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Abstract

We study the effect of small random advection in two models in turbulent combustion. Assuming
that the velocity field decorrelates sufficiently fast, we (i) identify the order of the fluctuations
of the front with respect to the size of the advection, and (ii) characterize them by the solution
of a Hamilton-Jacobi equation forced by white noise. In the simplest case, the result yields, for
both models, a front with Brownian fluctuations of the same scale as the size of the advection.
That the fluctuations are the same for both models is somewhat surprising, in view of known
differences between the two models.

1 Introduction

We are interested in the rigorous understanding of the effect of a small random advective term,
which varies on large scales, on the asymptotic behavior of two types of fronts arising in turbulent
combustion, population dynamics, and various other physical systems, which in the absence of
advection yield the same front.

The first model is the so-called G-equation. It is a positively homogeneous of degree one Hamilton-
Jacobi equation used to describe front propagation governed by Huygen’s principle. In its simplest
form, that is without advection, the G-equation yields fronts moving with constant normal velocity.
The G-equation is derived as a simplified model when the advection varies on an integral length
scale.

The second model is an eikonal equation that is related to a turbulent reaction-diffusion equation.
The combined effects of reaction, advection, and diffusion yield complex behavior, including the
failure of Huygen’s principle, that has drawn significant mathematical interest.

There is a long history of developing and using simplified models for turbulent combustion; we refer
the reader to the book of Williams [16], the introduction of the work by Majda and Souganidis [12],
and references therein. In [12], the authors develop a mathematically rigorous framework to un-
derstand the connection between the advective reaction-diffusion models and the G-equation. One
of the conclusions is that, when the advection varies on large length scales, the front asymptotics
may be different, see [12, Appendix BJ.
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In [13], Mayo and Kerstein study small advection perturbations of the G-equation and formally
obtain that the correction of the front location is given by a Hamilton-Jacobi equation forced by
one-dimensional (in the direction of the front) white noise.

Here, we provide a rigorous mathematical justification of this result. In addition, we study the
asymptotics of the second model, that is, the eikonal equation.

A somewhat surprising conclusion is that these two models have the same highest-order asymptotics
and first-order correction. In particular, the result implies that the disparity found in [12] is a large-
advection phenomenon.

We next describe the setting. We work in R™ with n > 2 and denote elements as (z,y) with
r € R" ! and y € R. We also write (z,¢) for elements of R” with € R"™! and ¢ € R, when ¢
plays the role of a “slow variable.” Finally, we set Ry :={y € R: 0 < +y < oo}.

For our results, we require an appropriate smooth approximation of white noise, often referred to
as mild white noise, which we denote by w. The precise definition and assumptions are given in
Section 2. Here, we only remark that, if w is mild white noise, then, as e — 0, e ' [V w(z/€*)dz
converges in distribution to a Brownian motion.

The random advection whose effect we investigate is

u(z,y,t) = (ui(z,y,t),u)(z, t)w(y)),

where u; and wu are smooth and bounded. We study fronts that, on average, propagate in the
y-direction, so that u; and ujw are the perpendicular and parallel advective forces respectively.

To state the results, we define two objects that will be of considerable importance to our study
since they provide the correction due to the small advection. For a fixed standard one-dimensional
Brownian motion W, we consider the stochastic Hamilton-Jacobi equation

{dx + 3 Dax|?dg = —uy (&, 0)dW (€) in R*7 xRy, (1.1)

x=0 on R" 1 x{0}.

and its viscous counterpart

{dXvisc + (%|DCEXViSC|2 - %AIXViSC) d€ = _uH(fv O)dW(g) in R"!x R+, (1 2)

Xvisc = 0 on R»1x {0}

Because of the lack of regularity of dI¥ in (1.1) and (1.2), the classic notion of viscosity solution is
not applicable here. At the end of Section 2, we explain how to make sense of (1.1) and (1.2).

Next, we introduce the models and describe the results.

The G-equation
We fix a > 1 and consider the initial value problem

(1.3)

G§ + eu(z,y,e*t) - DG+ |DG| =0 in R" xRy,
G =Gy on R"™x {0},

where G is a “front-like” initial datum (see Assumption 2.1), the simplest example being Go(z,y) =
y. We are interested in the evolution of the“front,” that is, the 0-level set of G¢ at time ¢, which



we denote T'y(G€). We note that, if € = 0 and Go(y) = y, then G°(z,y,t) = y — t solves (1.3), and
its front at time ¢ is given by I';(G°) = {(x,%) : y = t}. Our goal is to understand in what way it
is approximated by the front of G¢.

The case a = o is allowed, and the convention is that €* = 0.

The first result is stated informally in the following theorem. The precise statements are given in
Theorem 2.3 and Proposition 2.4.

Theorem 1.1. If G¢ solves (1.3) and Gy is front-like, then
Ty(G) = {(z,y) €R™ 1y + /3¢ (fv ey, 62/375) = t},
where, as € = 0, xX© converges in distribution to the solution x of (1.1).

The eikonal equation

The second model is

{vf + eu(z,y,et) - Dv° + L[ Dvs 2 + § = %Avﬁ in R"™ xRy, (1.4)

V€ = v on R" x {0},

where vy is front-like. For the sake of completeness, we describe the connection of (1.4)
to a turbulent reaction-diffusion equation. A simple calculation yields that T¢(z,y,t) :=
exp{—ePve(Px, Py, et)} solves
€ € 1 € 1 €

Tf4+wu- DT :iAT +§T. (1.5)
The front of T is the area where it transitions from 7 ~ 0 to T ~ O(1). It is clear from the
relationship between T" and v that the two uses of the term “front” are consistent. When u = 0,
the front of 7" is approximately the same as those of solutions of the Fisher-KPP equation, which
is sometimes used as a model for combustion.

Our second result is stated informally in the following theorem. The precise statement can be found
in Theorem 2.5 and Proposition 2.6.

Theorem 1.2. If v¢ solves (1.4) and vg is front-like, then
To(v) = {(w,y) € R" 1y + /X (w, /%y, /%) = 1},

where, as € — 0, x° converges in distribution to the solution x of (1.1) when B > 2/3 and to the
solution Xvisc of (1.2) when 8 =2/3.

We point out that the front location for the G-equation, given in Theorem 1.1, and those of the
eikonal equation, given in Theorem 1.2, have the same approximate expansion,

Y+ 62/3x(1‘, 52/3y) + (lower order terms) = ¢.

This is somewhat surprising since examples were given in [12] where these two models do not have
the same front asymptotics for € > 0.



A simple example

To illustrate the results, we find the front in the simple example where u = 1. Since the conclusion
is the same for both G¢ and v¢, we consider, for notational simplicity, only the solution G¢ of (1.3);
however, the same discussion applies to the solution v of (1.4). With u = 1, the solution to (1.1)
is x(z,&) = W(§). Theorem 1.1 yields that the front location is

(G = {(z,y) € R : t =y + 3% (x, ¥ %y)} = {(z,y) € R" : t = y + PW (2/3y)}.

Since, in view of the Brownian scaling, €2/3W (e*/3y) is equal in distribution to e\/@(W(t)/\/i),
where W is an independent Brownian motion, we find that (x,y) belongs to the front at time ¢
when ¢ &~ y + €,/yW (t)/V/t, that is

TG~ {(z,y) eR" :y ~t — eW(t)}.

In other words, we see Brownian fluctuations of the front of order e.

Further connections with previous works

In addition to the related work discussed above, our work is placed in the field of research into
precise descriptions of the effect of advection on front propagation. The body of literature devoted
to these problems is enormous, and we thus only provide a small sample of the current research that
is most relevant to the current work. While certain implicit representation formulas of the speed
and the front profile exist (see, e.g., Xin [17]), they are often difficult to quantify. To our knowledge,
most non-trivial results that can be quantified precisely are done in particular asymptotic regimes,
especially when the flow becomes large. We mention the studies of reaction-diffusion equations in
the presence of a large time-independent shear flow by Hamel and Zlatos [7] and a large cellular
flow by Novikov and Ryzhik [14]. In addition, Hamilton-Jacobi models like (1.4) and (1.3) have
been studied in the setting with a large cellular flow by Xin and Yu [18] and when u is the ABC
flow by Xin, Yu, and Zlatos [19].

