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Abstract

We study the effect of small random advection in two models in turbulent combustion. Assuming
that the velocity field decorrelates sufficiently fast, we (i) identify the order of the fluctuations
of the front with respect to the size of the advection, and (ii) characterize them by the solution
of a Hamilton-Jacobi equation forced by white noise. In the simplest case, the result yields, for
both models, a front with Brownian fluctuations of the same scale as the size of the advection.
That the fluctuations are the same for both models is somewhat surprising, in view of known
differences between the two models.

1 Introduction

We are interested in the rigorous understanding of the effect of a small random advective term,
which varies on large scales, on the asymptotic behavior of two types of fronts arising in turbulent
combustion, population dynamics, and various other physical systems, which in the absence of
advection yield the same front.

The first model is the so-called G-equation. It is a positively homogeneous of degree one Hamilton-
Jacobi equation used to describe front propagation governed by Huygen’s principle. In its simplest
form, that is without advection, the G-equation yields fronts moving with constant normal velocity.
The G-equation is derived as a simplified model when the advection varies on an integral length
scale.

The second model is an eikonal equation that is related to a turbulent reaction-diffusion equation.
The combined effects of reaction, advection, and diffusion yield complex behavior, including the
failure of Huygen’s principle, that has drawn significant mathematical interest.

There is a long history of developing and using simplified models for turbulent combustion; we refer
the reader to the book of Williams [16], the introduction of the work by Majda and Souganidis [12],
and references therein. In [12], the authors develop a mathematically rigorous framework to un-
derstand the connection between the advective reaction-diffusion models and the G-equation. One
of the conclusions is that, when the advection varies on large length scales, the front asymptotics
may be different, see [12, Appendix B].
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In [13], Mayo and Kerstein study small advection perturbations of the G-equation and formally
obtain that the correction of the front location is given by a Hamilton-Jacobi equation forced by
one-dimensional (in the direction of the front) white noise.

Here, we provide a rigorous mathematical justification of this result. In addition, we study the
asymptotics of the second model, that is, the eikonal equation.

A somewhat surprising conclusion is that these two models have the same highest-order asymptotics
and first-order correction. In particular, the result implies that the disparity found in [12] is a large-
advection phenomenon.

We next describe the setting. We work in Rn with n ≥ 2 and denote elements as (x, y) with
x ∈ Rn−1 and y ∈ R. We also write (x, ξ) for elements of Rn with x ∈ Rn−1 and ξ ∈ R, when ξ
plays the role of a “slow variable.” Finally, we set R± := {y ∈ R : 0 < ±y <∞}.

For our results, we require an appropriate smooth approximation of white noise, often referred to
as mild white noise, which we denote by w. The precise definition and assumptions are given in
Section 2. Here, we only remark that, if w is mild white noise, then, as ε → 0, ε−1

´ y
0 w(z/ε2)dz

converges in distribution to a Brownian motion.

The random advection whose effect we investigate is

u(x, y, t) = (u⊥(x, y, t), u‖(x, t)w(y)),

where u⊥ and u‖ are smooth and bounded. We study fronts that, on average, propagate in the
y-direction, so that u⊥ and u‖w are the perpendicular and parallel advective forces respectively.

To state the results, we define two objects that will be of considerable importance to our study
since they provide the correction due to the small advection. For a fixed standard one-dimensional
Brownian motion W , we consider the stochastic Hamilton-Jacobi equation{

dχ+ 1
2 |Dxχ|2dξ = −u‖(ξ, 0)dW (ξ) in Rn−1 × R+,

χ = 0 on Rn−1 × {0}.
(1.1)

and its viscous counterpart{
dχvisc +

(
1
2 |Dxχvisc|2 − 1

2∆xχvisc

)
dξ = −u‖(ξ, 0)dW (ξ) in Rn−1 × R+,

χvisc = 0 on Rn−1 × {0}.
(1.2)

Because of the lack of regularity of dW in (1.1) and (1.2), the classic notion of viscosity solution is
not applicable here. At the end of Section 2, we explain how to make sense of (1.1) and (1.2).

Next, we introduce the models and describe the results.

The G-equation

We fix α ≥ 1 and consider the initial value problem{
Gεt + εu(x, y, εαt) ·DGε + |DGε| = 0 in Rn × R+,

Gε = G0 on Rn × {0},
(1.3)

where G0 is a “front-like” initial datum (see Assumption 2.1), the simplest example being G0(x, y) =
y. We are interested in the evolution of the“front,” that is, the 0-level set of Gε at time t, which
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we denote Γt(G
ε). We note that, if ε = 0 and G0(y) = y, then G0(x, y, t) = y − t solves (1.3), and

its front at time t is given by Γt(G
0) = {(x, y) : y = t}. Our goal is to understand in what way it

is approximated by the front of Gε.

The case α =∞ is allowed, and the convention is that ε∞ = 0.

The first result is stated informally in the following theorem. The precise statements are given in
Theorem 2.3 and Proposition 2.4.

Theorem 1.1. If Gε solves (1.3) and G0 is front-like, then

Γt(G
ε) = {(x, y) ∈ Rn : y + ε2/3χε

(
x, ε2/3y, ε2/3t

)
= t},

where, as ε→ 0, χε converges in distribution to the solution χ of (1.1).

The eikonal equation

The second model is{
vεt + εu(x, y, εαt) ·Dvε + 1

2 |Dv
ε
x|2 + 1

2 = εβ

2 ∆vε in Rn × R+,

vε = v0 on Rn × {0},
(1.4)

where v0 is front-like. For the sake of completeness, we describe the connection of (1.4)
to a turbulent reaction-diffusion equation. A simple calculation yields that T ε(x, y, t) :=
exp{−ε−βvε(εβx, εβy, εαt)} solves

T εt + u ·DT ε =
1

2
∆T ε +

1

2
T ε. (1.5)

The front of T ε is the area where it transitions from T ε ≈ 0 to T ε ≈ O(1). It is clear from the
relationship between T and v that the two uses of the term “front” are consistent. When u ≡ 0,
the front of T is approximately the same as those of solutions of the Fisher-KPP equation, which
is sometimes used as a model for combustion.

Our second result is stated informally in the following theorem. The precise statement can be found
in Theorem 2.5 and Proposition 2.6.

Theorem 1.2. If vε solves (1.4) and v0 is front-like, then

Γt(v
ε) ≈ {(x, y) ∈ Rn : y + ε2/3χε(x, ε2/3y, ε2/3t) = t},

where, as ε → 0, χε converges in distribution to the solution χ of (1.1) when β > 2/3 and to the
solution χvisc of (1.2) when β = 2/3.

We point out that the front location for the G-equation, given in Theorem 1.1, and those of the
eikonal equation, given in Theorem 1.2, have the same approximate expansion,

y + ε2/3χ(x, ε2/3y) + (lower order terms) = t.

This is somewhat surprising since examples were given in [12] where these two models do not have
the same front asymptotics for ε > 0.
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A simple example

To illustrate the results, we find the front in the simple example where u‖ ≡ 1. Since the conclusion
is the same for both Gε and vε, we consider, for notational simplicity, only the solution Gε of (1.3);
however, the same discussion applies to the solution vε of (1.4). With u‖ ≡ 1, the solution to (1.1)
is χ(x, ξ) = W (ξ). Theorem 1.1 yields that the front location is

Γt(G
ε) = {(x, y) ∈ Rn : t = y + ε2/3χε(x, ε2/3y)} ≈ {(x, y) ∈ Rn : t = y + ε2/3W (ε2/3y)}.

Since, in view of the Brownian scaling, ε2/3W (ε2/3y) is equal in distribution to ε
√
y(W̃ (t)/

√
t),

where W̃ is an independent Brownian motion, we find that (x, y) belongs to the front at time t

when t ≈ y + ε
√
yW̃ (t)/

√
t, that is

Γt(G
ε) ≈ {(x, y) ∈ Rn : y ≈ t− εW̃ (t)}.

In other words, we see Brownian fluctuations of the front of order ε.

Further connections with previous works

In addition to the related work discussed above, our work is placed in the field of research into
precise descriptions of the effect of advection on front propagation. The body of literature devoted
to these problems is enormous, and we thus only provide a small sample of the current research that
is most relevant to the current work. While certain implicit representation formulas of the speed
and the front profile exist (see, e.g., Xin [17]), they are often difficult to quantify. To our knowledge,
most non-trivial results that can be quantified precisely are done in particular asymptotic regimes,
especially when the flow becomes large. We mention the studies of reaction-diffusion equations in
the presence of a large time-independent shear flow by Hamel and Zlatos [7] and a large cellular
flow by Novikov and Ryzhik [14]. In addition, Hamilton-Jacobi models like (1.4) and (1.3) have
been studied in the setting with a large cellular flow by Xin and Yu [18] and when u is the ABC
flow by Xin, Yu, and Zlatos [19].

Beyond this, we mention a somewhat surprising connection to a recent work by Corwin and Tsai
on the weakly inhomogeneous ASEP process [4]. There, using probabilistic techniques, the authors
show that the introduction of a small inhomogeneity yields fluctuations around the homogeneous
process that are governed by an equation similar to (1.2) (see [4, equation (1.7) and Remark 1.8]).
To roughly see why the two results should be related, one should think of the inhomogeneity in
their process as a random drift term, similar to u.

