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A SUMMATION FORMULA FOR THE RANKIN-SELBERG MONOID

AND A NONABELIAN TRACE FORMULA

By JAYCE R. GETZ

Abstract. Let F be a number field and let AF be its ring of adeles. Let B be a quaternion algebra over

F and let ν : B → F be the reduced norm. Consider the reductive monoid M over F whose points in

an F -algebra R are given by

M(R) :=
{(

γ1,γ2

)
∈
(
B⊗F R

)2
: ν

(
γ1

)
= ν

(
γ2

)}
.

Motivated by an influential conjecture of Braverman and Kazhdan we prove a summation formula

analogous to the Poisson summation formula for certain spaces of functions on the monoid. As an

application, we define new zeta integrals for the Rankin-Selberg L-function and prove their basic

properties. We also use the formula to prove a nonabelian twisted trace formula, that is, a trace formula

whose spectral side is given in terms of automorphic representations of the unit group of M that are

isomorphic (up to a twist by a character) to their conjugates under a simple nonabelian Galois group.

Contents.

1. Introduction.

1.1. Local spaces of functions.

1.2. The asymptotic formula.

1.3. Zeta functions for Rankin-Selberg convolutions.

1.4. A nonabelian trace formula.

1.5. Outline of the paper.

2. Notation.

3. Preliminaries.

3.1. The proof of Theorem 1.1.

4. L-packets for G.

4.1. Local L-packets.

4.2. Global L-packets.

5. Spectral expansion.

6. Godement-Jacquet-type zeta integrals.

7. Four variable kernel functions.

8. A nonabelian trace formula.

References.

1. Introduction. Let F be a number field, let AF be its ring of adeles

and let f ∈ S(gln(AF )), the Schwartz space of gln(AF ). The Poisson summation
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formula on gln(F ) is

∑

γ∈gln(F )

f(γ) =
∑

γ∈gln(F )

f̂(γ)(1.0.1)

where f̂ is the Fourier transform of f with respect to an additive character. Gode-

ment and Jacquet used this formula to prove the functional equation for the stan-

dard L-functions of automorphic representations of GLn(AF ) [GJ72]. Motivated

by Godement and Jacquet’s work, Braverman and Kazhdan [BK00] have conjec-

tured that for every representation

ρ : LG◦ → GL(V )

of the neutral component of the L-group LG of a connected reductive group G

there should be a corresponding ρ-Fourier transform and ρ-Poisson summation

formula that in turn imply the analytic continuation and functional equation of the

Langlands L-function L(s,π,ρ). L. Lafforgue has a related program [Laf14]. We

also note that Ngô has advocated investigating Braverman and Kazhdan’s conjec-

ture using the trace formula. For more information on the Fourier transforms see

[BNS16, CN18, Li16, Li18b] in the nonarchimedean case and [Get18a, Li18a] for

the archimedean case. See also [BK02, GL17, Pol18, Sha18] for more information

about cases where much more is known about Braverman and Kazhdan’s conjec-

tures.

In this paper we investigate this circle of ideas when the monoid gln is re-

placed by a monoid related to the Rankin-Selberg convolution on GL2×GL2. We

then apply the work to produce a nonabelian trace formula isolating automorphic

representations that are invariant (up to an abelian twist) to their Galois conjugates

under a simple nonabelian group.

Let B be a simple algebra of degree 4 over F ; thus B is either a quaternion

algebra over F or M2(F ). Let OB <B be the order of (3.1.3). Let

ν : B −→ F

be the reduced norm. Consider the group scheme whose points in an OF -algebra

R are given by

G(R) =
{(

g1,g2

)
∈
((
OB ⊗OF

R
)×)2

: ν
(
g1

)
= ν

(
g2

)}
.

The neutral component of the L-group LG := LGF is

LG◦ = GL2(C)×GL2(C)/
{
(zI,z−1I) : z ∈ C×}

and hence the tensor product induces a representation

ρ : LG◦ −→ GL4(C).
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Now G is the group of units of the monoid scheme whose points in an OF -algebra

R are given by

M(R) :=
{(

X1,X2

)
∈
(
OB ⊗OF

R
)2

: ν
(
X1

)
= ν

(
X2

)}
.(1.0.2)

We refer to this as the Rankin-Selberg monoid. In the next subsection we define

local spaces of functions related to the monoid M and define a pair of transforms

using them. We use these functions to state an asymptotic formula for sums over

M(F ) in Section 1.2. In Section 1.3 we then define zeta integrals for ρ analogous to

those introduced by Godement and Jacquet for the standard representation. We will

prove their analytic continuation using the asymptotic formula mentioned above.

The nonabelian trace formula will be discussed in Section 1.4.

Throughout this paper we use the following notation: For an F -algebra R and

T = (T1,T2) ∈B2
R we let

p(T ) := ν
(
T1

)
−ν

(
T2

)
,

trT := tr
(
T1 +T2

)
,

ν(T ) := ν
(
T1

)
ν
(
T2

)
,

ω(T ) := ν
(
T1

)
.

Here tr denotes the reduced trace and ν denotes the reduced norm. Also, if π is a

representation of G(AF ) or G(Fv) and s ∈C then

πs(g) := π(g)
∣∣ν(g)

∣∣s/2
= π(g)

∣∣ω(g)
∣∣s

where | · | is either the norm on A×
F or F×

v depending on the context.

1.1. Local spaces of functions. In this subsection we use local notation,

fixing a place v of F and writing, e.g., F := Fv. Let ψ : F → C× be a nontrivial

character. If W is an F -vector space we let S(W ) be the usual Schwartz space (it

is just C∞

c (W ) in the nonarchimedean case). Throughout this work Φ will denote a

function in S(W ); the space W will depend on the context.

