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ABSTRACT: A common approach to computing protein pKas uses a continuum dielectric model in which the protein is
a low dielectric medium with embedded atomic point charges, the solvent is a high dielectric medium with a Boltzmann
distribution of ionic charges, and the pKa is related to the electrostatic free energy which is obtained by solving the
Poisson–Boltzmann equation. Starting from the model pKa for a titrating residue, the method obtains the intrinsic pKa
and then computes the protonation probability for a given pH including site–site interactions. This approach assumes
that acid dissociation does not affect protein conformation aside from adding or deleting charges at titratable sites. In
this work, we demonstrate our treecode-accelerated boundary integral (TABI) solver for the relevant electrostatic
calculations. The pKa computing procedure is enclosed in a convenient Python wrapper which is publicly available at
the corresponding author’s website. Predicted results are compared with experimental pKas for several proteins. Among
ongoing efforts to improve protein pKa calculations, the advantage of TABI is that it reduces the numerical errors in the
electrostatic calculations so that attention can be focused on modeling assumptions.

KEYWORDS: Protein pKa; acid dissociation constant; continuum dielectric model; Poisson–Boltzmann equation;
boundary integral equation; treecode.

1. INTRODUCTION
Proton transfer between the ionizable amino acids of a
solvated protein and the surrounding aqueous solvent
has an important effect on pH-dependent processes such
as enzymatic activity1 and protein–ligand binding.2 In
the ideal case of an acid with a single ionizable group, the
pKa can be measured by simple acid–base titration. The
acid dissociation reaction, HAÐA" þ Hþ, has equilib-
rium constant defined by

Ka ¼ ½A"&½Hþ&
½HA&

; ð1Þ

where [HA], [A"], [Hþ] are the equilibrium concentra-
tions of the protonated acid, its deprotonated conjugate,

and free protons. The Henderson–Hasselbalch equation,

pH ¼ pKaþ log10
½A"&
½HA&

; ð2Þ

relates the solvent pH ¼ "log10½Hþ& with the acid pKa
¼ "log10Ka and shows that pH ¼ pKa when
½HA& ¼ ½A"&, i.e. when the acid is equally likely to be
protonated or deprotonated.

Proteins however have multiple ionizable groups
that titrate at different rates depending on the solution
pH, and measuring the pKas of the various sites is more
difficult. One approach to determining protein pKas
uses chemical shifts measured experimentally by NMR
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spectroscopy,3 Alternatively, protein pKas can be pre-
dicted theoretically,4 and methods reported in the lit-
erature employ continuum dielectric models,5–7 Monte
Carlo methods,8 molecular dynamics and QM/MM
simulations,9,10 and empirical relationships.11,12

This work focuses on a continuum dielectric model
in which the protein pKas are given by electrostatic free
energy shifts, where the solvation free energy is
obtained by solving the Poisson–Boltzmann (PB)
equation.5,13,14 The protein is represented by a low
dielectric cavity with embedded atomic partial charges,
and the surrounding aqueous solvent is a high dielec-
tric medium with dissolved ions.15,16 The dielectric
interface is most commonly assumed to be the mo-
lecular surface (or solvent-excluded surface).17 The
model assumes that protonation/deprotonation has
negligible effect on the protein conformation, and the
electrostatic free energy shifts arise entirely from
changes in the protonation state of the ionizable
groups. Under this assumption, the same protein
structure is used for all protonation states, and the pKa
computation requires solving the PB equation many
times with different charge distributions to obtain the
electrostatic free energy shifts. This calls for an accurate
and efficient numerical method to handle the chal-
lenges of PB simulations which arise due to the irreg-
ular geometry of the molecular surface, the jump in
dielectric constant across the surface, the singularity of
the atomic partial charges representing the protein, and
the infinite domain on which the problem is posed.

Among several numerical PB solvers developed in
the literature, the treecode-accelerated boundary inte-
gral (TABI) method is chosen for the pKa computa-
tions in this work. The boundary integral formulation
used in TABI analytically satisfies the dielectric jump
conditions and accounts for the singular charges and
infinite domain, while the irregular geometry of the
molecular surface is resolved by triangulation. Com-
pared to alternative grid-based PB solvers, the TABI
solver is particularly useful in treating the complex
charge distributions necessary in pKa calculations. Our
numerical results show that TABI can provide accurate
electrostatic free energies and protein pKas even with a
relatively coarse triangulation. A Python wrapper was
written to pipeline the entire pKa computing procedure
using TABI and is publicly available.

The rest of this article is organized as follows. Sec-
tion 2 presents the continuum dielectric model based
on the PB equation. Section 3 presents the boundary
integral form of the PB equation and the TABI solver.
Section 4 reviews how protein pKas are computed from
statistical mechanics. Section 5 describes the pKa

calculating process and its implementation in a Python
wrapper. Section 6 reports results in computing pKas
for two sample proteins. The article ends with a con-
clusion section summarizing the main points.