Organization of the paper

The assumptions and results are stated more precisely in Section 2. In Section 3 we construct some
special solutions that we refer to as “perturbed traveling waves.” We do this first in the autonomous
setting and then extend it by a bootstrapping argument to the non-autonmous problem. These
results are then used in Section 4 and Section 5 to understand the front location for the initial value
problems (1.3) and (1.4) respectively. This allows us to conclude the proofs of Theorem 1.1 and
Theorem 1.2. The main technical lemma that we use to construct the perturbed traveling waves is
the a priori estimates on the metric planar problem. This is the subject of Section 6.
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Figure 1: A cartoon illustrating Assumption 2.1. Each plot is the profile of G0(xi, ·) for three values
x1, x2, x3 ∈ Rn−1. The dotted line is G, the dashed line is G, and the solid black line is G0(xi, ·).
Notice that, regardless of xi, G0 leaves zero at y = 0 in a uniform way.
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2 Assumptions and Results

2.1 The assumptions

We begin with the assumptions on the initial datum and the advection. The first, which con-
cerns (1.3) and (1.4), is that, heuristically, the 0-level set of G0 is {y = 0} and G0 “lifts” away
from zero in a uniform way in x (see Figure 1). The latter is assumed to avoid “fattening” of the
0-level set as |x| → ∞. For a more in-depth discussion of the level set method and issues related
to fattening, we refer the reader to the review by Souganidis [15].

Assumption 2.1. G0 ∈ L∞loc(Rn) and there exist G, G ∈ C0,1
loc (R) ∩ C1

loc(R− ∪ R+) such that

G′, G
′
> 0, G ≤ G0 ≤ G, and G(0) = G(0) = 0.

Initial data satisfying Assumption 2.1 are sometimes called “front-like.” The prototypical example
is G0(x, y) = y.

Before we state the assumption on the advection, we discuss the notion of mild approximation of
white noise. Let (Ω,F , P ) be a probability space with expectation E, and let Fy1,y2 := σ{w(y) :
y1 ≤ y ≤ y2}. We say that w : R× Ω→ R is a mild approximation of white noise if

(i) there exists M > 0 such that, with probability 1, ‖w‖C1(R) ≤M ;

(ii) for all y ∈ R, E[w(y)] = 0;

(iii) w is stationary and strongly mixing with rate p > 3/2; that is, if

ρ(y) := sup
y1

sup
y2≥y1

sup
A∈Fy2+y,∞,B∈Fy1,y2

|P (A ∩B)− P (A)P (B)|
P (B)

,

5



then ˆ ∞
0

ρ(y)1/pdy <∞.

To simplify the notation, in what follows, we assume that M ≥ 1 and

2

ˆ ∞
0

E[w(0)w(ξ)]dξ = 1.

It is well-known that, if w satisfies (i), (ii), and (iii), then

W ε(y) := ε−1/3
ˆ y

0
w(ε−2/3z)dz (2.1)

converges, as ε → 0, in distribution to a Brownian motion W ; see, for example, Funaki [6]. The
term mild refers to the lower bound on p in (iii). For an more extensive discussion about mild
approximation of white noise, we refer to Ikeda and Watanabe [8].

A simple example of mild white noise w is

w(y) =

ˆ
R
S̃zφ

′(y − z)dz, (2.2)

where S̃ is a piece-wise linear interpolation of a random walk S, indexed by Z and with S0 = 0,
and φ ∈ C∞c is non-negative and supp(φ) ⊂ [0, 1]. Properties (i) and (ii) are clearly satisfied, while
(iii) is verified by writing

w(y) =

ˆ y

y−1

(
S̃z − S̃y−1

)
φ′(y − z)dz,

noticing that w(y) and w(y′) are independent if y′ > y + 1, and observing that supp ρ ⊂ [0, 1].

The second assumption is:

Assumption 2.2. The advection u is of the form

u(x, y, t) = (u⊥(x, y, t), u‖(x, t)w(y)), (2.3)

where w is mild white noise, u⊥ ∈ C2(Rn × R+)n−1, and u‖ ∈ C2(Rn−1 × R+).

We are interested in the fronts Γt(G
ε) and Γt(v

ε) of Gε and vε respectively, where, for any φ :
Rn × R+ → R and t ∈ R+,

Γt(φ) := {(x, y) ∈ Rn : φ(x, y, t) = 0}. (2.4)

As discussed above, a special solution of (1.3) and (1.4), when ε = 0, is G0(x, y, t) = v0(x, y, t) =
y − t. Hence, Γt(G

0) = Γt(v
0) = {(x, t) : x ∈ Rn−1}. The goal is to understand the first order

correction to this for ε� 1.
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2.2 The G-equation

We first construct a special solution of (1.3) that has the form y − t + ε2/3χε and that we refer
to as a “perturbed traveling wave”. We use this term for two reasons. Firstly, it is the sum of
a traveling wave y − t and a small term ε2/3χε, and secondly, it is a special solution that plays a
fundamental role in analyzing the general case, much like a traveling wave. The perturbation χε

acts as the “corrector” in the averaging problem that we are studying.

Theorem 2.3. Suppose that Assumption 2.2 holds and α ≥ 1. There exists χε ∈ L∞loc(Rn × R+)
such that

(i) Gεptw(x, y, t) := y − t+ ε2/3χε(x, ε2/3y, ε2/3t) solves (1.3),

(ii) χε converges in distribution on Rn−1×{(ξ, τ) ∈ R× [0,∞) : ξ ≥ τ}, as ε→ 0, to the solution
χ of (1.1),

(iii) Gεptw(·, ·, 0) satisfies Assumption 2.1.

Clearly Gεptw depends on α, but we omit this for notational simplicity.

We describe and discuss the precise definition of locally uniform convergence on Rn−1 × {(ξ, τ) ∈
R× [0,∞) : ξ ≥ τ} that we use throughout at the end of this section.

Although the convergence of χε to χ holds on Rn−1×{(ξ, τ) ∈ R× [0,∞) : ξ ≥ τ}, the relevant set
for locating the front is merely Rn−1 × {(ξ, ξ) : ξ ∈ [0,∞)}. To see this, notice that

Γt(G
ε
ptw) = {(x, y, t) : y + ε2/3χε(x, ε2/3y, ε2/3t) = t}.

It follows from the a priori estimates (3.11) on χε that y = t + o(1), where o(1) → 0 as ε → 0.
Letting ξ = ε2/3x and τ = ε2/3t, the term involving the corrector becomes ε2/3χε(x, τ + o(1), τ).
It is thus apparent that, to understand the front location when ε � 1, it is sufficient to study the
convergence of χε(x, ξ, τ ) when ξ = τ + o(1).

We note the interesting fact that the transverse advection u⊥ does not affect the first order cor-
rection in the limit. In addition, we point out that while χε has time-dependence for all ε > 0, it
converges to a limit χ that does not evolve in time. Finally, we remark that we do not know if the
restriction α ≥ 1 is sharp.

One way to understand Theorem 2.3 is through the following informal computation that ignores
technical issues such as the time dependence of u and the lack of regularity of Gεptw. When α =∞,
we use the ansatz

Gεptw(x, y, t) = y − t+ ε2/3χε(x, ε2/3y),

which, from (1.3), yields

1 = εu(x, ε−2/3ξ) · (ε2/3Dxχ
ε, 1 + ε4/3χεξ) + |(Dxχ

ε, 1 + ε4/3χεξ)|.

Approximating the last term with a Taylor expansion yields

1 = εu‖(x)w(ε−2/3ξ) +
1

2
|Dxχ

ε|2 + 1 + ε4/3χεξ +O(ε5/3).

Re-arranging, dividing by ε4/3, and using that ε−1/3w(ε−2/3ξ) = W ε
ξ (ξ), we find

χεξ +
1

2
|Dxχ

ε|2 = −u‖W ε
ξ +O(ε1/3).
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We identify (1.1) by taking the limit ε→ 0.

Using the level set method, we can describe the front asymptotics for solutions Gε of (1.3) with
more general initial datum.

Proposition 2.4. Suppose that α ≥ 1, and let Gε solve (1.3) with G0 and u satisfying Assump-
tion 2.1 and Assumption 2.2 respectively. Then, for all t ∈ R+, Γt(G

ε) = Γt(G
ε
ptw). Moreover,

{Gε ≤ 0} = {Gεptw ≤ 0}.

Proposition 2.4 implies that the special solutions constructed in Theorem 2.3 are sufficiently stable
to determine the front for the general initial value problem.

2.3 The eikonal equation

As above, we begin by constructing the perturbed traveling waves for (1.4), that is, we state the
analogue of Theorem 2.3.

Theorem 2.5. Suppose that Assumption 2.2 holds, α ≥ 1, and β ≥ 2/3. There exists χε ∈
L∞loc(Rn × R+) such that

(i) vεptw(x, y, t) := y − t+ ε2/3χε(x, ε2/3y, ε2/3t) solves (1.4),

(ii) χε converges in distribution on Rn−1×{(ξ, τ) ∈ R× [0,∞) : ξ ≥ τ}, as ε→ 0, to the solution
χ of (1.1) when β > 2/3 and the solution χvisc of (1.2) when β = 2/3,

(iii) vεptw(·, ·, 0) satisfies Assumption 2.1.

We note that β = 2/3 is the critical scale in order to see the effect of the viscosity in the limit.

It is harder to bootstrap the front asymptotics of the perturbed traveling wave since the level set
method only works for positively homogeneous equations of degree one. Hence, we obtain estimates
on the 0-sub-level set, which, while quite sharp, do not completely characterize the 0-level set as
in Proposition 2.4.

Proposition 2.6. Assume that β =∞ and α ≥ 1. Suppose that v0 and u satisfy Assumption 2.1
and Assumption 2.2 respectively, v0 ≥ vεptw(·, ·, 0) in Rn, and vε solves (1.4). Then

{(x, y) : Gεptw(x, y, t) ≤ 0} ⊂ {(x, y) : vε(x, y, t) ≤ 0} ⊂ {(x, y) : vεptw(x, y, t) ≤ 0}. (2.5)

In view of Theorem 2.5 and Theorem 2.3, this result indicates that vε has the same front expansion
in terms of χ at the ε2/3-order.

The extra condition on the initial datum in Proposition 2.6 is quite sharp. Indeed, fix any µ > 1
and consider the solution of (1.4) with initial datum v0(x, y) = y/µ. Letting v(x, y, t) = −t(κ +
ε‖u‖∞) + y/µ and v(x, y, t) = −t(κ− ε‖u‖∞) + y/µ, where κ = (2µ2)−1 + (1/2), we see that v and
v are, respectively, sub- and super-solutions of (1.4). Applying then the comparison principle, we
find v ≤ vε ≤ v, and, hence, we conclude that

(x, y) ∈ Γt(v
ε)⇔ y ≈ µκt+O(εt).