For Φ ∈ S(F ×F ×B2
F ) define

I(Φ,s) : B2
F −→ C(1.1.1)

via

I(Φ,s)(γ) :=

∫

F×

(∫

B2
F

Φ

(
p(T )

t
, t,T

)
ψ

(
trγT

t

)
dT

)
|t|sdt×.(1.1.2)
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Here and below dT (resp. dt) denotes the additive Haar measure on BF (resp. F ),

both normalized so that the Fourier transform is self-dual with respect to ψ, and

dt× = ζ(1)
dt

|t|

with ζ(s) the usual local Euler factor of the Dedekind zeta function (see Section

2). The integrals depend on the choice of ψ, but we will not encode this into the

notation. It is clear that these integrals converge absolutely for Re(s) > 0, and

they in fact admit a meromorphic continuation to Re(s)>−4 to a function that is

holomorphic at s=−3 (see Theorem 3.3). We set

I(Φ)(γ) := ζ(1)−1I(Φ,−3)(γ).(1.1.3)

If F is nonarchimedean we let 	 be a choice of uniformizer and q := |OF /	|.
For g1,g2 ∈G(F ) let

�ρ

(
g1,g2

)
=

∞∑

k=0

q2k
�OB

(
	−kg1,	

−kg2

)
(1.1.4)

where OB < B is a maximal order. If B is split then this is the basic function

attached to the representation ρ. By this we mean that for an unramified represen-

tation π of G(F ) and Re(s) sufficiently large one has that πs+1(�ρ) projects the

space of π onto the line fixed by G(OF ) and acts via the scalar L(s,π,ρ) on that

line (see Lemma 5.2).

It turns out that if q is sufficiently large, ψ is unramified, and the maximal order

OB is chosen appropriately then

I
(
�
O2

F
×O2

B

)
|G(F ) =

�ρ

ζ(2)
(1.1.5)

for a suitable choice of Haar measures (see Theorem 3.5). Let

I
(
G(F )

)
:=

{
I(Φ) : Φ ∈ S

(
F ×F ×B2

F

)}
(1.1.6)

where I(Φ) is defined as in (1.1.3).

Remark. One might ask why this space of functions is not called I(B2
F ), since

its elements are defined on all of B2
F . It is largely a matter of emphasis; we are

most interested in the restriction of these functions to M(F ). We do not denote

the space by I(M(F )) because the value of the functions at (0,0) is only given

via analytic continuation, and hence if we view these as functions on M(F ) it is

difficult to make sense of the equality (1.2.1) below.

We are not sure whether I(G(F )) is the Schwartz space for which Braverman

and Kazhdan are searching, but it is certainly closely related to it. Regardless of

whether this is the “actual” Schwarz space attached to ρ the global results of this
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paper (i.e., theorems 1.2 and 1.3) show that it is of interest. For (x,y,T ) ∈F ×F ×
B2

F let

Φsw(x,y,T ) = Φ(y,x,T )(1.1.7)

(the sw is for “switch”). We then have a pair of transforms

I
(
G(F )

)
S
(
F ×F ×B2

F

)
�� �� I

(
G(F )

)

I(Φ) Φ�

��
�

�� I
(
Φsw

)
.

(1.1.8)

The functions I(Φ) and I(Φsw) behave somewhat like a Fourier transform pair

(see Theorem 1.2).

1.2. The asymptotic formula. We now revert to global notation. Let S be

a finite set of places of F including the infinite places. We define an adelic space

of functions I(G(AF )) via

I
(
G
(
AF

))
=⊗′

vI
(
G
(
Fv

))
(1.2.1)

where the restricted direct product is taken with respect to the basic functions �ρ,v.

For Φ∈S(A2
F ×B2

AF
) and s∈C we denote by I(Φ,s) the obvious adelic analogue

of the local integral (1.1.2) of the previous section. It converges absolutely for

Re(s) > 1, and admits a meromorphic continuation to the half plane Re(s) > −4

(see Theorem 3.4). For g ∈G(AF ) we set

I(Φ)(g) :=
Ress=−3I(Φ,s)(g)

Ress=1Λ(s)
and I−1(Φ)(0) :=

Ress=−1I(Φ,s)(0)
Ress=1Λ(s)

.

(1.2.2)

Here Λ(s) is the completed Dedekind zeta function of F .

The function I(Φ) is in fact defined on B2 but vanishes if γ �∈ M(F ) (see

Theorem 3.4). Moreover I(Φ), as a function of G(AF ), is in I(G(AF )). Indeed,

if Φ = ΦS�(ÔS
F
)2×(ÔS

B
)2 for a sufficiently large finite set of places S including the

infinite places then

I(Φ) = I(ΦS)

ζS(2)

∏

v �∈S
�ρ,v

by Theorem 3.5. Here and in global settings below ζ denotes the Dedekind ζ-

function of F .

For Φ0 ∈ S(A2
F ) let

F2

(
Φ0

)
(x,y) =

∫

AF

Φ0(x,t)ψ(yt)dt



1376 J. R. GETZ

be the Fourier transform of Φ0 in the second variable. For our later use, we say that

a Schwartz function Φ ∈ S(A2
F ×B2

AF
) satisfies the standard assumptions if there

exists

(
Φ0,f

)
∈ S

(
A2
F

)
×S

(
B2

AF

)

such that Φ= Φ0 ⊗ f and

(1) Φ0(t,0) = 0 for all t ∈ AF

(2) F2(Φ0)(0,0) = ΓF∞
(1)

where ΓF∞
(s) is the factor of Λ(s) at infinity. Notice that if Φ satisfies the stan-

dard assumptions, then it is impossible for Φsw to satisfy the standard assumptions

because of (1) and (2).

If X ∈ R>0 we denote by

∆(X) ∈ A×
F(1.2.3)

the idele that is X [F :Q]−1

at all places v|∞ and 1 elsewhere. We also denote by ∆

the isomorphism

R>0
∼−−→AG

X 	−→∆(X)(I,I)

where AG is the usual central subgroup of G(F∞) (see Section 2). We endow AG

with the Haar measure corresponding to dx
x via this isomorphism.

The starting point of this paper is the following theorem, which will play the

role of the Poisson summation formula in our setting:

THEOREM 1.1. For any ε > 0 the sum

∑

γ∈M(F )

f

(
γ

∆(
√
X)

)
(1.2.4)

is equal to Oε,f,Φ(X
3
2
+ε) plus

X3
(
I−1(Φ)(0)−I−1

(
Φsw

)
(0)

)
+X2

∑

γ∈M(F )

(
I(Φ)(γ)−I

(
Φsw

)
(γ)

)
.

Moreover

∑

γ∈M(F )

∣∣I(Φ)(γ)
∣∣+

∣∣I(Φsw)(γ)
∣∣ < ∞.

We will explain how to derive Theorem 1.1 from [Get18b, Theorem 1.1] in

Section 3 below. It is worth noting that the proof of Theorem 1.1 makes no use of

automorphic representations.
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1.3. Zeta functions for Rankin-Selberg convolutions. Using Theorem

1.1 we can execute the argument of Godement and Jacquet to obtain new zeta

integrals for Rankin-Selberg convolutions as we now explain.