Beyond this, we mention a somewhat surprising connection to a recent work by Corwin and Tsai
on the weakly inhomogeneous ASEP process [4]. There, using probabilistic techniques, the authors
show that the introduction of a small inhomogeneity yields fluctuations around the homogeneous
process that are governed by an equation similar to (1.2) (see [4, equation (1.7) and Remark 1.8]).
To roughly see why the two results should be related, one should think of the inhomogeneity in
their process as a random drift term, similar to u.

Organization of the paper

The assumptions and results are stated more precisely in Section 2. In Section 3 we construct some
special solutions that we refer to as “perturbed traveling waves.” We do this first in the autonomous
setting and then extend it by a bootstrapping argument to the non-autonmous problem. These
results are then used in Section 4 and Section 5 to understand the front location for the initial value
problems (1.3) and (1.4) respectively. This allows us to conclude the proofs of Theorem 1.1 and
Theorem 1.2. The main technical lemma that we use to construct the perturbed traveling waves is
the a priori estimates on the metric planar problem. This is the subject of Section 6.
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Figure 1: A cartoon illustrating Assuthion 2.1. Each plot is the profile of Gy(x;, -) for three values
71, T2, v3 € R The dotted line is G, the dashed line is G, and the solid black line is Go(z;, -).
Notice that, regardless of x;, Gg leaves zero at y = 0 in a uniform way.
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2 Assumptions and Results

2.1 The assumptions

We begin with the assumptions on the initial datum and the advection. The first, which con-
cerns (1.3) and (1.4), is that, heuristically, the 0-level set of Gy is {y = 0} and Gy “lifts” away
from zero in a uniform way in z (see Figure 1). The latter is assumed to avoid “fattening” of the
0-level set as || — co. For a more in-depth discussion of the level set method and issues related
to fattening, we refer the reader to the review by Souganidis [15].

Assumption 2.1. Gy € L (R") and there exist G, G € CCHR) N Ol

loc oc(RZURY) such that
GG >0,G <Gy <G, and G(0) = G(0) = 0.

Initial data satisfying Assumption 2.1 are sometimes called “front-like.” The prototypical example
is Go(z,y) =y.

Before we state the assumption on the advection, we discuss the notion of mild approximation of
white noise. Let (2, F, P) be a probability space with expectation E, and let F, 4, := o{w(y) :
y1 <y <yo}. Wesay that w: R x Q — R is a mild approximation of white noise if

(i) there exists M > 0 such that, with probability 1, ||w|c1(®) < M;
(ii) for all y € R, E[w(y)] = 0;
(iii) w is stationary and strongly mixing with rate p > 3/2; that is, if

|[P(ANB) — P(A)P(B)|
P(B) ’

p(y) ‘= sup sup sup
Y1 y22y1 A€Fy,ty,00.BEFy o
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then -
/ p(y)'/Pdy < oc.
0

To simplify the notation, in what follows, we assume that M > 1 and
o
2 [ Blo©u(©)d = 1.
0
It is well-known that, if w satisfies (i), (ii), and (iii), then

We(y) = e /3 /wa(e_2/3z)dz (2.1)

converges, as € — 0, in distribution to a Brownian motion W; see, for example, Funaki [6]. The
term mild refers to the lower bound on p in (iii). For an more extensive discussion about mild
approximation of white noise, we refer to Ikeda and Watanabe [8].

A simple example of mild white noise w is
wi) = [ 5.6t - )i (22)

where S is a piece-wise linear interpolation of a random walk S, indexed by Z and with Sy = 0,
and ¢ € C2° is non-negative and supp(¢) C [0, 1]. Properties (i) and (ii) are clearly satisfied, while
(iii) is verified by writing

) ~
w) = [ (3= 5m) oy - 2)a,
y—1
noticing that w(y) and w(y’) are independent if ' > y + 1, and observing that supp p C [0, 1].
The second assumption is:

Assumption 2.2. The advection u is of the form

u(a:,y,t) = (UL($7y7t)vu\\($7t)w(y))7 (23)
where w is mild white noise, u; € C*(R" x Ry)" !, and u € C*(R* ! x Ry).

We are interested in the fronts I'y(G€) and T'y(v¢) of G and v¢ respectively, where, for any ¢ :
R" xRy — R and ¢ € Ry,

Ft((b) = {(:Zf,y) eR": (b(l’,y,t) = O} (24)

As discussed above, a special solution of (1.3) and (1.4), when € = 0, is GO(x,y,t) = v*(z,y,t) =
y —t. Hence, I'y(GY) = Ty(vY) = {(x,t) : = € R*""!}. The goal is to understand the first order
correction to this for e < 1.



2.2 The G-equation

We first construct a special solution of (1.3) that has the form y — t 4+ €*/3x¢ and that we refer
to as a “perturbed traveling wave”. We use this term for two reasons. Firstly, it is the sum of
a traveling wave y — ¢t and a small term €2/ 3x¢, and secondly, it is a special solution that plays a
fundamental role in analyzing the general case, much like a traveling wave. The perturbation x¢

acts as the “corrector” in the averaging problem that we are studying.

Theorem 2.3. Suppose that Assumption 2.2 holds and o > 1. There exists x© € LiS.(R™ x Ry)
such that
i) GEo(z,y,t) ==y — t + 23y (x, 23y, 2/3t) solves (1.3),
(1) Ghuw(2,y Y X Y
(ii) x¢ converges in distribution on Rt x {(£,7) € R x [0,00) : £ > T}, as € — 0, to the solution
x of (1.1),

(i11) G (:5+,0) satisfies Assumption 2.1.
Clearly G}y, depends on «, but we omit this for notational simplicity.

We describe and discuss the precise definition of locally uniform convergence on R"~! x {(£,7) €
R x [0,00) : £ > 7} that we use throughout at the end of this section.

Although the convergence of x¢ to x holds on R"™1 x {(£,7) € R x [0,00) : £ > 7}, the relevant set
for locating the front is merely R"~1 x {(£,€) : € € [0,00)}. To see this, notice that
Ti(Ghy) = {(2,9,1) 1 y + €Px(, /%y, 1) = 1}.

It follows from the a priori estimates (3.11) on x¢ that y = t + o(1), where o(1) — 0 as ¢ — 0.
Letting ¢ = €2/32 and 7 = €2/3¢, the term involving the corrector becomes €2/3x¢(z, T 4 o(1),7).
It is thus apparent that, to understand the front location when e < 1, it is sufficient to study the
convergence of x¢(x,&,7) when £ =7+ o(1).

We note the interesting fact that the transverse advection v, does not affect the first order cor-
rection in the limit. In addition, we point out that while x¢ has time-dependence for all € > 0, it
converges to a limit x that does not evolve in time. Finally, we remark that we do not know if the
restriction a > 1 is sharp.

One way to understand Theorem 2.3 is through the following informal computation that ignores
technical issues such as the time dependence of u and the lack of regularity of GL,,. When a = oo,
we use the ansatz

G (@, 9, 1) =y — t + /X (2, /%),

which, from (1.3), yields
1= eu(z,e 23€) - (€/3Dyx*, 1 + 64/3)(2) + [(Dyx5, 1+ 64/3Xg)\.

Approximating the last term with a Taylor expansion yields
1
1= euH(a:)w(e*Q/gﬁ) + §|D;,;XE|2 +1+ 64/3X§ +0(e3).
Re-arranging, dividing by €*/3, and using that e~ /3w(e=2/3¢) = Wg(ﬁ), we find
1
Xg + §!Dz><€!2 = —u W + O(e'/?).
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We identify (1.1) by taking the limit ¢ — 0.

Using the level set method, we can describe the front asymptotics for solutions G¢ of (1.3) with
more general initial datum.

Proposition 2.4. Suppose that o > 1, and let G¢ solve (1.3) with Gy and u satisfying Assump-
tion 2.1 and Assumption 2.2 respectively. Then, for all t € Ry, T't(G) = T't(Gly). Moreover,
{G° <0} = {G,, <0}.

ptw

Proposition 2.4 implies that the special solutions constructed in Theorem 2.3 are sufficiently stable
to determine the front for the general initial value problem.

2.3 The eikonal equation

As above, we begin by constructing the perturbed traveling waves for (1.4), that is, we state the
analogue of Theorem 2.3.