After noting that µκ > 1, this indicates that the sub-level sets of vε with this initial datum cannot
satisfy (2.5).
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2.4 Discussion of the proofs, organization, and notation

Discussion of the proof and main difficulties

The first step is to construct the perturbed traveling waves in the autonomous setting (α = ∞).
As discussed heuristically below Theorem 2.3, the proof proceeds via an ansatz that Gεptw and
vεptw are of the form −t + ρε, where ρε is time-independent and solves the so-called metric planar

problem. We expect the expansion ρε(x, y) = y + ε2/3χε(x, ε2/3y). Defining χε in this way, we use
the half-relaxed limits in order to take limit as ε → 0. Informally, the half-relaxed limits are the
“smallest supersolution” below ρε and the “largest subsolution” above ρε as ε→ 0. It can often be
shown, using the comparison principle, that these two objects coincide.

The latter requires to overcome two main difficulties. The first is that the process W ε converges,
as ε→ 0, to W only in distribution. This does not interact well with the half-relaxed limits, which
require pointwise convergence. To get around this obstruction, we use an argument from [8] that

allows to replace W ε with a process W̃ ε that converges, as ε → 0, almost surely to a standard
Brownian motion and equals W ε in distribution. The second major difficulty is how to obtain a
priori estimates of ρε that are sufficiently sharp to conclude that ρε = y+ε2/3χε, where χε is bounded
and limε→0 χ

ε
ptw satisfies the correct datum at y = 0. This is achieved through the construction of

suitable barriers.

The above strategy is not enough to study the non-autonomous problem, that is, when α < ∞,
due to the time-dependence inherited in the equation for ρε. Roughly speaking, our strategy is to
build the perturbed traveling wave in this setting by the addition of a “very small” correction term
to the perturbed traveling wave from the autonomous case.

More specifically, we define the perturbed traveling waves for the non-autonomous problem to be
the solutions of (1.3) and (1.4) with initial datum that is equal to the perturbed traveling wave
from the autonomous case. We are then able to obtain sufficiently good error estimates between
the solution and its initial data allowing to take the half-relaxed limits as ε → 0. The result is a
non-standard, non-coercive Hamilton-Jacobi equation solved by both the limit and χ for ξ > 0.

We do not, however, have control on χ and the half-relaxed limits χ∗, χ∗ for ξ < 0. The standard
comparison principle is valid for for this equation but requires information about χ, χ∗, and χ∗ on
{ξ < 0}. We side-step this by using a simple change of variables that allows to compare solutions
on sets that are preserved by the characteristics, that is, where ξ− τ is constant. We are thus able
to conclude the convergence to χ in this setting.

We bootstrap the results above to general initial datum. We can conclude Proposition 2.4 using
the level set method. In addition, we prove Proposition 2.6 by using the perturbed traveling waves
of Theorems 2.3 and 2.5 to construct sub- and super-solutions of vε.

Additional notation

Throughout we only work with locally uniform convergence on sets of the form Rn−1 × {(ξ, τ) ∈
R×[0,∞) : ξ ≥ τ}. Since we care about endpoint behavior at ξ = τ , we use a slightly stronger notion
than the standard one. Indeed, we say that fn converges to f locally uniformly on Rn−1×{(ξ, τ) ∈
R× [0,∞) : ξ ≥ τ} if, for any (x0, ξ0, τ0) ∈ Rn−1 × {(ξ, τ) ∈ R× [0,∞) : ξ ≥ τ} and any sequence
(xn, ξn, τn) ∈ Rn×[0,∞) converging, as n→∞, to (x0, ξ0, τ0), we have fn(xn, ξn, τn)→ f(x0, ξ0, τ0)
as n→∞. The difference is that we allow each ξn to take any real values, instead of just values in
[τn,∞).
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For any f ∈ C0,1(Rn), Lip(f) denotes its Lipschitz constant, for any f ∈ L∞(Rn), ‖f‖∞ denotes
its L∞-norm, and, for any f ∈ C1(Rn), ‖f‖C1 denotes its C1-norm. Also, δ denotes the Kronecker
delta function.

Since we are concerned with the small ε limit, we lose no generality in assuming throughout the
paper that ε‖u‖C1 ≤ 1/100.

All functions throughout depend on the variable ω ∈ Ω. When no confusion arises, we suppress
this dependence to simplify the writing.

Given random variables X1, X2, . . . and X, Xn
d−−→X and Xn

a.s.−−→X mean that, as n → ∞, Xn

converges to X in distribution and almost surely respectively. When two random variables X and

X̃ have the same distribution, we write X
d
= X̃.

Throughout the paper, W is a one-dimensional standard Brownian motion and W (ξ) denotes the
value of W at ξ. In addition, we denote white noise by dW . It is important to note that this is
one-dimensional white noise in the variable ξ and not space-time white noise.

We now make explicit the notion of solution of equations of the form

df + (H(Df)− ν∆f)dt = gdW (t), (2.6)

where H is some Hamiltonian and ν ≥ 0. We say that f is a solution of (2.6) if and only if
f(x, t) = f(x, t)− g(x)W (t) is a viscosity solution of

f t +H
(
Df +W (t)Dg

)
− ν∆

(
f +W (t)g

)
= 0. (2.7)

This definition was used by Dirr and Souganidis in [5] and is a special case of the general notion of
solution introduced by Lions and Souganidis in [9, 10, 11].

3 The construction of the perturbed traveling waves

We prove Theorems 2.3 and 2.5. Since the arguments are similar, we reduce them to a more
general claim (see Proposition 3.1). We begin by addressing the autonomous case α = ∞. Then,
we bootstrap to the non-autonomous case (see Proposition 3.5).

3.1 The autonomous case α =∞

We work in a more general framework and state the main claim next.

Proposition 3.1. Suppose that Assumption 2.2 holds, β ≥ 2/3, and r ∈ [1, 2]. There exists
χεaut ∈ L∞loc(Rn) such that

(i) f εaut(x, y, t) := y − t+ ε2/3χεaut(x, ε
2/3y) solves

f εaut,t + εuaut ·Df εaut +
1

r
|Df εaut|r +

r − 1

r
=
εβ

2
∆xf

ε
aut in Rn × R+, (3.1)

where uεaut(x, y) := u(x, y, 0);

(ii) as ε→ 0, χεaut converges in distribution on Rn−1 × [0,∞) to χ, the unique solution of (1.1),
if β > 2/3, or χvisc, the unique solution of (1.2), if β = 2/3;
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(iii) f εaut(·, ·, 0) satisfies Assumption 2.1.

The reason for the restriction r ≤ 2 is seen in the a priori estimates of χε. While we do not
anticipate any issues in extending the proof to r > 2, this will involve some adjustments to our
proof. Since our interest is in the cases r = 1, 2, we opt for a simpler presentation and, thus, restrict
to r ∈ [1, 2].

The proof proceeds in several steps. First we reduce to an intermediate model using the ansatz
that f ε = −t + ρε for a time-independent ρε solving the so-called metric planar problem. Then,
we extract χε from ρε and reduce to the stronger case where W ε converges in probability to W .
Finally, we apply the method of half-relaxed limits to obtain convergence of χε to χ.

3.1.1 Step (i): the reduction to a time-independent problem

From the form of the claim, it is natural to seek a solution f εaut(x, y, t) := ρε(x, y) − t, where ρε

solves {
−r εβ2 ∆ρε + rεuaut ·Dρε + |Dρε|r = 1 in Rn,
ρε = 0 on Rn−1 × {0}.

(3.2)

Next, we consider the existence, uniqueness, and some a priori bounds of ρε.

Lemma 3.2. There exists a unique globally Lipschitz solution ρε to (3.2) such that, uniformly for
all x ∈ Rn−1,

lim inf
y→∞

ρε(x, y) ≥ 0, and lim sup
y→−∞

ρε(x, y) ≤ 0.

Moreover, for all (x, y) ∈ Rn,
|ρ(x, y)− y| ≤ |y|/2, (3.3)

and there exist CL, µ1, µ2, and µ3, depending only on ‖u‖C1 and M , such that Lip(ρε) ≤ CL, and,
for all (x, y) ∈ Rn,

∣∣∣ρε(x, y)−
(
y − ε2/3u‖W ε(ε2/3y)

)∣∣∣ ≤ ε4/3µ1|y|+ µ2ε
2y2

2
+ ε2/3µ3

∣∣∣∣ ˆ yε2/3

0
|W ε(y′)|2dy′

∣∣∣∣. (3.4)

The existence and uniqueness of ρε is well-understood because problems like (3.2) have been studied
extensively due to their use in stochastic homogenization; see, for example, the work of Armstrong
and Cardaliaguet [1], Armstrong, Cardaliaguet, and Souganidis [2], and Armstrong and Sougani-
dis [3], and references therein. The sharp bound (3.4) in Lemma 3.2, which justifies the earlier
comment about correctors, is new and requires significant effort. The construction of sufficiently
sharp sub- and super-solutions is quite involved. The proof of Lemma 3.2 is presented in Section 6.

The motivation for the weaker bound (3.3) is two-fold. Firstly, it shows that f εaut(·, ·, 0) satisfies
Assumption 2.1. Secondly, it is used in the proof of Proposition 2.4. Note that (3.3) does not follow
from the sharper bound (3.4) due to the behavior for |y| � 1. The sharper bound is a crucial part
of the proof of Proposition 3.1.
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3.1.2 Step (ii): the extraction of the correctors χεaut

We change variables so that ξ = yε2/3 and let, for all (x, ξ) ∈ Rn,

χεaut(x, ξ) :=
ρε(x, ε−2/3ξ)

ε2/3
− ξ

ε4/3
. (3.5)

It follows from (3.5) and the definition of f εaut that

f εaut(x, y, t) = y − t+ ε2/3χεaut(x, ε
2/3y). (3.6)

As a consequence, we need only understand the convergence of χεaut as ε→ 0 to conclude the proof
of Proposition 3.1.