Let π be an infinite-dimensional automorphic representation of AG\G(AF )

and let ϕ be a smooth function in the space of π. For Φ ∈ S(A2
F ×B2

AF
) let

Z
(
I(Φ),s,ϕ

)
:=

∫

G(AF )
I(Φ)(g)

∣∣ω(g)
∣∣s+1

ϕ(g)dg.

Moreover, for g ∈G(AF ) let

g∨ := ω(g)−1g and ϕ∨(g) := ϕ
(
g∨

)
.(1.3.1)

We note that if π is an irreducible automorphic representation of G(AF ) then the

representation

g 	−→ π
(
g∨

)

is isomorphic to the contragredient because B is a simple algebra of rank 2 (this is

false in higher rank).

Let Φ = Φ0 ⊗ f satisfy the standard assumptions, and assume moreover that

f = fS�(ÔS
B
)2 where fS ∈C∞

c (G(FS)) for some finite set of places S including the

infinite places. Throughout this paper we make the following assumption on S:

A(S) The finite set S contains all infinite places, all dyadic places, all places

dividing the absolute different of F , the places dividing the elements a,b defining

the quaternion algebra B and all places where ψ is ramified.

We also assume that for a ∈ AG and g ∈G(AF )
1 one has

fS(∆(a)g) = V (a)f 1
S(g)(1.3.2)

for some f 1
S ∈C∞

c (G(FS)
1) and some V ∈C∞

c (R>0). Here the superscript 1 groups

are defined as in Section 2. Assuming that fS decomposes as above is convenient

in the proof and is no loss of generality spectrally.

The following is the first main theorem of this this paper:

THEOREM 1.2. Assume B is a division algebra. The zeta functions

Z(I(Φ),s,ϕ) and Z(I(Φsw),s,ϕ∨) admit meromorphic continuations to the

plane and satisfy a functional equation

Z
(
I(Φ),s,ϕ

)
= Z

(
I
(
Φsw

)
,1− s,ϕ∨).

The function Z(I(Φ),s,ϕ) is holomorphic except for a possible simple pole at

s= 1.
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Let S be a sufficiently large finite set of places including the infinite and dyadic

places. By (1.1.5) if ϕ is spherical outside of S then

Z
(
I(Φ),s,ϕ

)
= Z

(
I(ΦS),s,ϕ

)LS(s,π,ρ)

ζS(2)

where

Z
(
I(ΦS),s,ϕ

)
=

∫

G(FS)
I
(
ΦS

)(
gS

)∣∣ω
(
gS

)∣∣s+1

S
ϕ
(
gSI

S
)
dgS

(here IS is the element of G(AS
F ) that is the identity outside of S). Thus Theorem

1.2 implies a coarse version of the functional equation of the Rankin-Selberg L-

function. Our proof, moreover, is new. It uses the summation formula Theorem 1.1

in place of the Langlands-Shahidi method or Rankin-Selberg theory. Incidentally,

if one assumes properties of the Rankin-Selberg L-function that have been proven

via other means then it is easy to deduce when Z(I(Φ),s,ϕ) has a pole. We do not

know how to obtain this refined information solely from our summation formula

for the Rankin-Selberg monoid and hence have not included it in the theorem.

We remark that in analogy with Tate zeta functions one might expect that there

are two poles of the zeta integrals Z(I(Φ),s,ϕ), one at 0 and one at 1. We ex-

pect that absence of the pole at s = 0 can be traced either to our assumption that

fS ∈C∞

c (G(FS)) or assumption (1) in our standard assumptions on Φ. Making this

precise would at very least require reworking much of the paper [Get18b].

1.4. A nonabelian trace formula. In this subsection we explain the second

main theorem of the paper. It is a nonabelian twisted trace formula, that is, a twisted

trace formula whose spectral side is given in terms of automorphic representations

of G(AF ) that are isomorphic to their conjugates under a group of automorphisms

of F generated by a pair of elements. Since any simple nonabelian group can be

generated by two elements [GM12, Corollary 8.3], this is a quite general setup.

Assume that there is a subfield k ≤ F such that F/k is Galois with Galois

group

Gal(F/k) = 〈ι,τ〉;

that is, Gal(F/k) is generated by two elements. Assume moreover that B1 is a

division algebra over k such that B := B1 ⊗k F is nonsplit (i.e., again a division

algebra).

Let G0 be the connected reductive k-subgroup of ResF/kG whose points in a

k-algebra R are given by

G0(R) :=
{(

g1,g2

)
∈G

(
R⊗k F

)
=

(
B2 ⊗kR

)×
: ν

(
g1

)
= ν

(
g2

)
∈R×}.
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This k-subgroup comes equipped with an action of Gal(F/k)2, and in particular

we have an automorphism θ of G0 given on points by

θ
(
g1,g2

)
:=

(
ι
(
g1

)
, τ
(
g2

))
.

We have an action of G0 on ResF/kG via θ conjugation, given on points in a k-

algebra R by

G0(R)×ResF/kG(R)−→ Resk/FG(R)
(
g1,γ

)
	−→ g1γθ

(
g1

)−1
.

For γ ∈ G(F ) = ResF/kG(k) we let G0γ be the stabilizer of γ under this action.

Since B is a division algebra, a standard argument implies that G0γ is reductive

and anisotropic modulo center. For suitable test functions f on G(AF ) we can then

form twisted orbital integrals TOγ(f) in the usual manner (see (8.0.1)).

For an automorphic representation π and f ∈ C∞

c (G(AF )) we introduce the

following nonabelian trace:

ntrπ(f) =
Ress=1L

S(s,π,ρ)

ζS(2)

∫

[G0]
Kπ2(f)

(
g,θ(g)

)
dg.(1.4.1)

Here [G0] is the typical adelic quotient (see (2.0.1)). It is clear that the integral

here is absolutely convergent since [G0] is compact. It is also not hard to see that

it vanishes unless the L-packet of π is stable under Gal(F/k) up to a twists by

abelian characters; for a precise statement we refer to Lemma 8.3.

