

crosslinked. As described for the numerical approach, the second order association process 
(kon) was treated as pseudo-first order process at each Dazl concentration. 

Treating second order association process (kon) as pseudo-first order process, considering Eq.9 

and rearranging Eq.5 yields: 

𝑑𝑑(𝐷𝐷𝐷𝐷)
𝑑𝑑𝑑𝑑

=  𝑘𝑘on�1 − [𝐷𝐷𝐷𝐷](𝑡𝑡) −𝐷𝐷𝐷𝐷(𝑡𝑡)
∗  � − 𝑘𝑘diss.[𝐷𝐷𝐷𝐷](𝑡𝑡) − 𝑘𝑘XL[𝐷𝐷𝐷𝐷](𝑡𝑡)                 (Eq.10) 

   Before crosslinking (t = 0), at steady-state of the binding reaction, 

 d(𝐷𝐷𝐷𝐷∗)
dt

 = 0                 (Eq.11) 

because 

𝑘𝑘XL = 0                     (Eq.12) 

From Eq.5, we thus obtain: 

0 =  𝑘𝑘on[𝑅𝑅] − 𝑘𝑘diss.[𝐷𝐷𝐷𝐷]             (Eq.13) 

which yields, after rearranging, 

[𝐷𝐷𝐷𝐷](𝑡𝑡) =  𝑘𝑘on
𝑘𝑘on+𝑘𝑘diss.

        (Eq.14) 

At t = ∞, crosslinking is complete, and thus   

𝑑𝑑(𝐷𝐷𝐷𝐷)
𝑑𝑑𝑑𝑑

= 0                  (Eq.15) 

d(𝐷𝐷𝐷𝐷∗)
dt

 = 0                  (Eq.16) 

The boundary limits are: 

lim ≅ 𝐷𝐷𝐷𝐷∗0 ≅ 0         (Eq.17) 

lim ≅ 𝐷𝐷𝐷𝐷∗∞ ≅ 0         (Eq.18) 
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Equations 11-18 define the boundary conditions. 

Crosslinking timecourses represent amount of crosslinked material at a given time (t), 

expressed as normalized coverage value for each binding site [DR*](t). [DR*](t) depends on 
amount of Dazl-RNA complex [DR] at the time (t) (Eq.6) and thus on kon, kdiss. and kXL. Absolute 

concentrations of [D], [R] and [DR] are not known in our system. To extract kon, kdiss. and kXL for 

each binding site from the crosslinking timecourses we integrate Eq.6 after appropriate 

substitution of [DR]. To accomplish this, we take a second differential of Eq.10, considering the 

boundary conditions (Eq.11-18). We obtain the general solution of the second order differential 

equation: 

𝑑𝑑2(𝐷𝐷𝐷𝐷)
𝑑𝑑𝑑𝑑2

=  𝑘𝑘on
d(DR)
dt

− 𝑘𝑘on
d(DR∗)
dt

− 𝑘𝑘diss.
d(DR)
dt

− 𝑘𝑘XL
d(DR)
dt

                            (Eq.19) 

𝑑𝑑2(𝐷𝐷𝐷𝐷)
𝑑𝑑𝑑𝑑2

=  −(𝑘𝑘on + 𝑘𝑘diss. + 𝑘𝑘XL) d(DR)
dt

+ (𝑘𝑘XL𝑘𝑘on)[𝐷𝐷𝐷𝐷](𝑡𝑡)                             (Eq.20) 

Equation 20 is a constant coefficient, homogenous, linear, second order differential equation 
with two independent solutions (y1, y2) 53:  

𝑦𝑦(𝑡𝑡) = 𝑐𝑐1𝑦𝑦1(𝑡𝑡) + 𝑐𝑐2𝑦𝑦2(𝑡𝑡)            (Eq.21) 

The coefficients c1 and c2 (by the principle of superposition) 54 are obtained after providing the 

boundary conditions from equations 11-18. We identify a function y where a constant multiplied 

by its second derivative y’’ plus another constant times y’ plus a third constant multiplied by y 

equals zero 54.  

The exponential function 

𝑦𝑦 = 𝑒𝑒𝑟𝑟𝑟𝑟 (r: constant).          (Eq.22) 

has the property that its derivative is a constant multiple of itself: 

𝑦𝑦′ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                         (Eq.23) 

Furthermore, 

𝑦𝑦′′ = 𝑟𝑟2𝑒𝑒𝑟𝑟𝑟𝑟                  (Eq.24) 

Substituting these expressions into (Eq.20), we obtain: 

𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0        (Eq.25) 

Equation 25 is the auxiliary (characteristic) equation of the differential equation 20 (ref. 55). The 

equation is transformed into an algebraic equation by replacing 
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𝑑𝑑2(𝐷𝐷𝐷𝐷)
𝑑𝑑𝑑𝑑2

 = 𝑟𝑟2,                (Eq.26) 

d(DR)
dt

 = r                     (Eq.27) 

and [𝐷𝐷𝐷𝐷] by 1.    

The roots of Eq.25 are found by factoring 55: 

𝑟𝑟1 = (𝑘𝑘on+𝑘𝑘diss.+𝑘𝑘XL) + �(𝑘𝑘on+𝑘𝑘diss.+𝑘𝑘XL)2−4(𝑘𝑘XL𝑘𝑘on[𝑃𝑃])
2

                      (Eq.28) 

𝑟𝑟2 = (𝑘𝑘on+𝑘𝑘diss.+𝑘𝑘XL) − �(𝑘𝑘on+𝑘𝑘diss.+𝑘𝑘XL)2−4(𝑘𝑘XL𝑘𝑘on[𝑃𝑃])
2

                      (Eq.29) 

With Eq.21-29, the general solution of Eq.20 is 56: 

[𝐷𝐷𝐷𝐷]𝑡𝑡=𝑐𝑐1𝑒𝑒𝑟𝑟1𝑡𝑡 + 𝑐𝑐2𝑒𝑒𝑟𝑟2𝑡𝑡                        (Eq.30) 

To obtain our observable [DR*](t), we integrate Eq.6 under consideration of the boundary 

conditions (Eqs.11-18): 

[𝐷𝐷𝐷𝐷∗](𝑡𝑡) − [𝐷𝐷𝐷𝐷∗](0) =  𝑘𝑘XL ∫ [𝐷𝐷𝐷𝐷](𝑡𝑡)
𝑡𝑡
0 𝑑𝑑𝑑𝑑              (Eq.31) 

Substituting [DR]t from Eq.30 yields 

[𝐷𝐷𝐷𝐷∗](𝑡𝑡) − [𝐷𝐷𝐷𝐷∗](0) =  𝑘𝑘XL[𝑟𝑟1𝑐𝑐1(1− 𝑒𝑒𝑟𝑟1𝑡𝑡) + 𝑟𝑟2𝑐𝑐2(1 − 𝑒𝑒𝑟𝑟2𝑡𝑡)         (Eq.32) 

Substituting c1 and c2 by providing the boundary conditions (Eqs.11-18) and considering 

(Eqs.21-29), we obtain: 

[𝐷𝐷𝐷𝐷∗](𝑡𝑡) = 𝑘𝑘XL[ 1
𝑘𝑘XL

− 𝑟𝑟1(1− 𝑘𝑘on
𝑘𝑘on+𝑘𝑘diss.

)(1 − 𝑒𝑒𝑟𝑟1𝑡𝑡)+ 𝑟𝑟2(1− 𝑘𝑘on
𝑘𝑘on+𝑘𝑘diss.

)(1− 𝑒𝑒𝑟𝑟2𝑡𝑡)               (Eq.33) 

Equation 33 is an explicit nonlinear equation of the form: 

𝑌𝑌 = 𝑓𝑓(𝑡𝑡,𝛽𝛽) +  𝜀𝜀                 (Eq.34) 

t = (t1, t2, … …. . tn) are the independent variables (the normalized read coverage values at 

different timepoints), β = (β1, β2, … …. . βn)’ are the parameters (kon = kon
4.2x #i, kon

1x #i, kXL = 

kXL
2.6mW #i, kXL

1mW #i and kdiss. = kdiss.
#i, where #i represents the crosslinking conditions. ε is the 

fitting error between observed and expected timecourses. f(t, β) represents the functional 

relationship between t, β and Y.    

 Equation 33, adapted to the different Dazl concentrations and different laser powers was 

used to fit the crosslinking timecourses for each binding site. The resulting equations represent 

the non-linear model: 
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For 4.2xDazl, 2.6 mW laser: 

[𝐷𝐷𝐷𝐷∗](𝑡𝑡)
′ = 𝑘𝑘XL2.6mW #1[ 1

𝑘𝑘XL
2.6mW #1 − 𝑟𝑟1(1 − 𝑘𝑘XL

2.6mW #1

𝑘𝑘XL
2.6mW #1+𝑘𝑘diss.

 #1 )(1 − 𝑒𝑒𝑟𝑟1𝑡𝑡)+ 𝑟𝑟2(1 − 𝑘𝑘on4.2x #1

𝑘𝑘on4.2x #1+𝑘𝑘diss.
 #1 )(1 − 𝑒𝑒𝑟𝑟2𝑡𝑡)  

(Eq.35) 

For 4.2xDazl, 1 mW laser: 

[𝐷𝐷𝐷𝐷∗](𝑡𝑡)
′ = 𝑘𝑘XL1mW #2[ 1

𝑘𝑘XL
1mW #2 − 𝑟𝑟1(1− 𝑘𝑘XL

1mW #2

𝑘𝑘XL
1mW #2+𝑘𝑘diss.

 #2 )(1− 𝑒𝑒𝑟𝑟1𝑡𝑡)+ 𝑟𝑟2(1− 𝑘𝑘𝑜𝑜n4.2x #2

𝑘𝑘on4.2x #2+𝑘𝑘diss.
 #2 )(1− 𝑒𝑒𝑟𝑟2𝑡𝑡)  

(Eq.36) 

For 1xDazl, 2.6 mW laser: 

[𝐷𝐷𝐷𝐷∗](𝑡𝑡)
′ = 𝑘𝑘XL2.6mW #3[ 1

𝑘𝑘XL
2.6mW #3 − 𝑟𝑟1(1 − 𝑘𝑘XL

2.6mW #3

𝑘𝑘XL
2.6mW #3+𝑘𝑘diss.

 #3 )(1 − 𝑒𝑒𝑟𝑟1𝑡𝑡)+ 𝑟𝑟2(1 − 𝑘𝑘on1x #3

𝑘𝑘on1x #3+𝑘𝑘diss.
 #3 )(1− 𝑒𝑒𝑟𝑟2𝑡𝑡)  

(Eq.37) 

For 1xDazl, 1 mW laser: 

[𝐷𝐷𝐷𝐷∗](𝑡𝑡)
′ = 𝑘𝑘XL1mW #4[ 1

𝑘𝑘XL
1mW #4 − 𝑟𝑟1(1− 𝑘𝑘XL

1mW #4

𝑘𝑘XL
1mW #4+𝑘𝑘diss.

 #4 )(1− 𝑒𝑒𝑟𝑟1𝑡𝑡)+ 𝑟𝑟2(1− 𝑘𝑘on1x #4

𝑘𝑘on1x #4+𝑘𝑘diss.
 #4 )(1− 𝑒𝑒𝑟𝑟2𝑡𝑡)  

(Eq.38) 

r1 and r2 are: 

𝑟𝑟1 =
�𝑘𝑘onℎ +𝑘𝑘diss.

𝑖𝑖 +𝑘𝑘XL
𝑗𝑗 � + ��𝑘𝑘onℎ +𝑘𝑘diss.

𝑖𝑖 +𝑘𝑘XL
𝑗𝑗 �

2
−4�𝑘𝑘XL

𝑗𝑗 𝑘𝑘onℎ �

2
   

(Eq.39) 

𝑟𝑟2 =
�𝑘𝑘onℎ +𝑘𝑘diss.

𝑖𝑖 +𝑘𝑘XL
𝑗𝑗 � − ��𝑘𝑘onℎ +𝑘𝑘diss.

𝑖𝑖 +𝑘𝑘XL
𝑗𝑗 �

2
−4�𝑘𝑘XL

𝑗𝑗 𝑘𝑘onℎ �

2
   

(Eq.40)  

h represents 4.2xDazl #1 (Eq. 35), 4.2xDazl #2 (Eq.36), 1xDazl #3 (Eq.37) and 1xDazl #4 

(Eq.38). i represents #1 (Eq.35), #2 (Eq.36), #3 (Eq.37) and #4 (Eq.38). j represents 2.6 mW #1 

(Eq.35), 1 mW #2 (Eq.36), 2.6 mW #3 (Eq.37) and 1 mW #4 (Eq.38). 