3.1.3 Step (iii): the reduction to the case where W ε converges in probability

We now reduce to the case where the random advection converges in probability instead of simply
in distribution. For this, we need the following lemma.

Lemma 3.3. Suppose that Assumption 2.2 holds, and assume that W ε converges in probability to a
standard Brownian motion W . Let χεaut be given by (3.5) with ρε solving (3.2). There exists Ω′ ⊂ Ω
with P (Ω′) = 1 such that, for every ω ∈ Ω′, χεaut(·, ·, ω) converges locally uniformly in Rn−1× [0,∞)
to the solution χ of (1.1) when β > 2/3 and to the solution χvisc of (1.2) when β = 2/3.

The lemma is proved in the next subsection. On the face of it, Lemma 3.3 requires stronger
assumptions than Proposition 3.1. We now show how to get around this.

Proof of Proposition 3.1 using Lemma 3.3. Fix any sequence εn → 0. It follows from [8, Theo-
rem 4.6, Chapter 1] that there exists a subsequence εnk → 0, a probability space (Ω̂, F̂ , P̂ ), and

processes Ŵ εnk and Ŵ defined on (Ω̂, F̂ , P̂ ) such that

Ŵ
d
= W, Ŵ εnk

d
= W εnk and Ŵ εnk

a.s.−−→ Ŵ as k →∞. (3.7)

Let ρ̂k be the unique solution of (3.2) given by Lemma 3.2 with w replaced by

ŵk(y) := σε1/3nk
Ŵ

εnk
y (ε2/3nk

y).

and, for all (x, ξ) ∈ R, set

χ̂k(x, ξ) =
ρ̂k(x, ε

−2/3
nk ξ)

ε
2/3
nk

− ξ

ε
4/3
nk

.

We consider the case β > 2/3. Lemma 3.3 yields that χ̂k converges almost surely, and thus in

distribution, to χ. From the well-posedness of (1.3) and the fact that W εnk
d
= Ŵ εnk , it follows

that χ̂k
d
= χ

εnk
aut , and thus, χ

εnk
aut

d−−→χ. Since this holds for every sub-sequence εk, it follows that

χεaut
d−−→χ.

When β = 2/3, the argument is similar; hence, we omit it.
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3.1.4 Step (iv): the proof of Lemma 3.3 using the half-relaxed limits

We now prove, under the slightly stronger assumptions on the convergence of W ε to W , that χεaut
converges to χ, if β > 2/3, and to χvisc, if β = 2/3,.

Consider the nonlinear error function Nε : Rn−1 × R→ R given by

Nε(p, s) :=
1

rε4/3

(
1 + rε4/3s+

rε4/3

2
|p|2 −

(
1 + 2ε4/3s+ ε4/3|p|2 + ε8/3s2

)r/2)
.

and observe that, in the limits ε4/3s, ε4/3|p|2 → 0,

Nε(p, s) = O
(
ε4/3s2

)
+O

(
ε4/3|p|4

)
. (3.8)

Using (3.2) and (3.5), we formally see that, for any (x, ξ) ∈ Rn−1 × R+, χεaut satisfies

χεaut,ξ +
1

2
|Dxχ

ε
aut|2 + ε−1/3uaut,‖w(ε−2/3·)− εβ−2/3∆xχ

ε
aut = Nε(Dxχ

ε
aut, χ

ε
aut,ξ)

− ε1/3uaut,⊥(·, ε−2/3·) ·Dxχ
ε
aut − εu‖w(ε−2/3·)χεaut,ξ + εβ+2/3χεaut,ξξ,

(3.9)

where uaut,‖ and uaut,⊥ are defined in an analogous manner as uaut. We now justify this formal
computation. First we show that χεaut is a viscosity super-solution of (3.9). Fix (x0, ξ0) ∈ Rn−1×R+

and a test function ψ such that χεaut − ψ has a local minimum at (x0, ξ0) and let

ψ(x, y) = y + ε2/3ψ(x, ε2/3y).

It follows from the definition of χεaut in (3.5) that ρε−ψ has a local minimum at (x0, ξ0ε
−2/3). Thus,

at (x0, ξ0ε
−2/3),

−rε2/3+β(∆xψ + ε4/3ψξξ) + rεuaut · (Dxψ, 1 + ε4/3ψξ) + |(Dxψ, 1 + ε4/3ψξ)|r

= −r ε
β

2
∆ψ + rεut ·Dψ + |Dψ|r ≥ 1.

Dividing by rε2/3 and rearranging yields

ψξ +
1

2
|Dxψ|2 + ε−1/3uaut,‖w(ε−2/3·)− εβ−2/3∆xψ

≥ Nε(Dxψ,ψξ)− ε1/3uaut,⊥(·, ε−2/3·) ·Dxψ − εuaut,‖w(ε−2/3·)ψξ + εβ+2/3ψξξ.

A similar argument shows that χεaut is a sub-solution of (3.9).

In order to work with stochastic viscosity solutions in the limit, we set

χεaut(x, ξ) := χεaut(x, ξ) + uaut,‖(x)W ε(ξ), (3.10)

and, in view of (3.5), (3.10), and the bounds in Lemma 3.2, observe that

|χεaut(x, ξ)| ≤ µ1|ξ|+
µ2
2
ξ2 + µ3

ˆ ξ

0
|W ε(ξ′)|2dξ′, (3.11)

a bound that is crucial to take the half-relaxed limits of χεaut.
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It follows from (3.9) that, at any point (x, ξ) ∈ Rn−1 × R+,

χεaut,ξ +
1

2
|Dxχ

ε
aut −W ε(ξ)Dxuaut‖|2 − εβ−2/3∆xχ

ε
aut + εβ−2/3∆xuaut,‖W

ε(ξ)

= Nε(Dxχ
ε
aut −W ε(ξ)Dxuaut,‖, χ

ε
aut,ξ − ε−1/3uaut,‖w(ε−2/3ξ))

− ε1/3uaut,⊥(x, ε−2/3ξ) · (Dxχ
ε
aut −W ε(ξ)Dxuaut,‖)

− εuaut,‖w(ε−2/3ξ)(χεaut,ξ − ε−1/3u‖w(ε−2/3ξ)) + εβ+2/3(χεaut,ξξ − ε−1wy(ε−2/3ξ),

(3.12)

where we used that W ε
ξ (ξ) = ε−1/3w(ε−2/3ξ) and W ε

ξξ(ξ) = ε−1wy(ε
−2/3ξ).

Furthermore, (3.11) yields that χεaut is locally bounded with probability one. Indeed, let Ω′ ⊂ Ω be
such that P (Ω′) = 1 and, for all ω ∈ Ω′, W (·, ω) is continuous and W ε(·, ω) converges to W (·, ω)
locally uniformly. Then W ε is locally bounded as well. The bound on χεaut follows.

As a result, for any ω ∈ Ω′, the classical half-relaxed limits

χ∗(x, ξ, ω) := lim sup
(x′,ξ′)→(x,ξ),

ε→0

χεaut(x
′, ξ′, ω) and χ∗(x, ξ, ω) := lim inf

(x′,ξ′)→(x,ξ),
ε→0

χεaut(x
′, ξ′, ω), (3.13)

are well-defined. By construction, χ∗ ≤ χ∗. The key step to proving the opposite inequality is to
show that these are sub- and super-solutions of the same equation.

Lemma 3.4. For each ω ∈ Ω′, the half-relaxed limits χ∗(·, ·, ω) and χ∗(·, ·, ω) satisfy repectively{
χ∗ξ + 1

2 |Dxχ
∗ −WDxuaut,‖|2 − δ 2

3
β∆x(χ∗ −Wuaut,‖) ≤ 0 in Rn−1 × R+,

χ∗ = 0 on Rn−1 × {0},
(3.14)

and{
χ∗,ξ + 1

2 |Dxχ∗ −W (ξ)Dxuaut,‖|2 − δ 2
3
β∆x(χ∗ −Wuaut,‖) ≥ 0 in Rn−1 × R+,

χ∗ = 0 on Rn−1 × {0}.
(3.15)

Proof. Since the proofs are similar, we only show the argument for (3.14). In what follows we work
with fixed ω ∈ Ω′ and, hence, suppress it for notational simplicity.

We begin with the behavior of χ∗ at ξ = 0. For this, we note that (3.11), the continuity of W , and
the convergence of W ε to W imply that χ∗ = 0 on Rn−1 × {0}.

Next assume that, for some test function ψ, χ∗ − ψ has a strict local maximum at (x0, ξ0) ∈
Rn−1×R+. It follows from the definition of χ∗ that there exist sequences (xk, ξk) ∈ Rn−1×R+ and
εk > 0 such that χεkaut−ψ has a local maximum at (xk, ξk) and, as k →∞, εk → 0, (xk, ξk)→ (x0, ξ0),
and χεk(xk, ξk)− ψ(xk, ξk)→ χ∗(x0, ξ0)− ψ(x0, ξ0).

Using (3.12), we find that, at (xk, ξk),

ψεkξ +
1

2
|Dxψ

εk −W εkDxuaut,‖|2 − ε
β−2/3
k ∆xψ

εk + ε
β−2/3
k ∆xuaut,‖W

εk

≥ Nεk(Dxψ
εk −W εkDxuaut,‖, ψ

εk
ξ − ε

−1/3
k uaut,‖w(ε

−2/3
k ξk))

− εk1/3uaut,⊥(xk, ε
−2/3
k ξk) · (Dxψ

εk −W εkDxuaut,‖)

− εkuaut,‖w(ε
−2/3
k ξk)(ψ

εk
ξ − ε

−1/3
k uaut,‖w(ε

−2/3
k ξk)) + ε

β+2/3
k (ψεkξξ − ε

−1
k uaut,‖wy(ε

−2/3
k ξk)).
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By assumption, we have that W εk(ξk) → W (ξ0). Hence, the last two terms on the left hand
side tend to zero if β > 2/3 and to −∆x(ψ − uaut,‖W ) if β = 2/3. In addition, it is clear that
W εk(ξk)Dxuaut,‖(xk) converges, as k →∞, to W (ξ0)Dxuaut,‖(x0).

