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A SUMMATION FORMULA FOR THE RANKIN-SELBERG MONOID

AND A NONABELJIAN TRACE FORMULA

By JAYCE R. GETZ

Abstract. Let F' be a number field and let A i be its ring of adeles. Let B be a quaternion algebra over
Fand let v : B — F be the reduced norm. Consider the reductive monoid M over F' whose points in
an F'-algebra R are given by

M(R)={(n.m) € (BorR)" :v(m) =v(n)}-

Motivated by an influential conjecture of Braverman and Kazhdan we prove a summation formula
analogous to the Poisson summation formula for certain spaces of functions on the monoid. As an
application, we define new zeta integrals for the Rankin-Selberg L-function and prove their basic
properties. We also use the formula to prove a nonabelian twisted trace formula, that is, a trace formula
whose spectral side is given in terms of automorphic representations of the unit group of M that are
isomorphic (up to a twist by a character) to their conjugates under a simple nonabelian Galois group.
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and let f € S(gl,,(AF)), the Schwartz space of gl,,(Ar). The Poisson summation
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1372 J.R.GETZ

formula on gl,,(F) is

(1.0.1) Yoofw= > )
veal, (F)

vegl, (F)

where fis the Fourier transform of f with respect to an additive character. Gode-
ment and Jacquet used this formula to prove the functional equation for the stan-
dard L-functions of automorphic representations of GL,,(Ar) [GJ72]. Motivated
by Godement and Jacquet’s work, Braverman and Kazhdan [BKOO] have conjec-
tured that for every representation

p:tG° = GL(V)

of the neutral component of the L-group “G of a connected reductive group G
there should be a corresponding p-Fourier transform and p-Poisson summation
formula that in turn imply the analytic continuation and functional equation of the
Langlands L-function L(s,,p). L. Lafforgue has a related program [Laf14]. We
also note that Ngd has advocated investigating Braverman and Kazhdan’s conjec-
ture using the trace formula. For more information on the Fourier transforms see
[BNS16, CN18, Lil6, Lil18b] in the nonarchimedean case and [Get18a, Lil8a] for
the archimedean case. See also [BK02, GL17, Pol18, Shal8] for more information
about cases where much more is known about Braverman and Kazhdan’s conjec-
tures.

In this paper we investigate this circle of ideas when the monoid gl,, is re-
placed by a monoid related to the Rankin-Selberg convolution on GL, x GL,. We
then apply the work to produce a nonabelian trace formula isolating automorphic
representations that are invariant (up to an abelian twist) to their Galois conjugates
under a simple nonabelian group.

Let B be a simple algebra of degree 4 over F'; thus B is either a quaternion
algebra over F' or M;(F). Let Op < B be the order of (3.1.3). Let

v:B—F

be the reduced norm. Consider the group scheme whose points in an Op-algebra
R are given by

G(R) ={(91.92) € (Op®0, B)") :v(91) =v(9) }.
The neutral component of the L-group “G := G is
LG® = GLy(C) x GLy(C)/{ (21,27 ') : € C*}
and hence the tensor product induces a representation

p:EG° — GL4(C).
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Now (G is the group of units of the monoid scheme whose points in an O -algebra
R are given by

(1.0.2) M(R):={(X1,X2) € (Op®o, R)” :v(X1) =v(X2) }.

We refer to this as the Rankin-Selberg monoid. In the next subsection we define
local spaces of functions related to the monoid M and define a pair of transforms
using them. We use these functions to state an asymptotic formula for sums over
M (F) in Section 1.2. In Section 1.3 we then define zeta integrals for p analogous to
those introduced by Godement and Jacquet for the standard representation. We will
prove their analytic continuation using the asymptotic formula mentioned above.
The nonabelian trace formula will be discussed in Section 1.4.

Throughout this paper we use the following notation: For an F-algebra R and
T = (Ty,T») € B, we let

=v(T1) —v(T2),
tr’l :=tr (T1 + Tz)
=v(T)v(T2),
=v(Th).
Here tr denotes the reduced trace and v denotes the reduced norm. Also, if 7 is a
representation of G(Ar) or G(F,) and s € C then

5

2
m:(9) = (9)|v(9)|* = 7(9)|w(o)|’
where | - | is either the norm on A} or F depending on the context.

1.1. Local spaces of functions. In this subsection we use local notation,
fixing a place v of F' and writing, e.g., F':= F),. Let ¢ : F' — C* be a nontrivial
character. If W is an F-vector space we let S(WW) be the usual Schwartz space (it
is just C7° (W) in the nonarchimedean case). Throughout this work ¢ will denote a
function in S(W); the space W will depend on the context.

For ® € S(F x F x B%) define

(1.1.1) I(®,s): Bt — C

via

(1.12)  I(®,s)(7) ;:/X </B%<1><7@,t,T>a/)<“ZT> dT) [ dt™




1374 J.R.GETZ

Here and below dT' (resp. dt) denotes the additive Haar measure on Bp (resp. F),
both normalized so that the Fourier transform is self-dual with respect to 1, and

dt

dt” ZC(I)H

with {(s) the usual local Euler factor of the Dedekind zeta function (see Section
2). The integrals depend on the choice of v, but we will not encode this into the
notation. It is clear that these integrals converge absolutely for Re(s) > 0, and
they in fact admit a meromorphic continuation to Re(s) > —4 to a function that is
holomorphic at s = —3 (see Theorem 3.3). We set

(1.1.3) Z(®)(7) = ¢(1) ' Z(@, =3)(7).

If F is nonarchimedean we let w be a choice of uniformizer and ¢ := |Op /w|.
For g1,9, € G(F) let

(1.1.4) 1,(91,92) ZZQZk]lOB (@ * g1, ")
k=0

where Op < B is a maximal order. If B is split then this is the basic function
attached to the representation p. By this we mean that for an unramified represen-
tation 7 of G(F') and Re(s) sufficiently large one has that 7, (1,) projects the
space of m onto the line fixed by G(OF) and acts via the scalar L(s,,p) on that
line (see Lemma 5.2).

It turns out that if ¢ is sufficiently large, v/ is unramified, and the maximal order
Op is chosen appropriately then

1,
¢(2

for a suitable choice of Haar measures (see Theorem 3.5). Let

(1.1.5) I(1oz x03,)lair) =

~—

(1.1.6) I(G(F)) :=={Z(®): ® € S(F x F x Bi) }
where Z(®) is defined as in (1.1.3).

Remark. One might ask why this space of functions is not called Z (BIZ;), since
its elements are defined on all of Blz;. It is largely a matter of emphasis; we are
most interested in the restriction of these functions to M (F'). We do not denote
the space by Z(M (F')) because the value of the functions at (0,0) is only given
via analytic continuation, and hence if we view these as functions on M (F) it is
difficult to make sense of the equality (1.2.1) below.

We are not sure whether Z(G(F')) is the Schwartz space for which Braverman
and Kazhdan are searching, but it is certainly closely related to it. Regardless of
whether this is the “actual” Schwarz space attached to p the global results of this
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paper (i.e., theorems 1.2 and 1.3) show that it is of interest. For (z,y,T") € F' X F X
B%; let

(1.1.7) O™(x,y,T) = ®(y,x,T)
(the sw is for “switch™). We then have a pair of transforms

Z(G(F)) <— S(F x F x B}.) —=IZ(G(F))
1.1.8
(A Z(®) <~ 2 — Z(PY).

The functions Z(®) and Z(P*Y) behave somewhat like a Fourier transform pair
(see Theorem 1.2).

1.2. The asymptotic formula. We now revert to global notation. Let S be
a finite set of places of F' including the infinite places. We define an adelic space
of functions Z(G(Ar)) via

1.2.1) I(G(Ar)) = @, I(G(F,))

where the restricted direct product is taken with respect to the basic functions 1, ,,.
For & € S(A% x B ) and s € C we denote by Z(®, s) the obvious adelic analogue
of the local integral (1.1.2) of the previous section. It converges absolutely for
Re(s) > 1, and admits a meromorphic continuation to the half plane Re(s) > —4
(see Theorem 3.4). For g € G(Ar) we set

(1.2.2)

and Z_1(®)(0) := Resls{_esi—sz(’j))(())‘

Here A(s) is the completed Dedekind zeta function of F.