Timecourses for 4.2xDazl at high laser (2.6 mW), 4.2xDazl at low laser (1mW), 1xDazl at high 

laser power (2.6 mW) and 1xDazl at low laser power (1mW) were separately fit to the non-linear 
model (Supplementary Material Scheme 2).  

A matrix of initial parameters was obtained,  
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4.2xDazl: 2.6 mW laser kon
(4.2xDazl) #1 kdiss.

#1 kXL 
(2.6mW) #1 

4.2xDazl: 1 mW laser kon
(4.2xDazl) #2 kdiss.

#2 kXL 
(1mW) #2 

1xDazl: 2.6 mW laser kon
(1xDazl) #3 kdiss.

#3 kXL 
(2.6mW) #3 

1xDazl: 1 mW laser kon
(1xDazl) #4 kdiss.

#4 kXL 
(1mW) #4 

 

Next, a global datafit for all four timecourses (#1-4) for an individual binding site was performed.  

Initial parameters were iteratively adjusted, considering the following criteria: 

 

kon
(4.2xDazl) #1 ≅ kon

(4.2xDazl) #2 (at different laser powers) 

kon
(1xDazl) #3 ≅  kon

(1xDazl) #4  (at different laser powers) 

kdiss.
#1 ≅ kdiss.

#2 ≅ kdiss.
#3 ≅  kdiss.

#4 

kXL
 (2.6mW) #1 ≅  kXL

 (2.6mW) #3 (at 2.6 mW laser power) 

kXL 
(1mW) #2  ≅  kXL

 (1mW) #4 (at 2.6 mW laser power) 

 

Fits were repeated until the best fit was reached (no change in Χ2 for 4 successive fittings), as 

measured by Chi-squared Χ2 minimization, according to: 

χ2 = ∑ [𝑌𝑌𝑖𝑖−𝑓𝑓�𝑥𝑥𝑖𝑖
′,𝛽𝛽�

𝜎𝜎𝑖𝑖
]2𝑛𝑛

𝑖𝑖=1
                         (Eq.41) 

xi’ is the row vector for the ith (i = 1, 2, ... , n; n = 10,341) observation. β is the parameter under 

consideration. Yi is the estimated parameter value for the ith (i = 1, 2, ... , n; n = 10,341) 

observation. σi is the variance between observed and estimated parameter values. f(xi’, β)  

represents the function for which xi’ and β are measured.   

 Obtained parameters were further refined by additional rounds of fitting using the 

analytical, Levenberg-Marquardt (L-M) least squares algorithm, which combines the Gauss-

Newton and the steepest descent method 57. Utilizing the values obtained above, parameters for 

timecourses at 4.2xDazl at high laser power (2.6 mW) and low laser power (1mW) were 
adjusted together. kon

(4.2xDazl) #2 was increased or decreased (depending on initial values for a 

given binding site) in small increments (∂b) in order to move kon
(4.2xDazl) #2 closer to kon

(4.2xDazl) #1. ∂b 
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was set as 5% of kon
(4.2xDazl) #2 for a given binding site. Following each increment, the timecourse 

was fitted to the non-linear model and Χ2 calculated. kdiss.
#2 and kXL 

(1mW) #2 were  floated during 

the fitting. If Χ2 (b + ∂b) ≥ Χ2 (b) for >3 consecutive fitting cycles, kon
(4.2xDazl) #1 was increased or 

decreased (depending on initial values) in small increments to improve fitting. This fitting 

procedure was repeated for N = 642 cycles.   

Next, the parameters for timecourses at 1xDazl at high (2.6 mW) and low laser power 
(1mW) were adjusted, providing kon

(4.2xDazl) #1, kon
(4.2xDazl) #2, kon

(1xDazl) #3 and kon
(1xDazl) #4. Keeping the 

adjusted kon constant (floating kXL), were subsequently adjusted kdiss.
#1, kdiss.

#2, kdiss.
#3 and kdiss.

#4 

(within 25% range of each other). Finally, kXL 
(2.6mW) #1 and kXL

 (2.6mW) #3 were adjusted by 

increasing or decreasing kon
(4.2xDazl) #1 and kon

(4.2xDazl) #3 in small increments (∂b ≤5% of parameter 

values) while maintaining kon
(4.2xDazl) #1 > kon

(4.2xDazl) #3. Additionally, kdiss.
#1 and kdiss.

#3 were 

increased or decreased in increments of ∂b ≤1%. The same process was performed for 
adjusting kon

(4.2xDazl) #2 and kon
(4.2xDazl) #4. Every parameter adjustment cycle was repeated 642 

times after which Χ2 values computed in 4 successive iterations showed fluctuations of less than 

5% for > 95% of binding sites.   

 

Calculation of binding probabilities.  

The binding probability (P) describes the probability by which the accessible fraction of a given 

binding site is bound by Dazl. P for each Dazl concentration was calculated according to: 

𝑃𝑃(4.2xDazl) = 𝑘𝑘on
(4.2xDazl)

𝑘𝑘diss.+𝑘𝑘on
(4.2xDazl)              (Eq.42) 

𝑃𝑃(1xDazl) = 𝑘𝑘on
(1xDazl)

𝑘𝑘diss.+𝑘𝑘on
(1xDazl)              (Eq.43) 

 

Calculation of fractional occupancy. 

The fractional occupancy (Φmax) describes the fraction of a given binding site that is occupied by 

Dazl extrapolated to saturating concentrations. Φmax is a measure of binding site accessibility 

during the course of the experiment.  Φmax = 1 indicates complete accessibility, decreasing 

values indicate decreasing accessibility. Φmax was calculated by plotting the maximal amplitude 

(αmax: probability of Dazl bound to the fraction of a given binding site that is accessible during 

the course of the experiment, extrapolated to saturating concentrations of Dazl) vs. level of the 
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corresponding transcript (L, in RPKM) (Supplementary Material Figure S3). Φmax corresponds 

to the slope of the plots, and was calculated according to: 

Φmax = αmax · L-1                      (Eq.44) 

Reported Φmax values were normalized to a scale of zero to 1. To define αmax, apparent 
association rate constants at both Dazl concentrations kon

(4.2xDazl), kon
(1xDazl) were plotted against 

the relative cellular Dazl concentrations ([Dazl]rel, Supplementary Material Figure S3).  

For binding sites where kon
(4.2xDazl), kon

(1xDazl) increased linearly with [Dazl]rel: 

αmax = α(4.2xDazl) · (P(4.2xDazl)) -1          (Eq.45) 

α(4.2xDazl): normalized read density at the 30s time point for the timecourse with 4.2xDazl and 2.6 

mW laser power for a given binding site, P(4.2xDazl): binding probability at 4.2xDazl (Eq.42). 
For binding sites where kon

(4.2xDazl), kon
(1xDazl) increased with [Dazl]rel in a hyperbolic fashion, we 

determined the maximal apparent binding rate constant kon
max by fitting the plot of kon

(4.2xDazl), 

kon
(1xDazl) vs. [Dazl]rel to: 

 

𝑘𝑘on
(Dazl) =  𝑘𝑘onmax ×  [𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷]rel

[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷]rel+𝐾𝐾′
           (Eq.46) 

 (kon
(Dazl): kon

(1xDazl), kon
(4.2xDazl), K’: apparent relative binding constant) 

The binding probability extrapolated to [Dazl]rel saturation (Pmax) is:  

 

𝑃𝑃max = 𝑘𝑘onmax

𝑘𝑘diss.+𝑘𝑘onmax             (Eq.47) 

and 

𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼(4.2xDazl) ∙
𝑃𝑃max

𝑃𝑃(4.2xDazl)
          (Eq.48) 

 
A plot was defined as hyperbolic if kon

max < 4·kon
(4.2xDazl) . 

 

Analysis of Variance (ANOVA):  

One-way ANOVA was calculated in R using libraries – car 58. Mean square differences between 

and within groups were calculated. Obtained F values were compared with the critical value in 

the F table to obtain p values 58. Inter-group differences were significant (p < 0.05) when the F 

value exceeded the critical F value for the given degrees of freedom 59. 
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Determination of distances between neighboring binding sites. 

Distances between neighboring binding sites (genomic coordinates: mm10) were calculated 

between first and last read coordinates of adjacent peaks recorded with a sliding window, (start: 

l = 0 (chr1), length = 2 nt, stride = 1 nt) for each transcript. The number of inter-site distances for 

a given value was divided by the overall number of distances to yield the normalized frequency 
(Fig.3a). The random distribution of inter-site distances was obtained by Monte Carlo 

simulations (Fig.3a). A random binding site was defined as a genomic coordinate 

encompassing a non-overlapping 5 nt long sequence (in the entire mouse transcriptome, 

Fig.3a) within 500 nt of PAS, or excluding 500 nt proximal to PAS, (Extended Data Fig.5). 

10,341 binding sites were randomly distributed over these windows, their distribution was 

recorded and plotted as described above. Monte Carlo simulations (Vignette package in R 60 
were carried out 1,000 times. Obtained distributions were averaged and plotted (Fig.3a).  

 

Dazl cluster definition and distribution 

A cluster of Dazl binding sites was defined by an inter-binding site distance of < 40 nt and absence 

of additional binding sites < 120 nt around the cluster. The distribution of clusters in 3’UTRs 
(Fig.3b) was calculated by dividing the 3’UTRs in 100 nt bins, starting at the PAS. The number of 

clusters in each bin was counted and the cumulative frequency of clusters with different numbers 

of binding sites was plotted against the 3’UTR bins.  

 

Calculation of cumulative and differential binding probabilities. 

Cumulative binding probabilities (ΣB) for each cluster of Dazl binding sites were calculated 

according to:   

Σ𝐵𝐵 = ∑ �Фmax (𝑖𝑖) ∙
𝑘𝑘on(𝑖𝑖)

(4.2xDazl)

𝑘𝑘on(i)
(4.2xDazl)+𝑘𝑘diss.(i)

�𝑛𝑛
𝑖𝑖=1 = ∑ (Фmax(𝑖𝑖)  ∙ 𝑃𝑃(4.2xDazl)(i)

𝑛𝑛
𝑖𝑖=1 )        (Eq.49) 

 [n: number of binding sites in a given cluster; i: individual binding site, Φmax(i): fractional 

occupancy for the binding site (i); kon(i)
(4.2xDazl): association rate constant at 4.2xDazl for the 

binding site (i); kdiss.(i), dissociation rate constant for the binding site (i); P(4.2xDazl)(i): binding 

probability at 4.2xDazl) for the binding site (i)].  
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The differential cumulative binding probabilities (ΔΣB) for each cluster of Dazl binding sites 

were: 

ΔΣ𝐵𝐵 = �Фmax (𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

∙ �
𝑘𝑘on(i)

(4.2xDazl)

𝑘𝑘on(i)
(4.2xDazl) + 𝑘𝑘diss.(i)

−
𝑘𝑘on(i)

(1xDazl)

𝑘𝑘on(i)
(1xDazl) + 𝑘𝑘diss.(i)

�                        

= �[Фmax(𝑖𝑖) ∙  �𝑃𝑃(4.2xDazl)(i) − 𝑃𝑃(1xDazl)(i)�]
𝑛𝑛

𝑖𝑖=1

  

(Eq.50) 

 [Variables as above, kon(i)
(1xDazl): association rate constant at 1xDazl for the binding site (i); 

kdiss.(i), dissociation rate constant for binding site (i); P(1xDazl)(i): binding probability at 1xDazl for 

binding site (i)].  

 

Ribosome Profiling and RNA-seq  

Ribosome profiling and RNA–seq, performed in biological triplicates at both Dazl concentrations 

was described 17. Deposited sequencing data (GEO: GSE108997) were analyzed as described 
17. Averages from the triplicate datasets were used for subsequent data analysis. 