The following is the last main theorem of this paper. It will be proven in Sec-

tion 8:

THEOREM 1.3. One has

∑

π

ntrπ(f) = meas
([
G0

])(
I(Φ)(0)−I

(
Φsw

)
(0)

)

+
∑

γ

meas
([
G0γ

])(
TOγ

(
I(Φ)

)
−TOγ

(
I
(
Φsw

)))

where the sum on π is over isomorphism classes of automorphic representations

of AG\G(AF ) and the sum on γ is over a set of representatives for the orbits

of G0(F ) acting on G(F ) via θ-conjugation. All of the sums here are absolutely

convergent.

Ultimately, one would like to compare this formula with an analogous one over

k and prove nonsolvable base change and descent for automorphic representations

of inner forms of GL2. More details on what one should expect spectrally from

such a comparison are contained in [Get12]. Unfortunately we have no paradigm

available to inform such a comparison.
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A smaller step towards this goal would be to use Theorem 1.3 to study limit

multiplicities of forms that are isomorphic to their Gal(F/k) conjugates as the an-

alytic conductor of the corresponding automorphic representations goes to infinity

in some fashion. One expects that this is an easier problem, and it is still of great

interest.

1.5. Outline of the paper. In Section 3 we state the results from [Get18b]

that we require for this paper and explain how to translate them into the current

setting. We describe a little of the structure of L-packets for G in Section 4. This

is required for Section 5, in which we give a spectral expansion of the sum (1.2.4).

Here we make no use of Rankin-Selberg theory. We then prove the analytic con-

tinuation and functional equations of our zeta functions Z(I(Φ),s,ϕ) in Section

6. Again, we make no use of Rankin-Selberg theory, so this work provides a new

proof of the meromorphic continuation of LS(s,π,ρ).

In Section 7 we allow ourselves to use the entirety of Rankin-Selberg theory

and use it to prove an identity for what we call a four-variable kernel function. It

is an identity between a spectral side and a geometric side. The key point here is

that the spectral side is given as a sum over kernel functions attached to automor-

phic representations π of B×
AF

, but there are four variables of integration attached

to each π, not just two as in the Selberg expansion of the standard automorphic

kernel. These extra variables are the key to proving Theorem 1.3. We carry out the

argument in Section 8.

Acknowledgments. The author thanks V. Blomer, T. Kaletha, L. Pierce, A. Pol-

lack, D. Schindler, and W. Zhang for useful conversations. H. Hahn read the entire

paper several times as it was being written; the author truly appreciates her constant

encouragement and help with editing. He also thanks P. E. Herman for pointing out

the reference [DI94].

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author and do not necessarily reflect the views of the

National Science Foundation.

2. Notation. Let ψ : F\AF → C× denote a nontrivial additive character.

For Φ ∈ S(BAF
) we let

Φ̂(Y ) :=

∫

BAF

Φ(X)ψ
(

tr(Y X)
)
dX

denote the Fourier transform of Φ. We always normalize the Haar measure on BAF

so that it is self-dual with respect to this transform. The Poisson summation formula

then takes the form

∑

γ∈B
Φ(γ) =

∑

γ∈B
Φ̂(γ).
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It is convenient to use the following additional (fairly standard) notation. For an

affine algebraic group H over a number field F let AH be the connected component

in the real topology of the greatest Q-split torus in ResF/QZH (ZH being the center

of H). We then set

[H] := AHH(F )\H
(
AF

)
.(2.0.1)

We will only use this notation when H is reductive, in which case this quotient

has finite measure with respect to the right-invariant measure induced by a Haar

measure on H(AF ). One has the usual Harish-Chandra map

HCH : H
(
AF

)
−→ LieAH = HomZ

(
X
(
ResF/QH

)
,R

)

x 	−→
(
χ 	−→

∣∣ log
(
χ(x)

)∣∣)(2.0.2)

where X(ResF/QH) is the character group of ResF/QH . We let

H
(
AF

)1
:= kerHCH(2.0.3)

and let H(FS)
1 be the kernel of the composite of the natural inclusion H(FS) ↪→

H(AF ) and HCH .

Finally if S is a finite set of places of F including the infinite places then

OS
F ⊂ F is the ring of S−∞-integers, and

ÔS
F :=

∏

v �∈S
OFv

,

which is isomorphic to the profinite completion of OS
F . In particular ÔS

F ∩F =OS
F .

3. Preliminaries.

3.1. The proof of Theorem 1.1. The setting of [Get18b] involves a vector

space V = Gn
a and a nondegenerate quadratic form Q on V . Given these data,

Φ ∈ S(V (AF )), a character χ : [Gm]→ C× and s ∈ C one defines

I(Φ,χs)(ξ) :=

∫

A×
F
×V (AF )

Φ

(
Q(w)

t
, t,w

)
ψ

(〈ξ,w〉
t

)
dwχs(t)dt

×.(3.1.1)

Here 〈,〉 : Gn
a ×Gn

a →Ga is the usual product:

〈a,b〉 =
n∑

i=1

aibi.(3.1.2)

For each place v of F we have the analogous local integrals.

We explain how the setting of the current paper fits into this setup. Here and be-

low we will freely use basic facts about quaternion algebras. A new and enjoyable
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reference is [Voi]. Let
(a,b

F

)
be the quaternion algebra over F consisting of

{
x1 +x2i+x3j+x4k : xi ∈ F

}

where i,j,k are subject to the usual relations: ij = k = −ji and i2 = a, j2 = b.

Fix a,b such that B ∼=
(a,b

F

)
; we use this isomorphism to identify B and

(a,b
F

)
. We

assume without loss of generality that a,b ∈ OF . Let

OB :=
{
x1 +x2i+x3j+x4k : xi ∈OF

}
.(3.1.3)

Throughout this paper if v is a finite place of F we let

OBFv
:=OB ⊗OF

OFv

and ÔS
B :=

∏
v �∈SOBFv

.

We use a bar to denote the canonical involution
(
a,b

F

)
−→

(
a,b

F

)

x1 +x2i+x3j+x4k 	−→ x1 −x2i−x3j−x4k.

We identify B and F 4 via the (ordered) basis 1, i, j,k. Writing x= x1 +x2i+

x3j+x4k, y = y1 + y2i+ y3j+ y4k we have

ν(x) = x2
1 −ax2

2 − bx2
3 +abx2

4,

1

2
tr(xy) = x1y1 +ax2y2 + bx3y3 −abx4y4.