The function Z(®) is in fact defined on B2 but vanishes if v & M (F) (see
Theorem 3.4). Moreover Z(®), as a function of G(Ap), is in Z(G(Ar)). Indeed,
it ® =®g1 5s,,. 55 for a sufficiently large finite set of places S including the

(02)2x(03)
infinite places then

vgS

by Theorem 3.5. Here and in global settings below ( denotes the Dedekind (-
function of F'.
For @) € S(A%.) let

F (o) (,y) = / Do(z, i yt)dt

Ap
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be the Fourier transform of ® in the second variable. For our later use, we say that
a Schwartz function ® € S(A% x BKF) satisfies the standard assumptions if there
exists

(®0,f) € S(A%) x S(B3,)

such that ® = &y ® f and

(1) ®y(t,0) =0forallt € Ap

(2) F2(20)(0,0) =T'g (1)
where I';_(s) is the factor of A(s) at infinity. Notice that if ¢ satisfies the stan-
dard assumptions, then it is impossible for % to satisfy the standard assumptions
because of (1) and (2).

If X € Ry we denote by

(1.2.3) A(X) € A}

the idele that is X7 at all places v|eo and 1 elsewhere. We also denote by A
the isomorphism

R>() ; AG
X — AX)(I,1)

where Ag is the usual central subgroup of G(FL.) (see Section 2). We endow Ag

with the Haar measure corresponding to d;“’” via this isomorphism.

The starting point of this paper is the following theorem, which will play the
role of the Poisson summation formula in our setting:

THEOREM 1.1. For any € > 0 the sum

(1.2.4) Yoy (A(}Y))

yeEM(F)

3
is equal to O¢ ;. o(X2"%) plus
X Z1(2)(0) =T (™) (0) +X* Y (Z(2)(7) —Z(2™) (7))
yEM(F)
Moreover
> Z@) ()| + (@) (7)| < .
YEM(F)

We will explain how to derive Theorem 1.1 from [Getl18b, Theorem 1.1] in
Section 3 below. It is worth noting that the proof of Theorem 1.1 makes no use of
automorphic representations.



THE RANKIN-SELBERG MONOID AND A NONABELIAN TRACE FORMULA 1377

1.3. Zeta functions for Rankin-Selberg convolutions. Using Theorem
1.1 we can execute the argument of Godement and Jacquet to obtain new zeta
integrals for Rankin-Selberg convolutions as we now explain.

Let 7 be an infinite-dimensional automorphic representation of Ag\G(Af)
and let ¢ be a smooth function in the space of 7. For ® € S(AZ. x BKF) let

2(0@)s0) 1= [ T@)0)|(o)] (o)

G(AF)

Moreover, for g € G(Af) let

(1.3.1) 9" :=w(g) g and ¢"(g):=p(g").

We note that if 7 is an irreducible automorphic representation of G(Ap) then the
representation

g—m(g")

is isomorphic to the contragredient because B is a simple algebra of rank 2 (this is
false in higher rank).

Let & = ¢y ® f satisfy the standard assumptions, and assume moreover that
f=1rsl @3 where fg € C°(G(Fg)) for some finite set of places S including the
infinite places. Throughout this paper we make the following assumption on S

A(S) The finite set S contains all infinite places, all dyadic places, all places
dividing the absolute different of F', the places dividing the elements a,b defining
the quaternion algebra B and all places where ¢ is ramified.

We also assume that for a € Ag and g € G(Ap)! one has

(1.3.2) fs(A(a)g) =V(a)fs(g)

for some fi € CZ(G(Fs)!') and some V € CZ(R~g). Here the superscript 1 groups
are defined as in Section 2. Assuming that fg decomposes as above is convenient
in the proof and is no loss of generality spectrally.

The following is the first main theorem of this this paper:

THEOREM 1.2. Assume B is a division algebra. The zeta functions
Z(Z(®),s,¢) and Z(Z(®Y),s,0") admit meromorphic continuations to the
plane and satisfy a functional equation

Z(Z(®),s,0) = Z(Z(P™),1—5,0").

The function Z(Z(®),s,p) is holomorphic except for a possible simple pole at
s=1.
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Let S be a sufficiently large finite set of places including the infinite and dyadic
places. By (1.1.5) if ¢ is spherical outside of .S then

o S,
Z(I(q))>8780) = Z(I(q)s)>s’<p)l/<%7’(2)’p)

where

Z(Z(®s),5,¢) = /G<F Z(®s)(95)|w(9s) " e(asI®)dgs

(here 19 is the element of G(A?%) that is the identity outside of S). Thus Theorem
1.2 implies a coarse version of the functional equation of the Rankin-Selberg L-
function. Our proof, moreover, is new. It uses the summation formula Theorem 1.1
in place of the Langlands-Shahidi method or Rankin-Selberg theory. Incidentally,
if one assumes properties of the Rankin-Selberg L-function that have been proven
via other means then it is easy to deduce when Z(Z(®), s, ) has a pole. We do not
know how to obtain this refined information solely from our summation formula
for the Rankin-Selberg monoid and hence have not included it in the theorem.

We remark that in analogy with Tate zeta functions one might expect that there
are two poles of the zeta integrals Z(Z(®),s, ), one at 0 and one at 1. We ex-
pect that absence of the pole at s = 0 can be traced either to our assumption that
fs € CZ(G(Fs)) or assumption (1) in our standard assumptions on ¢. Making this
precise would at very least require reworking much of the paper [Get18b].

1.4. A nonabelian trace formula. In this subsection we explain the second
main theorem of the paper. It is a nonabelian twisted trace formula, that is, a twisted
trace formula whose spectral side is given in terms of automorphic representations
of G(AFp) that are isomorphic to their conjugates under a group of automorphisms
of F' generated by a pair of elements. Since any simple nonabelian group can be
generated by two elements [GM12, Corollary 8.3], this is a quite general setup.

Assume that there is a subfield £ < F' such that F'/k is Galois with Galois

group
Gal(F/k) = (1,7);

that is, Gal(F'/k) is generated by two elements. Assume moreover that Bj is a
division algebra over k such that B := B| ® F' is nonsplit (i.e., again a division
algebra).

Let G be the connected reductive k-subgroup of Resp /G whose points in a
k-algebra R are given by

Go(R) := {(gl,gz) € G(R@kF) = (Bz®kR)X 21/(91) :I/(gz) € RX}.
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This k-subgroup comes equipped with an action of Gal(F/k)?, and in particular
we have an automorphism 6 of GGy given on points by

0(91,92) = (t(g1),7(92))-

We have an action of Gy on Resp /G via 6 conjugation, given on points in a k-
algebra R by

Go(R) x Resp/,G(R) — Resy pG(R)
(91,7) — 9190 (1) .

For v € G(F') = Resp/,G(k) we let Go, be the stabilizer of v under this action.
Since B is a division algebra, a standard argument implies that G, is reductive
and anisotropic modulo center. For suitable test functions f on G(Ap) we can then
form twisted orbital integrals TO () in the usual manner (see (8.0.1)).

For an automorphic representation 7 and f € C°(G(Ap)) we introduce the
following nonabelian trace:

Ress—1 L% (s,,

(1.4.1) ntrr(f) = - 25(2() P) /[Go] Kr(p) (g,H(g))dg.
Here [Gy] is the typical adelic quotient (see (2.0.1)). It is clear that the integral
here is absolutely convergent since [Gy] is compact. It is also not hard to see that
it vanishes unless the L-packet of 7 is stable under Gal(F'/k) up to a twists by
abelian characters; for a precise statement we refer to Lemma 8.3.

The following is the last main theorem of this paper. It will be proven in Sec-
tion 8:

THEOREM 1.3. One has
> ntr(f) =meas ([Go|) (Z(2)(0) - Z(2)(0))
+_meas ([Go,]) (TO, (Z(®)) — TO, (Z(2™)))

Y

where the sum on T is over isomorphism classes of automorphic representations
of Ac\G(Ar) and the sum on vy is over a set of representatives for the orbits
of Go(F') acting on G(F') via 0-conjugation. All of the sums here are absolutely
convergent.