 

Definition of functional mRNA classes  

Changes in ribosome protected fragments (ΔRPF) from 4.2xDazl to 1xDazl (RPKM) and 

changes in transcript levels (ΔRNA) from 4.2xDazl to 1xDazl (RPKM) for each transcript with a 

Dazl binding site, represented in all ribosome profiling and RNA-seq datasets were plotted 
(Fig.4b). Low abundance transcripts (RPKM4.2xDazl < 6.0) were removed. ΔRPF and ΔRNA 

distributions for Dazl bound transcripts were divided into terciles, based on testing the 

significance (p < 0.05) of the deviation from the mean (H = High; ΔRPF = 1.063, ΔRNA = 1.088, 

M = Medium; 1.063 ≤ ΔRPF ≤ 0.913, ΔRNA = 1.088 ≤ ΔRPF ≤ 0.974, L = Low; ΔRPF = 0.913, 
ΔRNA = 0.974). Terciles for ΔRPF and ΔRNA yield nine functional mRNA classes (Fig.4b). The 

HL and LH classes contained too few transcripts (< 10) for meaningful examination and were 

therefore not considered in subsequent analyses. The MM class was not further considered 

because neither ribosome occupancy nor transcript level changed significantly upon changes in 

Dazl concentration.      
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Enrichment Analysis 

Statistical enrichment of clusters with high, medium and low cumulative binding probabilities 
(ΣB, Fig.4a) in transcripts belonging to each of the functional mRNA classesTHRH, THRM, 

TMRH, TMRL, TLRM and TLRL (Fig.4c), was calculated with the cumulative distribution 

function (CDF) of a hypergeometric distribution 61 according to: 

𝑝𝑝 = F(𝑥𝑥|𝑀𝑀,𝐾𝐾,𝑁𝑁) = ∑
(𝐾𝐾)
(𝑖𝑖)

(𝑀𝑀−𝐾𝐾)
(𝑁𝑁−𝑖𝑖)

(𝑀𝑀)
(𝑁𝑁)

𝑥𝑥
𝑖𝑖=0           (Eq.51) 

(M: number of total clusters in Dazl bound transcripts, K: number of clusters in each functional 

mRNA class (THRH, THRM, TMRH, TMRL, TLRM and TLRL), N: number of clusters in a given 

ΣB tercile (H, M, L), i: number of clusters with a ΣB tercile in a given functional mRNA class (for 

example, number of clusters with high ΣB in THRH functional mRNA class). x represents a 

cluster and F (x|M,K,N) is enrichment of x given M, K and N (by Fishers’ t-test represented as 

F). p is theLL hypergeometric p value of enrichment, based on the F-test 61) Hypergeometric 
tests were performed with Scipy hypergeom module 62 in Python 3.6.5. 

 

PCA and t-SNE. 

A data matrix (X) with the seven features of Dazl clusters and of transcripts with Dazl binding 

sites in 3’UTR (number of clusters in 3’UTR, ΣB, ΔΣB, number of binding sites in a cluster, UTR 

length, proximity to PAS, transcript level), corresponding to each transcript, was generated. In 

transcripts with multiple clusters in the 3’UTR, ΣB, ΔΣB and number of binding sites in a cluster 

represent values of the cluster closest to the PAS. Proximity to PAS in transcripts of multiple 

clusters represents the median pattern for the clusters (for example, in a UTR with 5 clusters, 4 

of which distant to the PAS, the median was considered distant to the PAS). The empirical 

mean for each column of the data matrix was calculated (sample mean of each column, shifted 

to zero to center data). Data were centered and scaled and a covariance matrix for the seven 
features was calculated (Extended Fig. 8a). This covariance matrix was used to calculate 

eigenvectors and eigenvalues, as described 63. Eigenvalues were sorted in descending order 
and K largest eigenvalues were selected. K is the desired number of dimensions (Principal 

Components) of a new feature subspace Y with K ≤ n (K = 2 for Extended Fig.8c and K = 3 for 

Extended Fig.8e). A projection matrix (W) was created from the selected (K) eigenvalues 

through orthogonal transformation of the original dataset (X) in order to obtain a K-dimensional 

feature subspace Y. Proportion of variance, cumulative variance, factor loadings and 
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eigenvalues explained by each component were recorded (Supplementary Material Table 
S11). Functional mRNA classes (Extended Fig.8c) and Dazl code groups (1 - 21, Extended 
Fig.8e) were identified and mapped onto the feature space (Y) by k-means clustering 64. PCA 

was conducted in R using the prcomp() function. To visualize subgrouping within functional 

mRNA classes (Extended Data Fig.8d), the Barnes-Hut t-SNE implementation in R 65 was used 

with the recommended parameters (perplexity 5 - 30, iterations 5 - 3000) as described 66.  

 

Derivation of the Dazl regulatory program.  

Seven features of Dazl clusters and of transcripts with Dazl binding sites in 3’UTR (number of 

clusters in 3’UTR, ΣB, ΔΣB, number of binding sites in a cluster, UTR length, proximity to PAS, 

transcript level) were utilized to further group transcripts in each functional mRNA class 
(Fig.4d). In transcripts with multiple clusters in the 3’UTR, ΣB, ΔΣB and number of binding sites 

in a cluster represent values of the cluster closest to the PAS. Proximity to PAS in transcripts of 

multiple clusters represents the median pattern for the clusters (for example, in a UTR with 5 

clusters, 4 of which distant to the PAS, the median was considered distant to the PAS). PCA 

and t-SNE independently identified 21 groups (1-21) in the 6 functional mRNA classes 
(Extended Data Figs.7,8). To create the Dazl code from identified groups 1-21, we first defined 

terciles (High, Median, Low) for each of the 7 features of Dazl binding patterns (number of 

clusters in 3’UTR, ΣB, ΔΣB, number of binding sites in a cluster, UTR length, proximity to PAS, 

transcript level) on the basis of significance testing (p < 0.05) for the deviation from the mean. 

The number of clusters of each tercile type (H, M or L) for each of the 7 features was then 

counted in each group. This yielded a data matrix with count of feature tercile (example: [group 
1; ΣB]; H = 2, M = 27, L = 8, Total = 37 Clusters, Extended Data Fig.8f). The tercile count per 

feature (per group) was then normalized to total number of clusters in the group to obtain 

fraction of each feature tercile in a group (example: [group 1; ΣB ]; H = 0.05, M = 0.73, L = 0.22, 

Total = 37 Clusters). For every group, the tercile for a feature that encompassed >50% of the 
clusters was utilized as the code for that group (Extended Data Fig.8f).  

 

Multiple Linear Regression Analysis 

Multiple linear regression (MLR) analysis was performed with “dummy coding”, e.g. 

transformation of categorical independent variables into dichotomous variables 67. The 

dependent variables, ΔRPF and ΔRNA, were used as continuous data, either separately or 
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merged (Extended Data Fig.10). 45 models were formulated describing Dazl binding and 

corresponding mRNA characteristics for various combinations of “dummy coded” independent 

variables, “continuous” independent variables, “continuous” dependent variables (separate 
ΔRPF and ΔRNA) and “merged” dependent variables (Extended Data Fig.10). Models were 

progressively shortlisted and the best performing model (M1) was selected  after 4 steps.   

Step1.  We utilized the best subsets regression procedure (Ref1) to identify all possible model 

permutations of parameters (N = 45) that satisfied the following criterion: 

1. Models contain n ≥ 3 independent variables 

2. Models account for Dazl kinetics and binding pattern along with RNA features. 

3. Selected independent variables do not show multi collinearity (assessed by pairwise 

correlation).  

The data was randomly divided into training (70%, N = 699) and test set (30%, N = 492). The 

training set was utilized to evaluate, estimate and identify the optimal models and cross-

validation was performed using the test set. Each model was regressed on associated 

independent variables and adjusted R2 and root mean standard errors (RMSE) were calculated 

according to:   

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 = 1−  � 𝑛𝑛−1
𝑛𝑛−(𝑘𝑘+1)

� (1 − 𝑅𝑅2)  (Eq.52) 

 

(n = 699, number of observations; k=7: number of independent variable terms). The root mean 

standard error (i.e. estimated standard deviation; σ2 of the error term u) was obtained as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  � 𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛−(𝑘𝑘+1)

  (Eq.53) 

 

 (n = 699, number of observations; k=7: number of independent variable terms; SSE: sum of 

squares error, difference between observed and predicted value).  

As expected, the adjusted R2 showed inverse correlation with RMSE.  
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We selected the models with the highest adjusted R2 (≥ 0.5) and lowest root mean standard 

errors (RMSE; top 50%). We also examined models with R2 ≥ 0.5 despite low adjusted R2 , high 

RMSE according to:   

 

𝑅𝑅2  =  𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=  1 – 𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

   (Eq.54) 

 

SSR (sum of squares due to regression; the sum of the differences between 
the predicted value and the mean of the dependent variable, measures unexplained 

variance) is equivalent to the distance from each point to the regression line. SSR was 

calculated according to: 

 

𝑆𝑆𝑆𝑆𝑆𝑆 =  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦′)2
𝑖𝑖

 

(Eq.55) 

(yi = predicted value; y’ = mean) 

 

SSTO (sample variance) was calculated according to:  

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  �(𝑥𝑥𝑖𝑖 − 𝑦𝑦′)2
𝑖𝑖

 

(Eq.56) 

(yi = observed value; y’ = mean) 

With this approach, we shortlisted 24 models with according to adjusted R2, RMSE and R2 

values (Supplementary Material Fig.S4).  

We next determined information criterion statistics (ICS) for these models. ICS combines the 

SSE, number of parameters in the model, and sample size. We utilized three established 

information criterion parameters 68: Akaike’s Information Criterion (AIC), the Bayesian 

Information Criterion (BIC) and Amemiya’s Prediction Criterion (APC), which were calculated 

according to: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 = 𝑛𝑛 ln(𝑆𝑆𝑆𝑆𝑆𝑆) − 𝑛𝑛 ln(𝑛𝑛) + 2(𝑘𝑘 + 1)  (Eq.57) 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘 = 𝑛𝑛 ln(𝑆𝑆𝑆𝑆𝑆𝑆) − 𝑛𝑛 ln(𝑛𝑛) + (𝑘𝑘 + 1) ln(𝑛𝑛)     (Eq.58) 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =  (𝑛𝑛+𝑘𝑘+1)
𝑛𝑛(𝑛𝑛−𝑘𝑘−1)

𝑆𝑆𝑆𝑆𝑆𝑆   (Eq.59) 

 

(n: sample size, k: number of predictor terms, e. g. k+1 = number of regression parameters in 

the model, including the intercept). We compared all 24 models and ranked the models 

according values for AIC, BIC and APC (lowest value – highest rank). At this stage, no model 

was removed.  

Step 2.  Further shortlisting was performed by comparing information criteria with model fitness 

parameters. To determine the fitness of the shortlisted models, two different hypothesis tests for 

slopes were conducted. We first tested the hypothesis that at least one slope parameter is 0: 

 

𝐻𝐻0: 𝛽𝛽1 =  𝛽𝛽2 =  𝛽𝛽(𝑛𝑛… ) = 0 

𝐻𝐻𝛼𝛼 :𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜 𝛽𝛽𝑖𝑖 ≠ 0 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2,𝑛𝑛… . ) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼 = 0.05  (Eq.60) 

 

using the general linear F test (ANOVA F statistic) by obtaining error sum of squares (the 

squared distances between the observed and predicted responses) for full (with all 

independent variables) and reduced models (with intercept only). p values were computed.  

We next tested the hypothesis that only one of the slope parameters is 0: 

 

𝐻𝐻0: 𝛽𝛽1 = 0 

𝐻𝐻𝛼𝛼 : 𝛽𝛽1 ≠ 0 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼 = 0.05  (Eq.61) 

 

using t-test statistics for each independent variable in the model. p values were computed.   
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Next, we compared information criterion parameters (AIC, BIC and APC), general linear F 

statistic and t-test statistic values for all 24 models. We shortlisted the models with the lowest 

AIC, BIC and APC values, most significant general linear F statistic and significant t-test statistic 
for all associated independent variables were shortlisted (Supplementary Material Fig.S5). All 

models satisfied the general linear F statistic condition, indicating that addition of selected 

independent variables (i.e. features) increased the explanatory power of the models. 13 out of 
24 models had significantly lower information criterion parameters (Supplementary Material 
Fig.S5). We further assessed these 13 models according to obtained coefficients, standard 

errors, t-statistic, p-value and confidence intervals for all the independent variables. 6 out of 13 

models showed significant t-statistics (p-values) for all coefficient terms and the smallest 
confidence interval ranges (Supplementary Material Fig.S5).  

Step 3. To estimate the quality of the remaining 6 models, we tested 4 multiple linear regression 

conditions (LINE conditions): 

1. The mean of the response, E(Yi), at each set of values of predictors, (x1i, x2i, x(n)i) is a 

Linear function of the predictors.  

2. The errors, εi, are Independent. 

3. The errors, εi, at each set of values of the predictors are Normally distributed. 

4. The errors, εi, at each set of values of predictors have Equal variance (σ2). 

To visually validate the LINE conditions (assessment of the distribution of errors), we recorded 

residuals vs. predicted values, and plotted a histogram of residuals for each model 
(Supplementary Material Fig.S6). We also performed the Kolmogorov-Smirnov Test (K-S test) 

for all 6 models 69. Three models, M1, M19 and M24 showed normal distribution of error 

residuals, absence of outliers and equal variance and hence were selected for cross-validation 
(Supplementary Material Fig.S6). 

Step 4. These three models were validated using the test dataset (N = 492) and model M1 was 

identified as the optimal model on the basis of smallest Mean Squared Prediction Error value 
(MSPE) (Extended Data Figure 10e, Supplementary Material Fig.S7). This model (M1) 

consisted of seven independent variables: number of clusters in 3’UTR, ΣB, ΔΣB, number of 

binding sites in a cluster, UTR length, proximity to PAS, transcript level all expressed as dummy 

coded variables in terciles of their respective distributions.  