2. CONTINUUM DIELECTRIC MODEL

Figure 1 illustrates the model showing the protein do-
main !p, solvent domain !s, and the interface " be-
tween !p and !s, which in this work is taken to be the
molecular surface (or solvent excluded surface).18

Partial charges qk are located at atoms yk 2 !p repre-
senting the protein for k ¼ 1 : Nc, while a Boltzmann
charge distribution in !s represents the dissolved
ions. Applying Gauss’s law to the charge distributions
in !p;!s, and taking the limit of weak ionic strength
leads to the linear PB equation for the electrostatic
potential,

"r ) ð!ðxÞr"ðxÞÞ þ ## 2ðxÞ"ðxÞ

¼ 4$
XNc

k¼1

qk%ðx" ykÞ; x 2 !p;!s: ð3Þ

The potential and electric displacement are continuous
across the interface,

"pðxÞ ¼ "sðxÞ; !p
@"pðxÞ
@n

¼ !s
@"sðxÞ
@n

; x 2 ";

ð4Þ

where the subscripts indicate limiting values from ei-
ther domain, and the potential satisfies the far-field
boundary condition, "ðxÞ ! 0 as jxj ! 1. The di-
electric constant and screening parameter are taken to

Fig. 1. Dielectric continuum model of solvated protein, protein
domain !p with dielectric constant !p and partial charges qk at
atom locations yk; k ¼ 1 : Nc, solvent domain !s with dielectric
constant !s and dissolved ions (þ/"), molecular surface ".
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be piecewise constant,

!ðxÞ ¼
!p; x 2 !p

!s; x 2 !s;

(
## 2ðxÞ ¼

0; x 2 !p

!s#2; x 2 !s

(
;

ð5Þ

where # is the inverse Debye length determined by the
ion concentration I in the solvent (see Refs. 19 and 20
for details on the definition and units of these para-
meters). We consider several values for the protein
dielectric constant !p, with solvent dielectric constant
!s ¼ 80 and inverse Debye length # ¼ 0:1257Å"1

corresponding to ion concentration I ¼ 0:15M.
The PB equation (3) has analytic solutions only for

simple interface geometries such as a plane or sphere,
and for general molecular surfaces, it is solved nu-
merically using methods described in several compre-
hensive reviews.21,22 Numerical solution of the PB
equation faces several challenges, in particular the
protein molecular surface is geometrically complex, the
dielectric constant is discontinuous across the molec-
ular surface, the protein is represented by singular
atomic partial charges, and the domain is unbounded.
Numerical methods fall into two main categories: grid-
based methods discretize the equation directly on a
volumetric grid using finite-difference or finite-element
approximations,23–30 while boundary element methods
solve an equivalent integral equation on the triangu-
lated molecular surface.31–38 Boundary element meth-
ods effectively address the challenges mentioned above,
but they result in dense linear systems which can be
expensive to solve by iterative methods such as
GMRES.39 In this work, we employ a treecode to
compute the dense matrix–vector products required in
GMRES iteration, thereby reducing the operation count
from OðN 2Þ to OðN logNÞ, where N is the number of
faces in the triangulation of the molecular surface. The
resulting TABI solver35 is described in the next section.

3. TABI SOLVER

This section describes the boundary integral form of
the PB equation,33 then the discretization of the inte-
gral equations, then the treecode algorithm for fast
matrix–vector product and finally the choice of the
MSMS density parameter for triangulating the molec-
ular surface.

3.1. Boundary integral form of PB equation

Applying Green’s second identity to Eq. (3), the elec-
trostatic potential in each domain can be expressed in

terms of single-layer and double-layer potentials on the
molecular surface33

"ðxÞ ¼
Z

"
G0ðx;yÞ

@"ðyÞ
@n

" @G0ðx;yÞ
@n

"ðyÞ
! "

dSy

þ
XNc

k¼1

qkG0ðx;ykÞ; x 2 !p; ð6aÞ

"ðxÞ ¼
Z

"
"G#ðx;yÞ

@"ðyÞ
@n

!

þ @G#ðx;yÞ
@n

"ðyÞ
"
dSy; x 2 !s; ð6bÞ

where the Coulomb potential and screened Coulomb
potential are

G0ðx;yÞ ¼
1

4$jx" yj ; G#ðx;yÞ ¼
e"#jx"yj

4$jx" yj :

ð7Þ

The singular charges in the protein domain are repre-
sented by the Coulomb potential source term in
Eq. (6a), and the far-field boundary condition, "ðxÞ !
0 as jxj ! 1, is analytically satisfied.