Ultimately, one would like to compare this formula with an analogous one over
k and prove nonsolvable base change and descent for automorphic representations
of inner forms of GL,. More details on what one should expect spectrally from
such a comparison are contained in [Getl12]. Unfortunately we have no paradigm
available to inform such a comparison.
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A smaller step towards this goal would be to use Theorem 1.3 to study limit
multiplicities of forms that are isomorphic to their Gal(F'/k) conjugates as the an-
alytic conductor of the corresponding automorphic representations goes to infinity
in some fashion. One expects that this is an easier problem, and it is still of great
interest.

1.5. Outline of the paper. In Section 3 we state the results from [Get18b]
that we require for this paper and explain how to translate them into the current
setting. We describe a little of the structure of L-packets for GG in Section 4. This
is required for Section 5, in which we give a spectral expansion of the sum (1.2.4).
Here we make no use of Rankin-Selberg theory. We then prove the analytic con-
tinuation and functional equations of our zeta functions Z(Z(®),s, ) in Section
6. Again, we make no use of Rankin-Selberg theory, so this work provides a new
proof of the meromorphic continuation of L°(s,, p).

In Section 7 we allow ourselves to use the entirety of Rankin-Selberg theory
and use it to prove an identity for what we call a four-variable kernel function. It
is an identity between a spectral side and a geometric side. The key point here is
that the spectral side is given as a sum over kernel functions attached to automor-
phic representations 7 of BXF, but there are four variables of integration attached
to each 7, not just two as in the Selberg expansion of the standard automorphic
kernel. These extra variables are the key to proving Theorem 1.3. We carry out the
argument in Section 8.

Acknowledgments. The author thanks V. Blomer, T. Kaletha, L. Pierce, A. Pol-
lack, D. Schindler, and W. Zhang for useful conversations. H. Hahn read the entire
paper several times as it was being written; the author truly appreciates her constant
encouragement and help with editing. He also thanks P. E. Herman for pointing out
the reference [DI94].

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of the
National Science Foundation.

2. Notation. Let ¢): F\Ap — C* denote a nontrivial additive character.
For @ € S(By,.) we let

d(Y) ::/B (X )(tr(Y X))dX

Ap

denote the Fourier transform of ®. We always normalize the Haar measure on By ,
so that it is self-dual with respect to this transform. The Poisson summation formula
then takes the form

> (=) ().

yeB yeB
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It is convenient to use the following additional (fairly standard) notation. For an
affine algebraic group H over a number field £ let Ay be the connected component
in the real topology of the greatest Q-split torus in Res /o Zp (Zy being the center
of H). We then set

(2.0.1) [H]:= Ay H(F)\H (AF).

We will only use this notation when H is reductive, in which case this quotient
has finite measure with respect to the right-invariant measure induced by a Haar
measure on H (Ap). One has the usual Harish-Chandra map

2.02) HCH:H(AF) —>LieAH:HomZ(X(ResF/@H),R)
o :Er—>(xr—>|log(x(:z))‘)

where X (Resy/qH ) is the character group of Resy/qH. We let
(2.0.3) H(Ap)' :=kerHCy

and let H(Fs)' be the kernel of the composite of the natural inclusion H (Fg) <
H(Ap) and HCp.

Finally if S is a finite set of places of F' including the infinite places then
Og C F is the ring of S — eo-integers, and

(5}? = H OFN
vgS

which is isomorphic to the profinite completion of Of;. In particular @f; NE = Of;.
3. Preliminaries.

3.1. The proof of Theorem 1.1. The setting of [Getl8b] involves a vector
space V' = G’ and a nondegenerate quadratic form () on V. Given these data,
® € S(V(AFR)), acharacter x : [G,,] - C* and s € C one defines

B.1.1) Z(P,xs)(&) := /A}XV(AF) o <@,t,w> P <@> dwys(t)dt™*.

Here (,) : GI! x GI! — G, is the usual product:
(3.1.2) (a,b) = aib;.
i=1

For each place v of F' we have the analogous local integrals.
We explain how the setting of the current paper fits into this setup. Here and be-
low we will freely use basic facts about quaternion algebras. A new and enjoyable
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reference is [Voi]. Let ( ) be the quaternion algebra over F' consisting of
{331 4+t +x3)+ x4k i x; € F}

where i, j, k are subject to the usual relations: ij = k = —ji and i*> = a, j> = b.
Fix a,b such that B = ( ) we use this isomorphism to identify B and (%b)
assume without loss of generality that a,b € Op. Let

(3.1.3) Op = {x +zpi+ a3 + 24k : 27 € Op}.
Throughout this paper if v is a finite place of F' we let

OBFU =0p Rog OFU

and O3, 1= [les OB, -
We use a bar to denote the canonical involution

(%)~ (%)

T+ T2t + x3) + w4k —> 11 — 121 — T35 — T4k

We identify B and F** via the (ordered) basis 1,7, j, k. Writing & = 1 + 27 +

3] + xak, y = y1 + y2i + y37 + yak we have
v(x) =7 — axs — ba3 + aba,

1
3 tr(zy) = z1y1 + ax2y2 + br3ys — abraya.

In this paper our vector space V is B ® B, identified with (F*)? = F*® and our
quadratic form is p(T") = v(1}) — v(1>). With respect to the basis given by

((1,0),(4,0),(7.0), (k,0),(0,1),(0,i), (0,5), (0,k))
the matrix J of this form is diagonal with entries
(1,—a,—b,ab,—1,a,b,—ab).
Let o : B — B be the F-vector space isomorphism given by
a(ml + a2t + 235 + m4k) =2z 4 2axyi + 2bxsj — 2abx k.

Extend « to an isomorphism « : B> — B? by letting it act on each factor separately.
Then the relationship between (1.1.1) and (3.1.1) in the case at hand is

(3.1.4) Z(®,s)(&) =Z(®, 1) («(§)).

where 14(x) := |z|*. The local analogue of this identity also holds. Most of the
results of [Get18b] regarding the analytic properties of Z(®, s) involve a character
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G (see [Getl8b, Lemma 3.1]). Since (—1)%2detJ = a*b* is a square in F this
character is trivial in the case at hand [Get18b, Lemma 6.2].
In a moment we require the following lemma:

LEMMA 3.1. For z € F and vleo let |z|, := max{|z;|, : | <i<n}. Leta€
Ag,, satisfy |a| > 1. Let A>0, N >0, B € OpNF* be given. If « € 371O% —0
then for N' € 7~ large enough in a sense depending on A, N and [3 one has

H (max(|aa|v,l)7N/ min(|aa|v,1)7A) <ANB |a|;NHmax(|a|v, 1)7N.

Voo Voo

Proof. We note first that it suffices to prove the lemma when 5 = 1. Indeed, if
the lemma is true for 5 = 1, then to deduce the general case one uses the fact that
for 5 € F* one has

o (19282 1) = s (fa 31) =5 mox ol 1)

1Blo 1Bl
v 1 . )
min <|r§| ,1> = 7 m1n(|aoz|v,|ﬁ|v) =3 m1n(|aa|v,1).

Let o € O% —{0}. Then

H|a|v > max |o; | > 1.
2

vleo

In particular if |a,, < 1 for some v |eo, there is another v |eo such that

ol = ()
e |atf,

where 7 is the number of infinite places of F. We can therefore take N’ =
A(i—1)%+ Ni. a

For each place v of F' we let
GL5) (@t azi+@sj+ sk y+yai+ysj +yak) |, = max ([ai], [y5])-

Using the lemma we can give good analytic control on sums involving Z(®):

THEOREM 3.2. Let Q C G(Afr) x G(AF) be a compact set. For v € B?, a €
Ag with |w(a)| > 1 and (g1,92) € 2 one has

Z(®) (agy 'v92) | <ao.n0 |w(a)|7N/2Hmax (v, 1) -

vleo
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Proof. We may assume ~ # 0. By [Get18b, Theorems 4.1 and 5.2] there is an
A > 0 such that for any N’ € Zx( one has

(3.1.6)
|Z(®) (ag; 'v92)|

<o | [](lagr " ve2 v,1)7N,min(\agf1’ygz|v,l)fA [T max (1, |g7 'v92], ).

vleo vfeo

Moreover, Z(®)(ag; 'vg2) vanishes for v ¢ 371 Op for some 3 € F* (see [Get18b,
Lemma 5.1]). Here 3 depends on £, but not on g, g>. Since \agflfygz\v =q |av|y
for all v and |ag; 'vg2|» = ||, for v outside a finite set of places depending on Q
we have

1Z(®) (ag; 'vg)|

(3.1.7) )
<o,N' 0 Hmax(|a7|v,l) "min (Jay|y, 1) Hmax (1,171, 3

Voo Vfeo

Using Lemma 3.1 we obtain the bound

1Z(®) (ag; ') | <08 [w(a) rN/ [[max(ivl, )™ | [ Jmax (1,17],°)

vleo vfeo

for any N € Zx¢. The factor involving the places v { e can then be absorbed at the
expense of increasing IV and the implicit constant. O

The following theorem is a combination of the y = 1 cases of [Get18b, Theo-
rems 4.1, 4.2, and 5.2] in the current setting:

THEOREM 3.3. For each place v and all ® € S(F? @ B%v) the integrals
Z(Py,5)(y) admit meromorphic continuations to Re(s) > —4 that are holomor-
phic at s = 3.