Theorem 2.5. Suppose that Assumption 2.2 holds, « > 1, and § > 2/3. There erists x° €
L (R™ x Ry) such that

loc
(i) Vi (@, y,1) i=y — t + 13X (0, /3y, 2/3t) solves (1.4),

(ii) x¢ converges in distribution on Rt x {(£,7) € R x [0,00) : £ > 7}, as € — 0, to the solution
x of (1.1) when B > 2/3 and the solution Xvisc of (1.2) when §=2/3,

(1) Vo (05 -, 0) satisfies Assumption 2.1.
We note that § = 2/3 is the critical scale in order to see the effect of the viscosity in the limit.

It is harder to bootstrap the front asymptotics of the perturbed traveling wave since the level set
method only works for positively homogeneous equations of degree one. Hence, we obtain estimates
on the 0-sub-level set, which, while quite sharp, do not completely characterize the 0-level set as
in Proposition 2.4.

Proposition 2.6. Assume that 8 = 0o and o > 1. Suppose that vy and u satisfy Assumption 2.1

and Assumption 2.2 respectively, vo > Vg (-, 0) in R", and v¢ solves (1.4). Then

{(may) : G;tw(xayat) < 0} - {(.’L’,y) : Ue(xvyat) < 0} - {(Ji,y) :vf)tw(xayat) < 0} (25)

In view of Theorem 2.5 and Theorem 2.3, this result indicates that v has the same front expansion
in terms of y at the €2/3-order.

The extra condition on the initial datum in Proposition 2.6 is quite sharp. Indeed, fix any pu > 1
and consider the solution of (1.4) with initial datum vy(x,y) = y/u. Letting v(z,y,t) = —t(k +
ellulloo) +y/p and v(w, y, ) = —t(k — €||ul|oo) + y/ 1, where £ = (2u%)~1 + (1/2), we see that v and
v are, respectively, sub- and super-solutions of (1.4). Applying then the comparison principle, we
find v < v® <, and, hence, we conclude that

(z,y) € T (v°) & y =~ ukt + O(et).

After noting that pux > 1, this indicates that the sub-level sets of v with this initial datum cannot
satisfy (2.5).



2.4 Discussion of the proofs, organization, and notation
Discussion of the proof and main difficulties

The first step is to construct the perturbed traveling waves in the autonomous setting (o = 00).
As discussed heuristically below Theorem 2.3, the proof proceeds via an ansatz that G, and
Upty are of the form —¢ + p¢, where p° is time-independent and solves the so-called metric planar
problem. We expect the expansion p¢(x,y) = y 4+ €2/3x(z, €2/3y). Defining x¢ in this way, we use
the half-relaxed limits in order to take limit as ¢ — 0. Informally, the half-relaxed limits are the
“smallest supersolution” below p¢ and the “largest subsolution” above p¢ as e — 0. It can often be

shown, using the comparison principle, that these two objects coincide.

The latter requires to overcome two main difficulties. The first is that the process W€ converges,
as € — 0, to W only in distribution. This does not interact well with the half-relaxed limits, which
require pointwise convergence. To get around this obstruction, we use an argument from [8] that
allows to replace W€ with a process W€ that converges, as € — 0, almost surely to a standard
Brownian motion and equals W¢€ in distribution. The second major difficulty is how to obtain a
priori estimates of p¢ that are sufficiently sharp to conclude that p¢ = y+ €2/3 ¢, where € is bounded
and lime_,0 Xpyy Satisfies the correct datum at y = 0. This is achieved through the construction of
suitable barriers.

The above strategy is not enough to study the non-autonomous problem, that is, when a < oo,
due to the time-dependence inherited in the equation for p°. Roughly speaking, our strategy is to
build the perturbed traveling wave in this setting by the addition of a “very small” correction term
to the perturbed traveling wave from the autonomous case.

More specifically, we define the perturbed traveling waves for the non-autonomous problem to be
the solutions of (1.3) and (1.4) with initial datum that is equal to the perturbed traveling wave
from the autonomous case. We are then able to obtain sufficiently good error estimates between
the solution and its initial data allowing to take the half-relaxed limits as € — 0. The result is a
non-standard, non-coercive Hamilton-Jacobi equation solved by both the limit and y for £ > 0.

We do not, however, have control on x and the half-relaxed limits x*, x, for £ < 0. The standard
comparison principle is valid for for this equation but requires information about x, x*, and x. on
{¢ < 0}. We side-step this by using a simple change of variables that allows to compare solutions
on sets that are preserved by the characteristics, that is, where £ — 7 is constant. We are thus able
to conclude the convergence to  in this setting.

We bootstrap the results above to general initial datum. We can conclude Proposition 2.4 using
the level set method. In addition, we prove Proposition 2.6 by using the perturbed traveling waves
of Theorems 2.3 and 2.5 to construct sub- and super-solutions of v€.

Additional notation

Throughout we only work with locally uniform convergence on sets of the form R"~! x {(¢,7) €
Rx[0,00) : £ > 7}. Since we care about endpoint behavior at & = 7, we use a slightly stronger notion
than the standard one. Indeed, we say that f,, converges to f locally uniformly on R"~! x {(¢,7) €
R x [0,00) : & > 7} if, for any (x9,&0,70) € R* 1 x {(£,7) € R x [0,00) : € > 7} and any sequence
(Zn,&n, ™) € R™ X [0, 00) converging, as n — 00, to (xo, &o, 70), we have fp,(zn,&n, ) — f(z0, &0, T0)
as n — oo. The difference is that we allow each &, to take any real values, instead of just values in
[T, 00).



For any f € C%Y(R"), Lip(f) denotes its Lipschitz constant, for any f € L>®(R"), |||l denotes
its L>°-norm, and, for any f € C'(R"), ||f|/c: denotes its C'-norm. Also, § denotes the Kronecker
delta function.

Since we are concerned with the small € limit, we lose no generality in assuming throughout the
paper that eljul|c1 < 1/100.

All functions throughout depend on the variable w € . When no confusion arises, we suppress
this dependence to simplify the writing.

Given random variables X7, X5,... and X, X, 4. X and X, =25 X mean that, as n — oo, X,
converges to X in distribution and almost surely respectively. When two random variables X and

X have the same distribution, we write X = X

Throughout the paper, W is a one-dimensional standard Brownian motion and W () denotes the
value of W at €. In addition, we denote white noise by dW. It is important to note that this is
one-dimensional white noise in the variable £ and not space-time white noise.

We now make explicit the notion of solution of equations of the form
df + (H(Df) - vAf)dt = gdW (1) (2.6)

where H is some Hamiltonian and v > 0. We say that f is a solution of (2.6) if and only if
f(z,t) = f(x,t) — g(x)W(t) is a viscosity solution of

fo+H (Df +W(t)Dg) —vA (f + W(t)g) = 0. (2.7)

This definition was used by Dirr and Souganidis in [5] and is a special case of the general notion of
solution introduced by Lions and Souganidis in [9, 10, 11].

3 The construction of the perturbed traveling waves

We prove Theorems 2.3 and 2.5. Since the arguments are similar, we reduce them to a more
general claim (see Proposition 3.1). We begin by addressing the autonomous case o = co. Then,
we bootstrap to the non-autonomous case (see Proposition 3.5).

3.1 The autonomous case o = 00

We work in a more general framework and state the main claim next.

Proposition 3.1. Suppose that Assumption 2.2 holds, > 2/3, and r € [1,2]. There exists
Xout € LS (R™) such that

loc

(i) faut(z,9,1) —y—t+e2/3 ut (T, 62/3y) solves

1 P

1 r— .
f;ut,t + €Uaut - D fiou + ;\Df;iutIT + , = ?Al”f;ut in R" xRy, (3.1)

where ugut (l’, y) = u(a:, Y, O);

(i) as € = 0, xSue converges in distribution on R"™1 x [0,00) to x, the unique solution of (1.1),
if B> 2/3, or Xvise, the unique solution of (1.2), if f =2/3;
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(113) fEu(-,-,0) satisfies Assumption 2.1.

The reason for the restriction r < 2 is seen in the a priori estimates of yx¢. While we do not
anticipate any issues in extending the proof to r > 2, this will involve some adjustments to our
proof. Since our interest is in the cases r = 1,2, we opt for a simpler presentation and, thus, restrict
tor e [1,2].

The proof proceeds in several steps. First we reduce to an intermediate model using the ansatz
that f¢ = —t 4 p° for a time-independent p® solving the so-called metric planar problem. Then,
we extract x¢ from p¢ and reduce to the stronger case where W€ converges in probability to W.
Finally, we apply the method of half-relaxed limits to obtain convergence of x¢ to x.