Multiple regression on a training data set of N = 699 was performed according to: 
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𝑌𝑌𝑖𝑖′ =  𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1𝑖𝑖 + 𝑏𝑏2𝑋𝑋2𝑖𝑖 + 𝑏𝑏3𝑋𝑋3𝑖𝑖 + 𝑏𝑏4𝑋𝑋4𝑖𝑖 + 𝑏𝑏5𝑋𝑋5𝑖𝑖  + 𝑏𝑏6𝑋𝑋6𝑖𝑖 + +𝑏𝑏7𝑋𝑋7𝑖𝑖 + 𝑢𝑢    (Eq.62) 

 

 (Y’: predicted dependent, continuous variable (ΔRPF and ΔRNA) or predicted dependent, 
merged continuous variable, b(i=0…7) : differential intercept linear coefficients, X(n)i: independent 

variables, u: error term). The differential intercept linear coefficients (DILC) associated with each 

dummy coded/continuous independent variable terms are the expected difference in the mean 

of the outcome for that variable, compared to the reference group (TMRM class), with all other 

predictors constant 67,69. The "bn" values represent regression weights that were computed by 

minimization of the sum of squared deviations: 

 

∑ (𝑌𝑌𝑖𝑖− 𝑌𝑌 𝑖𝑖
′)2𝑛𝑛

𝑖𝑖=1   (Eq.63) 

 

(n = 699, sample size of training data set, Yi : observed value for the dependent variable ΔRPF 

and ΔRNA). The optimal regression model was:  

 

ΔRPF= 1.01 + (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)    +0.02𝐻𝐻𝐻𝐻
−0.03𝐿𝐿𝐿𝐿

+ (bind. prob.) +0.03𝐻𝐻𝐻𝐻
−0.02 𝐿𝐿𝐿𝐿

+ (𝛥𝛥bind. prob.)  +0.11𝐻𝐻𝐻𝐻
+0.05𝐿𝐿𝐿𝐿

+

(#bind. sites)  +0.03𝐻𝐻𝐻𝐻
−0.15 𝐿𝐿𝐿𝐿

+ (dist. PAS)    −0.005𝐻𝐻𝐻𝐻
+0.01 𝐿𝐿𝐿𝐿

+ (𝑈𝑈𝑈𝑈𝑈𝑈 𝑙𝑙𝑙𝑙𝑙𝑙)+0.03
+0.06+(RPKM)(-0.00004) + 0.07 

ΔRNA= 1.01 + (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)    +0.03𝐻𝐻𝐻𝐻
−0.003𝐿𝐿𝐿𝐿

+ (bind. prob.) +0.05𝐻𝐻𝐻𝐻
−0.02 𝐿𝐿𝐿𝐿

+ (𝛥𝛥bind. prob.)  +0.03𝐻𝐻𝐻𝐻
+0.01 𝐿𝐿𝐿𝐿

+

(#bind. sites)  +0.04𝐻𝐻𝐻𝐻
−0.11 𝐿𝐿𝐿𝐿

+ (dist. PAS)    +0.01𝐻𝐻𝐻𝐻
+0.007 𝐿𝐿𝐿𝐿

+ (𝑈𝑈𝑈𝑈𝑈𝑈 𝑙𝑙𝑙𝑙𝑙𝑙)−0.03
+0.07+(RPKM)(-0.000007) + 0.06 

(Eq.64) 

(𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 =  𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 ; 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 =  𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

). 

 

The model was evaluated on a test data set (N = 492, 30% of the data; Fig.4). Regression 

analysis was performed using Scikit-learn 71 and Statsmodels 72 modules in Python 3.6.5. 

 

Decision Tree Classifier 
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We employed a Chi-squared Automatic Interaction Detection (CHAID) algorithm, which makes 

no assumption about underlying data 73,74, in order to determine how categorical independent 

variables (seven transcript and cluster features, above) best combine to predict the functional 

mRNA classes. A data matrix was formed using classes of Y (transcript and cluster features) as 

columns and categories of the predictor X (functional mRNA classes) as rows. The expected 

cell frequencies under the null hypothesis were estimated as described 73. The observed cell 

frequencies and the expected cell frequencies were then used to calculate Pearson chi-squared 

statistic, according to: 

𝜒𝜒2 = ∑ ∑ (𝑛𝑛𝐼𝐼𝐼𝐼−ḿ𝐼𝐼𝐼𝐼)2

ḿ𝐼𝐼𝐼𝐼

𝐼𝐼
𝐼𝐼=1

𝐽𝐽
𝐽𝐽=1              (Eq.65) 

(nIJ is the observed cell frequency for cell (xn = I | yn = j). mIJ is the estimated expected cell 

frequency for cell (xn = I | yn = j) from independence model 73,74.  

The p value is: 

𝑝𝑝 = Pr (𝜒𝜒𝐷𝐷2 > 𝜒𝜒2)                        (Eq.66) 

ΧD
2 follows a Chi-squared distribution with degrees of freedom d = (J – 1) (I – 1)  

Pr: probability. The adjusted p-value is calculated as Bonferroni multiplier 75. 

CHAID analysis was performed using CHAID 5.3.0 (ref.76) in Python 3.6.5. 

 

Gene Ontology Analysis 

GO term analyses for transcripts in groups 1-21 (Fig.4d) was performed with REACTOME (refs. 
77,78) using a hypergeometric statistical test and Benjamini and Hochberg FDR correction 

(significance level of 0.05) to identify enriched terms after multiple testing correction 79. 

Redundant GO terms were merged to create a parent term. Transcripts for each Dazl group (1-

21) were clustered using Ward’s minimum variance method in R 80 and plotted as a heatmap 
using ggplot2 48 (Fig.4d).  

 

Pathway Analysis 

Pathways (Extended Data Fig.8h) were obtained from REACTOME 77,78. mRNA classes were 

mapped on pathways with Cytoscape 81. 
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Luciferase Reporter Measurements  

Luciferase reporters were generated as previously described 17. Briefly, DAZL target 3’UTRs 

with at least 100 nt of downstream sequence were cloned into the pRL-TK vector (Promega), 

replacing the SV40 late poly(A) region. Transfections and luciferase assays were also 

performed as previously described 17. GC-1 spg cells were induced with doxycycline as 

described above. After 24 hours, pRL-TK 3′UTR reporters and pGL4.54[luc2/TK] (Promega) 

firefly luciferase control plasmids were transfected into GC-1 spg cells using Lipofectamine 2000 

(Thermofisher). The media was replaced after 4-6 hours and cells were harvested after 24 

hours. Dual luciferase assays were performed using the Dual-Luciferase Reporter Assay 

System (Promega) according to manufacturer’s instructions. Renilla luciferase levels were 

normalized to firefly luciferase activity. 
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Supplementary Table S1 | Codon optimized Mus musculus Dazl (RRM) DNA construct 
(amino acids 32 -117) and primers for cloning.  

Dazl (RRM) DNA construct 

SacI and XhoI restriction sites are underlined. Complete DNA construct was purchased from 
Genscript.  

GGAAATATAGAGCTCTTGCCGGAAGGCAAGATCATGCCGAACACCGTATTCGTAGGAGGAATAG
ACGTACGCATGGACGAAACCGAAATCCGCTCTTTTTTCGCACGCTACGGCTCTGTAAAGGAGGT
TAAAATAATCACGGACAGAACGGGGGTTTCGAAAGGCTACGGATTCGTCTCTTTCTACAACGAT
GTTGACGTTCAGAAAATAGTAGAGTCTCAGATAAACTTTCATGGGAAGAAACTGAAGCTGGGCC
CGGCTATCCGCAAACAATAATGACCTCGAGGGCTGCAA 

Primers for cloning 

SacI and XhoI restriction sites are underlined. 

Dazl Forward 

5’-GGAAATATAGAGCTCTTGCCGGAAGGCAAGATCATGC 

Dazl Reverse 

5’-TTGCAGCCCTCGAGGTCATTATTGTTTGCGGATA 



Supplementary Table S2 | Sequencing adapters and primers.  

RNA linkers (Dharmacon) 

RL5: 5’-OH AGG GAG GAC GAU GCG G 3’-OH 

RL5D: 5’-OH AGG GAG GAC GAU GCG Gr(N)r(N) r(N)r(N)G 3’-OH 

RL3: 5’-P GUG UCA GUC ACU UCC AGC GG 3’-puromycin 

DNA primers (Operon) 

DP5: 5’-AGG GAG GAC GAT GCG G-3’  

DP3: 5’-CCG CTG GAA GTG ACT GAC AC-3’ 

Solexa Fusion Primers (Operon) 

SSP1: 5'-CTA TGG ATA CTT AGT CAG GGA GGA CGA TGC GG-3' 

Circularization RT primer (Dharmacon) 

5’Phos/(GGTTA)(CCGCATCGTCCTCCCT)(CCCTATAGTGAGTCGTATTA)/iSp18/CACTCA/iSp18/(CCGCTGGAA
GTGACTGACAC)3’ 

Antisense DP5 Antisense T7 Promoter DP3 

1) 5’Phos-GNNNN CGTGAT CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA - iSp18 - CACTCA -iSp18 – 
CCGCTGGAAGTGACTGACAC 

2) 5’Phos-GNNNN ACATCG CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA - iSp18 - CACTCA -iSp18 – 

CCGCTGGAAGTGACTGACAC 

3) 5’Phos-GNNNN GCCCTA CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA - iSp18 - CACTCA -iSp18 – 

CCGCTGGAAGTGACTGACAC 

4) 5’Phos-GNNNN TGGTCA CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA - iSp18 - CACTCA -iSp18 – 

CCGCTGGAAGTGACTGACAC 

5) 5’Phos-GNNNN CACAGT CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA - iSp18 - CACTCA -iSp18 – 

CCGCTGGAAGTGACTGACAC 

6) 5’Phos-GNNNN ATTGGC CCGCATCGTCCTCCCTC CCTATAGTGAGTCGTATTA - iSp18 - CACTCA -iSp18 – 
CCGCTGGAAGTGACTGACAC 

 

Complementary barcode sequence 

1) ATCACGNNNNG…………… 

2) CGATGTNNNNG…………… 

3) TAGGGCNNNNG………….. 

4) TGACCANNNNG………….. 

5) ACTGTGNNNNG………….. 

6) GCCAATNNNNG………….. 

 



Time (s) Dazl: 4.2x 

L: 2.6 mW 

Dazl: 4.2x 

L: 1 mW 

Dazl: 1x 

L: 2.6 mW 

Dazl: 1x 

L: 1 mW 

Stratalinker 

0 5·106 6·106 4·106 3·106 5·106 

30 3·106 3.6·106 4·106 8·106 5·106 

180 1.9·106 2.4·106 4·106 5·106 5·106 

680 0.6·106 1.2·106 2·106 3·106 5·106 

Supplementary Table S3 | Number of cells used in each crosslinking experiment 
(L: laser power) 



Time (s) Dazl: 4.2x 

L: 2.6 mW 

Dazl: 4.2x 

L: 1 mW 

Dazl: 1x 

L: 2.6 mW 

Dazl: 1x 

L: 1 mW 

Stratalinker 

30 88% 98% 80% 91% 91% 

180 79% 92% 82% 87% 84% 

680 87% 81% 93% 91% 83% 

 

 

Supplementary Table S4 | Cell Viability after each crosslinking experiment  
(L: laser power). Cell viability was measured by Trypan-blue staining and cell counting in a 

hemocytometer (Materials and Methods). 

 



Conditions 

680 s 180 s 30 s 0 680 s 180 s 30 s 0 680 s 180 s 30 s 0 680 s 180 s 30 s 0 

Dazl: 4.2x Dazl: 1x Dazl: 4.2x Dazl: 1x 

Laser: 2.6 mW Laser: 2.6 mW Laser: 1 mW Laser: 1 mW 

Post 
processed 
reads (a) 

3,372,238 466,053 357,206 13,800 545,542 283,506 150,313 12,720 249,005 364,176 141,804 15,650 394,016 227,026 175,420 8,730 

Mapped 
Reads (b) 1,140,415 341,785 214,324 828 256,405 172,939 111,232 865 186,754 185,730 90,755 1,001 165,487 154,378 112,269 567 

% Reads 
Mapped 33.81 73.33 60.00 6.0 47.00 61.00 74.00 6.8 75.00 51.00 64.00 6.4 42.00 68.00 64.00 6.5 

Correction 
factor (c) 0.89 2.28 2.56 1 2.88 2.22 3.11 1 1.84 2.17 2.2 1 1.88 2.54 3 1 

Reads - Peak 
Intersection (d) 252,932 185,659 173,943 0 204,474 86,071 92,228 0 153,860 48,334 74,552 0 79,527 11,271 14,910 0 

Supplementary Table S5 | Sequencing and read processing statistics. 
(a) Post processed reads: Reads remaining after de-multiplexing, adapter removal and PCR duplicate collapsing.
(b) Mapped reads: Reads mapped to mouse genome (mm10).
(c) Correction factor: Intensity per read obtained by normalizing number of reads per condition with total crosslinked RNA.
(d) Reads-Peak intersection: Number of reads corresponding to Dazl binding site peaks common to all KIN-CLIP conditions.