The second, third, and fourth terms on the right hand side clearly tend to zero as k → ∞, while
the first term also does due to (3.8).

Thus, letting k →∞, we find that, at (x0, ξ0),

ψξ +
1

2
|Dxψ −WDxuaut,‖|2 − δ 2

3
β∆x

(
ψ − uaut,‖W

)
≥ 0.

We now combine the above results to prove Lemma 3.3.

Proof of Lemma 3.3. Since the two claims are proved similarly, we only include the details for the
first. Moreover, we again fix ω ∈ Ω′ throughout but omit this dependence to simplify the notation.

It follows from the comparison principle and Lemma 3.4 that χ∗ ≤ χ∗ on Rn−1 × [0,∞), while, as
noted before, χ∗ ≤ χ∗. We conclude that χ∗ = χ∗ and denote this function χ. This equality and
the definition of the half-relaxed limits (3.13), yields that, as ε → 0, χεaut converges to χ locally
uniformly in Rn−1 × [0,∞).

It follows from Lemma 3.4 and the fact that χ∗ = χ∗ = χ, that χ−uaut,‖W solves (1.1). Uniqueness
thus gives that χ = χ − uaut,‖W . Furthermore, the convergences of W ε to W and χεaut to χ and
the definition of χεaut give that χεaut converges, as ε→ 0, locally uniformly to χ. This concludes the
proof.

3.2 The non-autonomous case: 1 ≤ α <∞

Arguing as in Section 3.1.3, we assume without loss of generality that, as ε → 0, W ε converges to
W in probability. We fix Ω′ ⊂ Ω to be the set of full probability such that W is continuous and
W ε converges locally uniformly to W as used in Section 3.1.4.

We again work in the more general framework. Theorems 2.3 and 2.5 reduce to the following result.

Proposition 3.5. Suppose that Assumption 2.2 holds, α ≥ 1, β ≥ 2/3, r ∈ [1, 2], and ω ∈ Ω′, and
let f ε solve {

f εt + εu ·Df ε + 1
r |Df

ε|r + r−1
r = εβ

2 ∆xf
ε in Rn × R+,

f ε = f εaut on Rn × {0}.
(3.16)

Then, as ε→ 0 and locally uniformly on Rn−1 × {(ξ, τ) ∈ R× [0,∞) : ξ ≥ τ},

χε(x, ξ, τ ) :=
1

ε2/3
f ε
(
x,

ξ

ε2/3
,
τ

ε2/3

)
− 1

ε4/3
(ξ − τ). (3.17)

converges to the unique solution χ of (1.1) when β > 2/3 and to the unique solution χvisc of (1.2)
when β = 2/3.
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3.2.1 A priori bounds on f ε

Lemma 3.6. There exists C > 0, which is independent of ε, such that, for all (x, y) ∈ Rn,

|f ε(x, y, t)− f εaut(x, y, t)| ≤ C‖u‖C1ε1+αt2.

Proof. Let ρε be the solution of (3.2). It follows from Lemma 3.2 that ‖Dρε‖∞ ≤ CL, for some
CL > 0 that does not depend on ε. Recalling that f εaut = ρε − t, we find ‖Df εaut‖∞ ≤ CL.

To prove the claim, we show that f
ε
(x, y, t) := f εaut(x, y, t) + CL‖u‖C1ε1+αt2 and f ε(x, y, t) :=

f εaut(x, y, t) − CL‖u‖C1ε1+αt2 are, respectively, super- and sub-solutions of (3.16). Once this is
established, the claim follows by a standard application of the comparison principle. The proofs
are similar so we only show the upper bound.

A straightforward computation and an application of Taylor’s theorem yield

f
ε
t + εu ·Df ε +

1

r
|Df ε|r +

r − 1

r
− εβ

2
∆xf

ε
= ε(u− uaut) ·Df εaut + 2CL‖u‖C1ε1+αt

≥ −ε(‖u‖C1εαt)‖Df εaut‖∞ + 2CL‖u‖C1ε1+αt ≥ 0,

that is, f
ε

is a super-solution of (3.16), as claimed.

At this point, we are able to conclude the proof in the case where α > 1.

Proof of Proposition 3.5 for α > 1. Combining the definition of χε with the estimates of Lemma 3.6,
we find C > 0, which is independent of ε, such that, for all (x, ξ, τ) ∈ Rn × R+,

|χε(x, ξ, τ )− χεaut(x, ξ)| ≤ Cεα−1τ2.

Notice that α− 1 > 0. The result then follows from Proposition 3.1, which yields the convergence
of χεaut to χ if β > 2/3 and to χvisc if β = 2/3.

3.2.2 The half-relaxed limits when α = 1

First, in anticipation of the limiting equation, we introduce

χε(x, ξ, τ ) := χε(x, ξ, τ ) + u‖(x, ε
1/3τ)W ε(ξ). (3.18)

Arguing as for (3.12), we find

χετ + χεξ +
1

2
|Dxχ

ε −W εDxu‖|2 − εβ−2/3∆xχ
ε + εβ−2/3∆xu‖W

ε

= Nε(Dxχ
ε −W εDxu‖, χ

ε
ξ − ε−1/3u‖w(ε−2/3·))

− ε1/3u⊥(·, ε−2/3·) · (Dxχ
ε −W εDxu‖)− εu‖w(ε−2/3·)(χεξ − ε−1/3u‖w(ε−2/3·))

+ εβ+2/3(χεξξ − ε−1wy(ε−2/3·) + ε1/3u‖,tW
ε.

(3.19)

Notice that (3.19) is the same as (3.12) except for the additional time derivative of χε on the left,
the last term on the right, and the fact that u is dependent on t.

It follows from Lemma 3.6 that there exists C > 0, which is independent of ε, such that, for every
(x, y, t) ∈ Rn × R+,

|χε(x, ξ, τ )− χεaut(x, ξ, τ )| ≤ Cτ2. (3.20)
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Combining this with (3.11), we find that χε is locally bounded in Rn ×R+. Thus, the half-relaxed
limits

χ∗(x, ξ, τ ) := lim sup
(x′,ξ′,τ ′)→(x,ξ,τ),

ε→0

χε(x′, ξ′, τ ′) and χ∗(x, ξ, τ ) := lim inf
(x′,ξ′,τ ′)→(x,ξ,τ),

ε→0

χε(x′, ξ′, τ ′) (3.21)

are well-defined.

Again, arguing as in the proof of Lemma 3.4, we obtain the following result.

Lemma 3.7. For ω ∈ Ω′, the half-relaxed limits χ∗(·, ·, ω) and χ∗(·, ·, ω) satisfy, repectively{
χ∗τ + χ∗ξ + 1

2 |Dxχ
∗ −WDxuaut,‖|2 − δβ 2

3
∆x(χ∗ −Wuaut,‖) ≤ 0 in Rn × R+,

χ∗ = χβ + uaut,‖W on Rn−1 × [0,∞)× {0},
(3.22)

and{
χ∗,τ + χ∗,ξ + 1

2 |Dxχ∗ −WDxuaut,‖|2 − δβ 2
3
∆x(χ∗ −Wuaut,‖) ≥ 0 in Rn × R+,

χ∗ = χβ + uaut,‖W on Rn−1 × [0,∞)× {0},
(3.23)

where χβ is χ when β > 2/3 and χvisc when β = 2/3.

Proof. The only difference between the proof of (3.22) and (3.23) and that of the analogous claims
in Lemma 3.4 is about the initial data. This is, however, handled using (3.20) and Proposition 3.1,
which gives the convergence of χεaut + uaut,‖W

ε to χ+ uaut,‖W
ε and χvisc + uaut,‖W

ε when β > 2/3
and β = 2/3 respectively. We omit the rest of the details.

3.2.3 The proof of Proposition 3.5 when α = 1

We now finish the proof of Proposition 3.5 when α = 1. Recall the case when α > 1 was dealt with
in Section 3.2.1.
The natural way to proceed is to use the comparison principle, as above, to conclude that χ∗ = χ∗.
While (3.22) and (3.23) enjoy the comparison principle, we do not have any ordering of χ∗ and χ∗

when ξ < 0 and, thus, cannot immediately apply comparison. To overcome this, we apply a simple
transformation that allows to use the comparison principle along rays where ξ − τ is constant.

Proof of Proposition 3.5 when α = 1. Throughout this proof, we fix ω ∈ Ω′ and suppress the de-
pendence on ω.

We first show that, for any fixed ξ0 ≥ 0, χ∗ = χ∗ on Rn−1×Rξ0 , where Rξ0 := {(ξ, τ) ∈ R× [0,∞) :
ξ − τ = ξ0}.

Let

X ∗(x, ζ, τ ) := χ∗(x, ζ + τ, τ), X∗(x, ζ, τ ) := χ∗(x, ζ + τ, τ), and W(ζ, τ) = W (ζ + τ). (3.24)

We claim that{
X ∗τ + 1

2 |DxX ∗ −WDxuaut,‖|2 − δβ 2
3
∆x(X ∗ −Wuaut,‖) ≤ 0 in Rn−1 × {ξ0} × R+,

X ∗ = χβ + uaut,‖W on Rn−1 × {ξ0} × {0},
(3.25)
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and{
X∗,τ + 1

2 |DxX∗ −WDxuaut,‖|2 − δβ 2
3
∆x(X ∗ −Wuaut,‖) ≥ 0 in Rn−1 × {ξ0} × R+,

X∗ = χβ + uaut,‖W on Rn−1 × {ξ0} × {0}.
(3.26)

The proofs of (3.25) and (3.26) are similar so we omit the one for (3.26). Assume that, for some
test function Ψ, X ∗(·, ξ0, ·)−Ψ has a strict local maximum at (x0, τ0) ∈ Rn−1×R+. For any θ > 0,
let

Ψθ(x, ζ, τ ) := Ψ(x, τ ) +
1

θ
(ζ − ξ0)4.