3.1.1 Step (i): the reduction to a time-independent problem

From the form of the claim, it is natural to seek a solution f{(z,y,t) := p(z,y) — t, where p*
solves ,
—1 S Ap + reuay - Dp© + |Dp|" =1 in R7, (3.2)
pc=0 on R" 1 x{0}. '

Next, we consider the existence, uniqueness, and some a priori bounds of p°.

Lemma 3.2. There exists a unique globally Lipschitz solution p¢ to (3.2) such that, uniformly for
all x € R,

lim inf p“(z,y) > 0, and lim sup p“(z,y) < 0.

y—oo yYy—r—00

Moreover, for all (z,y) € R™,
p(z,y) =yl < [yl/2, (3-3)

and there exist Cr,, p1, p2, and ps, depending only on ||ul|cr and M, such that Lip(p¢) < CL, and,
for all (xz,y) € R",

2/3

. . 62y2 € .
() = (o= W (@) < Pyl + G+ ) [T e Pay| 3

The existence and uniqueness of p° is well-understood because problems like (3.2) have been studied
extensively due to their use in stochastic homogenization; see, for example, the work of Armstrong
and Cardaliaguet [1], Armstrong, Cardaliaguet, and Souganidis [2], and Armstrong and Sougani-
dis [3], and references therein. The sharp bound (3.4) in Lemma 3.2, which justifies the earlier
comment about correctors, is new and requires significant effort. The construction of sufficiently
sharp sub- and super-solutions is quite involved. The proof of Lemma 3.2 is presented in Section 6.

The motivation for the weaker bound (3.3) is two-fold. Firstly, it shows that fS,(-,-,0) satisfies
Assumption 2.1. Secondly, it is used in the proof of Proposition 2.4. Note that (3.3) does not follow
from the sharper bound (3.4) due to the behavior for |y| > 1. The sharper bound is a crucial part
of the proof of Proposition 3.1.
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3.1.2 Step (ii): the extraction of the correctors x§,

We change variables so that & = ye?/® and let, for all (z,¢) € R”,

€ —-2/3
Kol ) = P00 £ (3.5)

It follows from (3.5) and the definition of fg,, that

faeut(x’ Y, t) =Yy—- t + 62/3X;ut(l’, 62/33/)' (36)

As a consequence, we need only understand the convergence of x5, as € = 0 to conclude the proof
of Proposition 3.1.

3.1.3 Step (iii): the reduction to the case where W converges in probability

We now reduce to the case where the random advection converges in probability instead of simply
in distribution. For this, we need the following lemma.

Lemma 3.3. Suppose that Assumption 2.2 holds, and assume that W€ converges in probability to a
standard Brownian motion W. Let x&,; be given by (3.5) with p¢ solving (3.2). There exists Q' C Q
with P(Y) = 1 such that, for every w € ', x5u (-, w) converges locally uniformly in R"~1 x [0, 00)
to the solution x of (1.1) when 8 > 2/3 and to the solution Xvisc of (1.2) when 8 =2/3.

The lemma is proved in the next subsection. On the face of it, Lemma 3.3 requires stronger
assumptions than Proposition 3.1. We now show how to get around this.

Proof of Proposition 3.1 using Lemma 3.3. Fix any sequence €, — 0. It follows frgmA[S,A Theo-
rem 4.6, Chapter 1] that there exists a subsequence €,, — 0, a probability space (2, F, P), and
processes W and W defined on (2, F, P) such that

WLw, Wer Lwer  and W 25T as k — oo, (3.7)

Let py be the unique solution of (3.2) given by Lemma 3.2 with w replaced by

By(y) = oe Wy (e y).

Nk

and, for all (z,£) € R, set

~ —2/3
= p .’E,Gn f f
Xk(x7€) = k( 2/; ) - 4/3"

Enyg ng,

We consider the case § > 2/3. Lemma 3.3 yields that X converges almost surely, and thus in
distribution, to x. From the well-posedness of (1.3) and the fact that W« 4 /W?e%, it follows
that X 4 X;’;’g, and thus, X;’;’g 4, X. Since this holds for every sub-sequence ¢, it follows that
Xout —— X-

When 3 = 2/3, the argument is similar; hence, we omit it. O
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3.1.4 Step (iv): the proof of Lemma 3.3 using the half-relaxed limits

We now prove, under the slightly stronger assumptions on the convergence of W€ to W, that x§
converges to x, if § > 2/3, and to xyisc, if § = 2/3,.

Consider the nonlinear error function N, : R"~! x R — R given by

1 4/3 /2
Ne(p, s) := pYE (1 +ret/3s + %\mz — (1 + 26435 + 3)p)? + 68/382>T ) :

and observe that, in the limits ¢*/3s, 64/3]p|2 — 0,
N¢(p,s) =0 <€4/382> +0 (64/3|p|4) . (3.8)
Using (3.2) and (3.5), we formally see that, for any (x,£) € R* ™1 x Ry, x¢,, satisfies

1 _ _ _
X;ut,ﬁ + §|D$X§ut’2 +e 1/3uaut,|\w(€ 2/3') - GB 2/3A$X;ut = Ne(Dmxgum X;ut,ﬁ) (3 9)
- 61/3uaut,L(" 8_2/3') : szgut - €u||w(5_2/3')xgut,§ + 6ﬁ+2/3x;ut,§§7

where Uau, | and uays, | are defined in an analogous manner as Uay;. We now justify this formal
computation. First we show that x¢,, is a viscosity super-solution of (3.9). Fix (x¢,&) € R* xR,
and a test function 1 such that x§,; — ¢ has a local minimum at (z,&p) and let

V(a,y) =y + 3Pz, /3y).

It follows from the definition of x&,, in (3.5) that p¢ —1) has a local minimum at (zg, &e~2/3). Thus,
at (o, e /%),

—re B (Mgt + €3ee) + reuaus - (Dath, 1+ €/30) + [(Dyth, 1+ /4|
= —rejAw—i- reut - D + |Dy|" > 1.
Dividing by re2/? and rearranging yields
Y+ 31Dl + Mgl — S0,
> Ne(Dath, toe) = € Putau 1 (7%) - Dyt — €ty (/3 )b + €713 ge.

A similar argument shows that x5, is a sub-solution of (3.9).

In order to work with stochastic viscosity solutions in the limit, we set

ygut(x’ g) = Xgut (SL’, g) + Uaut,|| (x)WG(f)v (310)

and, in view of (3.5), (3.10), and the bounds in Lemma 3.2, observe that

3
. 12 .
Ko O)] < ulel + 5262+ s [ We(&) P (3.11)
a bound that is crucial to take the half-relaxed limits of x§.

13



It follows from (3.9) that, at any point (z,£) € R*™! x Ry,

Y;ut,g + %‘Dmygut - We(g)D:rUautH ’2 - 65_2/3Awygut + 6B_Q/SArUaut,uVVG(&)
= Ne(DxXaut — We(f)Danut,Hvygut,g - 671/3uaut,\\w(672/3€)) (3.12)
- 61/3uaut,L(x7 e73¢) (DXt — W) Datiguy, )
— €ty (e 2E) (Xaure — € Puyw(eP€)) + 7 (X ee — € My (€772€),

where we used that W¢(€) = e V3w(e=2/3¢) and Wg(€) = e Twy (e72/3¢).

Furthermore, (3.11) yields that X, is locally bounded with probability one. Indeed, let ' C Q be
such that P(Q') = 1 and, for all w € ', W(-,w) is continuous and W¢(-,w) converges to W (-,w)
locally uniformly. Then W€ is locally bounded as well. The bound on X%, follows.

As a result, for any w € €/, the classical half-relaxed limits

Y0 &w) = lmsup You(@,&w) and  X(r,&w)i= liminf Yo (@, €w),  (3.13)
(@'.&)—(2.8), (1’76’):0(90,5),
e—0 €

are well-defined. By construction, Y, < X*. The key step to proving the opposite inequality is to
show that these are sub- and super-solutions of the same equation.

Lemma 3.4. For each w € ', the half-relazed limits X*(-,-,w) and X, (-,-,w) satisfy repectively

X + 31DaX" = WDathaut | * = 02380 (X" = Wtay,) <0 in R xRy, (3.14)
=0 on R {0},
and
Y*7£ n %|DIY* _ W(S)Da:uaut,|||2 _ (sgﬁAI(Y* - Wuaut,”) >0 mn Rn—l X R—H (3 15)
X, =0 on R"x {0}

Proof. Since the proofs are similar, we only show the argument for (3.14). In what follows we work
with fixed w € ' and, hence, suppress it for notational simplicity.