Enforcing the interface conditions in Eq. (4) yields a
set of boundary integral equations relating the surface
potential "1 and its normal derivative @"1=@n on ",

1
2
ð1þ "Þ"1ðxÞ

¼
Z

"
K1ðx;yÞ

@"1ðyÞ
@n

þ K2ðx;yÞ"1ðyÞ
! "

dSy

þ S1ðxÞ; x 2 "; ð8aÞ

1
2
ð1þ ""1Þ @"1ðxÞ

@n

¼
Z

"
K3ðx;yÞ

@"1ðyÞ
@n

þ K4ðx;yÞ"1ðyÞ
! "

dSy

þ S2ðxÞ; x 2 "; ð8bÞ

where " ¼ "2="1 is the ratio of dielectric constants. The
kernels K1;2;3;4 and source terms S1;2 are linear com-
binations of G0, Gk and their first- and second-order
normal derivatives.33,35 Note that Eqs. (8a) and (8b) are
coupled integral equations of the second kind, and
together with the properties of the kernels, this ensures
that they are well-conditioned. The electrostatic free
energy of the solvated protein is

$G ¼ 1
2

XNc

j; k¼1
j 6¼ k

qjqk
jyj " ykj

þ 1
2

XNc

k¼1

qk"reacðykÞ; ð9Þ
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where the first term on the right is the Coulomb energy
and the second term is the electrostatic solvation
energy, and the reaction potential at the kth charge site
is

"reacðykÞ

¼
Z

"
K1ðyk;yÞ

@"1ðyÞ
@n

þ K2ðyk;yÞ"1ðyÞ
! "

dSy:

ð10Þ

3.2. Discretization of boundary integral
equations

The molecular surface " is triangulated using MSMS,18

where the density parameter d is the number of vertices
per Å2 of surface area. Figure 2 shows two examples
with a relatively coarse density d ¼ 2, (a) BPTI, (b)
OMTKY3. Letting xi, i ¼ 1 : N denote the triangle
centroids, the integrals in Eqs. (8a) and (8b) are dis-
cretized by a centroid collocation boundary element
method,

1
2
ð1þ "Þ"1ðxiÞ

¼
XN

j¼1
j 6¼ i

K1ðxi;xjÞ
@"1ðxjÞ

@n
þ K2ðxi;xjÞ"1ðxjÞ

! "
Aj

þ S1ðxiÞ; ð11aÞ

1
2
ð1þ ""1Þ @"1ðxiÞ

@n

¼
XN

j¼1
j 6¼ i

K3ðxi;xjÞ
@"1ðxjÞ

@n
þ K4ðxi;xjÞ"1ðxjÞ

! "
Aj

þ S2ðxiÞ; ð11bÞ

where Aj is the triangle area, and the j ¼ i term in the
sums is omitted to avoid the kernel singularity. Equa-
tion (10) is discretized in a similar way to obtain the
reaction potential. Equations (11a) and (11b) form a
2N * 2N linear system for the values of the surface
potential "1ðxiÞ and its normal derivative @"1ðxiÞ=@n
at the triangle centroids. The system is solved by
GMRES iteration which requires a matrix–vector
product at each step.39 Since the matrix is dense,
computing the product by direct summation requires
OðN 2Þ operations, which is prohibitively expensive
when N is large. The next subsection describes the
treecode algorithm used to reduce the cost of the
matrix–vector product.

3.3. Treecode acceleration of matrix–vector
product

We summarize the treecode algorithm and refer to
previous work for more detail.40,41 The matrix–vector
product arising from Eqs. (11a) and (11b) consists of
terms in the form of charged particle interactions,

Vi ¼
XN

j¼1
j 6¼ i

Kðxi;xjÞqj; i ¼ 1; . . . ;N; ð12Þ

where Vi is the potential at a target particle xi, K is one
of the kernels, and qj is a charge associated with the
source particle xj. To evaluate the potentials Vi rapidly,
the particles xi are divided into a hierarchy of clusters
having a tree structure as depicted in Fig. 3(a). Then Vi

(a)

(b)

Fig. 2. Triangulation of protein molecular surfaces using MSMS18

with density d ¼ 2: (a) bovine pancreatic trypsin inhibitor (BPTI,
PDB ID 4pti) and (b) turkey ovomucoid third domain (OMTKY3,
PDB ID 2ovo).
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is evaluated as a sum of particle–cluster interactions,

Vi +
X

C2Ni

X

xj2C
Kðxi;xjÞqj þ

X

C2Fi

Xp

jjkjj¼0

* akðxi;xcÞmkðCÞ; ð13Þ

where C denotes a cluster, and Ni; Fi denote the near-
field and far-field clusters of particle xi. Figure 3(b)
depicts a single particle–cluster interaction. The first
term on the right-hand side of Eq. (13) is a direct sum
for particles xj near xi, while the second term is a pth
order Cartesian Taylor approximation about the cluster
center xc, for clusters that are well-separated from xi,
where akðxi;xcÞ are the Taylor coefficients and mkðCÞ
are the cluster moments.41