Due to (3.3), if θ is sufficiently small, then there exists a local maximum of X ∗ −Ψθ at some point
(xθ, ζθ, tθ), and, furthermore, as θ → 0, (xθ, ζθ, tθ)→ (x0, ξ0, t0).

Let ψθ(x, ξ, τ ) = Ψθ(x, ξ − τ, τ). It follows from the definition of X ∗ and the choice of (xθ, ζθ, τθ)
that χ∗ − ψθ has a local maximum at (xθ, ζθ + τθ, τθ). Due to (3.14), we find, at (xθ, ζθ + τθ, τθ),

ψθ,τ + ψθ,ξ +
1

2
|Dxψθ −WDxuaut,‖|2 − δβ 2

3
(ψθ −Wuaut,‖) ≤ 0.

This implies that, at (xθ, ζθ, τθ),

0 ≥ Ψθ,τ +
1

2
|DxΨθ −WDxuaut,‖|2 − δβ 2

3
(Ψθ −Wuaut,‖)

= Ψτ +
1

2
|DxΨ−WDxuaut,‖|2 − δβ 2

3
(Ψ−Wuaut,‖),

where we used the relationships between ψθ, Ψθ, and Ψ, as well as the relationship between W and
W. We conclude that (3.25) holds by letting θ → 0.

Due to (3.25) and (3.26) and the fact that X ∗(x, ξ0, 0) = χ(x, ξ0) = X∗(x, ξ0, 0) for all x ∈ Rn−1,
the comparison principle implies that X ∗ ≤ X∗ in Rn−1 ×{ξ0}×R+. Hence, by (3.24), χ∗ ≤ χ∗ on
Rn−1 ×Rξ0 .

On the other hand, we have χ∗ ≤ χ∗ by construction. Thus, χ∗ = χ∗ on Rn−1 ×Rξ0 .

Moreover, since χβ +uaut,‖W satisfies both (3.14) and (3.15) on Rn−1×R+×R+ similar arguments
show that χ∗ = χ∗ = χ+ uaut,‖W on Rn−1 ×Rξ0 .

This holds for all ξ0 ≥ 0. As a result, χ∗ = χ∗ = χβ + uaut,‖W on Rn−1 × {(ξ, τ) : ξ ≥ τ ≥ 0},
which implies that χε converges locally uniformly on Rn−1 × {(ξ, τ) : ξ ≥ τ ≥ 0} to χβ + uaut,‖W .
The proof is finished by noting that the locally uniform convergence of χε to χβ follows from the
combination of this and the convergence of W ε to W .

4 Front asymptotics for the initial value problem: the G-equation

We show that the asymptotics for the front of the perturbed traveling wave solutions Gεptw yield
the asymptotics for solutions with more general initial datum; that is, we prove Proposition 2.4.

Proof of Proposition 2.4. With G and G as in Assumption 2.1, let Gεptw be the solution constructed
in Theorem 2.3. The goal is to create sub- and super-solutions using these functions.
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Fix δ ∈ (0, 1/2 and let φ
δ
∈ C1(R) be an approximation of

φ(y) :=

{
G(y/2), if y ≥ 0,

G(2y), if y < 0,

such that φ
δ

= φ on R×(−δ, δ) and φ′
δ
> 0 in R. Furthermore, we may assume that ‖φ

δ
‖C0,1(−1,1) ≤

2‖φ‖C0,1(−1,1).

Let Cφ = 8‖φ‖C0,1(−1,1), notice that Cφ ≥ 4‖φ
δ
‖C0,1(−1,1), and define

µ
δ

:= φ
δ
◦Gεptw − 2‖φ‖C0,1(−1,1)δ and µ := φ ◦Gεptw.

It is immediate that {µ ≤ 0} = {Gεptw ≤ 0} and {µ = 0} = {Gεptw = 0}.

We show that µ
δ

is a sub-solution of (1.3). Indeed, fix any test function ψ and any point (x0, y0, t0) ∈
Rn−1 × R × R+ such that µ

δ
− ψ has a strict local maximum at (x0, y0, t0). Since φ

δ
is strictly

increasing, it follows that Gεptw − φ−1δ ◦ ψ has a strict local maximum at (x0, y0, t0). Since φ−1
δ

is

C1, φ−1
δ
◦ ψ is a valid test function and, hence, we find that, at (x0, y0, t0),(

φ−1
δ
◦ ψ
)
t
+ εu ·D

(
φ−1
δ
◦ ψ
)

+ |D
(
φ−1
δ
◦ ψ
)
| ≤ 0.

Using only the chain rule and the fact that φ′
δ
> 0, we observe that, at (x0, y0, t0),

ψt + εu ·Dψ + |Dψ| ≤ 0.

Next, we claim that µ
δ
≤ Gε on Rn × {0}. Indeed, we fix any (x, y) ∈ Rn. Since the proofs for

y ≥ 0 and y < 0 are handled similarly, we concentrate on the former case. If y ≥ δ, then

µ
δ
(x, y) = φ

δ
(Gεptw(x, y))− Cφδ ≤ φδ(G

ε
ptw(x, y)) ≤ φ

δ

(
3y

2

)
= G

(
3y

4

)
≤ G(y) ≤ Gε(x, y, 0).

The first inequality follows from the fact that Cφδ ≥ 0. The second is due to (3.3) and that φ′
δ
> 0.

That G is increasing yields the third, while the last is due to Assumption 2.1. On the other hand,
if y ∈ [0, δ),

µ
δ
(x, y) ≤ φ

δ

(
3y

2

)
− Cφδ ≤ ‖φδ‖C0,1(−1,1)

(
3y

2
+ δ

)
− Cφδ ≤ 0 ≤ Gε(x, y, 0).

The first inequality again uses (3.3) and the fact that φ′
δ
> 0. The second is a consequence of

the definition of the Lipschitz norm and the fact that φδ must take the value 0 somewhere in
(−δ, δ). That y < δ and Cφ ≥ 4‖φ

δ
‖C0,1(−1,1) yields the third inequality, while the last follows from

Assumption 2.1.

Using the comparison principle and that µ
δ

is a sub-solution of (1.3), we get that µ
δ
≤ Gε in

Rn × R+. After letting δ → 0, we find
µ ≤ Gε, (4.1)

and, hence,
{Gε ≤ 0} ⊂ {µ ≤ 0} = {Gεptw ≤ 0}. (4.2)
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A similar argument shows that µ := φ ◦Gεptw ≥ Gε, where

φ(y) :=

{
G(2y), if y ≥ 0,

G(y/2), if y < 0,

and, hence,
{Gε ≤ 0} ⊃ {µ ≤ 0} = {Gεptw ≤ 0}. (4.3)

Combining (4.2) and (4.3) yields {Gε ≤ 0} = {Gεptw ≤ 0}.

Moreoever, since µ ≤ Gε ≤ µ and, for all t ∈ R+, Γt(µ) = Γt(µ) = Γt(G
ε
ptw), we find Γt(G

ε) =
Γt(G

ε
ptw).

5 Front asymptotics for the initial value problem of the eikonal
equation

We now obtain estimates on the front location in the general case. We do so through a simple
comparison principle-based argument.

Proof of Proposition 2.6. The first inclusion follows from comparison and Proposition 2.4. Indeed,
let Gε be the solution of (1.3) with initial datum v0. Proposition 2.4 gives that {Gε ≤ 0} = {Gεptw ≤
0}.

We claim that Gε is a super-solution of (1.4). Fix any test function ψ and suppose that Gε−ψ has
a minimum at (x, y, t) ∈ Rn × R+. Then (1.3) yields that, at (x, y, t),

ψt + εu ·Dψ + |Dψ| ≥ 0.

Using the Cauchy-Schwarz inequality and Young’s inequality, at (x, y, t),

ψt + εu ·Dψ +
1

2
|Dψ|2 +

1

2
≥ 0,

and, thus Gε is a super-solution of (1.4).

Applying the comparison principle, we get that vε ≤ Gε. This, in turn, implies that {Gε ≤ 0} ⊂
{vε ≤ 0}. Using the equality above, we obtain {Gεptw ≤ 0} ⊂ {vε ≤ 0}.

The second inclusion in Proposition 2.6 is a simple case of the maximum principle. Indeed, v0 ≥
vεptw(·, 0) in Rn and vε and vεptw both satisfy the same equation on Rn × R+. Hence, vεptw ≤ vε in
Rn × R+, from which it follows that {vε ≤ 0} ⊂ {vεptw ≤ 0}, and the proof is complete.

6 Well-posedness and a priori bounds of (3.2)

There are two steps in the proof of Lemma 3.2. The first is about the existence and uniqueness and
some weak bounds on ρε. In the second, which deals with the main difficulty, we bootstrap these
weak bounds into sharper, more useful ones.

Since ε plays a somewhat reduced role here, for simplicity, we suppress it and write ρ in place of
ρε. In addition, since we do not work with time dependence throughout this section we drop the
aut notation and refer to uaut as u.
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Lemma 6.1. Suppose Assumption 2.2 holds. Then there exists a unique globally Lipschitz solution ρ
of (3.2) such that, uniformly for all x ∈ Rn−1, lim infy→∞ ρ(x, y) ≥ 0 and lim supy→−∞ ρ(x, y) ≤ 0.
Moreover, there exists CL, depending only on u, such that, for all (x, y) ∈ Rn,

|ρ(x, y)− y| ≤ 3ε‖u‖∞|y| and Lip(ρ) ≤ CL. (6.1)

To use the half-relaxed limits, it is necessary to improve (6.1). This requires to introduce a correction
in (6.1) that takes care of the oscillations, allowing to construct improved barriers.