For «x in a vector space let

1 ifx=0
Op i= .
0 otherwise.

The following theorem is [Get18b, Theorem 3.2] in the current setting:



THE RANKIN-SELBERG MONOID AND A NONABELIAN TRACE FORMULA 1385

THEOREM 3.4. For ¢ € S(A% <) BﬁF) and ~ € B? the adelic integral
Z(®,s)(y) admits a meromorphic continuation to Re(s) > —4. Moreover,
Z(P,s)
0y (54 1)07 (s 4 3)%0)

is holomorphic for Re(s) > —4.
The following is a special case of [Get18b, Theorem 6.4]:

THEOREM 3.5. Let v be a finite place of F that does not divide 2ab. Assume
in addition that 1), is unramified and F, is absolutely unramified. Then

1
I(loyeos)law = 75y

Proof of Theorem 1.1. Let p" be the quadratic form on B? whose matrix is
J~!. Recall that we have just proven that the character G of [Get18b, Lemma 3.1]
is trivial. With this in mind we apply [Get18b, Theorem 3.3] in the setting above to

)

v%; ! <A(

p(7)=0

is equal to Oaf,@(X%%) plus
XP (L1 (®)(0) 7 1<<1>SW><0>)
+X? Z (Z(®) (' (7)) —Z(2™) ("' (7))
2
pv(v):()

Moreover using Theorem 3.2 we see that

Y. [Z@)( )] +]Z(@™) (a7 ()] <.

~EB?

P’ (7)=0

We now note that p¥(y) = 4p(a~'(v)). Thus taking a change of variables 7 —
a() we deduce the theorem. O

4. L-packets for GG. In this section we recall some results on L-packets for
G that will be necessary in the subsequent sections. For Op-algebras R let

G(R) := {g e (0820, R)X)Z}.
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Thus (if we base change to F') G is a subgroup of G and they share the same
derived group, an inner form of SL%. We let

(4.0.1) Res: ‘G — LG
denote the natural quotient map.

4.1. Local L-packets. In this subsection we fix a place v of F' and omit it
from notation, writing F' := F},. Let 7 be an irreducible admissible representation
of G(F). The restriction 7| () is a finite direct sum of irreducible admissible rep-
resentations of G/(F"). It defines a set Res(7) of isomorphism classes of irreducible
admissible representations of G(F'):

Res(7) := {7r : 7 is isomorphic to an irreducible subrepresentation of 7|¢( F)}.

An L-packet of irreducible admissible representations of G(F') is a set of represen-
tations of this form. The set of L-packets of G(F’) partition the set of irreducible
representations of G(F'). For all of these facts see [HS12, Chapter 2] or [Tad92]
and the references therein. We note that when G GL3 then each representation
in Res(7) occurs with multiplicity 1 in 7|g(p) [LL79, Lemma 2.6]. If € Res(7)
then we say that 7 is a transfer of 7.

LEMMA 4.1. Assume F' is nonarchimedean and let 7 be an unramified repre-
sentation of G(F). Then there is a unique unramified irreducible representation in
Res(T).

Proof. 1t is clear that there is an unramified irreducible subrepresentation in
Res(7). Note that G%" 2 SL.2. By [LRO7, Proposition 3.2.4] there is a unique un-
ramified subrepresentation of the restriction %|Gder( )- This is actually stronger than
the assertion of the lemma. O

This notion of transfer is compatible with the unramified local Langlands cor-
respondence in the following sense:

LEMMA 4.2. Assume that F' is nonarchimedean. Let 7 be an unramified repre-
sentation of G(F"). The representation w of G(F') obtained from this representation
using the L-map Res : G — LG is the unique unramified representation in Res (7).

Proof. Let Th < GLyc be the maximal torus of diagonal matrices. Then 75 X
T, < LG° is a maximal torus. Let Z < T, x T» be the torus whose points in a
C-algebra R are

Z(R):={(z1,27'T) : 2 € R*}.
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Let T := (T, x T>)/Z. One has a diagram

Co(G(F)//G(Op) ——  CIWTE)

Res*l Res*l

C=(G(F)//G(OF)) —2— C[Ty x Ty)W Tx 1)

where S is the Satake isomorphism and the map on the right is that induced by
Res : LG° — LG°. The map on the left is just the unique map that makes the
diagram commutative. If we view a function in C[T as a function on T, x T that
is invariant under the diagonal action of Z then this map is just given by the natural
inclusion. In particular, it is injective, and its image is precisely the elements of
C[T, x To]W(T2*T2"C") jnvariant under the action of Z. Temporarily denote this
algebra by A; thus Res induces an isomorphism

Res” :(C[CF]W(T’LGO) — A.

Let us describe A.

Let V4 be the standard representation of GL,c. Denote by V; and V, be the
representations obtained by composing the natural projections “ G° — GL,c with
the homomorphism defining V{;. A basis of A as a C-vector spaces is given by the
functions

Parass = 1 ((A2V1) 7 @ Symt (V1) @ (A2 V3)** @ Sym® (12) )

where aj,a2 € Z, k1, ka € Z>g satisfy 2a; + kj = 2as + k. It is well known that

ki1+k»)

-1 _ - 2
S (pal,kl,az,kz) =4q ( / lwalogxwazog * ]l{XeOfB:V(Xi):wkiO;}'

Now the definition of the Satake isomorphism amounts to taking a constant term
and then applying the Satake isomorphism for a split torus. With this in mind it is
not hard to see that the preimage of S~ (D, ky.a0.k,) in CF(G(F)//G(OF)) is just
S N Pay krar)lG(r)-

We now check compatibility with the local Langlands correspondence. Let g
be the unique unramified representation in Res(7). Let ¢ be a spherical vector in
the space of 7. Then ¢ is in the mg-isotypic subspace of 7. It is not hard to see that

& (Sil (pal Jk1,a2,k3 ) ) ¥ =T70 (571 (pal k1 ,az,ks) |G(F)) ¥

provided that we normalize measures so that meas(G(O)) = meas(G(Op)). This
proves compatibility of the transfer with the correspondence between unramified
representations induced by Res : G — LG. (]
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COROLLARY 4.3. Assume that F' is nonarchimedean and m is an unramified
irreducible admissible representation of G(F). Then T is a transfer of an unrami-
fied representation T = ' @ ™" of G(F'). One has

L(s,m,p) = L(s,7 x7")
where the L-function on the right is the usual Rankin-Selberg L-function.

Proof. To prove that 7 is a transfer of an unramified representation we note
that every semisimple matrix in “G° is the image of a semisimple matrix in “G°.
The last assertion is immediate from Lemma 4.2. O

Let C:.(G(F)) denote the subspace of functions f in C*°(G(F')) such that for
all compact subsets () C F'* the restriction of f to v~!(2) is compactly supported.
If F is nonarchimedean, then it is easy to see that

lM(OF) S CZOC(G(F)) .

For an irreducible admissible representation o of G(F') or GLy(F) let x, be its
central character.