We begin with the behavior of ¥* at £ = 0. For this, we note that (3.11), the continuity of W, and
the convergence of W€ to W imply that ¥* = 0 on R*~! x {0}.

Next assume that, for some test function 1, X* — ¢ has a strict local maximum at (z¢,&) €
R" ! x R,. It follows from the definition of ¥* that there exist sequences (z3,&;) € R* 1 x R, and

e > 0 such that Y57, — has a local maximum at (z, &) and, as k — oo, e — 0, (zx, k) — (20, &0),

and X (wg, &) — P (T, &) — X (w0, &0) — ¥ (20, 0)-
Using (3.12), we find that, at (xg, &),
Vet + %IDWE’“ — WDyt |* — &SNy + 65_2/3Azuaut,||W€k
> Nep (Dotp™ — WDyt | Yt — 6];1/3Uaut,||w(€];2/3§k))
— e Pttt 1 (wh, 5 2R - (Db — W Dyt )

— enttang, w(er, ) (U — €, P jwler 7 60)) + e 0 — € Mg wy (6 ).
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By assumption, we have that W% (&) — W (). Hence, the last two terms on the left hand
side tend to zero if 8 > 2/3 and to —Ay () — uay, W) if 8 = 2/3. In addition, it is clear that
We (gk)Dxuaut,H(xk) converges, as k — 00, to W(ﬁO)Dzuaut,H(m0)'

The second, third, and fourth terms on the right hand side clearly tend to zero as k& — oo, while
the first term also does due to (3.8).

Thus, letting k& — oo, we find that, at (xg, &),

1
170& + §|D$d} - WDQ”uaut,H |2 — 5%BACE (w - Uaut7||W) Z O

We now combine the above results to prove Lemma 3.3.

Proof of Lemma 3.3. Since the two claims are proved similarly, we only include the details for the
first. Moreover, we again fix w € Q' throughout but omit this dependence to simplify the notation.

It follows from the comparison principle and Lemma 3.4 that ¥* < Y, on R""! x [0, 00), while, as
noted before, X, < X¥*. We conclude that ¥* = %X, and denote this function X. This equality and
the definition of the half-relaxed limits (3.13), yields that, as € — 0, Y5, converges to X locally
uniformly in R"~! x [0, 00).

It follows from Lemma 3.4 and the fact that X* = X, = X, that X — . | W solves (1.1). Uniqueness
thus gives that x = X — uay,|W. Furthermore, the convergences of W€ to W and X3, to X and
the definition of g, give that x&, converges, as € — 0, locally uniformly to x. This concludes the

proof.
O

3.2 The non-autonomous case: 1 < a < o0

Arguing as in Section 3.1.3, we assume without loss of generality that, as € — 0, W€ converges to
W in probability. We fix 2’ C Q to be the set of full probability such that W is continuous and
W€ converges locally uniformly to W as used in Section 3.1.4.

We again work in the more general framework. Theorems 2.3 and 2.5 reduce to the following result.

Proposition 3.5. Suppose that Assumption 2.2 holds, « > 1, > 2/3, r € [1,2], and w € ', and
let f€ solve

ff+eu-Df LD 4 =L = FA, fe in R" x Ry, (3.16)
fe= faut on R" x {0}. '
Then, as € — 0 and locally uniformly on R™™1 x {(¢,7) € R x [0,00) : £ > 7},
. N E T 1

converges to the unique solution x of (1.1) when 8> 2/3 and to the unique solution xvisc of (1.2)
when 3 = 2/3.
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3.2.1 A priori bounds on f¢
Lemma 3.6. There exists C > 0, which is independent of €, such that, for all (z,y) € R",

(2, 9. 1) = fau(a,y, )] < Ollulcret ™.
Proof. Let p© be the solution of (3.2). It follows from Lemma 3.2 that ||[Dp|e < Cf, for some
Cr, > 0 that does not depend on €. Recalling that f$ . = p¢ — ¢, we find || D f{ ]l < CL.

To prove the claim, we show that f (z,y,t) := f<.(2z,y,t) + Cpllullc1e!Tt? and f(z,y,t) =
feui(z,y,t) — Cplul|cre! @12 are, respectively, super- and sub-solutions of (3.16). Once this is
established, the claim follows by a standard application of the comparison principle. The proofs
are similar so we only show the upper bound.

A straightforward computation and an application of Taylor’s theorem yield

r—1

B
€ J—
= 58 f" = e(u = tant) - D + 2C [ullcre ™

> —e(fullere* D fauilloo + 2CLJull et > 0,

_ _ 1
Ji+eu-Df +—[Df[" +

that is, f* is a super-solution of (3.16), as claimed. O
At this point, we are able to conclude the proof in the case where o > 1.

Proof of Proposition 3.5 for a > 1. Combining the definition of x¢ with the estimates of Lemma 3.6,
we find C' > 0, which is independent of ¢, such that, for all (z,&,7) € R" x Ry,

‘XE(H?, 57 T) - X;ut(x7 f)’ < Cea_lTQ'
Notice that @« — 1 > 0. The result then follows from Proposition 3.1, which yields the convergence

of xSyt to x if 8> 2/3 and to xvisc if B =2/3. O

3.2.2 The half-relaxed limits when a =1
First, in anticipation of the limiting equation, we introduce
Ye(x7 3 7—) = Xe(xa 3 T) + uj| ((E, 61/37)W6(§)' (318)

Arguing as for (3.12), we find

1
Xs + Yz + §|D$y€ — Weru” ’2 — 6572/3A$Y€ + 6’372/3Aa¢u”W6
= Ne(DzX — WDz, X — 6_1/3UHU)(6_2/3'))
— eBuy (673 (DX — WeDuy) — ewjqw(e /%) (x§ — € VPujw(e /)
+ 65+2/3(Y§5 — eflwy(efz/g-) + 61/3U||’tWE.

(3.19)

Notice that (3.19) is the same as (3.12) except for the additional time derivative of X on the left,
the last term on the right, and the fact that u is dependent on t.

It follows from Lemma 3.6 that there exists C' > 0, which is independent of €, such that, for every
(iL',y,t) € R™ x R-I—a
|¥6($)§77) _ygut(xagﬂ_)’ < CT2' (320)
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Combining this with (3.11), we find that Y° is locally bounded in R™ x R. Thus, the half-relaxed
limits

X (z,& 1) = limsup X (2/,¢,7) and ¥X,.(x,§,7):= lim inf X (2, ¢, ) (3.21)
(&' 7") = (x,,7), (90'75'77’)_?0(9076,7')7
e—0 €

are well-defined.

Again, arguing as in the proof of Lemma 3.4, we obtain the following result.

Lemma 3.7. For w € ', the half-relazed limits X*(-,-,w) and X, (-, -,w) satisfy, repectively

X5 + X+ 31DaX" = WDzt || — 052 Aa(X* = Wtay,) <0 in R™ xRy, (3.22)
X" = X3 + Uaut,| W on R"1x[0,00) x {0},
and
{X*,T + Y*,g + %‘Dacy* - ‘/I/vl)zcuaut,||’2 - 5%Ax(y* - Wuaut,H) >0 m R™ x R+, (3 23)
X« = X8 T uaut,HW on R 1 x [0,00) X {0},

where x is x when 3> 2/3 and Xvise when = 2/3.

Proof. The only difference between the proof of (3.22) and (3.23) and that of the analogous claims
in Lemma 3.4 is about the initial data. This is, however, handled using (3.20) and Proposition 3.1,
which gives the convergence of xgu¢ + Uaut,| W 10 X + Uaue, W and Xvise + Uaue,| W€ when 8 > 2/3
and 5 = 2/3 respectively. We omit the rest of the details.

O

3.2.3 The proof of Proposition 3.5 when a =1

We now finish the proof of Proposition 3.5 when o = 1. Recall the case when a > 1 was dealt with
in Section 3.2.1.

The natural way to proceed is to use the comparison principle, as above, to conclude that ¥* = ¥,.
While (3.22) and (3.23) enjoy the comparison principle, we do not have any ordering of y, and x*
when £ < 0 and, thus, cannot immediately apply comparison. To overcome this, we apply a simple
transformation that allows to use the comparison principle along rays where £ — 7 is constant.