A particle xi and cluster C are well-separated if the
multipole acceptance criterion (MAC) is satisfied,
rc=R , &, where rc is the cluster radius, R ¼ jxi " xcj is
the particle–cluster distance and & is a user-specified

parameter.40 The treecode cycles through the particles
xi and interacts with the clusters in the tree; if the MAC
is satisfied, then the Taylor approximation is used;
otherwise, the child clusters are checked, unless the
cluster is a leaf at which point direct summation is
used. The accuracy of the treecode is controlled by the
Taylor approximation order p and MAC parameter &.
Using the treecode, the operation count for the matrix–
vector product is reduced to OðN logNÞ; the factor N is
the number of particles xi, and the factor logN is the
number of levels in the tree. This completes the de-
scription of the TABI solver.35

3.4. Choice of MSMS density

The MSMS density d is critical in determining the
accuracy of the TABI solver. To demonstrate this, we
computed the electrostatic free energy $G for
two proteins, bovine pancreatic trypsin inhibitor

(a) (b)

Fig. 3. Treecode schematic in 2D: (a) tree structure with four levels of particle clusters; (b) interaction between particle xi and cluster
C ¼ fxjg, cluster center xc, cluster radius rc, particle-cluster distance R ¼ jxi " xcj.

Table 1. Electrostatic free energy $G in Eq. (9) computed by TABI solver, (a) protein
BPTI, (b) protein OMTKY3, protein dielectric constant !p ¼ 4;20, MSMS density
d ¼ 5;10;20; 40 vertices/Å2, the number displayed for d ¼ 5;10;20 is the difference
in $G from the d ¼ 40 value in units of kcal/mol, relative error (%) is computed
using d ¼ 40 value as reference, run time in seconds.

$G (kcal/mol) Relative error (%) Run time (s)

d !p ¼ 4 !p ¼ 20 !p ¼ 4 !p ¼ 20 !p ¼ 4 !p ¼ 20

(a) BPTI
5 "17.3 "2.6 0.29 0.22 47.8 43.5
10 "6.0 "0.9 0.10 0.08 106.4 91.3
20 "1.8 "0.3 0.03 0.02 277.9 205.5
40 "5888.5 "1162.9 — — 816.9 461.5

(b) OMTKY3
5 "11.2 "1.6 0.26 0.19 56.2 83.7
10 "3.9 "0.6 0.09 0.07 100.2 79.2
20 "1.2 "0.2 0.03 0.02 194.4 169.4
40 "4326.8 "852.6 — — 468.2 381.8
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(BPTI, PDB ID: 4pti)42 and turkey ovomucoid third
domain (OMTKY3, PDB ID: 2ovo).43 The treecode
used MAC parameter & ¼ 0:8 and order p ¼ 3, which
ensures that the treecode approximation error is less
than the discretization error in the boundary element
method. We use PDB2PQR44 to assign partial charges
to the PDB protein structures based on the PARSE
force field.45 Table 1 presents results for MSMS density
d ¼ 5; 10; 20; 40 and protein dielectric constant
!p ¼ 4; 20; the number displayed for d ¼ 5; 10; 20 is
the difference in $G from the d ¼ 40 value in units of
kcal/mol, followed by the relative percent error using
the d ¼ 40 value as the reference. The last column in
Table 1 shows the run time in seconds using a Mac-
Book Pro with 2.2 GHz i7 Intel Core and 16 GB 1600
MHz DDR3 memory; these results used block diagonal
preconditioning to reduce the number of GMRES
iterations.46 The $G values vary significantly with the
protein dielectric constant !p, but for each choice of !p,
the computed $G converges to the reference value as
the MSMS density d increases. With density d ¼ 10,
the relative error is 0.1% or less, and the run time is less
than 2min; this density value is used in the pKa
computations below.

4. PROTEIN pKa FROM FREE ENERGY
SHIFTS

The equilibrium constant of the acid dissociation
reaction is related to the Gibbs free energy,

$G ¼ "RT lnKa ¼ RT ln 10 ) pKa; ð14Þ

where R ¼ 8:31 J/(mol K) is the gas constant and
T ¼ 298 K is the temperature in this work, and this
enables protein pKas to be computed from free energy
shifts due to protonation/deprotonation.5 Figure 4
shows the thermodynamic cycle for acid dissociation of
a titrating residue in a protein, where AH and A" stand

for the protonated and deprotonated states of the res-
idue, respectively, and subscripts s and p stand for the
solvent and protein environments, respectively.47 The
cycle expresses the free energy shifts on transferring the
residue from the solvent environment to the protein
environment, in its protonated and deprotonated
states.