Conditions 

680 s 180 s 30 s 0 680 s 180 s 30 s 0 680 s 180 s 30 s 0 680 s 180 s 30 s 0 

Dazl: 4.2x Dazl: 1x Dazl: 4.2x Dazl: 1x 

Laser: 2.6 mW Laser: 2.6 mW Laser: 1 mW Laser: 1 mW 

Bulk 
Crosslinking 

Intensity (106) 

1.012 ± 
0.25 

0.775 ± 
0.22 

0.537 ± 
0.07 10-5 0.722 ± 

0.19 
0.384 ± 

0.11 
0.346 ± 

0.07 10-5 0.343 ± 
0.10 

0.403 ± 
0.07 

0.199 ± 
0.07 10-5 0.311 ± 

0.11 
0.392 ± 

0.07 
0.336 ± 

0.06 10-5

Supplementary Table S6 | Bulk crosslinking intensity for each crosslinking condition.  
Bulk crosslinking (AU; pixel density as described in Image J) was measured as described in Materials and Methods. The errors 

associated with intensity represent deviation in bulk cross linking as obtained by measuring bulk cross linking for at least three 

replicates for each time point.   



 GC1 Replicate 1 GC1 Replicate 2 GC1 Replicate 3 
Post processed Reads(a) 1,351,295 910,651 996,650 
Mapped Reads (b) 123,851 59,674 71,288 

 

 
Supplementary Table S7 | Sequencing and read processing statistics for iCLIP experiments.  
(a) Reads remaining after adapter removal and PCR duplicate collapsing. 
(b) Reads mapped to mouse genome (mm9). 
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Supplementary Figure S1 | Gel Source data for images shown in 
Extended Data Figures 1d,e and Extended Data Fig.2d. 
Green solid rectangle: gel regions shown in the Extended Data Figures. 
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Supplementary Figure S2 | fs laser crosslinking fit space parameters. 

1D Fit space analysis (KINTEK) for obtained kinetic parameters (kon, kxl
2.6mW, koff and kxl

1mW) for 
(a). RbFox(RRM), (b) RbFoxMut(RRM) and (c) Dazl(RRM). (Fig.1e). The relative X2 represents 
the smallest (optimal) X2 divided by the X2 obtained for the entire thermodynamic model. For the 
optimal parameter value, the relative X2 = 1. Horizontal lines mark the 95% confidence interval.   
d. 2D Fit space analysis of the relative X2 of co-varying kon and koff. Both rate constants are 
constrained for all 3 proteins with a well-defined local minimum (red).



Supplementary Figure S3 | Determination of fractional occupancy (Φmax) 

Maximal amplitude (αmax: probability of Dazl bound to the fraction of a given binding site that is 
accessible during the course of the experiment, extrapolated to saturating concentrations of 
Dazl) plotted vs. level of the corresponding transcript (RPKM). Eq.44 (Materials and Methods) is 
used to calculate the maximal fractional occupancy (Φmax).  

RPKM
1 100 1000

α m
ax

 (x
 1

03
)

0

30

15

10

0.050

0.025

0.010

Density



Supplementary Figure S4 | Impact of rate constant variation on crosslinking time 
courses.

(a) Time courses for Dazl binding sites with differing koff values (highlighted; high, 
medium and low range of the distribution of koff values) and similar values for other rate 
constants. (b) Time courses for Dazl binding sites with differing values for kon

(1xDazl) (s-1)
(left) and kon

(4.2xDazl) (s-1) (right), and similar values for other rate constants. (c) Time 
courses for Dazl binding sites with differing values for kxl

(2.6mW) (s-1) (left) and kxl
(1.0mW) (s-

1) (right) and similar values for other rate constants. Points mark the experimental 
normalized peak coverage value (error bars: 95% confidence interval for normalized 
peak coverage value, determined by minimizing X2), lines show the curves with 
calculated rate constants.



Supplementary Figure S5 | Generation of the Multiple Linear Regression Models. 

(a) Flowchart for the development of the multiple linear regression (MLR) models. (b) 
Adjusted R2 values for all selected candidate models (N = 45). (c) Root Mean Squared 
Error (RMSE) values for all selected candidate models (N = 45). (d) R2 values for all 
selected candidate models (N = 45). Models with adjusted R2 ≥ 0.5, lowest 50% RMSE 
and/or R2 > 0.5 were shortlisted (N = 24, grey area). Red dots: ΔRNA; Black dots: ΔRPF.
(e-g) Information criterion statistics (ICS) for models with separate ΔRNA and ΔRPF 
terms (N = 15; Extended Data Figure 10b-e). ICS for models with merged ΔRNA and 
ΔRPF (N = 8; not shown) was carried out in the similar manner. (e) Models with lowest 
Akaike’s Information Criterion (AIC) and (f) Bayesian Information Criterion (BIC) are 
marked (N = 9; arrows). (g) Models with lowest Amemiya’s Prediction Criterion (APC) are

Adj. R2 ≥ 0.5
RMSE : Top 50%
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selected (lowest 30%). 13 models remain after ICS criterion (9 with separate ΔRNA and 
ΔRPF and 4 with merged ΔRNA and ΔRPF, not shown). (h) F-statistic for models with 
separate ΔRNA and ΔRPF. All models satisfied general linear F-statistic condition (F-
statistic > 15). Heatmap on the right show shortlisted models (N = 6) with significant t-
tests for majority of independent variable terms (at least 60%, p < 0.05, black), lowest ICS 
and significant F-test statistic (N = 6).      



Supplementary Figure S6 | Shortlisting of Multiple Linear Regression Models.  (a-

f) Upper panels: Standardized residuals versus average predicted ΔRNA and ΔRPF 
values for models remaining after significance testing (N = 6, Supplementary Materials 
Fig.S4). p-value: Kolmogorov-Smirnov Test (K-S test) for error normality. p < 0.05 
indicates normal distribution of error residuals (Models M1, M19, M24). Lower panels: 
Histogram of error residuals for models remaining after significance testing (N = 6, 
Supplementary Materials Fig.S4). (g) Correlation between experimental values for 
ΔRPF (top panel) and ΔRNA (bottom panel) (training data set, N = 699; 60%) and values 
calculated with the linear regression model (R: adjusted linear correlation coefficient) for 
models shortlisted in panels a-f.  
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Supplementary Figure S7 | MLR models for merged ΔRPF and ΔRNA terms  

(a) Linear Regression models tested (M28 – M45). (Yellow: dummy coding, using terciles 
of the variables, Extended Data Fig.8. Red: no dummy coding; use of continuous data. 
Grey: variable was omitted. ΔRPF and ΔRNA were merged by normalizing both, ΔRPF 
and ΔRNA to a scale of 0-1 and then multiplying [ΔRPF X (ΔRNA – 0.01]. The merged 
terms are distinct from the translation efficiency (ΔTE). (b) Adjusted R2 for each model. 
(c) Differential Intercept Linear Coefficients (DILC) for each model. (d) p-values of t-test 
for each independent variable (N = 7) for all models. Black: p < 0.05; white: p > 0.05.           
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Steps for the numerical fitting of crosslinking timecourses to calculate kinetic parameters. Square boxes represent KIN-CLIP 
conditions (red). 
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Steps for the numerical fitting of crosslinking timecourses to calculate kinetic parameters. Square boxes represent KIN-CLIP conditions (red). 
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Point-by-point Response to Referee Comments.   
We thank the referees for their encouraging and constructive comments, which have helped to 
make the manuscript clearer and stronger.  

Referee Comments are black, our responses are in red and captions for figures are in purple.  

 
Referee #1: 
Summary 
In their manuscript, Sharma and colleagues describe the development of KIN-CLIP, which 
allows to determine kinetics of protein-RNA interactions in living cells. To this end, they use 
time-resolved UV crosslinking of proteins to RNA. They first validate that time-resolved UV 
crosslinking enables kinetic studies on protein-RNA interaction in vitro. They then move on to 
study binding kinetics of the RNA-binding protein DazI in mouse cells. They use the kinetic data 
to study properties of DazI binding clusters and predict DazI-mediated RNA and ribosome 
regulation based on KIN-CLIP parameters and additional features. 
 
General appraisal 
In my opinion, the authors made an outstanding effort to pull this project and to develop a 
technology that allows to determine kinetics of protein-RNA interactions in living cells. The 
application in form of the DazI code is less convincing for me (see comments below). I think 
overall the manuscript is a great scientific contribution and I recommend publication in Nature. 
However, I would ask to fully address the following comments before publication. 
 
Major comments 
 
1) In vitro crosslinking: In the current format it is difficult to grasp the main concept of how to 
deduce kinetics from the UV time course experiments. I think it would be important to briefly 
explain in the main text how to deduce constants from the data. A little schematic on this in Fig. 
1d would also be helpful. It would be good to explain why different time points and different 
protein concentrations are needed. (In the current version of the manuscript the focus lies on 
explaining why the laser is less harmful for the RNA, which is less relevant for the rest of the 
manuscript.) 
We have now included a brief explanation of why the calculation of the kinetic parameters 
requires the measurement of crosslinking timecourses under different reaction conditions. We 
have also included a small scheme in Figure 1, as suggested. A detailed description of how the 
kinetic data are calculated from the timecourses is provided in the Materials and Methods.   
We also considered the note on the RNA degradation data and we agree with the reviewer – the 
data is technical in nature, although the documentation of limited RNA degradation is essential. 
We have therefore moved these data to Extended Figure 1, thereby focusing Figure 1 better on 
the main narrative of the manuscript.  
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2) Kinetics in cells: 
A) I was surprised by the extremely low errors estimated for the different constants (often 
<10%). This is surprising since measurements used as input such as total crosslinking signal on 
the membrane might not be very precise. In this context it would be very important to provide 
information on the reproducibility of the obtained data from replicate experiments. Also, the 
authors should double check the error models. 
The errors for individual rate constants cover a range from less than 5% to sometimes 50% of 
the reported value. In our estimate this data range does not indicate very low errors.  
The crosslinking measurements, which were used to determine the overall crosslinking 
efficiency for each respective CLIP library, were performed in several replicates. We have now 
provided the information on the replicates in Supplementary Material Table S6.   
We have also verified the error models. The standard errors for rate constants indicate the 
bounds of the respective fitting quality, as assessed by minimized Χ2. We have noted this in the 
caption for Fig.2c.  
The error models are described in the Materials and Methods section, equation 7 for the 
numerical fit: 

χ2 = ∑ (𝑂𝑂𝑖𝑖−𝐶𝐶𝑖𝑖)2

𝜎𝜎𝑖𝑖
2𝑖𝑖

               (Eq.7) 

and by equation 41 for the analytical fit: 

χ2 = ∑ [𝑌𝑌𝑖𝑖−𝑓𝑓�𝑟𝑟𝑖𝑖
′,𝛽𝛽�

𝜎𝜎𝑖𝑖
]2𝑛𝑛

𝑖𝑖=1
                         (Eq.41) 

The errors mark lower and upper bounds for the rate constants at a 95% confidence interval 
(CI). In other words, these errors describe how well the models fit the given data for a binding 
site and how much fluctuation in rate constants (95% CI) will still yield the same fit. A low range 
for 95% CI for the errors for a given rate constant indicates a constrained fit, a larger range 
indicates a poorer fit. Error distributions for both numerical and analytical fits are also shown in 
the form of reduced/minimized Χ2 in Extended Data Figure 2 c, d.  
 
B) It is convincing to see that about 85% of Dazl binding sites contain a GUU motif. However, it 
is difficult to understand that there is only very weak difference e.g. in the comparison of motif 
enrichment comparing binding sites with top and bottom scoring rate constants. In this context it 
might be good to validate that the constants obtained in vivo to show correlation with affinities 
obtained in vitro. Would there be an RNA Bind-N-Seq dataset (or similar) available for 
comparison? 
We agree with the reviewer - the small difference in motif enrichment comparing binding sites 
with top and bottom scoring rate constants is notable. This result suggests that Dazl displays 
high selectivity for its cognate GUU motif in cells.  
We have measured affinity, association and dissociation rate constants of Dazl(RRM) in vitro for 
an RNA with the cognate GUU motif (Fig.1, Extended Data Fig.1). These in vitro kinetic 
parameters are within the range of parameters measured for the Dazl binding sites in the cell 
(Fig.2e), and we note this in the text.    
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Unfortunately, no RNA Bind-n-seq dataset is available for Dazl. However, there is a RNA Bind-
n-Seq dataset in the Encode Database for a human Dazl ortholog Daz3, which is 92% 
homologous to Dazl (Fig.R1). The data for Daz3 reveal a clear GUU consensus motif – 
essentially all RNA variants that were identified in RNA Bind-n-Seq experiments to bind Daz3 
contain the GUU core consensus. These data are consistent with very high inherent selectivity 
of Daz3 towards the GUU core motif. 