Proof of Proposition 3.5 when o = 1. Throughout this proof, we fix w € ' and suppress the de-
pendence on w.

We first show that, for any fixed & > 0, ¥* = X, on R"™! x R, where Re, := {(£,7) € Rx [0, 00) :
§—1 ==&}
Let

Xz, 1) =X (2, +71,7), Xe(z,(,7) =X (2,(+7,7), and W((,7)=W((+71). (3.24)

We claim that

{X: + 31Da X" = WDty * = 853 A X™ = Wataue,) 0 in R x {0} x R, (3.25)

X = Xs + uaut,”W on R"1 x {‘SO} X {O}?
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and

{X*,T + 51 Do = WDt * = 852 Aa(X* = W) 20 in R™ x {&} x Ry, (3.26)

X = X + Uaut,| W on R x {&} x {0}.

The proofs of (3.25) and (3.26) are similar so we omit the one for (3.26). Assume that, for some
test function ¥, X*(-, &y, -) — ¥ has a strict local maximum at (xg,79) € R"™' x R,. For any § > 0,
let

1
\116‘(‘7:7 Ca T) = \I](xa T) + E(C - 60)4'
Due to (3.3), if 6 is sufficiently small, then there exists a local maximum of X* — Wy at some point
(xg,Cp, tg), and, furthermore, as 0 — 0, (g, (g, to) — (0, &0, to)-

Let vg(x,&,7) = Vp(x,& — 7,7). It follows from the definition of X* and the choice of (zg, (g, 7p)
that X* — ¢y has a local maximum at (zg, (g + 79, 79). Due to (3.14), we find, at (g, (y + 79, 79),

1
1/}9,7- + 1/}6’,5 + §‘Dx¢9 - WDxuaut,H ’2 - 5[8%(1/}0 - Wuaut,“) <0.

This implies that, at (xg, (g, 79),

1
0= Vo + 5|1DsWo = WDyt | ? - I52 (Vo — Wuauy,|)
1
=V, + §|Dx\1’ - WDxuaut,||’2 - 6&%(\I’ - Wuaut,H)a

where we used the relationships between g, Uy, and ¥, as well as the relationship between W and
W. We conclude that (3.25) holds by letting 6 — 0.

Due to (3.25) and (3.26) and the fact that X*(x,&y,0) = x(z,&) = Xi(z, &, 0) for all z € R*1
the comparison principle implies that X* < X, in R* ™! x {¢} x R,.. Hence, by (3.24), ¥* < X, on
R x Re,.

On the other hand, we have ¥, < ¥* by construction. Thus, ¥* =¥, on R~ x Re,.

Moreover, since xg + taye,| W satisfies both (3.14) and (3.15) on R ! x R, x R, similar arguments
show that X, = X" = X + tau,|W on R 1 x Ry, .

This holds for all & > 0. As a result, X* = X, = X3 + Uaut,|W on R*" 1 x {(£,7) : £ > 7 > 0},
which implies that X¢ converges locally uniformly on R"™! x {(£,7) : £ > 7 > 0} to x5 + U, | W
The proof is finished by noting that the locally uniform convergence of x¢ to xg follows from the

combination of this and the convergence of W€ to W.
O

4 Front asymptotics for the initial value problem: the G-equation

€

We show that the asymptotics for the front of the perturbed traveling wave solutions Gi,, yield
the asymptotics for solutions with more general initial datum; that is, we prove Proposition 2.4.

Proof of Proposition 2.4. With G and G as in Assumption 2.1, let Ghiw be the solution constructed

in Theorem 2.3. The goal is to create sub- and super-solutions using these functions.
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Fix ¢ € (0,1/2 and let ¢, € C*(R) be an approximation of

| G(y/2), if y>0,
2) = {G@y), ity <0,

such that ¢, = ¢ on Rx(—4,) and 9:5 > 0in R. Furthermore, we may assume that ||¢s[|co(—1,1) <
2| 9llcon(=1,1)-
Let Cy = 8[|¢|co1(—1,1), notice that Cy > 4 ¢,|lcor(—1,1), and define

5= ¢5 o G¢ 2H¢HCO,1(_171)6 and pi=¢o Gl

ptw

It is immediate that {y < 0} = {G}y,, < 0} and {p = 0} = {G}y, = 0}.

We show that Hgisa sub-solution of (1.3). Indeed, fix any test function ¢ and any point (zg, Yo, to) €
R" ! x R x R, such that Hs — 9 has a strict local maximum at (z0,Yo,to0). Since @, Is strictly
increasing, it follows that Gy, — @gl o1 has a strict local maximum at (zg, yo, tp). Since Q(s_l
cl, 95_1 o1 is a valid test function and, hence, we find that, at (z, yo, to),

-1 ~1 ~1
D ( ) D ( ) <0.
(657 0w), +eu-D (65" 0w) 1D (¢5" 0w) | <
Using only the chain rule and the fact that Qg > 0, we observe that, at (xo, yo, to),

Y+ eu- Dy + |Dyp| <O0.

Next, we claim that p; < G° on R" x {0}. Indeed, we fix any (z,y) € R". Since the proofs for
y > 0 and y < 0 are handled similarly, we concentrate on the former case. If y > ¢, then

1) = 05 G :9)) = s < 05(Gin() < 05 (5) = G (%) < 6 < 600,

The first inequality follows from the fact that Cy6 > 0. The second is due to (3.3) and that qﬁ > 0.
That G is increasing yields the third, while the last is due to Assumption 2.1. On the other hand
ify €10,9),

3y 3y .
Hé([l?,y) Sé(g < 2 ) C¢6< H¢5H001 -1,1) ( +5> _C¢6§OSG (.’L',y,O)

The first inequality again uses (3.3) and the fact that ¢ > 0. The second is a consequence of
the definition of the Lipschitz norm and the fact that ¢5 must take the value 0 somewhere in
(=6,6). That y < d and Cy > 4[|¢4[|co.1(~1,1) yields the third inequality, while the last follows from
Assumption 2.1.

Using the comparison principle and that Mg is @ sub-solution of (1.3), we get that My < G€ in
R™ x Ry. After letting 6 — 0, we find
U < GE’ (4.1)

and, hence,

{G° <0} c {pu <0} ={G5y <0} (4.2)

ptw
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A similar argument shows that 7 := ¢ o Ghw = G, where

— v _JG@y), if y=>0,
¢<*‘{G@mx if y<0,

and, hence,

{GF <0} > {71 < 0} = {G5yy, < O}, (4.3)
Combining (4.2) and (4.3) yields {G* < 0} = {Gy,, < 0}
Moreoever, since p < G < 1 and, for all t € Ry, T'y(p) = T'i(f) = Ti(Ghy ), we find T'y(G€) =
Li(Ghtw)- O

5 Front asymptotics for the initial value problem of the eikonal
equation

We now obtain estimates on the front location in the general case. We do so through a simple
comparison principle-based argument.

Proof of Proposition 2.6. The first inclusion follows from comparison and Proposition 2.4. Indeed,
let G¢ be the solution of (1.3) with initial datum vg. Proposition 2.4 gives that {G° < 0} = {G},, <

0}.
We claim that G¢ is a super-solution of (1.4). Fix any test function ¢ and suppose that G¢ — v has
a minimum at (z,y,t) € R” x Ry. Then (1.3) yields that, at (z,y,1),

Y+ eu- Dy + |Dyp| > 0.

Using the Cauchy-Schwarz inequality and Young’s inequality, at (z,y,t),

1 1
w+arD¢+§W¢P+§ZQ

and, thus G is a super-solution of (1.4).

Applying the comparison principle, we get that v < G¢. This, in turn, implies that {G* < 0} C
{v® < 0}. Using the equality above, we obtain {G},, < 0} C {v° < 0}.

The second inclusion in Proposition 2.6 is a simple case of the maximum principle. Indeed, vy >

Vhtw (-, 0) in R™ and v and v, both satisfy the same equation on R™ x Ry. Hence, v5, < v in
R™ x Ry, from which it follows that {v° <0} C {vg,, < 0}, and the proof is complete.
O

6 Well-posedness and a priori bounds of (3.2)

There are two steps in the proof of Lemma 3.2. The first is about the existence and uniqueness and
some weak bounds on p¢. In the second, which deals with the main difficulty, we bootstrap these
weak bounds into sharper, more useful ones.