In this paper our vector space V is B⊕B, identified with (F 4)2 = F 8 and our

quadratic form is p(T ) = ν(T1)−ν(T2). With respect to the basis given by

(
(1,0),(i,0),(j,0),(k,0),(0,1),(0, i),(0, j), (0,k)

)

the matrix J of this form is diagonal with entries

(1,−a,−b,ab,−1,a,b,−ab).

Let α : B →B be the F -vector space isomorphism given by

α
(
x1 +x2i+x3j+x4k

)
= 2x1 +2ax2i+2bx3j−2abx4k.

Extend α to an isomorphism α :B2 →B2 by letting it act on each factor separately.

Then the relationship between (1.1.1) and (3.1.1) in the case at hand is

I(Φ,s)(ξ) = I
(
Φ,1s

)(
α(ξ)

)
.(3.1.4)

where 1s(x) := |x|s. The local analogue of this identity also holds. Most of the

results of [Get18b] regarding the analytic properties of I(Φ,s) involve a character
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G (see [Get18b, Lemma 3.1]). Since (−1)8/2 detJ = a4b4 is a square in F this

character is trivial in the case at hand [Get18b, Lemma 6.2].

In a moment we require the following lemma:

LEMMA 3.1. For x ∈ Fn
∞

and v|∞ let |x|v := max{|xi|v : 1 ≤ i≤ n}. Let a ∈
AGm

satisfy |a| ≥ 1. Let A> 0, N > 0, β ∈ OF ∩F× be given. If α ∈ β−1On
F −0

then for N ′ ∈ Z>0 large enough in a sense depending on A, N and β one has

∏

v|∞

(
max

(
|aα|v ,1

)−N ′
min

(
|aα|v ,1

)−A
)
�A,N,β |a|−N

∞

∏

v|∞
max

(
|α|v ,1

)−N
.

Proof. We note first that it suffices to prove the lemma when β = 1. Indeed, if

the lemma is true for β = 1, then to deduce the general case one uses the fact that

for β ∈ F× one has

max

( |aα|v
|β|v

,1

)
=

1

|β|v
max

(
|aα|v , |β|v

)
�β max

(
|aα|v,1

)

min

( |aα|v
|β|v

,1

)
=

1

|β|v
min

(
|aα|v, |β|v

)
�β min

(
|aα|v ,1

)
.

Let α ∈On
F −{0}. Then

∏

v|∞
|α|v ≥ max

i

∣∣αi

∣∣
∞
≥ 1.

In particular if |α|v1
< 1 for some v1|∞, there is another v2|∞ such that

|α|v2
≥

(
1

|α|v1

)(i−1)−1

where i is the number of infinite places of F . We can therefore take N ′ =
A(i−1)2 +Ni. �

For each place v of F we let

∣∣(x1 +x2i+x3j+x4k,y1 + y2i+ y3j+ y4k
)∣∣

v
:= max

i,j

(∣∣xi
∣∣,
∣∣yj

∣∣).(3.1.5)

Using the lemma we can give good analytic control on sums involving I(Φ):

THEOREM 3.2. Let Ω ⊂ G(AF )×G(AF ) be a compact set. For γ ∈ B2, a ∈
AG with |ω(a)| ≥ 1 and (g1,g2) ∈ Ω one has

∣∣I(Φ)
(
ag−1

1 γg2

)∣∣�Φ,N,Ω

∣∣ω(a)
∣∣−N/2

∏

v|∞
max

(
|γ|,1

)−N
.
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Proof. We may assume γ �= 0. By [Get18b, Theorems 4.1 and 5.2] there is an

A> 0 such that for any N ′ ∈ Z≥0 one has

∣∣I(Φ)
(
ag−1

1 γg2

)∣∣

�Φ,N ′

⎛
⎝∏

v|∞

(∣∣ag−1
1 γg2

∣∣
v
,1
)−N ′

min
(∣∣ag−1

1 γg2

∣∣
v
,1
)−A

⎞
⎠∏

v�∞

max
(
1,
∣∣g−1

1 γg2

∣∣−3

v

)
.

(3.1.6)

Moreover, I(Φ)(ag−1
1 γg2) vanishes for γ �∈ β−1OB for some β ∈F× (see [Get18b,

Lemma 5.1]). Here β depends on Ω, but not on g1,g2. Since |ag−1
1 γg2|v �Ω |aγ|v

for all v and |ag−1
1 γg2|v = |γ|v for v outside a finite set of places depending on Ω

we have

∣∣I(Φ)
(
ag−1

1 γg2

)∣∣

�Φ,N ′,Ω

⎛
⎝∏

v|∞
max

(
|aγ|v ,1

)−N ′
min

(
|aγ|v ,1

)−A

⎞
⎠∏

v�∞

max
(
1, |γ|−3

v

)
.

(3.1.7)

Using Lemma 3.1 we obtain the bound

∣∣I(Φ)
(
ag−1

1 γg2

)∣∣�Φ,Ω,N

∣∣ω(a)
∣∣−N/2

⎛
⎝∏

v|∞
max(|γ|,1)−N

⎞
⎠∏

v�∞

max
(
1, |γ|−3

v

)

for any N ∈ Z≥0. The factor involving the places v � ∞ can then be absorbed at the

expense of increasing N and the implicit constant. �

The following theorem is a combination of the χ= 1 cases of [Get18b, Theo-

rems 4.1, 4.2, and 5.2] in the current setting:

THEOREM 3.3. For each place v and all Φ ∈ S(F 2
v ⊕B2

Fv
) the integrals

I(Φv,s)(γ) admit meromorphic continuations to Re(s) > −4 that are holomor-

phic at s=−3.

For x in a vector space let

δx :=

{
1 if x= 0

0 otherwise.

The following theorem is [Get18b, Theorem 3.2] in the current setting:
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THEOREM 3.4. For Φ ∈ S
(
A2
F ⊕ B2

AF

)
and γ ∈ B2 the adelic integral

I(Φ,s)(γ) admits a meromorphic continuation to Re(s)>−4. Moreover,

I(Φ,s)
sδγ (s+1)δγ (s+3)δp(γ)

is holomorphic for Re(s)>−4.

The following is a special case of [Get18b, Theorem 6.4]:

THEOREM 3.5. Let v be a finite place of F that does not divide 2ab. Assume

in addition that ψv is unramified and Fv is absolutely unramified. Then

I
(
�
O2

F
⊕O2

B

)
|G(F ) =

�ρ

ζ(2)
.