The top arrow in the cycle corresponds to depro-
tonating the isolated amino acid in the solvent envi-
ronment and yields the model pKa,

pKa0 ¼ 1
RT ln 10

$GsðAH;A"Þ; ð15Þ

which can be determined experimentally. Table 2
records the model pKa values for titrating amino
acids.48 The bottom arrow in the cycle corresponds to
deprotonating the amino acid in the protein environ-
ment, which can be expressed as

$GpðAH;A"Þ ¼ $GsðAH;A"Þ þ$Gs;pðA"Þ
"$Gs;pðAHÞ; ð16Þ

where the first term on the right is the free energy for
deprotonating the amino acid in the solvent environ-
ment, and the last two terms give the free energy shift
for moving the indicated group from the solvent to the
protein environment. It is assumed here that the pro-
tein conformation remains fixed during acid dissocia-
tion, and that nonpolar effects are negligible, and
hence, the $G values in this work refer to the elec-
trostatic free energy in Eq. (9). Starting from the model
pKa for a given ionizable group on an amino acid side
chain, the procedure computes the intrinsic pKa of the
site and then takes site–site interactions into account to
determine the site pKa by computational titration.5,14,49

5. PROCEDURE FOR COMPUTING PROTEIN
pKas

The computational procedure is composed of four
steps described in the following.

Step 1. Prepare PQR files
This step prepares the PQR files for the protein in
various protonation states. The protein structure is
obtained from the Protein Data Bank (www.pdb.org),
and charges are assigned using PDB2PQR44 with pro-
tonation states specified using the residue IDs in
Table 2. For a protein with Nt titrating sites, we need a
total of 1þ 2Nt þ 1

2 ðN
2
t " NtÞ PQR files with charge

distributions specified as follows: (a) one file with all
titrating sites deprotonated, keeping the background

Fig. 4. Thermodynamic cycle for acid dissociation of a titrating
residue in a protein, AH=A" = protonated/deprotonated residue,
subscript s=p ¼ solvent/protein environment.
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charges of nontitrating sites on, (b) 2Nt files having all
titrating sites but one deprotonated, once with back-
ground charges on and once with background charges
off, (c) 1

2 ðN
2
t " NtÞ files with pairs of titrating sites

protonated and all other titrating sites deprotonated,
and with background charges off.

Step 2. Call TABI solver for electrostatics
This step calls the TABI solver to compute the elec-
trostatic free energy $G in Eq. (9) for each proton-
ation state represented by a PQR file, where the
structure and charge distribution in the file gives the
source term on the right side of the PB equation in
Eq. (3). The TABI solver is called with input physical
parameters (dielectric constants, ion concentration)
and numerical parameters (MSMS density, treecode
MAC, order of Taylor approximation). After com-
pleting this step, $G is available for each protonation
state, and these are used to calculate the intrinsic pKas
in the next step.

Step 3. Compute intrinsic pKas
The intrinsic pKa for the ith titrating site of the protein
accounts for single-site effects, i.e. when the ith site is
protonated, the other titrating sites are deprotonated,
and the background charges are on; the expression is

pKaintðiÞ ¼ pKa0ðiÞ þ 1
RT ln 10

ð$GpðAH;A"Þ

"$GsðAH;A"ÞÞ: ð17Þ

The first term on the right, pKa0ðiÞ, is the model pKa
for the residue at the ith titrating site as determined
experimentally and recorded in Table 2.48 The next two
terms are electrostatic free energy shifts; $GpðAH;A"Þ
is the shift between the protein with only the ith ti-
trating site protonated and the protein with all titrating
sites deprotonated, while $GsðAH;A"Þ is the same
shift for the residue in the solvent environment.
These shifts are computed using the $G values
obtained in Step 2; note that TABI uses units of

kcal/mol for free energy, so the computed $G values
are scaled by RT ln 10 to obtain pKaintðiÞ.

Step 4. Titration with site–site interactions
The pKa of a titrating site is the pH at which the site is
equally likely to be protonated or deprotonated. In a
protein with Nt titrating sites, let & 2 f0; 1gNt define a
protonation state, where &i is the ith entry of &, and
&i ¼ 1 means that the ith site is protonated, while &i ¼
0 means it is deprotonated. The pKa of the ith site is the
pH satisfying < &i;pH >¼ 0:5, where the probability
that the ith site is protonated at a particular pH is given
by the thermodynamic average,5,13,14

< &i;pH >¼
P

&&i expð"$Gð&; pHÞ=RTÞP
& expð"$Gð&; pHÞ=RTÞ

: ð18Þ

In this expression, the pH-dependent protonation state
energy is defined by

$Gð&; pHÞ ¼ RT ln 10
X

i

&iðpH" pKaintðiÞÞ

þ 1
2

X

i 6¼j

&i&j$Gij; ð19Þ

where pKaintðiÞ is the intrinsic pKa of the ith site
computed in Step 3. Equation (19) also requires the
site–site interaction energy defined by

$Gij ¼
1
2
ðt Ti Wtj þ t Tj WtiÞ

¼ 1
2
ðti þ tjÞTWðti þ tjÞ

" 1
2
t Ti Wti "

1
2
t Tj Wtj; ð20Þ

where ti is a vector of partial charges where the charges
of the ith titrating site are on, and the charges of the
other titrating sites and background charges are off,
while W is the mapping from partial charges to po-
tential values at the charge sites as computed by the
TABI solver. The first equality in Eq. (20) expresses

Table 2. Titrating amino acids, residue ID, residue type, model pKa (pKa0)
determined experimentally,48 residue ID for protonated/deprotonated states
with total charge in parentheses.