Since € plays a somewhat reduced role here, for simplicity, we suppress it and write p in place of
p¢. In addition, since we do not work with time dependence throughout this section we drop the
aut notation and refer to u., as u.
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Lemma 6.1. Suppose Assumption 2.2 holds. Then there exists a unique globally Lipschitz solution p
of (3.2) such that, uniformly for all x € R"™1, liminf, o p(z,y) > 0 and limsup,_, . p(z,y) <0.
Moreover, there ezists Cr,, depending only on u, such that, for all (z,y) € R™,

lp(x,y) — y| < 3ellulloo]y] and Lip(p) < CL. (6.1)

To use the half-relaxed limits, it is necessary to improve (6.1). This requires to introduce a correction
in (6.1) that takes care of the oscillations, allowing to construct improved barriers.

Lemma 6.2. Let p be the solution of (3.2) constructed in Lemma 6.1. Then there exists positive
constants py, w2, and us, depending only on ||u||c1, such that the solution p of (3.2) satisfies, for
all (xz,y) € R™,

2,,2 y62/3
p2e’y
p(z,y) — y + By W (e Py)| < 3 y| + — s /0 (We(y)dy'|.

It is clear that Lemma 3.2 follows directly from Lemmas 6.1 and 6.2. As such, we now aim to prove
these two results in turn.
6.1 Well-posedness and weak bounds

Proof of Lemma 6.1. We proceed in three steps. Firstly, we establish the existence and uniqueness
of solutions of

{—rzﬁAp +reu-Dp+ |Dp|" =1 in R x (R_URy), (6.2)

p=0 on R" 1 x{0}.

Secondly, we obtain weak bounds on solutions p of (6.2). Finally, we use these weak bounds to show
that solutions of (6.2) are solutions of (3.2); that is, they are solutions on R" instead of merely on
R* ! x (R_URy).

Step 1: The existence, uniqueness, and the bound on the Lipschitz constant C7, on R"™! x R,
follows immediately from [1, Theorem A.6]. A symmetric argument applies on R"~! x R_.

Step 2: To obtain (6.1), let, for (z,y) € R*! x Ry, p(z,y) = (1 — 3€|ul|oc)y. It is immediate that

B
€
12> rellullao(1 = 3ellullc) + (1 = Bellulloc) > 5 Ap -+ rew Dp+ Dyl
Observe that p < p on R"~! x {0}. The comparison principle (see [1, Proposition A.4]) yields p < p.
We may similarly build a super-solution of (6.2) on R*~! x R, and conclude that, in R*~ x R,
(1= 3ellulloo)y < p* < (1 + 3ellulloo)y- (6.3)
Step 3: We now show that p satisfies the planar metric problem (3.2) on R"~! x {0}. To accomplish
this, we look separately at the cases § = co and 3 < co. For simplicity, we show the argument only

for r = 1. The modifications for the general case are conceptually straightforward but significantly
messier.
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When 8 = oo, we show that, in the classical sense, Dyp(x,0) = 0 and py(z,0) = (1 + eu(z,0))*
for all z € R"~!. From these two equalities, it is clear that p satisfies (3.2) classically on R"~! x {0}.

That D,p = 0 is obvious since p = 0 on R"~! x {0}. We thus focus on proving that p,(z,0) =
(1+ eu”)*l for x € R"™! by constructing barriers.

We begin with a lower bound in p for 0 < y < 1. Fix ¢ € (0,1/100) and let

p=y(1+uw) ™" —y?/(29).

We show that p < p on the domain V5 = {(z,y) € R" ! x R, : y < §} by showing that pis a

sub-solution of (6.2) on Vs and that p < p on 9Vs.

A direct computation yields

2
e“yuy - Dyujw 1 EYU|| Wy )
D Dp|l=——— "1 - -5
€u B+ | £| (1 + 6U||w)2 + €U w <1 T eujw (1 + eun)2 )

eyDyujw 1 yujwy y
(1 + Eun)? 1+ eujjw (1 + GUH’LU)Q 51

Recall that €||u||c1,6 < 1/100 and 0 < y < ¢. It then follows from the triangle inequality that

2
e“yuy + Dyujw YU Wy Yy
D Dp| < —— - S
Dot DPlS = T <1 teupw (It euw)? 8
ey|Dxu||w] 1 Ey’U”wy‘ Yy

(I+eyuw)?  l+eyw (I+eyw)? &

Estimating each term in turn and using that § < 1, we find

Yy euw Yy Y 100y 1 100y y
Dp+|Dp|< L 4 & Y _Y
Do IDel < Go T cuw T 002 T 1005 T 992 T T T 992 o
y _
<142 - Yo
=750 500 <

that is, p is a sub-solution of (6.2) on V.

We now show that p < p on 9Vs. Since this is clearly true when y = 0, we need only consider the
case y = 6. For all x € R, we have

p(z,08) < SRR
£ (1—1/100) 2 10

and, from (3.3),

90
> —.

It follows that p < p on 9Vs. From the comparison principle, we conclude that p < p in Vj.
A similar argument can be used to conclude that, for § sufficiently small, p < p where p(y) =
y(1+ ewyw) =" +y°/(26).

We conclude that
im = ,
yNO Y 1+ eu|w
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and remark that the case when y 0 follows similarly. Thus, for all z € R"™1 p,(z,0) =
(14 euj(x)w(0))~", and the proof is complete when 3 = occ.

When 3 < oo, the problem is elliptic and the classic theory implies that p € C?(R") and, hence,
that it satisfies (3.2). This concludes the proof.
O

6.2 Sharper a priori estimates

We now show how to bootstrap the weak bounds obtained above to the sharp bounds on p necessary
to control the corrector x5, defined in (3.5).

Proof of Lemma 6.2. Firstly we notice that we need only obtain bounds for all € € (0, ¢y) for some
threshold €y > 0, to be determined. For € > ¢g this is trivially true by Lemma 6.1 after taking u1,
2, and pg sufficiently large. Secondly, we work only on R"~! x R, since the case y < 0 can be
handled similarly.

Step 1: To obtain a lower bound, we build a sub-solution. Fix positive constants p;, p2, and us to
be determined, and let

2/3

1 ye
B(ZU, Z/) = y(l — 64/3:“1) - 5#252y2 _ ,u362/3/ |W€(y/)|2dy' . EQ/SuH(a:)WE(eQ/Sy).
0
Direct computations yield
B
—T?AB-F rew- Dp+|Dpl|"
B
€
=ry (me? + 2u3?BWE(EPy)w(y) + eujw, + 62/3A$“||(11')W6(62/3y))

—rPWER Y u s - Doy + reuju (1= e’ = paey — pse PIWE(EPy)? - eujw)
+ [64/3|Dmu|\ PIWeEPy)P +1 -2 (u164/3 + p2e’y + pse P W Py) P + 6“\|w>

. 21r/2
+ <M1€4/3 + po€ly + psePIWe(e3y) 2 + 6u||w> } .

After using the inequality (1 + x)™/? < 14 rz/2 and cancelling two terms of the form eujw, which
is the purpose for the last term in p, we find

B
—T’%AB +reu- Dp 4+ |Dp|"

B
€
< Ty <M2€2 + 203 BW (X3 y)w(y) + €u|jwy + 62/3AIU”($)W€(62/3y)>

—rePW(E Py - Dy
— reujw (u164/3 + po€ly + pse'PIWe(3y) 2 + eu”w> +1
r
t €| Day WPy 2 — v (me“/g + paey + u364/3|W6(62/3y)|2)

r

2
5 <M164/3 + p2€’y + M3€4/3’W6(€2/3?J)’2 + eu”w) :

_l’_
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Next, we rearrange terms and we use that (a1 + -+ ax)? < k(a? + -+ +a}) and 7 < 2 to obtain,
for some C' > 1 depending only on ||ul/c2 and ||w||c1 and changing line-by-line,

B
—T%AB +reu- Dp 4+ |Dpl|"
<1— 3 rug —re 2B, — 7”61/3U||’LUy + repugw + 7“62/3(un)2
We 2/3
— 2rp2etld — 27“62/3(11,”211)2} — ey [T‘,ug + reﬁp;g%w
ye