Lemma 6.2. Let ρ be the solution of (3.2) constructed in Lemma 6.1. Then there exists positive
constants µ1, µ2, and µ3, depending only on ‖u‖C1, such that the solution ρ of (3.2) satisfies, for
all (x, y) ∈ Rn,

|ρ(x, y)− y + ε2/3u‖W
ε(ε2/3y)| ≤ ε4/3µ1|y|+

µ2ε
2y2

2
+ ε2/3µ3

∣∣∣∣ ˆ yε2/3

0
|W ε(y′)|2dy′

∣∣∣∣.
It is clear that Lemma 3.2 follows directly from Lemmas 6.1 and 6.2. As such, we now aim to prove
these two results in turn.

6.1 Well-posedness and weak bounds

Proof of Lemma 6.1. We proceed in three steps. Firstly, we establish the existence and uniqueness
of solutions of {

−r εβ2 ∆ρ+ rεu ·Dρ+ |Dρ|r = 1 in Rn−1 × (R− ∪ R+),

ρ = 0 on Rn−1 × {0}.
(6.2)

Secondly, we obtain weak bounds on solutions ρ of (6.2). Finally, we use these weak bounds to show
that solutions of (6.2) are solutions of (3.2); that is, they are solutions on Rn instead of merely on
Rn−1 × (R− ∪ R+).

Step 1: The existence, uniqueness, and the bound on the Lipschitz constant CL on Rn−1 × R+

follows immediately from [1, Theorem A.6]. A symmetric argument applies on Rn−1 × R−.

Step 2: To obtain (6.1), let, for (x, y) ∈ Rn−1 ×R+, ρ(x, y) = (1− 3ε‖u‖∞)y. It is immediate that

1 ≥ rε‖u‖∞(1− 3ε‖u‖∞) + (1− 3ε‖u‖∞) ≥ −r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r.

Observe that ρ ≤ ρ on Rn−1×{0}. The comparison principle (see [1, Proposition A.4]) yields ρ ≤ ρ.

We may similarly build a super-solution of (6.2) on Rn−1 × R+ and conclude that, in Rn−1 × R+,

(1− 3ε‖u‖∞)y ≤ ρδ ≤ (1 + 3ε‖u‖∞)y. (6.3)

Step 3: We now show that ρ satisfies the planar metric problem (3.2) on Rn−1×{0}. To accomplish
this, we look separately at the cases β =∞ and β <∞. For simplicity, we show the argument only
for r = 1. The modifications for the general case are conceptually straightforward but significantly
messier.
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When β = ∞, we show that, in the classical sense, Dxρ(x, 0) = 0 and ρy(x, 0) = (1 + εu‖(x, 0))−1

for all x ∈ Rn−1. From these two equalities, it is clear that ρ satisfies (3.2) classically on Rn−1×{0}.

That Dxρ ≡ 0 is obvious since ρ ≡ 0 on Rn−1 × {0}. We thus focus on proving that ρy(x, 0) =
(1 + εu‖)

−1 for x ∈ Rn−1 by constructing barriers.

We begin with a lower bound in ρ for 0 < y � 1. Fix δ ∈ (0, 1/100) and let

ρ = y(1 + u‖w)−1 − y2/(2δ).

We show that ρ ≤ ρ on the domain Vδ = {(x, y) ∈ Rn−1 × R+ : y < δ} by showing that ρ is a
sub-solution of (6.2) on Vδ and that ρ ≤ ρ on ∂Vδ.

A direct computation yields

εu ·Dρ+ |Dρ| = −
ε2yu⊥ ·Dxu‖w

(1 + εu‖w)2
+ εu‖w

(
1

1 + εu‖w
−

εyu‖wy

(1 + εu‖w)2
− y

δ

)
∣∣∣∣ εyDxu‖w

(1 + εu‖w)2
,

1

1 + εu‖w
−

εyu‖wy

(1 + εu‖w)2
− y

δ

∣∣∣∣ .
Recall that ε‖u‖C1 , δ ≤ 1/100 and 0 < y < δ. It then follows from the triangle inequality that

εu ·Dρ+ |Dρ| ≤ −
ε2yu⊥ ·Dxu‖w

(1 + εu‖w)2
+ εu‖w

(
1

1 + εu‖w
−

εyu‖wy

(1 + εu‖w)2
− y

δ

)
+

εy|Dxu‖w|
(1 + εu‖w)2

+
1

1 + εu‖w
+

εy|u‖wy|
(1 + εu‖w)2

− y

δ
.

Estimating each term in turn and using that δ < 1, we find

εu ·Dρ+ |Dρ| ≤ y

992
+

εu‖w

1 + εu‖w
+

y

992
+

y

100δ
+

100y

992
+

1

1 + εu‖w
+

100y

992
− y

δ

≤ 1 +
y

50
− y

50δ
< 0,

that is, ρ is a sub-solution of (6.2) on Vδ.

We now show that ρ ≤ ρ on ∂Vδ. Since this is clearly true when y = 0, we need only consider the
case y = δ. For all x ∈ Rn−1, we have

ρ(x, δ) ≤ δ

(1− 1/100)
− δ

2
<

9δ

10
,

and, from (3.3),

ρ(x, δ) ≥ 9δ

10
.

It follows that ρ ≤ ρ on ∂Vδ. From the comparison principle, we conclude that ρ ≤ ρ in Vδ.

A similar argument can be used to conclude that, for δ sufficiently small, ρ ≤ ρ where ρ(y) :=
y(1 + εu‖w)−1 + y2/(2δ).

We conclude that

lim
y↘0

ρ(x, y)

y
=

1

1 + εu‖w
,
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and remark that the case when y ↗ 0 follows similarly. Thus, for all x ∈ Rn−1, ρy(x, 0) =
(1 + εu‖(x)w(0))−1, and the proof is complete when β =∞.

When β < ∞, the problem is elliptic and the classic theory implies that ρ ∈ C2(Rn) and, hence,
that it satisfies (3.2). This concludes the proof.

6.2 Sharper a priori estimates

We now show how to bootstrap the weak bounds obtained above to the sharp bounds on ρ necessary
to control the corrector χεaut defined in (3.5).

Proof of Lemma 6.2. Firstly we notice that we need only obtain bounds for all ε ∈ (0, ε0) for some
threshold ε0 > 0, to be determined. For ε ≥ ε0 this is trivially true by Lemma 6.1 after taking µ1,
µ2, and µ3 sufficiently large. Secondly, we work only on Rn−1 × R+, since the case y < 0 can be
handled similarly.

Step 1: To obtain a lower bound, we build a sub-solution. Fix positive constants µ1, µ2, and µ3 to
be determined, and let

ρ(x, y) := y(1− ε4/3µ1)−
1

2
µ2ε

2y2 − µ3ε2/3
ˆ yε2/3

0
|W ε(y′)|2dy′ − ε2/3u‖(x)W ε(ε2/3y).

Direct computations yield

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

= r
εβ

2

(
µ2ε

2 + 2µ3ε
5/3W ε(ε2/3y)w(y) + εu‖wy + ε2/3∆xu‖(x)W ε(ε2/3y)

)
− rε5/3W ε(ε2/3y)u⊥ ·Dxu‖ + rεu‖w

(
1− µ1ε4/3 − µ2ε2y − µ3ε4/3|W ε(ε2/3y)|2 − εu‖w

)
+
[
ε4/3|Dxu‖|2|W ε(ε2/3y)|2 + 1− 2

(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 + εu‖w
)

+
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 + εu‖w
)2 ]r/2

.

After using the inequality (1 + x)r/2 ≤ 1 + rx/2 and cancelling two terms of the form εu‖w, which
is the purpose for the last term in ρ, we find

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

≤ r ε
β

2

(
µ2ε

2 + 2µ3ε
5/3W ε(ε2/3y)w(y) + εu‖wy + ε2/3∆xu‖(x)W ε(ε2/3y)

)
− rε5/3W ε(ε2/3y)u⊥ ·Dxu‖

− rεu‖w
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 + εu‖w
)

+ 1

+
r

2
ε4/3|Dxu‖|2|W ε(ε2/3y)|2 − r

(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2
)

+
r

2

(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 + εu‖w
)2
.
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Next, we rearrange terms and we use that (a1 + · · ·+ ak)
2 ≤ k(a21 + · · ·+ a2k) and r ≤ 2 to obtain,

for some C ≥ 1 depending only on ‖u‖C2 and ‖w‖C1 and changing line-by-line,

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

≤ 1− ε4/3
[
rµ1 − rεβ+2/3µ2 − rε1/3u‖wy + rεµ1u‖w + rε2/3(u‖w)2

− 2rµ21ε
4/3 − 2rε2/3(u‖w)2

]
− ε2y

[
rµ2 + rεβµ3

W ε(ε2/3y)

yε1/3
w

+ r
W ε(ε2/3y)

yε1/3
u⊥ ·Du‖ + rµ2εu‖w

]
− ε4/3|W ε(ε2/3y)|2

[
rµ3 + rµ3εu‖w −

r

2
|Dxu‖|2

]
+
r

2
εβ+2/3∆xu‖W

ε(ε2/3y) + 2rµ22ε
4y2 + 2rµ23ε

8/3|W ε(ε2/3y)|4

≤ 1− ε4/3
[
rµ1 − C

(
ε4/3µ2 + εµ1 + ε4/3µ21 + ε1/3

) ]
− ε2y

[
rµ2 − C

( |W ε(ε2/3y)|
yε1/3

(ε2/3µ3 + 1) + εµ2

)]
− ε4/3|W ε(ε2/3y)|2

[
rµ3 − C(µ3ε+ 1)

]
+ Cε4/3|W ε(ε2/3y)|+ 4µ22ε

4y2 + 4µ23ε
8/3|W ε(ε2/3y)|4.