LEMMA 4.4. Assume 7 is an unramified irreducible admissible representation
of G(F). For Re(s) sufficiently large one has

L(s,m,p)
L(25,xx)

tr7rs+1(]1M(oF)) =

Proof. For Op-algebras R let
@.1.1) M(R):= {X € (0p®o, R)2 :v(X1) = av(X,) for some a € R }.
The explicit description of Res* in Lemma 4.2 implies that
RCS*(]IJTI(OF)) = Ly(op):

Thus in view of Lemma 4.2 and Corollary 4.3 it suffices to verify that for unrami-
fied representations 7’ ® 7 of G(F’) one has

L(s, 7" x7")

4.1.2)
L(ZS, X7T/X7T//)

= tr(n’ @ 7")|w|*"! (Liziop)-

One has

=0
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The image of this under the Satake isomorphism is

(4.13) > d"u(Sym* (Vi) @ Sym" (13))
k=0

in the notation of the proof of Lemma 4.2 so we deduce (4.1.2) using the Cauchy
identity. (]

Assume for the moment that F' is archimedean and that B is split. Let 7’ ®
" be an irreducible unitary representation of G(F'). The analytic conductor of
L(s, 7" x7")is

(4.1.4) C(n' x 7",s) HH|1+N,T”XW2]+5\

i=1j=1
where the iz, x,,; are the complex numbers such that

2 2

L(s,m" x7") = HHC(S "‘Nﬂnxﬂn)

i=1j=1

where ( is the Tate local L-function of the trivial character. We define the analytic
conductor C(m,p,s) of L(s,m,p) to be the analytic conductor of L(s,7" x 7”)
where 7 is a transfer of 7’ @ 7”":

(4.1.5) C(m,p,s):=C(x' x7",s).

One checks that L(s,7’ x 7”) depends only on 7, not on 7’ @ 7, so this is well
defined. For the following lemma we refer to [Get12, Lemma 4.4]:

LEMMA 4.5. Assume that F' is archimedean and B is split. Then for any f €
CZ(G(F)) that is finite under a maximal compact subgroup of G(F’) one has

| (f)|C(m, p,0) <fv 1.

Technically speaking this is only proved for GL; in loc. cit., but the argument
goes through with only minor modifications.
We also record the following trivial lemma:

LEMMA 4.6. Let v be an infinite place of F and let f € CZ(G(F')) be finite
under a maximal compact subgroup of G(F'). If Br, is a division algebra then for
all N >0

len(f)|C ()" <rn 1.

Here C(xr) is the analytic conductor of the central character of .
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4.2. Global L-packets. By restricting functions one obtains a G(Af)-
equivariant map

res : L2([G])™" — L*([G])™

where the superscript sm denotes the subspace of smooth vectors. We say that
an automorphic representation 7 of Ag\G(Ap) is a transfer of an automorphic
representation 7 of Az\G(Ar) and write

4.2.1) 7 € res(7)

if there is a nonzero vector in the 7-isotypic subspace of L?([G])*™ that is in the
image of the 7-isotypic subspace of L2([G])*™. Every automorphic representa-
tion ™ of Ag\G(Ap) is is the transfer of some automorphic representation 7 of
Az\G(AF) [HS12, Theorem 4.13].

If 7 is a transfer of 7, then it is obvious that 7, is a transfer of 7, for all places

5. Spectral expansion. For the rest of this paper F' denotes a number field
(not a local field). We also assume for the remainder of the paper that B, our quater-
nion algebra, is nonsplit over F. Let fg € CZ°(G(Fs)). We require a spectral ex-
pansion of the term

(5.0.1) Ve%: Fslyos) ( > Z Isluay) <ﬁ>

in Theorem 1.1. Here we are using our assumption that fs € C2°(G(Fs)) to obtain
the equality. Let f := fg1 G(O3): Note that this is different from the convention of
F

Theorem 1.1, in which f was a Schwartz function on BﬁF. The spectral expansion
of

(91.92) Z fgr'vn)

veG(F

is given by
(5.0.2) Ki(91,92) = 5 ZZ/ 1 (91,92)ds

where the sum is over isomorphism classes of automorphic representations 7 of
Ac\G(AF) and

(5.0.3) Kep(91.92) = D m(He(91)%(92)

pEBL
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where B3, is an orthonormal basis of the 7-isotypic subspace of L?([G]). Moreover,
the sum

(5.0.4) Z/R |Kop) (91,92) | ds

converges uniformly for g;, g, in compact subsets of G(Ar). This is well known,
and proved in a more general setting in [Art78, Lemma 4.4].
For X € R+ set

fx(9) :=f<A(3y)>-

Moreover for an automorphic representation 7 of G(Ap) let x denote its central
character, so x.(2)7(g) = m(zg) for (z,9) € Zg(Ar) x G(AF).
We are now in a position to state the main theorem of this section:

THEOREM 5.1. Assume that ® = ®o® fs15 s satisfies the standard assump-

tions. Let Q C G(Ap) x G(AR) be a compact set. For 0>2e>0 X eRypand
(91,92) € Q the sum

8 4 p s+1
5.0.5 X K d
( ) 27TZ Z/R+U 25 Xﬂ' ﬂ'a+l( )(g1792) S

is equal to 057<I>7Q(X3/2+€) plus
X2 (w9195 ) T4 (@)(0) = [w(g195 ) T2 () (0)

X2<|w(glgzl)|4 > Z(@)(g o)

(5.0.6) Wy

—lw(gg )| D (@) (w(g; '92) 95 791))
YEM(F)

The proof will be given after some preparation.

LEMMA 5.2. Let w be an unramified irreducible unitary representation of
G(A%). Then for Re(s) > 2 one has

LS(Saﬂ-?p)
gy (lM(ég)) - m

The integral defining the (rank 1) operator mq1(1 M( @S)) converges absolutely for
F

Re(s) > 2 and the infinite product defining the right-hand side converges absolutely

for Re(s) > 2. Moreover both are bounded independently of 7 in this open half

plane.
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Proof. By Lemma 4.4, to prove the lemma it suffices to show that
trmssq (1 M(@S)) converges absolutely for Re(s) > 2. If m is unitary and
F
f € Cr(G(AL)//G(OF)) then trm(f) is bounded by trmyiy(f) (muiy being
the trivial representation). Thus to check the required convergence it suffices to
note that

#(s = 1)¢R(s)®

CE(s+1)¢
(i (2s)

0 iy, 51 (]1]\/[(61*?)) =

for Re(s) > 2. In fact, the sum on the right and the integral defining the operator
Tariv,s+1(1 M @s)) on the left converge absolutely for Re(s) > 2. O
F

PROPOSITION 5.3. For o > 2 one has

(s,m,p)
Kfs]l 59) 91792 27TZZ/R+U 25 ) K7r5+1(f) (glaQZ)dS

F

Moreover, for o in the same range

i

converges uniformly for (g1, g2) in compact subsets of G(Ap) x G(Af).

L5(s,m,p)
LS

25x) Kmaath (91.92) | ds

Proof. Write 1, =", h¥, where the sum on m is over A%/ @IS,X and
h§ € C2(G(AR)//G(03))

is supported on the set of elements g € G(A%.) such that w(g) € m. For each m we
apply (5.0.2) and a contour shift to see that

1
Kyons (91,02) = 7 Z/ZRM Ko (rshs) (91,92) ds
b9 DY IS CALSRPICRPALE
o JiR+o

for any o € R, in particular for ¢ > 2. Thus summing over m and applying Lemma
5.2 we deduce the identity of the proposition. The absolute convergence statement
follows from Lemma 5.2 and (5.0.4). O

The following lemma is an easy consequence of Theorem 3.2:
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LEMMA 5.4. Forany ® € S(A%® BiF) the sum

> Z@) (g )|

yEM(F)
converges uniformly for (g1, g2) in a compact subset of G(Ap) x G(Ap).

With all this preparation complete we can now prove Theorem 5.1:

Proof of Theorem 5.1. Let h:= fgl We have

M(O3)

9192
(5.0.7) S h(Al(ﬁ)>—KfSX1M (91,92)-

yEM(F)
In view of Proposition 5.3 for ¢ > 2 this is equal to

(5.0.8)

8 T p s+1
Kfsx]lM(os) 91,92) 2mZ/R+U (25 xn) X Koo (n)(91,92)ds

which is the first expression in Theorem 5.1. As for the second expression we apply
Theorem 1.1 not with h and P, but with

hgi.g0(9) == £ (g, 992) and @g 4, g, (2,y) := Po(w(g; 'g2)2.y).