We(e2/3y)
yel/3

r
+ §6ﬁ+2/3Axu”W€(62/3y) + 2rpdety® + 2ru§eg/3\W6(62/3y)\4

r
+7r uy - Duy + ruzeu”w} — By {rug + rpzeujw — §|chu” |2}

1 M3 {Tm _C (64/3M2 e+ M2 1 61/3)] B 62?/[7%2 B C<W;(€el2//33y)\ (235 +1) + 6#2)}

— BWe(eBy) 2 [m:s — C(use + 1)} + CeVBWE(By)| + Apsety® + 4p3e® P W (e 3y) ",

Young’s inequality and that [WW¢(e2/3y)| < Cel/3y yields

B
—r%AB +reu- Dp+ |Dp|”
<1— €3 [rm -C (e4/3u2 + 123 4 23 4 61/3> ] — eZy[mz — C<62/3,u3 +1+ euz)]
— PWEEY)R g — Cluse +1)] + CA3+ WS Y)R) + 4 udy? + 43w ()|,

Rearranging terms and, if necessary, lowering €y so that Ceg/ ! /2, we find

—rpr +reu- Dp +|Dp|"
<1-€® [% — C("Ppg + epif + 1)} — €y Bm — C(1+e/Pp) (64)
— W) [ B2 - ] + 4ty + i W)
Recall, from the definition of mild white noise, that ||w| -1 < M, and let

psi=4C+1  and gy :=4C+1+8M° /(1 + [|ulloo)- (6.5)

Let €y > 0 be such that
_2
p2 > 40(1 + e ),

and set 1 = 40(33/3,@ +1).
Lowering €, if necessary, so that ¢y < €y, we find
P
—TEAB +reu- Dp 4+ |Dp|"
H1 M2 M3
<13 (B Ceup] — @2y — ey Pt achiy? + 4 W@y
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Again, making ¢y even smaller, if necessary, we obtain 8 Ceyuy < 1 and, hence,

B
€
—r—Ap+reuw- Dp+ |Dpl|"
2 = i - i - i (6.6)
1 2 3 € €
<1 L 2HE B )2 et y? s e W)

4

We show next that p is a sub-solution of (3.2) in the domain V. = {(z,y) € R" ! xR, : y <

(163 M*e?)~1/2}, Consider the third and fifth terms in the right hand side of (6.6). Making e
smaller and using the definition of V., we find

se2y? — HY _ S g ypz < depiz

= 16 -1 —

Next, consider the fourth and six terms in the right hand side of (6.6). Since |W¢(e¥/3y)|? <
62/3M2y2 and K2, K3, M > 1a

- 1> <0 in V..  (67)

8/32 €(.2/3 /3,“3 €(.2/3.\|2
SAW(EPy)t - —1 W)l

4/3
€
= SR @By (166 gl ()2~ 1) (6.8)

I/\

/ 4/3 1
€ MB‘WE( 2/3 )‘ (16€2M3M2y2 _ 1) < %’WE(GQ/?):U)‘Q <W o 1> S 0 in ‘/e

The combination of (6.6), (6.7), and (6.8) imply that p is a sub-solution of (3.2) on V..

Next, we claim that p < p on dV.. Since clearly p < p on R"~! x {0}, we concentrate on
R x {(16ugM*e?)~ 1/2} Using the weak lower bound of Lemma 6.1 and that u We(e 3y) >
—€/3||u| 0oy, we observe that

p(z,y) — p(z,y) > y(1 —eCr) — p(z,y)

1 2/3
= PPy + Spaey® + sl / (W) Pdy + PuyWe(e*Py) — eCry
0
1 2/3
> My + Shac’y’ + u362/3/ (W) Pdy" — e(CL + [Jul|s0)y-
0
Thus, on R* 1 x {(16p3M*e?)=1/2},
2/3
:U’Q Yy €
plz,y) — plz,y) > Py + RN TP u362/3/ (W) Pdy’ — e(CL + [Jul|s0)y-
\F?, 0

The choice of ug and u3 (see (6.5)) gives that the sum of the second and fourth terms on the right
hand side is positive, and, hence,

2/3

oy
p(x,y) — plx,y) > By + u362/5/0 (We(y')|*dy > 0.

It then follows from the comparison principle that p < p on V..
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A similar argument shows that p < p for y > (16u3M 4€2)=1/2 50 we omit the details. We conclude

that p < p in R"~! x R, finishing the proof of the lower bound.

Step 2:: We obtain an upper bound on p by constructing a super-solution and arguing as above.
As such, we only include the first steps, which vary from those of the proof of the lower bound.
The rest of the proof proceeds exactly as above.

Fix positive constants p1, p2, and ps to be determined and let

2/3

_ 1 ¢
plr.y) = y(L+ € Ppm) + Spacy? + 62/3u3/ W) Py — e uyWe(e/y).
0
A direct computation gives
B
—TEAB +reu- Dp+|Dpl"
B
€
=Ty (ugez + 203 PWE(X 3y w(y) — eujwy — 62/3Aqu($)W€(€2/3y))

—reBWE(EBy)uy - Dy + reujw <1 + 1€ 4 oy + pzeBWE (X 3y))? - eu”w)

+ [64/3|Dxu|| 24142 <M1€4/3 + o€y + s BWe(eX P y)|? — E“”“’)
2qr/2

+ <u164/3 + e’y + pae P We(Py) [P — 6“““’) }
> &
_/"’7
)
— S PW(Ey)uy - Doy + rewyw <1 + 11 €® + pae?y + s B W Py)? - 6“II"”)

(/1,262 + 203 PWE(X3y)w(y) — eujwy — 62/3A$UH(.’IJ)W€(€2/SZ/))

r/2
+ [64/3|D$u” |2H/V6(62/3y)|2 +14+2 (,u164/3 + o€ty + M364/3\W6(e2/3y)|2 — eun) ]

(6.9)
In the proof of the lower bound, we used the concavity of (1+x)"/?; this will not work here. Instead,
we use Taylor’s theorem, which implies that there exists E. such that

(B < [2 (e + paey + e PIWE(Ly) 2 ewpw) + 43| Dy W () |
and
[64/3\1?&:”\\ ?+1+2 (u164/3 + pae’y + e P W( )P — eun> ]rm
=1+r (,u164/3 + o€y + pseBIWe(3y))? — eu”w) + %64/3|Dqu 2|We(€2/3y)|?

r(2—r)
4(1 + E.)3/2
In view of €||ul|s < 1/4, we find |E| < 1/2. Using this with the identity above, we find

2
(2 <,u164/3 + o€y + pzeBWe(X3y))? - eu”w) + 64/3]D$u||\2]W6(62/3y)]2>

r/2
[64/3|Dmuu 24142 (u164/3 + pa€’y + pze P WPy |2 — GUH“’) ]
T
>14r (,u164/3 + e’y + pae! BWE(y)? — 6ull“’) + 564/3‘1790“\\ [PIWe () ?

r(2—r)

2
— W (2 (/1,164/3 +/.L2€2y+M364/3|W6(62/3y)’2 _ €U||UJ) + 64/3|D;pU”’2|W6(€2/3y)|2>
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Inserting the last estimate into (6.9) and using that 4 - 273/2 > 1, we find

B
—T%AB + reu - Dp + |Dp|”

B
€
> —7’—2 (,LL262 + 2u365/3WE(62/3y)w(y) — €ujjwy — eQ/BAqu(m)WE(ez/gy))

—rEBWE(EBy)uy - Dyu) + reujw (1 + 13 4 poely + g 3w 3y) |2 — eu”w)
+147 <u164/3 + €y + pse B We(e3y)? — Eunw) + 264/3!1%““ B

2
—r(2—r) (2 <,u164/3 + o€y + pzeBWe(eX3y))? - eu||w> + 64/3‘D$UH \2]W6(62/3y)]2) .

As before, after rearranging terms, applying Young’s inequality, bounding terms involving u, and
using the inequality (a1 + -+ +ag)? < k(a? +--- +a}), we get, for some C' > 1 depending only on
[ullcz and [lwl|cn,
B
—T;AB +reu - Dp +|Dpl"
> 14 €3 [rm — C(*3pg + 1+ ey + 54/3/&)} + €%y [wz — Oz +1+eup)|  (6.10)
+ Py s = Cleps +1)] = Ot idy? — CE (1 + D)W ()"

At this point, we notice that (6.10) is analogous to (6.4) in the proof of the lower bound. As the rest
of the proof proceeds in the exact same manner, we omit it. We conclude that p > p in R"~! x R,
finishing the proof. O
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