Residue ID Residue type pKa0 Protonated Deprotonated

ASP Acidic 4.0 ASH (0) ASP ("1)
GLU Acidic 4.4 GLH (0) GLU ("1)
CYS Polar uncharged 9.5 CYX (0) CYM ("1)
TYR Polar uncharged 9.6 TYR (0) TYM ("1)
HIS Basic 6.3 HIP (+1) HIE (0)
LYS Basic 10.4 LYS (+1) LYN (0)
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$Gij as the symmetric interaction of site i and site j,
while the second equality in Eq. (20) reduces the cost of
computing the $Gij values from OðN 2

t Þ to OðNtÞ.
Since there are 2Nt protonation states, computing

the thermodynamic average in Eq. (18) explicitly is
only feasible for relatively small proteins. The proteins
considered in this work (BPTI, OMTKY3) were chosen
for two reasons: (1) they have few enough titrating sites
so that the thermodynamic average can be computed
explicitly, enabling us to avoid numerical errors in-
troduced by approximating < &i; pH >, and (2) ex-
perimental pKas are available for most of the titrating
sites.12 Future work will consider combining the TABI
solver for electrostatics with more efficient procedures
for computing the thermodynamic average such as
the reduced-site approximation,5,50 Monte Carlo
methods,13,14,51 and clustering algorithms.52

5.1. Examples of titration curves

For each titrating site, the protonation probability
< &i; pH > is sampled from pH ¼ 1 to pH ¼ 14 with
step size of 0.2, and cubic spline interpolation is used to
find the pH at probability 1/2 giving the predicted site
pKa. In this way, each active site has a titration curve
and Fig. 5 shows two examples for which the titration
curve has the conventional sigmoidal shape. Figure 5(a)
is for the basic residue LYS15 on protein BPTI at
!p ¼ 20, which predicts pKa ¼ 10.47 versus the ex-
perimental value 10.4, while Fig. 5(b) is for the acidic
residue GLU43 on protein OMTKY3 at !p ¼ 8, which
predicts pKa = 4.79 versus the experimental value 4.8.
The results indicate that our computational procedure
is capable of achieving good agreement with experi-
ment, although already there is a suggestion that the

choice of protein dielectric constant !p plays an
important role.

5.2. Python wrapper

A convenient Python wrapper was written to pipeline
the entire pKa calculating procedure and is publicly
available for download on the corresponding author’s
website (faculty.smu.edu/wgeng/research/pka
tabi.html) at Southern Methodist University; also
available there is the TABI source code for electro-
statics and multi-platform binary versions of MSMS18

for molecular surface triangulation. The user specifies
parameters for the PB equation (dielectric constants,
ion concentration) and the TABI solver (MSMS den-
sity, treecode MAC, order of Taylor approximation) in
the user data file. On a computer with Python and
Fortran compilers installed, and the protein specified
by its four-digit PDB ID, the user runs the wrapper by
typing the following command:

python wrapper_pka.py PDBID.

The wrapper downloads the protein structure from
the Protein Data Bank, identifies the titrating sites, calls
the TABI solver for electrostatics, computes the in-
trinsic pKa and protonation probability of each site
including site–site interactions as described above, and
returns the predicted pKas.

6. NUMERICAL RESULTS

Table 3 presents results for and OMTKY3 with two
values of the protein dielectric constant, !p ¼ 4; 20.
Successive columns give the residue ID, model pKa
(pKa0), experimental pKa (pKaexp), pKa shift with

(a) (b)

Fig. 5. Computed titration curves, protonation probability of ionizable residue is plotted versus pH, blue circles (< &i; pH >), red stars
(predicted pKa): (a) LYS15 on protein BPTI, predicted pKa ¼ 10.47 (!p ¼ 20), experimental pKa ¼ 10.4; (b) GLU43 on protein OMTKY3,
predicted pKa ¼ 4.79 (!p ¼ 8), experimental pKa ¼ 4.8.
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respect to experiment ($pKa0;exp), intrinsic pKa
(pKa int), and predicted pKa (pKapre); both proteins
have 12 titrating residues for which experimental pKas
are available.12 The bold values in each row are the
closest to experiment, and the RMSD is with respect to
the experimental pKa.