Proof of Theorem 1.1. Let p∨ be the quadratic form on B2 whose matrix is

J−1. Recall that we have just proven that the character G of [Get18b, Lemma 3.1]

is trivial. With this in mind we apply [Get18b, Theorem 3.3] in the setting above to

see that

∑

γ∈B2

p(γ)=0

f

(
γ

∆(
√
X)

)

is equal to Oε,f,Φ(X
3
2
+ε) plus

X3
(
I−1(Φ)(0)−I−1

(
Φsw

)
(0)

)

+X2
∑

γ∈B2

p∨(γ)=0

(
I(Φ)

(
α−1(γ)

)
−I

(
Φsw

)(
α−1(γ)

))
.

Moreover using Theorem 3.2 we see that

∑

γ∈B2

p∨(γ)=0

∣∣I(Φ)
(
α−1(γ)

)∣∣+
∣∣I

(
Φsw

)(
α−1(γ)

)∣∣< ∞.

We now note that p∨(γ) = 4p(α−1(γ)). Thus taking a change of variables γ 	→
α(γ) we deduce the theorem. �

4. L-packets for G. In this section we recall some results on L-packets for

G that will be necessary in the subsequent sections. For OF -algebras R let

G̃(R) :=

{
g ∈

((
OB ⊗OF

R
)×)2

}
.
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Thus (if we base change to F ) G is a subgroup of G̃ and they share the same

derived group, an inner form of SL2
2. We let

Res : LG̃−→ LG(4.0.1)

denote the natural quotient map.

4.1. Local L-packets. In this subsection we fix a place v of F and omit it

from notation, writing F := Fv. Let π̃ be an irreducible admissible representation

of G̃(F ). The restriction π̃|G(F ) is a finite direct sum of irreducible admissible rep-

resentations of G(F ). It defines a set Res(π̃) of isomorphism classes of irreducible

admissible representations of G(F ):

Res(π̃) :=
{
π : π is isomorphic to an irreducible subrepresentation of π̃|G(F )

}
.

An L-packet of irreducible admissible representations of G(F ) is a set of represen-

tations of this form. The set of L-packets of G(F ) partition the set of irreducible

representations of G(F ). For all of these facts see [HS12, Chapter 2] or [Tad92]

and the references therein. We note that when G̃ ∼= GL2
2 then each representation

in Res(π̃) occurs with multiplicity 1 in π̃|G(F ) [LL79, Lemma 2.6]. If π ∈ Res(π̃)

then we say that π is a transfer of π̃.

LEMMA 4.1. Assume F is nonarchimedean and let π̃ be an unramified repre-

sentation of G̃(F ). Then there is a unique unramified irreducible representation in

Res(π̃).

Proof. It is clear that there is an unramified irreducible subrepresentation in

Res(π̃). Note that Gder ∼= SL2
2. By [LR07, Proposition 3.2.4] there is a unique un-

ramified subrepresentation of the restriction π̃|Gder(F ). This is actually stronger than

the assertion of the lemma. �

This notion of transfer is compatible with the unramified local Langlands cor-

respondence in the following sense:

LEMMA 4.2. Assume that F is nonarchimedean. Let π̃ be an unramified repre-

sentation of G̃(F ). The representation π of G(F ) obtained from this representation

using the L-map Res : LG̃→ LG is the unique unramified representation in Res(π̃).

Proof. Let T2 ≤ GL2C be the maximal torus of diagonal matrices. Then T2 ×
T2 ≤ LG◦ is a maximal torus. Let Ẑ ≤ T2 × T2 be the torus whose points in a

C-algebra R are

Ẑ(R) :=
{(

zI,z−1I
)

: z ∈R×}.
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Let T̂ := (T2 ×T2)/Ẑ . One has a diagram

C∞

c (G(F )//G(OF ))
S−−−−→ C[T̂ ]W (T̂ ,LG◦)

Res∗
⏐⏐� Res∗

⏐⏐�

C∞

c (G̃(F )//G̃(OF ))
S−−−−→ C[T2 ×T2]

W (T2×T2,
LG̃◦)

where S is the Satake isomorphism and the map on the right is that induced by

Res : LG̃◦ → LG◦. The map on the left is just the unique map that makes the

diagram commutative. If we view a function in C[T̂ ] as a function on T2 ×T2 that

is invariant under the diagonal action of Ẑ then this map is just given by the natural

inclusion. In particular, it is injective, and its image is precisely the elements of

C[T2 ×T2]
W (T2×T2,

LG̃◦) invariant under the action of Ẑ. Temporarily denote this

algebra by A; thus Res induces an isomorphism

Res∗ : C[T̂ ]W (T̂ ,LG◦) ∼−−→A.

Let us describe A.

Let Vst be the standard representation of GL2C. Denote by V1 and V2 be the

representations obtained by composing the natural projections LG̃◦ → GL2C with

the homomorphism defining Vst. A basis of A as a C-vector spaces is given by the

functions

pa1,k1,a2,k2
:= tr

((
∧2 V1

)⊗a1 ⊗Symk1
(
V1

)
⊗
(
∧2 V2

)⊗a2 ⊗Symk2
(
V2

))

where a1,a2 ∈ Z, k1,k2 ∈ Z≥0 satisfy 2a1 +k1 = 2a2 +k2. It is well known that

S−1
(
pa1,k1,a2,k2

)
= q−(k1+k2)/2

�	a1O
×
B
×	a2O

×
B
∗�{X∈O2

B
:ν(Xi)=	kiO

×
F
}.

Now the definition of the Satake isomorphism amounts to taking a constant term

and then applying the Satake isomorphism for a split torus. With this in mind it is

not hard to see that the preimage of S−1(pa1,k2,a2,k2
) in C∞

c (G(F )//G(OF )) is just

S−1(pa1,k2,a2,k2
)|G(F ).

We now check compatibility with the local Langlands correspondence. Let π0

be the unique unramified representation in Res(π̃). Let ϕ be a spherical vector in

the space of π̃. Then ϕ is in the π0-isotypic subspace of π. It is not hard to see that

π̃
(
S−1

(
pa1,k1,a2,k3

))
ϕ= π0

(
S−1

(
pa1,k1,a2,k3

)
|G(F )

)
ϕ

provided that we normalize measures so that meas(G̃(OF )) = meas(G(OF )). This

proves compatibility of the transfer with the correspondence between unramified

representations induced by Res : LG̃→ LG. �
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COROLLARY 4.3. Assume that F is nonarchimedean and π is an unramified

irreducible admissible representation of G(F ). Then π is a transfer of an unrami-

fied representation π̃ = π′⊗π′′ of G̃(F ). One has

L(s,π,ρ) = L(s,π′×π′′)

where the L-function on the right is the usual Rankin-Selberg L-function.