Set 4, 4, := Po,g,,9, @ hy, 4,- Since $g ® h satisfies the standard assumptions so
does @, 4,. Then for any € > 0,

9 "o
(5.0.9) > h(Al( ﬁ))

YEM(F)

is equal to 057<I>,g1,g2(X%+5) plus

X (Z-1(®g1,02) (0) = T-1 (2514,) (0)
+X2 D (T(Rg0) (1) = Z(P50) (7))

yeEM(F)

A change of variables using the definition of Z_;(®) and Z(®) then implies the
identity in the theorem.

We are left with explaining why we can replace the implicit constant
in O ,g,4,(X %JFE) with one that depends only on the compact set €2 C
G(Ar) x G(Ap). To see this we note that the basic result used in bounding
the error term in Theorem 1.1 is [Get18b, Theorem 3.2]. The proof of this theorem
can be easily modified to yield a version that is uniform over (g;,g,) in the
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compact set €2. More precisely, the modification necessary is just the argument
used in the proof of Theorem 3.2 to replace the bound (3.1.6) with (3.1.7). ]

6. Godement-Jacquet-type zeta integrals. In this section we prove The-
orem 1.2. We begin by using Theorem 5.1 to deduce some of the analytic behavior
of L%(s,, p) without using Rankin-Selberg theory. For V € O (R+g) let

Vi(s):= / V(z)z* dx
0
be its Mellin transform.

THEOREM 6.1. Let V € CZ(Rx). Assume that  is infinite dimensional. One
has

1 L3(s,m,p) ~ 3
— Z D XY (s 1)ds = ey X2+ Op (X276
2mi /z’RJrcr Ls(zsan) (S+ ) T " - ( )

for some cy . € R.

This theorem is a consequence of well-known properties of the Rankin-Selberg
L-function. We will give a new proof based on the summation formula in Theorem
1.1. The value at cy . is nonzero for some choice of V' if and only if LS (s,m,p) has
a pole at s = 1. Of course one knows via Rankin-Selberg theory that L°(s,, p)
has a pole at s = 1 if and only if 7 is in res(my ® 71(\)/ ) (see Section 4.2) for some
automorphic representation 7 of BXF, but unfortunately we do not know how to
give a new proof of this fact.

Proof. Let fs € C2(G(Fs)) be chosen so that for a € R~ and g € G(Fg)!

one has

fs(A(a)g) =V (a)f&(9)
for some fi € C=(G(Fs)"). We also choose a function fs € C=(G(Fs)) such that
Jai Ts(ag) = f5(g) for g € G(Ap)'. Let f = fslgps), f = fslgos)

We start with the identity of Theorem 5.1. We will multiply both sides by
FW( 7 (g1,92) and integrate along (G'(F)\G(Ar)")?. Since the domain of integra-
tion is compact the uniform convergence statements of Proposition 5.3 and Lemma
5.4 imply that we are free to bring this integral inside the other sums and integrals
occurring in the identity of Theorem 5.1.

The integral of the spectral side (5.0.5) times Fw 5 (91,92) over

(GF)\G(Ap)') is

/ Fﬂ-(f) (91,92)
(GIF\G(AR)')?

1 L3(s, 7', p)
— Z TP sl dsdard
X 27TZ'Z/¢R+U 52 xw) . (H(91:92)dsdgidg,

7.(./
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(8,70) 54157
= X %4 1)d
Z27TZ/R+U 5(2s,Xx) (s+1)ds

/ Ko (f)(gl’gz)? (7 )(Qlygz)dgldgz
\G(Ar)')

X
(G(
1 L3(s,m,p) ~ -~ =
- PRAR] X5+1 1 - *
i /RJraiL (25 0) V(is+Ddsmptrm(f*x f)

where f*(z) := f(2~!) and m, is the multiplicity of 7 in L2(G(F)\G(Ar)").
On the other hand the integral of Fw(f)(gl, g2) times (5.0.6) over
(G(P\G(AF)")? is

X3 / Kp(91.9
(GIFN\G(Ap))2 (n{91:92)

% (| (o197 ) Z-1(@)(0) = [w(g195 ) [Z-1(2™)(0) ) dgrdgs

+ X2 / K
(GF)\G(Ap)')?

Kap)(91,92)
x(uwwmu“ S 20)(55 )

YEM(F)

- |w(919£1) | Z Z(®™) (w(91192)921’¥91)> dgidg;.

yEM(F)

Since 7 is infinite dimensional, the first term here vanishes by orthogonality.

In Theorem 5.1 take €2 to be any set containing a product of two fundamental
domains for G(F) acting on G(A)" and take 1 > ¢ > 0. We have shown that for
any € > 0 one has

1 L3(s, 7', p) ~ =~ = 3
_ %XS%’I 1 d ﬂ-t * X2+5
7 /z‘R+o L5025 xs) V(s+1)dsm r7r(f *f)—i—OE,(}( )

- XZ/
(G(F)\G(Ap)!)?

x(wwwlg;)r‘ S 208 (55 )

yeEM(F)

K5 (91,92)

—lw(gg )| D I(¢SW)(W(91192)921791))-

YEM(F)

We can choose f so that m trw(f* * f) = 0. For such an f we can take cy, to be
the coefficient of X? in this equality divided by m. tr7( f “x f ) O



1396 J.R.GETZ

With Theorem 6.1 in hand, to prove the functional equation of Theorem 1.2 we
proceed as in the work of Godement and Jacquet. Let 7 be an infinite dimensional
representation of G(Ar) and let ¢ be a smooth form in its space. We consider first
the integral

fora € Aq.
For the remainder of this section we choose fg € C°(G(Fys)) such that for
a€R-pand g € G(Fs)' one has

6.0.1) fs(A(a)g) =V(a)fi(g)

for some fl € CZ(G(Fs)') and some V € CZ(Rsp). We also choose a func-
tion fg € C°(G(Fg)) such that fAG fs(ag) = fi(g) for g € G(Ap)'. Let f:=
fS]lG(éf;)’ = fSlG(@g) and let

¢ =D ® fslgs € S(AL x BY,)

satisfy the standard assumptions.
Write

1 L3(s,m,p) =
6.0.2 o= lim o | S XV (s 4 1) ds.
( ) v, Xlinoc 2mi X2 \/’iRJrO' LS(2S7X7T) (S i ) ’

This quantity is well defined by Theorem 6.1. Of course, if we apply Rankin-
Selberg theory we see that it is

V(1)Ress— L5(s,7,p)
L5(2,xx) ’

but part of the point of the current section is to see how much we can derive directly
from Theorem 5.1 without assuming this.

PROPOSITION 6.2. One has

Za(Z(®), ) =|w(a)| > Zys (I(<I>SW),¢V)+IW(CL)I2CV,W/ Fla)el9)dg.

G(Ap)!
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Proof. We take the identity of Theorem 5.1 for (g1,92) = (ag,I) and integrate
it times ¢(g) along G(F)\G(AF)!. Since 7 is an infinite-dimensional representa-
tion the coefficients of X3 vanish identically and we arrive at the equality of

(6.0.3)

1 (s,m,p)
Pt XZ/G i 27 /RM; 525, xn) ron(f)(ag, I)p(g)dsdg

LS( 5, ) s+1 Py
~ RN f, 525, XWV)X V(s+1)ds /G(AF) Flg ") elg)dg

= ‘w(a)‘ch,ﬂv /C;(AF)I f(gil)go(g)dg

and
)l Z(®)(va d
w(a)] / o G%F) (®)(vag)e(g)dg
(6.0.4)
~ w(a)] / S Z(0™)(w(ag) " rag)p(g)dy.
FNG(AR)! weM(F)

Here in (6.0.3) we have moved the integral over G(F)\G(Ar)' inside the inte-
gral over iR + o and the sum over 7; this is justified by the uniform convergence
statement of Proposition 5.3.