For BPTI, the model pKa and intrinsic pKa are each
closest to experiment for five sites, while the predicted
pKa is closest for two sites. The RMSD for the model
pKa is 0.63 pK units. At the lower dielectric constant
!p ¼ 4, the RMSD for the intrinsic pKa and predicted
pKa is more than 2 pK units, while at the higher value
!p ¼ 20 they are essentially the same as the model pKa
RMSD. For three of the twelve residues (GLU7, TYR10,
LYS46), the calculations gave positive pKa shift
whereas the actual shift is negative. However, the
calculations do fairly well in capturing the three largest
pKa shifts including the negative shift $pKa0;exp ¼
"0:8 for ASP50, and two positive shifts $pKa0;exp ¼
þ1:4 for TYR23, $pKa0;exp ¼ þ1:0 for TYR35.

For OMTKY3, the model pKa is closest to experi-
ment for five sites, while the intrinsic pKa and pre-
dicted pKa are closest for four sites and three sites,
respectively. The RMSDs are higher than for BPTI, but
the trends are similar. The model pKa has the smallest
RMSD at slightly more than 1 pK unit. At the lower
dielectric constant !p ¼ 4, the RMSD for the intrinsic
pKa and predicted pKa is 2.5 pK units or more, while at
the higher value !p ¼ 20 they improve to less than
1.4 pK units, but remain higher than the model pKa
RMSD. In this case, the predicted pKa has slightly
smaller RMSD than the intrinsic pKa. For five of the
twelve residues (ASP27, GLU10, GLU19, LYS13,
LYS34), the calculations gave positive pKa shifts
whereas the actual shifts are negative. Among the five
residues with pKa shifts greater than 1 pK unit, the
calculations fail to capture two negative shifts
$pKa0;exp ¼ "1:8 for ASP27, $pKa0;exp ¼ "1:2 for
GLU19; however, the calculations do fairly well in
capturing the negative shift $pKa0;exp ¼ "1:6 for

Table 3. Numerical results for BPTI, OMTKY3, protein dielectric constant !p ¼ 4;20, residue ID,
model pKa (pKa0), experimental pKa (pKaexp), pKa shift ($pKa0;exp), intrinsic pKa (pKa int),
predicted pKa (pKapre), bold value is closest to pKaexp, RMSD is with respect to pKaexp.12

BPTI !p ¼ 4 !p ¼ 20 !p ¼ 4 !p ¼ 20

ID pKa0 pKaexp $pKa0;exp pKa int pKapre

ASP3 4.0 3.6 "0:4 3.61 3.89 3.88 3.96
ASP50 4.0 3.2 "0:8 0.22 3.23 3.08 3.87
GLU7 4.4 3.9 "0:5 5.38 4.66 5.84 4.69
GLU49 4.4 4.0 "0:4 3.87 4.37 5.05 4.70
TYR10 9.6 9.4 "0:2 12.01 10.38 12.23 10.46
TYR21 9.6 10.0 þ0:4 11.23 10.15 13.04 10.51
TYR23 9.6 11.0 þ1:4 16.64 11.24 17.46 11.42
TYR35 9.6 10.6 þ1:0 10.11 9.84 10.19 9.86
LYS15 10.4 10.4 þ0:0 10.38 10.61 10.32 10.47
LYS26 10.4 10.1 "0:3 10.29 10.54 10.16 10.39
LYS41 10.4 10.6 þ0:2 11.65 11.31 12.88 11.44
LYS46 10.4 9.9 "0:5 11.61 11.16 11.15 10.60
RMSD 0.63 2.15 0.63 2.43 0.65

OMTKY3
ASP7 4.0 2.4 "1:6 1.31 3.55 2.26 3.82
ASP27 4.0 2.2 "1:8 10.20 5.70 6.26 4.90
GLU10 4.4 4.1 "0:3 4.89 4.91 7.09 5.36
GLU19 4.4 3.2 "1:2 5.76 4.80 8.25 5.26
GLU43 4.4 4.8 þ0:4 4.99 4.72 4.95 4.69
HIS52 6.3 7.5 þ1:2 7.54 7.27 7.94 7.30
TYR11 9.6 10.2 þ0:6 13.30 10.68 13.31 10.76
TYR20 9.6 11.1 þ1:5 11.49 10.29 12.79 10.78
LYS13 10.4 9.9 "0:5 12.16 11.63 12.20 11.48
LYS29 10.4 11.1 þ0:7 11.38 11.24 11.80 11.30
LYS34 10.4 10.1 "0:3 12.53 11.66 12.32 11.45
LYS55 10.4 11.1 þ0:7 11.77 11.36 12.10 11.28
RMSD 1.04 2.79 1.39 2.50 1.29

DOI: 10.1142/S2737416520420065
183 J. Comput. Biophys. Chem. 2021, 20 (2), 175–187

Journal of Computational Biophysics and Chemistry Research

J. 
C

om
pu

t. 
B

io
ph

ys
. C

he
m

. 2
02

1.
20

:1
75

-1
87

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

M
IC

H
IG

A
N

 A
N

N
 A

R
B

O
R

 o
n 

06
/1

1/
21

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



ASP7, and two positive shifts $pKa0;exp ¼ þ1:2 for
HIS52, $pKa0;exp ¼ þ1:5 for TYR20.