These data clearly raise the possibility that Dazl also 
shows high inherent selectivity for the GUU core motif, but 
definitive conclusions based on data with a Dazl ortholog 
might be premature. We have spent considerable effort to 
establish a Bind-n-Seq or a related approach for Dazl but 
have not been successful. This is because Dazl(RRM) has 
proven uncooperative in approaches based on gel 
separation or filter binding to separate bound vs. unbound 
substrate species. Although these experimental challenges 
are consistent with very high inherent selectivity (i.e. only 
few of the randomized substrate variants are bound, which 
is difficult to measure reliably), meaningful conclusions 
about the inherent binding selectivity of Dazl (in vitro) are 
premature until a reliable Bind-n-Seq approach for Dazl 
can be established.   
While it remains to be shown what feature(s) determine(s) 
a given rate constant at a given binding site, our results 
suggest that the number of surrounding Dazl binding sites 
(i.e., Dazl clusters) impact association rate constants. We 
show this data in Figure 3c and Extended Data Figure 
5k.  

 
C) I was surprised to see that the distribution of binding constants is relatively narrow. This 
could be due to the initial selection of binding sites. Hence weaker binding sites might be 
underrepresented in the dataset. Including such weaker sites might also help to observe 
features that differ for high-affinity binding sites. 
Our KIN-CLIP analysis includes > 90% of sites with corresponding sites in CLIP data (Extended 
Data Figure 2d). We had to exclude sites with low coverage values (< 5 reads at high laser 
power and high Dazl concentration at late timepoints, and sites without reads at low Dazl, low 
laser power, early timepoints time points), because it is not possible to calculate meaningful 
kinetic parameters from such sparse data.  
Since we considered the vast majority of binding sites, it is unlikely that our analysis is markedly 
affected by binding site selection. We are confident that the resulting distribution of binding rate 
constants, which ranges over three orders of magnitude (Fig.2e) provides an unbiased view of 
the kinetic landscape. We nevertheless appreciate the reviewer’s comment and have now 
specifically noted in the manuscript that our KIN-CLIP analysis includes > 90% of sites with 
CLIP reads and is thus unlikely to be biased by binding site selection criteria. 
 
  

 

Figure R1 | Bind-n-Seq data for Daz3 
from the Endcode project. The bar shows 
the distribution of sequence variants with 
the motifs indicated on the right (Figure 
adapted from: 
https://www.encodeproject.org/experiments
/ENCSR449VKY/ ) 
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3) Comparison of Dazl binding to the different transcript regions: 
A) Introns are present mostly in the nucleus, whereas the other regions are dominant in the 
cytoplasm. Also, it is likely that Dazl concentration is very different for nuclear and cytoplasm. 
Will this affect calculation of the different constants? 
Intracellular differences in Dazl concentration (e.g. nucleus vs. cytoplasm) is reflected in 
association rate constants (and parameters that include association rate constants, e.g. P, B 
and ΣB) and does not affect the calculation of rate constants.  
 
B) The authors use Bowtie2, a mapper that is not splicing-aware. Hence will reads be 
systematically lost in the region of the ORF compared to the 3’UTR? 
We used Bowtie2 to ensure back-compatibility of our data with previous published CLIP data for 
Dazl.  Exon-exon spanning reads represent less than 0.1% of the total CLIP reads. The data are 
thus not unduly biased by using Bowtie2.  
 
4) DazI binds mRNA in clusters. It is interesting that clusters with more binding sites have higher 
kon rates, but koff rates are not affected. It would be nice to present some interpretation. 
The scaling of association rate constants with the number of binding sites in clusters (Fig.3c) 
reflects a cooperative association process of Dazl protomers within a given cluster. That is, a 
bound Dazl protomer increases the binding of other protomers in the cluster. However, multiple 
bound protomers appear not to slow dissociation of Dazl from an individual binding site.  
 
5) Clusters correlate with DazI function. It is great to see that the cumulative DazI binding 
probability correlates with the different regulatory classes (RNA and RPF). In my understanding 
the cumulative binding probability could maybe also be approximated with normal CLIP-seq 
data. Have the authors correlated cumulative binding probability with different scores for iCLIP 
signal normalized for expression (e.g. PureCLIP score, etc.)? This would give a better idea of 
the benefit of KIN-CLIP over normal CLIP. Or alternatively the authors could use the KIN-CLIP 
data to suggest how to use normal CLIP data in the best way. I think that will be very useful for 
the RNA community, where the majority of groups will only be able to perform normal CLIP 
experiments. 
This is great point. It was our initial motivation for the presented work to obtain quantitative 
information from “conventional” CLIP approaches. However, the nature of the crosslinking 
process precludes a straightforward solution. This is because the extent of crosslinking for a 
protein at a given binding site depends on crosslinking time, crosslinking efficiency, association 
and dissociation rate constants and the accessibility of the binding for the protein over the 
course of the crosslinking experiment. These parameters cannot be deconvoluted in a single 
point measurement, neither absolutely nor relatively (e.g. comparing relative binding parameters 
for binding sites).  
To illustrate this point, we have prepared a series of plots of KIN-CLIP (cumulate binding 
probability) and iCLIP parameters, normalized for expression (Figure R2). No significant 
correlation is seen between the iCLIP density, normalized to RNA expression levels, and 
binding probability (Fig.R2a, b), which is not unexpected. PURECLIP scores also show no 
correlation (not shown).   
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Figure R2 | Link between KIN-CLIP and iCLIP 
data. a. iCLIP read density normalized to mRNA 
expression level (X-axis) plotted versus binding 
probability calculated from KIN-CLIP data (Y-
axis). No apparent correlation is detected. b. 
iCLIP read density as tags per Dazl-binding 
cluster, normalized to mRNA expression level 
(X-axis) plotted versus binding probability per 
Dazl cluster, calculated from KIN-CLIP data (Y-
axis). No apparent correlation is detected c. 
Correlation between iCLIP read density as tags 
per Dazl-binding cluster, normalized to mRNA 
expression level, and KIN-CLIP read density as 
tags per Dazl-binding cluster, normalized to 
mRNA expression level for the 30s timepoint, at 
high Dazl concentration. d. Correlation between 
iCLIP read density per Dazl-binding site, 
normalized to mRNA expression level, and KIN-
CLIP read density per Dazl-binding site, 
normalized to mRNA expression level for the 
30s timepoint, at high Dazl concentration.   
   

There is a correlation (R2 = 0.52) between iCLIP read density and KIN-CLIP read density at high 
protein concentration and high laser power at the shortest timepoint (Fig.R1c, d). This KIN-CLIP 
density is linked but does not equal to the fraction of bound protein at steady state. At high 
crosslinking efficiency, protein bound to a given site is rapidly crosslinked. However, the KIN-
CLIP read density is also influenced by binding probability and binding site accessibility, and 
therefore, the KIN-CLIP read density at high laser power cannot be directly interpreted in a 
mechanistically meaningful manner.  
In addition to binding probability and binding site accessibility, iCLIP read density is influenced 
by the crosslinking rate constant. As we have shown, this rate constant varies for individual 
binding sites, but the range of this variation is comparably small (Extended Data Figure 3i). For 
this reason, we see the noted correlation between the iCLIP and the KIN-CLIP read density 
(Fig.R2). If the range of crosslinking rate constants for individual bindings sites would be larger, 
which is a possibility for other proteins, the correlation would diminish. For proteins other than 
Dazl, crosslinking rate constants for individual binding sites in cells are not known, and it is thus 
not possible to estimate to which extent iCLIP read densities of single point measurements are 
even residually reflective of binding probabilities.  
Unless drastic simplifications of the crosslinking process are stipulated, such as equal or similar 
crosslinking efficiency for all binding sites and equal binding site accessibility, we do not see a 
possibility to use single point CLIP measurements to even semi-quantitatively estimate binding 
probabilities. Yet, as the correlation in Fig.R2 shows, there can be quantitative information in 
conventional CLIP data, although one would have to present this with the appropriate caveats 
and stipulations.  
Notwithstanding these considerations, it is in principle possible to obtain rigorous quantitative 
information from traditional CLIP approaches. Experiments would need to be conducted 
analogously to the KIN-CLIP approach – at multiple timepoints at different protein concentration 
and at different crosslinking efficiencies. Since the crosslinking rate constant would be slower 
than association and dissociation rate constants, those two parameters cannot be 
deconvoluted, but a quantitative binding probability (related to affinity) can be determined. This 
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would be an extremely useful quantitative parameter for RNA-protein binding in cells.  We have 
now noted this in the discussion.  
Although space constraints preclude a detailed discussion of how our study can guide 
experiments aimed at obtaining quantitative information from conventional CLIP approaches, we 
agree with the reviewer that it will be very useful for the RNA community to outline principles of 
how to make conventional CLIP approaches quantitative. However, we feel this is best 
accomplished in a separate manuscript dedicated to this topic.  
 
6) The Dazl code: 
(A) I am not sure if in the current setup it can be really called cracking the code. I would tone 
this down. 
We appreciate the reviewer’s point. “Code” conveys certainty about an outcome based on a set 
of rules. Although we are confident that the set of rules we have delineated are a major step 
towards a “code” for Dazl, we have toned down the term accordingly. We now use “regulatory 
program”, which does not suggest certainty, but still reflects the high degree of explanatory 
power of our model. We have changed the corresponding passages in the manuscript.  
 
(B) The authors observe a nice correlation between the predicted and the experimental 
RPF/RNA changes. Did the authors control for overfitting? It would be important to leave out 
part of the data and use this for testing after fitting. 
Yes, we have carefully controlled for overfitting. We kept 30% (N = 492) of data set for model 
cross-validation to assess overfitting, as well as over parametrization and to evaluate model 
quality. We realize that we did not explain the model part in sufficient detail, as also noted by 
reviewer 3.  
We have now improved this section of the ms. We have updated the Materials and Methods 
section to describe model building, selection and validation (including controls for overfitting) in 
more detail, also in response to a comment by reviewer 3. We also have updated the plots in 
Fig 4g, h where we now show the test datasets, rather than the training sets and we provide 
Root Mean Prediction Error (RMPE) and adjusted R2 values for test data (Extended Data 
Figure 10, Fig 4g, h). Finally, and also in response to the comment by reviewer 3, we now 
describe the steps of model building, refinement and selection in more detail in the Materials 
and Methods section, in Extended Figure 10 and in additional schemes in the Supplementary 
Materials (Suppl. Materials Figures S5-S7). 
 
(C) I am confused about the data points shown in Fig. 4g,h. Shouldn’t they be the same points 
as in Fig. 4b? However, the distribution is clearly shifted, with the majority of data points having 
values around 1.1 instead of 1. 
We thank the reviewer for catching this. This was on error. The plots showed the training data set 
earlier. As noted above, we have now updated the plots and show the predictive power of our 
model using appropriate test data set unseen to the model.   
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(D) In the t-SNE analysis shown in Ext. Data Fig. 8d, the points from the different classes (HH, 
HM,…) completely separate, and there is not a single RNA going into the wrong cluster. I find 
this very unlikely, since the different categories (HH, HM,…) are not separated at all in Fig. 4b, 
and the boundaries between them are set more or less arbitrarily. 

For the visual depiction shown in 
Extended Data Figure 8 for t-SNE 
analysis, we first performed hierarchical 
clustering of the 7 characteristics that 
constitute the Dazl regulatory program 
and identified 21 subgroups (Fig.R3). 
We utilized a smoothened version of 
this hierarchical clustering, where we 
defined a subgroup based on the 
majority of a given characteristics in 
each subgroup. Accordingly, the RNA 
subgroups are completely separated in 
the t-SNE plot.  
The reviewer’s comment prompted us 
to re-think the smoothing approach and 
we have replaced the smoothened t-
SNE plot in Extended Data Figure 8d 
with a t-SNE plot  of un-smoothened 
data. This does not alter the clear 
emergence of 21 subgroups in the t-
SNE analysis, while more directly 
reflecting underlying data. 
 