Proof. To prove that π is a transfer of an unramified representation we note

that every semisimple matrix in LG◦ is the image of a semisimple matrix in LG̃◦.

The last assertion is immediate from Lemma 4.2. �

Let C∞

ac(G(F )) denote the subspace of functions f in C∞(G(F )) such that for

all compact subsets Ω⊂ F× the restriction of f to ν−1(Ω) is compactly supported.

If F is nonarchimedean, then it is easy to see that

�M(OF ) ∈ C∞

ac

(
G(F )

)
.

For an irreducible admissible representation σ of G(F ) or GL2(F ) let χσ be its

central character.

LEMMA 4.4. Assume π is an unramified irreducible admissible representation

of G(F ). For Re(s) sufficiently large one has

trπs+1

(
�M(OF )

)
=

L(s,π,ρ)

L
(
2s,χπ

) .

Proof. For OF -algebras R let

M̃(R) :=
{
X ∈

(
OB ⊗OF

R
)2

: ν
(
X1

)
= aν

(
X2

)
for some a ∈R×}.(4.1.1)

The explicit description of Res∗ in Lemma 4.2 implies that

Res∗
(
�
M̃(OF )

)
= �M(OF ).

Thus in view of Lemma 4.2 and Corollary 4.3 it suffices to verify that for unrami-

fied representations π′⊗π′′ of G̃(F ) one has

L(s,π′×π′′)
L(2s,χπ′χπ′′)

= tr(π′⊗π′′)|ω|s+1
(
�
M̃(OF )

)
.(4.1.2)

One has

�
M̃(OF )

=

∞∑

k=0

�{X∈O2
B

:ν(Xi)=	kO
×
F
}.
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The image of this under the Satake isomorphism is

∞∑

k=0

qk tr
(
Symk

(
V1

)
⊗Symk

(
V2

))
(4.1.3)

in the notation of the proof of Lemma 4.2 so we deduce (4.1.2) using the Cauchy

identity. �

Assume for the moment that F is archimedean and that B is split. Let π′ ⊗
π′′ be an irreducible unitary representation of G(F ). The analytic conductor of

L(s,π′×π′′) is

C(π′×π′′,s) :=

2∏

i=1

2∏

j=1

∣∣1+µπ1i×π2j
+ s

∣∣(4.1.4)

where the µπ1i×µ2j
are the complex numbers such that

L(s,π′×π′′) =
2∏

i=1

2∏

j=1

ζ
(
s+µπ1i×π2j

)

where ζ is the Tate local L-function of the trivial character. We define the analytic

conductor C(π,ρ,s) of L(s,π,ρ) to be the analytic conductor of L(s,π′ × π′′)
where π is a transfer of π′⊗π′′:

C(π,ρ,s) := C(π′×π′′,s).(4.1.5)

One checks that L(s,π′×π′′) depends only on π, not on π′ ⊗π′′, so this is well

defined. For the following lemma we refer to [Get12, Lemma 4.4]:

LEMMA 4.5. Assume that F is archimedean and B is split. Then for any f ∈
C∞

c (G(F )) that is finite under a maximal compact subgroup of G(F ) one has

∣∣ trπ(f)
∣∣C(π,ρ,0)N �f,N 1.

Technically speaking this is only proved for GL2 in loc. cit., but the argument

goes through with only minor modifications.

We also record the following trivial lemma:

LEMMA 4.6. Let v be an infinite place of F and let f ∈ C∞

c (G(F )) be finite

under a maximal compact subgroup of G(F ). If BFv
is a division algebra then for

all N ≥ 0

∣∣ trπ(f)
∣∣C

(
χπ

)N �F,N 1.

Here C(χπ) is the analytic conductor of the central character of π.
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4.2. Global L-packets. By restricting functions one obtains a G(AF )-

equivariant map

res : L2
(
[G̃]

)sm −→ L2
(
[G]

)sm

where the superscript sm denotes the subspace of smooth vectors. We say that

an automorphic representation π of AG\G(AF ) is a transfer of an automorphic

representation π̃ of A
G̃
\G̃(AF ) and write

π ∈ res(π̃)(4.2.1)

if there is a nonzero vector in the π-isotypic subspace of L2([G])sm that is in the

image of the π̃-isotypic subspace of L2([G̃])sm. Every automorphic representa-

tion π of AG\G(AF ) is is the transfer of some automorphic representation π̃ of

AG̃\G̃(AF ) [HS12, Theorem 4.13].

If π is a transfer of π̃, then it is obvious that πv is a transfer of π̃v for all places

v.

5. Spectral expansion. For the rest of this paper F denotes a number field

(not a local field). We also assume for the remainder of the paper that B, our quater-

nion algebra, is nonsplit over F . Let fS ∈ C∞

c (G(FS)). We require a spectral ex-

pansion of the term

∑

γ∈M(F )

fS�M(ÔS
F
)

(
γ

∆(
√
X)

)
=

∑

γ∈G(F )

fS�M(ÔS
F
)

(
γ

∆(
√
X)

)
(5.0.1)

in Theorem 1.1. Here we are using our assumption that fS ∈C∞

c (G(FS)) to obtain

the equality. Let f := fS�G(ÔS
F
)
. Note that this is different from the convention of

Theorem 1.1, in which f was a Schwartz function on B2
AF

. The spectral expansion

of

Kf

(
g1,g2

)
=

∑

γ∈G(F )

f
(
g−1

1 γg2

)

is given by

Kf

(
g1,g2

)
=

1

2πi

∑

π

∫

iR
Kπs(f)

(
g1,g2

)
ds(5.0.2)

where the sum is over isomorphism classes of automorphic representations π of

AG\G(AF ) and

Kπs(f)

(
g1,g2

)
=

∑

ϕ∈Bπ

πs(f)ϕ
(
g1

)
ϕ
(
g2

)
(5.0.3)
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where Bπ is an orthonormal basis of the π-isotypic subspace of L2([G]). Moreover,

the sum

∑

π

∫

iR

∣∣Kπs(f)

(
g1,g2

)∣∣ds(5.0.4)

converges uniformly for g1,g2 in compact subsets of G(AF ). This is well known,

and proved in a more general setting in [Art78, Lemma 4.4].