It is noteworthy that in terms of RMSD, the model
pKa does as well or better than the predicted pKa,
emphasizing the limitations of continuum dielectric
models for predicting protein pKas.53,54 This could
possibly be remedied by including nonpolar effects or
spatial variation of the protein dielectric constant.
Other improvements suggested in the literature call for
including the effect of protein conformational flexibil-
ity,55,56 replacing the discontinuous dielectric interface
with a smooth Gaussian function to partially represent
solvent penetration57,58 and using microscopic models
to account for atomic polarization and dipole reorien-
tation.59,60 In Table 3 the higher protein dielectric
constant !p ¼ 20 yields smaller RMSD than the lower
value !p ¼ 4, as found in several previous studies.13,61,62

Nonetheless, for some residues, !p ¼ 4 yields better
agreement with experiment than !p ¼ 20 (ASP3 in
BPTI, HIS52 in OMTKY3); this is consistent with
previous results showing that the best choice of protein
dielectric constant for a given residue can depend on
the residue’s exposure to solvent.63 Overall, the present
results indicate the complexity of these pH-dependent
processes and they support the need for further
investigations to develop a more physically realistic yet
computationally tractable model.

To further test our pKa computing procedure, we
chose five other proteins from the pKa database col-
lected by Pahari et al.64 The database contains more
than 200 proteins with experimental pKas and our
selection is due to the efficiency limitations of our
current procedure which solves OðN 2

t Þ PB equations
and involves Oð2NtÞ titrating site–site interactions; a
significantly faster version of TABI and a more efficient

strategy to accelerate the site–site interactions are
under development. Table 4 reports the RMSD of the
intrinsic pKa, predicted pKa, and model pKa compared
with experimental pKas64 for each protein and for the
total set of residues. From this table, we observe similar
trends as seen above with BPTI and OMTKY3, namely
that including site–site interactions in the predicted
pKa do not significantly improve upon the intrinsic
pKa, and the computed pKa (intrinsic or predicted) on
average is not as good as the model pKa in approaching
the experimental pKa. This reinforces the need to
improve the current continuum dielectric model along
the lines mentioned above.

7. CONCLUSION

A common approach to computing protein pKas uses a
continuum dielectric model in which the protein is a
low dielectric medium with embedded atomic point
charges, the solvent is a high dielectric medium with a
Boltzmann distribution of ionic charges, and the pKa is
related to the electrostatic free energy which is obtained
by solving the PB equation. Starting from the model
pKa for a titrating residue, the method obtains the
intrinsic pKa and then computes the protonation
probability for a given pH including site–site interac-
tions.5,13 This approach assumes that acid dissociation
does not affect protein conformation aside from adding
or deleting charges at titratable sites. In this work, we
demonstrated our TABI solver for the relevant elec-
trostatic calculations.35 The TABI code accurately
resolves the complex charge distributions of protonated
and deprotonated states using the appropriate analytic
Green’s functions. The pKa computing procedure is
enclosed in a convenient Python wrapper which is
publicly available at the corresponding author’s
website.

Results were presented for several proteins com-
pared with experimental data. In terms of RMSD with
respect to experimental values for the entire set of ti-
tratable sites on each protein, the model pKa does as
well or better than the intrinsic pKa and predicted pKa.
Nonetheless, the calculations did succeed for several
residues with the largest pKa shifts from the model
pKa. Among ongoing efforts to improve protein pKa
calculations,6 the advantage of TABI is that it reduces
the numerical errors in the electrostatic calculations so
that attention can be focused on modeling assump-
tions. Further improvements to TABI are expected in
future work using our recently developed GPU-accel-
erated barycentric treecode.65,66

Table 4. Results for five proteins selected from a pKa
database,64 protein dielectric constant !p ¼ 20, column 1
(PDB ID), column 2 (number of atoms), column 3 (number
of residues for which experimental pKas are known), col-
umns 4, 5, 6 (RMSD for intrinsic pKa int, predicted pKapre,
model pKa0, compared with experimental pKaexp), last row
gives results for all five proteins.

PDB ID Natom Nres pKa int;exp pKapre;exp pKa0;exp

1PGA 436 13 0.85 0.65 0.51
2QMT 438 13 1.30 1.39 0.51
2CI2 521 10 1.18 1.52 0.84
1IGD 468 10 1.08 1.19 0.46
1BPI 460 8 0.94 1.03 0.56
Total — 54 1.09 1.19 0.59
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