 
 
 

 
 
7) To make the manuscript and the data accessible to the community, it will be important to 
make the code more accessible and well documented. Currently, it is hard to use. Also, it would 
be important to make the model for the fitting of the kinetic parameters available. 
We annotated the code in more detail. We have also uploaded the code for fitting of the kinetic 
parameters available on Github. In addition, we are happy to provide more specific information 
upon request. 
 
  

 

Figure R3 | Hierarchical clustering of mRNA features and KIN-CLIP 
parameters (a) and correlation of these parameters with the 
functional mRNA classes (b). 
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Minor 
The authors could check, as a control, that the calculated rates do not correlate with RNA 
expression levels, since the crosslinking signal of individual transcripts correlates with RNA 
expression. Kinetic rates should be independent of transcript levels? 
The rate constants do not correlate with RNA expression levels (Fig.R4). This is expected.  

Figure R4 | Plots of rate constants (a-e) and binding probability (f) vs. mRNA level. 

 
Fig. 2e: Are those really frequencies or rather densities? If it is frequencies, it would be good to 
indicate the bin size. 
The curves show frequencies. We have added the bin size definitions in the Figure caption.   
 
The colors in some of the figures are not suitable for color-blind people. 
We thank the reviewer for pointing this out. We have updated the figures accordingly.  
 
Consideration for normalization to crosslink signal: I think it is important that for this 
normalization the majority of reads map to the genome.  
The majority of reads did map to the genome, although the actual numbers varied for the 
different libraries (Suppl. Material Table S6). However, it is not critical for the normalization that 
the majority of the reads map to the genome. This is because, as per our analysis, unmapped 
reads are predominantly adapter concatamers and other “artificial” reads that are generated 
during the cDNA library generation process. These reads are therefore not part of the 
crosslinked material. Accordingly, our normalization is for mapped reads, as those represent the 
physically crosslinked RNA. We note that each KIN-CLIP experiment (e.g. each crosslinking 
timepoint and condition) is normalized to its own bulk-crosslinking parameter, which were 
determined in multiple replicates.  
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Also, I wondered if for the higher protein concentration all material is pulled down. Otherwise, 
this normalization might be distorted. 
Complete pulldown of crosslinked material and in fact of all Dazl, crosslinked and non-
crosslinked was carefully optimized. The exact conditions are given in the ms. 
 
Is there a difference in library sizes between the datasets? What are the overall read numbers? 
In this context, it would be good to have scales for the y-axes in the genome browser shots in 
Fig. 2b. Also, there is not information of the iCLIP only libraries generated, with details in the 
number of reads obtained. 
There are differences in the library sizes. Overall read numbers are given in Supplementary 
Materials (Supplementary Material Table S5). Fig.2b shows identical scales for the 
normalized reads. We added the scale information in the figure caption (Normalized coverage = 
11 for all traces). We have added the sequencing statistics information for the iCLIP libraries as 
Supplementary Material Table S7. 

 
Is there any characteristic feature in the sites only recovered by iCLIP/KIN-CLIP? It would be 
interesting to see whether the sites that appear exclusively in iCLIP are lost in the KIN-CLIP due 
to a refinement of the crosslinking or just experimental variance. 
We appreciate this question. We had not looked at potential differences in the features of sites 
unique in either the iCLIP or the KIN-CLIP data sets, but have now interrogated the respective 
datasets (Fig.R5).   

Figure R5 | Characteristics of Dazl binding sites for site detected only in iCLIP or in KIN-CLIP datasets. a. RNA classes 
and mRNA regions for iCLIP only and KIN-CLIP only binding sites. b. Most frequent sequence motifs at iCLIP only and KIN-CLIP 
only binding sites. c-g. Site features for iCLIP only and KIN-CLIP only binding sites. All plots were generated as described in the 
Materials and Methods Section.   
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The majority of reads for both datasets is in mRNAs, a smaller percentage in non-coding RNAs 
(Fig.R4a). In mRNAs most reads are in 3’UTRs, and the most notable difference is a larger 
fraction of reads in introns in the KIN-CLIP only dataset (Fig.R4a). A higher fraction of binding in 
introns is consistent with higher crosslinking efficiency, which enables the capture of binding 
sites in RNA regions that do not accumulate at high levels and might escape detection by 
conventional crosslinking. We also analyzed sequence characteristics of both datasets at the 
crosslinking site and detected no significant differences (Fig.R4b). We finally interrogated 
mRNA features for the datasets (Fig.R4c-g). Here we find that mRNAs in the KIN-CLIP only 
dataset have a markedly lower expression level, compared to the RNAs in the iCLIP only 
dataset (Fig.R4c). This observation is perhaps expected, given the higher crosslinking 
efficiency of the fs-laser crosslinking approach, which allows capture of crosslink for less 
abundant RNAs. Other RNA features do not significantly differ between the datasets 
(Fig.R4d,e). We also do not see differences in the datasets with respect to impact of Dazl on 
mRNA expression levels (ΔRNA) and translation state (ΔRPF) (Fig.R4f, g). In sum, the analysis 
of the iCLIP only and KIN-CLIP only datasets reveals no notable differences, aside from the 
perhaps expected greater sensitivity of the fs laser crosslinking approach. We can therefore 
conclude that sites absent in either KIN-CLIP or the iCLIP dataset are not lost due to refinement 
of the crosslinking but rather due to experimental variance. 
 
The nucleotide color code in Ext. Data Fig. 4 does not match with the standard (A-Green, C-
Blue, G- Yellow, T- Red). 
We have changed the color code accordingly.  
 
There is no information of the iCLIP-only libraries generated, with details in the number of reads 
obtained. 
We have included this information for the iCLIP libraries as Supplementary Material Table S7.  
 
 
Referee #2: 
 
This manuscript introduces and applies what could be a tremendously important new method for 
monitoring the kinetics and equilibria (or steady state) of intermolecular interactions in cells. The 
method, deceptively simple, is to monitor the time dependence of UV crosslinking from a 
femtosecond pulsed laser, with the increase in crosslinked product reflecting a combination of 
the rate constants for association and dissociation as well as the rate of crosslinking from the 
bound species. After introducing the method in vitro using the RNA-binding proteins 
RbFox(RRM) and Dazl, the authors use an antibody pull-down and next-gen sequencing to 
monitor the kinetics of RNA binding by Dazl on a genome-wide scale. From the in vivo assays, 
the authors report a number of new discoveries. There is substantial variability in the binding 
rate constants for different Dazl binding sites, exceeding the variability in dissociation rate 
constants. Further, the binding rate constants do not seem to track with sequences but instead 
track together with neighboring sites, suggesting that there are major differences in RNA 
accessibility that impact binding frequencies. The majority of sites are not saturated with protein, 
and individual binding events are relatively short-lived (~1 s), indicating tremendous potential for 
Dazl binding to respond rapidly at global or local levels to changes in conditions, RNA 
accessibility, or Dazl expression level. Dazl binding sites appear to be organized in clusters, and 
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the authors use their binding data to develop a model in which the frequency of Dazl binding to 
at least one site within a cluster is tightly linked to the regulatory effects of Dazl on translation 
and/or RNA decay. 
The work builds in interesting ways on previous work of others that mapped Dazl binding sites 
genome-wide and probed the effects of Dazl binding. The overall presentation of the work, in 
clarity, organization, and economy, is outstanding. 
Although the biological insights are significant, the most enduring value of the work likely lies in 
the introduction of the time-resolved UV crosslinking method. The method can be applied in a 
straightforward way to any RNA-binding protein and presumably to DNA-binding proteins as 
well. In my opinion, it is likely to be a game changer for quantitative research in protein-nucleic 
acid interactions in cells. This is probably the most important paper I have read this year. 
Overall, the authors should be commended for this terrific idea and for bringing it to fruition while 
also going most of the way toward establishing and benchmarking a robust infrastructure that 
will serve as a blueprint for future applications of the method. Importantly, the authors varied 
both the Dazl expression level and the crosslinking power, in addition to the exposure time, to 
establish constraints on the three rate constants that govern the overall behavior. They provide 
considerable detail on the methods of the analysis and the outcomes. The strategy and all of 
this information will be tremendously valuable for other who seek to apply the method to their 
own systems. 
Nevertheless, there are some points about the method that are not completely clear. Although 
the method is conceptually straightforward, it is not at all trivial to perform the experiments in a 
way that defines the binding rate constant and particularly for the dissociation rate constant, 
even in the simple experiments with just one target in vitro. If the crosslinking rate constant (kxl) 
is much smaller than the dissociation rate constant (kdiss), the measurement will report on the 
binding equilibrium but not the rate constants. If kxl is much larger than kdiss, the measurement 
will report on the pseudo-first order binding rate constant (kon) or kxl, whichever is smaller, or 
some combination of the two, but it will not give direct information on kdiss, as dissociation does 
not happen to a significant extent. Perhaps information on kdiss is provided indirectly, because 
a fast phase of crosslinking could reflect protein that was already bound at time zero and 
therefore define the binding equilibrium, while the slower phase could define the binding rate 
constant of additional protein. With both the equilibrium and the kon values defined, the 
measurements would constrain kdiss. It is also possible that measurements under conditions 
such that kxl is similar in magnitude to koff would provide information that would define koff. As 
described further below, in some cases it is not clear from the manuscript how the 
measurements constrain the rate constants, through the scenarios described above (or perhaps 
in other ways?). 
We appreciate the reviewer’s comment. Subsets of experiments provide only compound 
parameters, as the reviewer notes. However, the rate constants are linked to each other in a 
predictable manner, as outlined in the Materials and Methods section. Through variation of 
reaction conditions, the individual rate constants can be calculated. Key for this analysis is the 
variation of protein concentration and crosslinking power in a manner that each condition results 
in a timecourse that is sufficiently different from the timecourses under the other conditions. For 
example, if the crosslinking rate constant is too large at all laser powers, no differences in the 
timecourses would be detected and it would not be possible to calculate sufficiently constrained 
rate constants. In our case, timecourses at all conditions in vitro show sufficient differences for 
all conditions for the tested proteins, and well constrained rate constant can thus be calculated, 
as outlined in more detail in the responses to the following comments.         
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1. In vitro measurements: There is currently insufficient detail about how (and how well) the 
kinetic parameters are constrained in the in vitro experiments. Although the equilibrium values 
are benchmarked against another method, the values of the rate constants are not. While the 
addition of an alternative method to benchmark the kinetics measurements would be one way to 
strengthen the work, in my opinion it is not essential. However, in the absence of another 
method, it is especially critical to show how the measurements provide reliable values of the 
rate constants. The fit space profiles are included in Fig. S1, but these are 1D explorations of 
space and do not rule out the possibility that the measurements constrain the binding 
equilibrium but not the rate constants, which might vary together over a large range without 
impacting the fit. One possibility would be to evaluate the 2D fit space and include the results of 
co-varying kon and kdiss.  
We see the reviewer’s point and appreciate the suggestion. We have evaluated the 2D fit space 
(Fig.R6) and find that rate constants are sufficiently constrained in an independent manner.  

The results rule out a scenario where both rate constants vary together over a large range 
without impacting the fit. We have now included these data in the Supplementary Material 
Figure S2, together with the 1D Fitspace analysis.  

 

Figure R6 | 2D fit space analysis. a. Relative X2 of co-varying kon and koff. Both rate constants are constrained for all 
3 proteins with a well-defined local minimum (red). b. Values for lower and upper bounds obtained with the analysis.    
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We have also measured the dissociation rate constant for RbFoxWT(RRM), which is possible 
manually through pulse chase experiments monitored by PAGE (Fig.R7). The measured 

dissociation rate constant is similar to the rate constant 
obtained by crosslinking, providing additional evidence that 
rate constants obtained by time-resolved crosslinking provide 
reliable parameters. It is unfortunately not possible to perform 
similar measurements for Dazl with available means, since it 
has not been possible to establish conditions for gel shifts for 
the protein.  
Figure R7 | Direct measurement of RbFoxWT(RRM) dissociation rate 
constant. a. PAGE for pulse chase reaction of and RbFoxWT(RRM) dissociation 
timecourse. Bound RNA (radiolabeled) was identical to that used in Fig.1, chase 
RNA was identical to the bound RNA, but not radiolabeled. Substrate RNA (final 
concentration 1 nM) was incubated with RbFoxWT(RRM) (final concentration 20 
nM) for 30 minutes. Chase RNA (final concentration 1 µM) was added, and 
aliquots were removed at the indicated times, stored on ice and subsequently 
loaded on 8% non-denaturing PAGE b. Timecourse of the reaction in panel a. The 
solid line marks a fit against the integrated first order rate constant, the error range 
indicates the fitting error.           

 
It would also be very helpful to include as a supporting figure all of the time traces and the 
accompanying fits by the simulation. They are currently shown in Fig. 1 for the wild-type 
RbFox(RRM) but not for the other two proteins.  
We show these time traces and the corresponding fits in Extended Data Figure 1g, h.  
 