Since B is a division algebra

M(F) = G(F)11(0,0)

is a decomposition of M (F') into its G(F') orbits. The contribution of the term
(0,0) to both the sums in (6.0.4) vanishes since 7 is infinite dimensional. Unfolding
the remaining terms is justified by the uniform convergence statement of Lemma
5.4 and we see that (6.0.4) is equal to

(6.0.5)
w(a) / (@) (ag)p(g)dg — |w(a) / (™) (w(ag) ' ag)e(g)ds.
G(AF)1 G(AF)1

The first summand here is |w(a)|* Z,(Z(®), ). Taking a change of variable g — ¢"
we see that the second integral is |w(a)|Z, 1 (Z(P*V),p"). O

LEMMA 6.3. Forall ® € S(A% @ BKF) (not necessarily satisfying the stan-
dard assumptions) and all s € C the integral

Z(®)(ag)||w(a)|*dad
/‘U(a)|>1/C‘T‘(AF)1‘ ( )( Q)H ()‘ g

is bounded.
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Proof. By Theorem 3.2 for any compact set {2 C G(A ) one has a bound

(6.0.6) IZ(®)(av9)| <sxa |w(@)] T (s 1) ™

Voo

for any N € Z=( provided that g € Q and a € A satisfies |w(a)| > 1. Moreover,
Z(®)(ayg) vanishes unless v € 3~ 'Op for some 3 € F* that depends only on 2.
Taking €) to be a compact measurable fundamental domain for the action of

G(F)on G(Ar)" we have

[ @) dadg
w(a@)[>1JG(Ap)'
-[ > 2@ (@) |o(@) dady
w(a)|>1JG(F)\G(Ap)'

YEG(F)

<N / w@[ a3 Tmax(1, 7).
|w(a)|>1

¥E€B™1Op vlee
For any s we can choose NN large enough that this converges. U

We now prove Theorem 1.2:

Proof of Theorem 1.2. One has

Z(T(®),s,) :/ Za(Z(®), ) |[w(a)]" da

Ag
:/ Za(I(q)),gp)|w(a)|s+lda
lw(a)l<1

Z.(Z(®),0)|w(a) " da.
+/Ma)>1 (Z(®),9)|w(a)]

The latter integral converges absolutely for all s by Lemma 6.3. As for the former
integral by Proposition 6.2 we have

/ Za(Z(®), ) [w(a)|*  da
w(a)|<1

:/ Zy (I((I)SW),gov)‘w(a)‘szda—k/ |w(a)|571cﬁ@da
|w(a)|<1 lw(a)|<1

where
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For s > 1 the last term here is %, and hence by analytic continuation it takes
this value for all s # 1. The former term is

/ Zo(Z(3™),¢")|w(a)**da.
|w(a)|>1

Since ¢ is bounded this converges absolutely for all s by Lemma 6.3. Thus we
have obtained the meromorphic continuation of Z(Z(®), s, ) with poles as speci-
fied in the statement of the theorem. Combining the equalities above we have also
obtained

Z(T(®),s,0) = / Za(T(™),¢")|w(a)|* *da
(6.0.7) kola)l>1

+/ Zo(Z(®), ) |w(a) | da+ —L2
w(a)|>1 (@), ) @) 2(s—1)

In the traditional argument for the functional equation of zeta functions going
back to Tate’s thesis one would now argue that one is done by symmetry. However,
this will not work for us because, as already observed, if ® satisfies the standard
assumptions then ®*% does not. Moreover, the expression for the residues we ob-
tained above is asymmetric in ¢ and ®%.

Instead we start over, this time with ® replaced by ®*%. We have

2—s

Z(@SW,I—S,@V):/ Zo(Z(®™),¢")|w(a)|” "da

Ac

:/ Za(I(q)SW),cpvﬂw(a)f*sda
|w(a)l<1

Z(Z(D™), oY) |w(a)|* *da.
# ] T @) @)

The second summand here converges absolutely for all s by Lemma 6.3. By Propo-
sition 6.2 the first summand is equal to

—1-s 1—s
/lw(a)<lZa1(I(<I>),g0)|w(a)| da—/ |w(a)| cypda

w(a)<1

— wla s a Cfiﬁo
_/w< )|>1Z“(I(@)’w)‘ (@] o+ 375

Here the second summand is only defined for Re(s) < 1 at first, but after evaluating
the integral one obtains a function that obviously extends meromorphically to the
plane. The first summand here converges absolutely for all s by Lemma 6.3, so
we have obtained the analytic continuation of Z(Z(®%Y),¢",s) to a meromorphic
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function of s. Combining the previous equalities also yields

Z(I(CDSW),I—S,wv) :/|( )>lZa(I(<I>),g0)|w(a)|l+sda

which is equal to (6.0.7), proving the desired functional equation. O

7. Four variable kernel functions. From this section onward we allow
ourselves to use the entirety of Rankin-Selberg theory. Using it we can give the
following more precise version of Theorem 5.1. Let fg € CZ°(G(Fs)) and let

o = (I)0®f5]16§

satisfy the standard assumptions. Recall that S is assumed to satisfy A(S) from
Section 1.3.

THEOREM 7.1. Assume that fs is finite under a maximal compact subgroup
of G(Fs). One has

Res,_1 L (s,m,p
(7.0.1) > 25(2() )Kmm(gl,gz)
= |w(919,") Z Z(2) (9179, ")
(7.0.2) HeMtr 1 1
—|w(g19: )] Z Z(@™)(wlgy '92)9179: ")
YEM(F)

where the sum on T is over isomorphism classes of automorphic representations of
AG\G(AF) that are irreducible constituents of T @ 7| (a ) for some automor-
phic representation my of B gF

Note that in the theorem K., (s)(91,92) is Ky (5)(91,92) evaluated at s = 2.
This notation also occurs below. We view this as a geometric expansion of a four-
variable kernel function. To explain this, note that each kernel K,y (91,92) is
controlled by a single automorphic representation of B gF, namely 7, but, up to
center, there are four copies of BgF that can be integrated over in the kernel. These
extra copies will be put to good use in Section § below.

The main step in deriving Theorem 7.1 from Theorem 5.1 is the following
proposition:
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PROPOSITION 7.2. Assume that fg is finite under a maximal compact sub-
group of G(Fs). For any € > 0 the sum (5.0.5) is equal to OE(X%+5) plus

R Ss= LS ) 1y R S= LS )ty
Z( es zs(iiﬂp))@K ()(91,gz)+ es 1(3(2(;7TP)X2K ()(g1,g2)>

K
where the sum on w is as in Theorem 7.1. The sum is absolutely uniformly conver-
gent for (g1,92) in compact subsets of G(Ap) x G(Ar).

Indeed, assuming this proposition, Theorem 7.1 follows upon comparing the
coefficients of X? in Theorem 5.1 and Proposition 7.2.

Proof. Assume that 7 is a subrepresentation of 7' ® 7”|(a ). If 7 is infinite
dimensional (which is to say that at least one of 7’ and 7" is infinite dimensional)
then the Rankin-Selberg L-function L (s, , p) is holomorphic in the plane except
for a possible simple pole at s = 1 which occurs if and only if 7’ @ 7" = mo @ 7.

—

If 7 is finite dimensional, then 7™ = y ow for some character x € [G,,]. In this case
(7.0.3) L(s,m,p) = Lo (s+1,x)L°(s,x)?L% (s — 1,x)

which again is holomorphic in the plane except for possible poles at s = 0,1,2
which can only occur if y = 1. Since S contains finite places, L (s — 1, x) vanishes
at s = 1, so the pole of L (s, 7, p) at s = 1 is at worst simple.

These comments on the residues of L (s, m,p) K, () (91, 92) together with a
contour shift imply that (5.0.5) is equal to the sum in the statement of the proposi-
tion plus

S 7T P) s+1
7.04 2 \5THP) xestl e ds.
( ) 27TZZ/R+ T+e LS 25,Xr) w1 (f )(91792) S

We will show that this is O, (X 3te ). We will first give the argument when Bp,
splits for all v|eo, and then explain how to alter it when we remove this assumption.
For 7 an automorphic representation of Ag\G(Ap) let

7To<,,p HC 7T'v7p

vleo

where C'(7,, p) is the analytic conductor of L(s,m,,p) as in (4.1.5).
For 7 occurring in the restriction of 7/ ® 7" (an automorphic representation of
(BgF)Z) we claim that one has a preconvexity bound

(S _ 1)51’ﬂ/7ﬂ//v (8 _ 2)527.”/7.”//\/ LS(S,T(,[)) <<f C(ﬂ_w’p)é
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valid for sufficiently large § > 0 and 4 < Re(s) < 2, where

1 if 7’ 27" and 7’ is infinite dimensional
51’7.r/77r//\/ — .
otherwise,

5 1 if 7 = 7" and 7’ is finite dimensional
2’7.(./ 1\ = .
0 otherwise.