Young’s inequality and that |W ε(ε2/3y)| ≤ Cε1/3y yields

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

≤ 1− ε4/3
[
rµ1 − C

(
ε4/3µ2 + µ1ε

2/3 + µ21ε
4/3 + ε1/3

) ]
− ε2y

[
rµ2 − C

(
ε2/3µ3 + 1 + εµ2

)]
− ε4/3|W ε(ε2/3y)|2

[
rµ3 − C(µ3ε+ 1)

]
+ Cε4/3(1 + |W ε(ε2/3y)|2) + 4ε4µ22y

2 + 4µ23ε
8/3|W ε(ε2/3y)|4.

Rearranging terms and, if necessary, lowering ε0 so that Cε
2/3
0 < 1/2, we find

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

≤ 1− ε4/3
[µ1

2
− C(ε4/3µ2 + εµ21 + 1)

]
− ε2y

[
1

2
µ2 − C(1 + ε2/3µ3)

]
− ε4/3|W ε(ε2/3y)|2

[µ3
2
− C

]
+ 4ε4µ22y

2 + 4µ23ε
8/3|W ε(ε2/3y)|4.

(6.4)

Recall, from the definition of mild white noise, that ‖w‖C1 ≤M , and let

µ3 := 4C + 1 and µ2 := 4C + 1 + 8M2√µ3(1 + ‖u‖∞). (6.5)

Let ε0 > 0 be such that
µ2 ≥ 4C(1 + ε

2/3
0 µ3),

and set µ1 = 4C(ε
4/3
0 µ2 + 1).

Lowering ε0, if necessary, so that ε0 ≤ ε0, we find

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

≤ 1− ε4/3
[µ1

4
− Cεµ21

]
− ε2µ2

4
y − ε4/3µ3

4
|W ε(ε2/3y)|2 + 4ε4µ21y

2 + 4µ23ε
8/3|W ε(ε2/3y)|4.
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Again, making ε0 even smaller, if necessary, we obtain 8Cε0µ1 ≤ 1 and, hence,

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

≤ 1− ε4/3µ1
8
− ε2µ2

4
y − ε4/3µ3

4
|W ε(ε2/3y)|2 + 4ε4µ21y

2 + 4µ23ε
8/3|W ε(ε2/3y)|4.

(6.6)

We show next that ρ is a sub-solution of (3.2) in the domain Vε = {(x, y) ∈ Rn−1 × R+ : y <

(16µ3M
4ε2)−1/2}. Consider the third and fifth terms in the right hand side of (6.6). Making ε0

smaller and using the definition of Vε, we find

4ε4µ22y
2 − ε2µ2y

4
=
ε2yµ2

4
(16ε2µ2y − 1) <

ε2yµ2
4

(
4εµ2

M2√µ3
− 1

)
< 0 in Vε. (6.7)

Next, consider the fourth and six terms in the right hand side of (6.6). Since |W ε(ε2/3y)|2 ≤
ε2/3M2y2 and µ2, µ3, M ≥ 1,

4ε8/3µ23|W ε(ε2/3y)|4 − ε4/3µ3
4
|W ε(ε2/3y)|2

=
ε4/3µ3

4
|W ε(ε2/3y)|2

(
16ε4/3µ3|W ε(ε2/3y)|2 − 1

)
≤ ε4/3µ3

4
|W ε(ε2/3y)|2

(
16ε2µ3M

2y2 − 1
)
<
ε4/3µ3

4
|W ε(ε2/3y)|2

(
1

M2
− 1

)
≤ 0 in Vε.

(6.8)

The combination of (6.6), (6.7), and (6.8) imply that ρ is a sub-solution of (3.2) on Vε.

Next, we claim that ρ ≤ ρ on ∂Vε. Since clearly ρ ≤ ρ on Rn−1 × {0}, we concentrate on

Rn−1 × {(16µ3M
4ε2)−1/2}. Using the weak lower bound of Lemma 6.1 and that u‖W

ε(ε2/3y) ≥
−ε1/3‖u‖∞y, we observe that

ρ(x, y)− ρ(x, y) ≥ y(1− εCL)− ρ(x, y)

= ε4/3µ1y +
1

2
µ2ε

2y2 + µ3ε
2/3

ˆ yε2/3

0
|W ε(y′)|2dy′ + ε2/3u‖W

ε(ε2/3y)− εCLy

≥ ε4/3µ1y +
1

2
µ2ε

2y2 + µ3ε
2/3

ˆ yε2/3

0
|W ε(y′)|2dy′ − ε(CL + ‖u‖∞)y.

Thus, on Rn−1 × {(16µ3M
4ε2)−1/2},

ρ(x, y)− ρ(x, y) ≥ ε4/3µ1y +
µ2ε

2

2

y

4
√
µ
3
M2ε

+ µ3ε
2/3

ˆ yε2/3

0
|W ε(y′)|2dy′ − ε(CL + ‖u‖∞)y.

The choice of µ2 and µ3 (see (6.5)) gives that the sum of the second and fourth terms on the right
hand side is positive, and, hence,

ρ(x, y)− ρ(x, y) ≥ ε4/3µ1y + µ3ε
2/3

ˆ yε2/3

0
|W ε(y′)|2dy ≥ 0.

It then follows from the comparison principle that ρ ≤ ρ on Vε.
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A similar argument shows that ρ ≤ ρ for y > (16µ3M
4ε2)−1/2, so we omit the details. We conclude

that ρ ≤ ρ in Rn−1 × R+, finishing the proof of the lower bound.

Step 2:: We obtain an upper bound on ρ by constructing a super-solution and arguing as above.
As such, we only include the first steps, which vary from those of the proof of the lower bound.
The rest of the proof proceeds exactly as above.

Fix positive constants µ1, µ2, and µ3 to be determined and let

ρ(x, y) := y(1 + ε4/3µ1) +
1

2
µ2ε

2y2 + ε2/3µ3

ˆ yε2/3

0
|W ε(y′)|2dy′ − ε2/3u‖W ε(ε2/3y).

A direct computation gives

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

= −r ε
β

2

(
µ2ε

2 + 2µ3ε
5/3W ε(ε2/3y)w(y)− εu‖wy − ε2/3∆xu‖(x)W ε(ε2/3y)

)
− rε5/3W ε(ε2/3y)u⊥ ·Dxu‖ + rεu‖w

(
1 + µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+
[
ε4/3|Dxu‖|2 + 1 + 2

(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)2 ]r/2

≥ −r ε
β

2

(
µ2ε

2 + 2µ3ε
5/3W ε(ε2/3y)w(y)− εu‖wy − ε2/3∆xu‖(x)W ε(ε2/3y)

)
− rε5/3W ε(ε2/3y)u⊥ ·Dxu‖ + rεu‖w

(
1 + µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+
[
ε4/3|Dxu‖|2|W ε(ε2/3y)|2 + 1 + 2

(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
) ]r/2

.

(6.9)

In the proof of the lower bound, we used the concavity of (1+x)r/2; this will not work here. Instead,
we use Taylor’s theorem, which implies that there exists Eε such that

|Eε| ≤
∣∣∣2(µ1ε4/3 + µ2ε

2y + µ3ε
4/3|W ε(ε2/3y)|2 − εu‖w

)
+ ε4/3|Dxu‖|2|W ε(ε2/3y)|2

∣∣∣
and[
ε4/3|Dxu‖|2 + 1 + 2

(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
) ]r/2

= 1 + r
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+
r

2
ε4/3|Dxu‖|2|W ε(ε2/3y)|2

− r(2− r)
4(1 + Eε)3/2

(
2
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+ ε4/3|Dxu‖|2|W ε(ε2/3y)|2
)2
.

In view of ε‖u‖∞ ≤ 1/4, we find |Eε| ≤ 1/2. Using this with the identity above, we find[
ε4/3|Dxu‖|2 + 1 + 2

(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
) ]r/2

≥ 1 + r
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+
r

2
ε4/3|Dxu‖|2|W ε(ε2/3y)|2

− r(2− r)
4(1/2)3/2

(
2
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+ ε4/3|Dxu‖|2|W ε(ε2/3y)|2
)2
.
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Inserting the last estimate into (6.9) and using that 4 · 2−3/2 ≥ 1, we find

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

≥ −r ε
β

2

(
µ2ε

2 + 2µ3ε
5/3W ε(ε2/3y)w(y)− εu‖wy − ε2/3∆xu‖(x)W ε(ε2/3y)

)
− rε5/3W ε(ε2/3y)u⊥ ·Dxu‖ + rεu‖w

(
1 + µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+ 1 + r
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+
r

2
ε4/3|Dxu‖|2

− r(2− r)
(

2
(
µ1ε

4/3 + µ2ε
2y + µ3ε

4/3|W ε(ε2/3y)|2 − εu‖w
)

+ ε4/3|Dxu‖|2|W ε(ε2/3y)|2
)2
.

As before, after rearranging terms, applying Young’s inequality, bounding terms involving u, and
using the inequality (a1 + · · ·+ ak)

2 ≤ k(a21 + · · ·+ a2k), we get, for some C ≥ 1 depending only on
‖u‖C2 and ‖w‖C1 ,

−r ε
β

2
∆ρ+ rεu ·Dρ+ |Dρ|r

≥ 1 + ε4/3
[
rµ1 − C(ε4/3µ2 + 1 + εµ1 + ε4/3µ21)

]
+ ε2y

[
rµ2 − C(ε2/3µ3 + 1 + εµ2)

]
+ ε4/3|W ε(ε2/3y)|2

[
rµ3 − C(εµ3 + 1)

]
− Cε4µ22y2 − Cε8/3(µ23 + 1)|W ε(ε2/3y)|4.

(6.10)

At this point, we notice that (6.10) is analogous to (6.4) in the proof of the lower bound. As the rest
of the proof proceeds in the exact same manner, we omit it. We conclude that ρ ≥ ρ in Rn−1×R+,
finishing the proof.
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