In addition, there is not much detail on how the global fitting by simulation was done. Does the 
simulated crosslinking begin from a pre-equilibrated mixture of protein and RNA (as in the 
experiment)? As noted above, under some conditions this might give clear fast and slow 
phases, which could be quite informative. 
We apologize for the lack of detail on this topic. We have now included a more detailed 
description of the fitting procedure in the Materials and Methods Section. The global datafit was 
performed as in the experiment, starting from a pre-equilibrated mixture.    
 
2. In vivo measurements: For these measurements, there is a lengthy and thorough section 
describing the analysis, and the methods and use of statistics and uncertainties seems to be 
appropriate. Still, it would be helpful to see representative examples of the data for a few 
individual sites presented in the same format as the in vitro binding measurements (as in Fig. 
1d) and to get a more intuitive sense of how the measurements constrain the rate constants. 
These plots could be shown with a simulation curve overlaid using the determined rate 
constants. For many of the sites, it seems that the crosslinking rates are much greater than the 
dissociation rates, perhaps even at the lower laser power, and it is not clear to me how the 
measurements define kdiss. 
We agree with the reviewer. Additional representative examples for individual binding sites are 
beneficial. Space limitations prevent us from showing these data in the extended Data Figures 
and we have therefore added a Supplementary Materials Figure (Supplementary Materials 
Figure S4) that displays timecourses (with the associated data fits) for 15 additional examples. 
We picked the examples for a low, medium and high value of each of the respective 
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parameters, to emphasize how these parameters are reflected in the experimental data. We feel 
these examples are an instructive and nicely intuitive way to assess the link between 
experimental data and kinetic parameters, and we appreciate the suggestion to include these 
data.  
In addition, we illustrate the impact of varying parameters on a specific example (Fig.R8). The 
data show variation of the timecourses for a range of dissociation and crosslinking rate 
constants, illustrating that the measured timecourses allow the determination of the dissociation 
and crosslinking rate constants.  

Figure R8 | Impact of rate constant variation on timecourses. The left panel shows the experimental data. The other panels 
show simulated timecourses (dotted lines) with changed dissociation and crosslinking rate constants, as indicated in the table.   

 
We note that a certain number of rate constants are outside the range where they can be 
properly constraint. We have marked the corresponding confidence ranges in Fig.2, and 
Extended Data Fig.3, and described in the Materials and Methods how we calculated the 
confidence ranges.    
 
3. Laser power and crosslinking rate: For the in vitro experiments, when the laser power is 
increased 2.6-fold, the measured crosslinking rates increase by more than 40-fold to >2 s(-1). Is 
that expected? For the in vivo experiments, the crosslinking rates are much larger than those in 
vitro, with the peak at the higher laser power centered at ~100 s(-1), 40-fold(ish) greater than 
the same laser power in vitro. Is that expected? I am also a bit confused about how the 
crosslinking rate can really be constrained at 100 s(-1) when the first time point is taken at 30 s. 
But perhaps this comes from information about the binding equilibrium, which together with the 
crosslinking rate may define the observed crosslinking time dependence under some conditions. 
The non-linear increase of the crosslinking rate constant with the laser power is expected 
because the fs-laser crosslinking is a multi-photon process, which scales non-linearly with 
power. Re. constraints of the crosslinking rate constants at the chosen timepoints: the reviewer 
is correct; the corresponding information comes from the binding equilibrium. The newly 
included Supplementary Material Figure S4, which shows more examples of crosslinking 
timetraces and Fig.R8 (above) further clarify this point.   
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Minor points 
 
1. Line 105, “Association and dissociation rate constants varied by several orders of 
magnitude.": Based on Fig. 2e and elsewhere, it seems like the binding rate constants vary 
quite a bit more than the dissociation rate constants, which is quite interesting, and it may be 
worth re-wording this sentence to include the difference. 
We have re-worded the passage accordingly.  
 
2. Lines 151-153: The statement that the fractional occupancy of sites within a cluster often 
trended together is quite interesting because it suggests that the context of the sequence – i.e. 
which cluster it is part of – is as important or more important for binding than the RNA 
sequence, at least the sequence beyond the GUU motif. I wonder if this point can/should be 
expanded in a sentence or two? It certainly seems like an important topic for future work. 
We have re-worded the passage accordingly.  
 
3. I am confused about Ext. Data Fig. 6b. How does the cumulative binding probability exceed 
1? I must be misunderstanding something, but I don’t know what. Also, is there a normalization 
for cluster size in this analysis? If not, it would seem that the correlation of binding probability 
with proximity to the polyadenylation site may arise because those closer to this site tend to 
have more binding sites per cluster. 
The cumulative binding probability, i.e., the addition of the binding probabilities for each binding 
can exceed 1. Values greater than 1 indicate that more than 1 Dazl is bound at all times in a 
given cluster. Theoretically, there is no upper limit, and multiple Dazl could be bound at any 
given time. For a single binding site, however, the binding probability cannot exceed 1.  
In the analysis in Fig.6, no normalization for cluster size was included. The reviewer is correct 
that clusters more proximal to the PAS contain on average more binding sites. We directly show 
this correlation in Extended Data Fig.6a. However, the number of binding sites in a cluster and 
the proximity to the cluster to the PAS are not redundant. Not all clusters that are proximal to 
PAS have a high number of binding sites and vice versa. In addition, cumulative binding 
probability can be high for clusters with few binding sites, and low for clusters with many binding 
sites. The non-redundant impact of number of binding sites and PAS proximity for Dazl function 
is also apparent in the regression models for Dazl function (Extended Data Fig.10b) where we 
show how systematic removal of parameters diminishes the predictive power of the model. 
These observations mean that both, number of binding sites and proximity to the PAS contribute 
independently to Dazl function, despite their correlation.  
 
4. P. 31, halfway down, “kxl(1 mW) and kxl(2.6 mW) were then averaged.”: Maybe this is a 
typo? The crosslinking rates for the two laser powers should definitely be different from each 
other, and indeed are reported as being quite different from each other, so it does not seem 
appropriate or useful to average them.  
Thanks for pointing this out. We have corrected the passage, which now reads: “Timecourses at 
1xDazl and high laser power (2.6mW) and low laser power (1mW) were fit separately, yielding 
average initial values for kon(1xDazl) and kdiss and initial values for kXL(1mW) and 
kXL(2.6mW).” 
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Also on p. 31, a few lines up, it seems to indicate that the starting estimates of the crosslinking 
rates were 1 s(-1) for 2.6 mW and 10 s(-1) for 1 mW. I am guessing that it was actually the 
reverse and that this is a typo. 
Thanks for noticing. This was a typo. We have corrected it.  
 
 
Referee #3: 
 
This manuscript from Sharma et al. is an important piece of work that will be of broad interest to 
the RNA community. Here, the authors developed a second-generation CLIP method called 
“KIN-CLIP” that makes use of a powerful laser to rapidly crosslink protein and RNA. By using 
this laser, the authors can infer kinetic binding values from CLIP libraries, allowing them to gain 
access to biochemical coefficients of protein–RNA interactions in living cells. Similar strategies 
have recently been applied to the microRNA field, but this is the first such approach to 
investigate RNA-binding proteins and to define biochemical coefficients purely from in vivo 
measurements. The authors apply this method to the RNA-binding protein DAZL, which is 
important for gametogenesis and mediates post-transcriptional regulation. Using their method, 
the authors find that DAZL dissociates quickly, sites spend most of their time unbound by DAZL, 
and features of efficacious sites. The authors combine features into a linear regression model to 
predict impact of binding on gene expression. This method will be very important to many in the 
community and opens up new areas of RNA biology. Nonetheless, I have some concerns about 
the paper (especially surrounding figure 4) that need to be addressed before I can support 
publication: 
 
Major comments: 
1. Does the scaling of association rate constants with the number of binding sites occur in vitro? 
More generally, how much of the differences in binding between different clusters can be 
recapitulated in vitro with just the RNA and DAZL (as opposed to binding being influenced by 
other proteins and the cellular milieu)? 
We have not examined whether the scaling of association rate constants with the number of 
binding sites occurs in vitro, because this is not currently feasible, as it has not been possible to 
purify recombinant full-length Dazl. The protein, like many other RBPs, contains low complexity, 
most likely unstructured C and N-termini that cause irreversible aggregation in attempts to purify 
the protein, which we have encountered. The recombinant Dazl RRM, which we did test in vitro 
(Fig.1), is unlikely to show the cooperativity in the association process seen in the cell.   

 
2. In Fig. 4, the analyses should be repeated, but this time looking at directly ΔTE. As I’m sure 
the authors are aware, RPF values are mix of translational changes and RNA changes (as 
evidenced by the strong correlation between ΔRNA and ΔRPF in Fig. 4b); this makes analysis 
with RPF values hard to interpret. For instance, how much of the changes in RPF values with 
high and low Dazl are explained by changes in RNA levels? Are there any other features that 
explain changes in TE? To put it another way, currently there is limited evidence that consider 
RPF changes in addition to RNA changes meaningfully impacts their predictive models. 
We appreciate the reviewer’s point and are grateful for the suggestion. We have repeated the 
analysis with the ΔTE values, which isolates and thus emphasizes the role of Dazl in translation 
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regulation. We have included the new data in Extended Data Fig.10. The analysis with the ΔTE 
values reveals statistically significant differences in the ΔTE values for different mRNA groups of 
the Dazl regulatory program within a given mRNA class. These differences are not automatically 
expected within each mRNA functional class. The ΔTE analysis thus provides further, 
independent functional validation of the Dazl regulatory program. We have also established the 
regression model based on ΔTE values, which we show as well in Extended Data Figure 10, 
(due to space constraints in the main figures). The correlation coefficient is somewhat lower 
than for the ΔRNA and ΔRPF values, but this is expected, given that ΔTE values are compound 
parameters calculated from both, RNA and RPF values.  
We would like to retain our analysis using ΔRNA and ΔRPF values to emphasize the impact of 
Dazl on both, translation and RNA level. As the reviewer notes, these two effects are difficult to 
disentangle for certain scenarios (e.g. increase or decrease in both, RPF and RNA), although 
they are clear for other cases (e.g. no change in RNA but changes in RPF, no change in RNA – 
but changes in RPF). Using just ΔTE foregoes the impact on RNA levels.  
We have amended the text, highlighting the ΔTE analysis.  
 
3. In considering poly(A) sites, how were genes with multiple 3' UTR isoforms dealt with? 
For transcripts with multiple 3’UTR length annotations, preference was given to annotation 
obtained from polyA-Seq (Ref.17). In cases when polyA-Seq annotation for a given 3’UTR was 
absent, coordinates with the longest 3’UTR annotation were utilized. We have noted this 
information now in the Materials and Methods Section.  
 
4. Much of the model building in Fig. 4 is hard to understand. For example, how much data was 
held back to test the regression model? Similarly, how was the goodness of the models 
measured? Ext. Data Fig. 10 suggests that M1 was chosen because all seven features were 
significant, but with the underlying methods missing, this is very hard to interpret.  
We appreciate the reviewer’s point and agree that the information on the model building and 
selection was insufficient. We have markedly expanded the description of the model building in 
the Materials and Methods Section and have included two additional Supplementary Figures 
(Supplementary Material Figures S5, S6) outlining the model building and evaluation process 
along with model quality control data. 
 
5. A major weakness of the paper is that the authors do not test their predictions of DAZL 
binding and effects with reporters or alternative measurements. 
We have now included data for six luciferase reporter constructs (Extended Data Fig.10h). 
Each of these reporter constructs contains the 3’UTR of a different mRNA that vary in their 
scores for the of Dazl effect on ΔRPF, which is a proxy for change in protein production. The 
change in luciferase activity measured with the reporters correlates very well with the predicted 
change in ΔRPF (R2 = 0.8, Extended Data Fig.10h). These data provide an independent test of 
our model through the measure of luciferase activity with non-endogenous RNAs. We note that 
the reporters were used and measurements were performed in a previous study (Ref.17).     
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Minor comments: 
1. The use of several abbreviations (like HH) is not intuitive for the reader and make Fig. 4 
challenging to interpret. 
We appreciate the reviewer’s comment. We see that H, M, L can be confused with the same 
designation for the group characteristics. We have changed the mRNA class labels to a four 
letter “code”: T for ΔRPF and R for ΔRNA and H – high, M- medium, L – low, for the 
corresponding changes (e.g. THRM). We have also color coded the labels. We trust this change 
makes interpretation easier.  
 
2. The color choice in the top panel of Fig. 4d is not intuitive (e.g., a graded color scheme would 
be much better), and additionally this scheme, and others, does not use an accessible palette. 
We thank the reviewer for pointing this out. We have changed the color schemes in Figure 4 
and others accordingly.  
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