We remind the reader that .S contains finite places, so the pole at s = 1 is only
simple, and not of order 2, when 7’ and 7" are finite dimensional. We also note
that we are only claiming the bound for 7 contributing to our sum; this set of 7
has the property that the nonarchimedean parts of their conductors are bounded in
terms of our test function f (this is why we have put in a subscript f in the bound).

If 7" and " are both infinite dimensional then this is trivial for Re(s) > 1 and
for 7 <Re(s) < 1 this is proven in [Bru06, Section 1]. If exactly one of 7" and 7"
is infinite dimensional, say 7/, and 7/ = x o v, then

1 1
L(s,m,p) = Ls<s—|—§,7r'®x)LS<s— 5,77/®x)
and we can again use the same reference. If m = x ow then we have the identity
(7.0.3). We can then use [Mor05, Section II1.6, Theorem 14A].
Thus by dominated convergence, to complete the proof that (7.0.4) is
O:(X %“) it suffices to show that for any f € C(Ag\G(AF)) one has that

> O ) [ K (91,92) |

is bounded for any /N > 0. This will also imply the absolute uniform convergence
of the sum over residues if we can obtain a bound uniform for (g;,g>) in a compact
set.

By a standard argument (compare the proof of [GH15, Theorem 3.1]), to prove
this it suffices to show that for any N >0 and h € CZ(Ag\G(AF)) the sum

(7.0.5) Y. Cp) Knpep)(9:9)

T=n'Qn"

is bounded, uniformly for g in a compact set. Here h*(g) := h(g~"), the bar denot-
ing complex conjugation. The Casimir eigenvalue of 7 is bounded by a constant
times a power of C'(m, p). This was proven for GL,, in [Get]12, Lemma 4.5], and
can be proven in the current setting by a trivial modification of the argument. In
view of the Weyl law and [God66, (15°)] (stated in adelic language in [GH15, The-
orem 3.5]), to prove the boundedness of (7.0.5) it suffices to show that tr(f * f*)
is rapidly decreasing as a function of C'(7, p). This is the content of Lemma 4.5.
Now to complete the proof we explain how to modify the argument when B
is nonsplit at an infinite place. Let S C oo be the maximal subset such that Bp, is
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nonsplit for all v € S. Then the preconvexity bound from above is given in terms of
the Jacquet-Langlands transfer of an extension of 7., to (B;m)z. On the other hand,
our analytic control on tr7.(f * f*) comes from Lemma 4.6, which is a statement
about 7., itself, and not its transfer.

To overcome this difficulty we recall we have assumed that f is finite under a
maximal compact subgroup of G(Fls). Thus there is a finite set R of irreducible
unitary representations of G(Fls) such that any 7 contributing to our sum has the
property that a twist of g by a character is isomorphic to a representation in R.
Twisting by characters is compatible with the Jacquet Langlands correspondence
in the natural way. Moreover one has that

trsic(f)

is rapidly decreasing as a function of ¢ € R for any fixed 7g and f € C7(G(Fy)),
and

C((n' x 7", s)®|v[") = C(n' x n",2it + ).
Using these observations it is not hard to modify the argument above. U

8. A nonabelian trace formula. In this section we prove Theorem 1.3. We
place ourselves in the setting of Section 1.4. Thus we assume that there is a subfield
k < F such that F'/k is Galois with Galois group

Gal(F/k) = (1,1);

that is, Gal(F'/k) is generated by two elements. Assume moreover that B is a
division algebra over k such that B := Bj ®;, F' is nonsplit (i.e., again a division
algebra). We define Gy, 0 : Go — Go, and the action of Gy on Resp /G via 6-
conjugation as before. For v € G(F') = Resp/,G(k) we let Gy, be the stabilizer of
~ under this action. Since B is a division algebra, a standard argument implies that
Gy is reductive and anisotropic modulo center.

For suitable smooth test functions f on G(Ar) = Resp/,G(Ay) we let

(8.0.1) TO,(f) := / Flo™"vg")dg
Govy (Ap)\Go(Ag)

be the usual twisted orbital integral. In addition to depending on the choice of a
Haar measure on Go(Ay,) it depends on a choice of Haar measure di., on Go., (Ay).

LEMMA 8.1. For ® € S(AZ® BiF) one has

> meas (1)) | Z(@) (g '90(9)) g <=

o0y (Ar)\Go(Ak)
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where the sum on vy is over a set of representatives for the Gy(k)-orbits in G(F)
under 0-conjugation. In particular TO.(Z(®)) is well defined.

Proof. By unfolding we see that

> meas ([6-]) | Z(®)(5~'6(9)) g

y Govy(Ap)\Go(Ag)

The latter integral is absolutely convergent by Lemma 5.4 because [Gy] is compact.
O

Recall the definition of the nonabelian trace (1.4.1) from Section 1.4. Let
SG(R):={g€ B} :v(g)=1}.

To analyze the nonabelian trace it is convenient to first state a lemma on restrictions
of representations of B to SG(Ap):

LEMMA 8.2. Let m be an automorphic representation of AGm\ng. Its re-
striction to SG(Af) is a direct sum of admissible representations of SG(Ap).
Two representations 7' and ©" of By have a common constituent when restricted

to SG(Ap) if and only if 7' = 7" ® x for some character x € |G, r].

Proof. For the assertion that the restriction of the representation to SG(Af)
breaks into a direct sum see Section [HS12, Chapter 2]. Moreover, in the same
reference it is proven that if the restrictions of 7" and 7" to SG(Af) have a com-
mon constituent, then 7’ = 7" ® x for some character x : A} — C* (they do not
prove that this character is invariant under F'*). To prove that y must be invari-
ant under Ag, F'* we apply [Ram00, Theorem 4.1.2] and the Jacquet-Langlands
correspondence. O

For 7 an admissible representation of By, and £ € Gal(F/k) let

m(g) =7 (&(9))

be its Galois conjugate. The key property of the nonabelian trace is that it is nonzero
only for 7 € res(m ®m ) where 7 is isomorphic to its conjugates under Gal(F/k)
up to a twist by a Hecke character:

LEMMA 8.3. Let 7 € res(mo @y ) where w0 is an automorphic representation
of BgF. If

(8.0.2) ntr(f) #0
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for some f then

o = @ X1 = M) @ X2

for some x1,x2 € [Gp,r).
Here we have used the notation of Section 4.2.

Proof. Let V, C L*(G(F)\G(AF)") be the space of 7 and let
VI = (g’ e IX(G(F)\G(AF)") 0 € Vi)

where 7 (2) := B(6(x)). The space Vi is a model of the representation 7% if we
let G(Ap)! act on the space via the regular action:

R(9)@’(z) =% (2g).

One has a C-bilinear map

Ve x (VO™ — ¢

™

(01,75) — . ]sol(g)% (6(g))dg.

Here the superscript sm denotes the subspace of smooth vectors. This pairing is
Go(Ag)-invariant. In particular, if ntrm(f) is nonzero then there is a Go(Ag)-
invariant linear form on the space of 7 ® "¢

Now 7|g(a,) and 776|G0(Ak) decompose into finite sums of irreducible rep-
resentations of Go(Ay) since this is even true of the restrictions to SG(Afp) x
SG(Ap) by Lemma 8.2. If ntrm(f) # 0 then mo @ 7y |y(a,) and 76 @ 75 [ Go(ay)
have a constituent in common. Thus the lemma follows from Lemma 8.2. (]

We now prove Theorem 1.3:

Proof of Theorem 1.3. In the proof of Lemma 8.1 we proved that

(8.0.3) > |Z@)(g7'40(9))|dg

is finite. In addition, since [Gp] is compact we can apply Proposition 7.2 to see that

Res,_ L
(8.0.4) Z‘ s Mp ‘/ Kory(r)(9,0(9)) | dg

is finite.
Now take the identity of Theorem 7.1 and integrate it over

{(9,0(9)) : 9 € Go(Ar) }.
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Since (8.0.3) and (8.0.4) are finite we can bring the integral over [Gy] inside the
sums in (7.0.2) and (7.0.1) and deduce the theorem. O
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