For X ∈ R>0 set

fX(g) := f

(
g

∆(
√
X)

)
.

Moreover for an automorphic representation π of G(AF ) let χπ denote its central

character, so χπ(z)π(g) = π(zg) for (z,g) ∈ ZG(AF )×G(AF ).

We are now in a position to state the main theorem of this section:

THEOREM 5.1. Assume that Φ = Φ0 ⊗ fS�ÔS
B

satisfies the standard assump-

tions. Let Ω⊂G(AF )×G(AF ) be a compact set. For σ > 2,ε > 0, X ∈ R>0 and

(g1,g2) ∈Ω the sum

1

2πi

∑

π

∫

iR+σ

LS(s,π,ρ)

LS(2s,χπ)
Xs+1Kπs+1(f)

(
g1,g2

)
ds(5.0.5)

is equal to Oε,Φ,Ω(X
3/2+ε) plus

X3
(∣∣ω

(
g1g

−1
2

)∣∣4I−1(Φ)(0)−
∣∣ω

(
g1g

−1
2

)∣∣3I−1

(
Φsw

)
(0)

)

+X2

(
∣∣ω

(
g1g

−1
2

)∣∣4 ∑

γ∈M(F )

I(Φ)
(
g−1

2 γg1

)

−
∣∣ω

(
g1g

−1
2

)∣∣ ∑

γ∈M(F )

I
(
Φsw

)(
ω
(
g−1

1 g2

)
g−1

2 γg1

)
)
.

(5.0.6)

The proof will be given after some preparation.

LEMMA 5.2. Let π be an unramified irreducible unitary representation of

G(AS
F ). Then for Re(s)> 2 one has

trπs+1

(
�
M(ÔS

F
)

)
=

LS(s,π,ρ)

LS(2s,χπ)
.

The integral defining the (rank 1) operator πs+1(�M(ÔS
F
)
) converges absolutely for

Re(s)> 2 and the infinite product defining the right-hand side converges absolutely

for Re(s) > 2. Moreover both are bounded independently of π in this open half

plane.
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Proof. By Lemma 4.4, to prove the lemma it suffices to show that

trπs+1(�M(ÔS
F
)) converges absolutely for Re(s) > 2. If π is unitary and

f ∈ C∞

c (G(AS
F )//G(ÔS

F )) then trπ(f) is bounded by trπtriv(f) (πtriv being

the trivial representation). Thus to check the required convergence it suffices to

note that

trπtriv,s+1

(
�
M(ÔS

F
)

)
=

ζSF (s+1)ζSF (s−1)ζSF (s)
2

ζSF (2s)

for Re(s) > 2. In fact, the sum on the right and the integral defining the operator

πtriv,s+1(�M(ÔS
F
)) on the left converge absolutely for Re(s)> 2. �

PROPOSITION 5.3. For σ > 2 one has

KfS�M(ÔS
F

)

(
g1,g2

)
=

1

2πi

∑

π

∫

iR+σ

LS(s,π,ρ)

LS(2s,χπ)
Kπs+1(f)

(
g1,g2

)
ds

Moreover, for σ in the same range

∑

π

∫

iR+σ

∣∣∣∣
LS(s,π,ρ)

LS(2s,χπ)
Kπs+1(f)

(
g1,g2

)∣∣∣∣ds

converges uniformly for (g1,g2) in compact subsets of G(AF )×G(AF ).

Proof. Write �M(ÔS
F
) =

∑
mhSm where the sum on m is over AS×

F /ÔS×
F and

hSm ∈ C∞

c

(
G
(
AS
F

)
//G

(
ÔS

F

))

is supported on the set of elements g ∈G(AS
F ) such that ω(g) ∈m. For each m we

apply (5.0.2) and a contour shift to see that

KfShS
m

(
g1,g2

)
=

1

2πi

∑

π

∫

iR+σ
Kπs+1(fShS

m)

(
g1,g2

)
ds

=
1

2πi

∑

π

∫

iR+σ
trπs+1

(
hSm

)
Kπs+1(f)

(
g1,g2

)
ds

for any σ ∈R, in particular for σ > 2. Thus summing over m and applying Lemma

5.2 we deduce the identity of the proposition. The absolute convergence statement

follows from Lemma 5.2 and (5.0.4). �

The following lemma is an easy consequence of Theorem 3.2:
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LEMMA 5.4. For any Φ ∈ S(A2
F ⊕B2

AF
) the sum

∑

γ∈M(F )

∣∣I(Φ)(g−1
1 γg2)

∣∣

converges uniformly for (g1,g2) in a compact subset of G(AF )×G(AF ).

With all this preparation complete we can now prove Theorem 5.1:

Proof of Theorem 5.1. Let h := fS�M(ÔS
F
)
. We have

∑

γ∈M(F )

h

(
g−1

1 γg2

∆(
√
X)

)
=KfSX�M(ÔS

F
)

(
g1,g2

)
.(5.0.7)

In view of Proposition 5.3 for σ > 2 this is equal to

KfSX�M(ÔS
F

)

(
g1,g2

)
=

1

2πi

∑

π

∫

iR+σ

LS(s,π,ρ)

LS(2s,χπ)
Xs+1Kπs+1(f)(g1,g2)ds

(5.0.8)

which is the first expression in Theorem 5.1. As for the second expression we apply

Theorem 1.1 not with h and Φ0, but with

hg1,g2
(g) := f

(
g−1

1 gg2

)
and Φ0,g1,g2

(x,y) :=Φ0

(
ω
(
g−1

1 g2

)
x,y

)
.

Set Φg1,g2
:= Φ0,g1,g2

⊗hg1,g2
. Since Φ0 ⊗h satisfies the standard assumptions so

does Φg1,g2
. Then for any ε > 0,

∑

γ∈M(F )

h

(
g−1

1 γg2

∆(
√
X)

)
(5.0.9)

is equal to Oε,Φ,g1,g2
(X

3
2
+ε) plus

X3
(
I−1

(
Φg1,g2

)
(0)−I−1

(
Φsw
g1,g2

)
(0)

)

+X2
∑

γ∈M(F )

(
I
(
Φg1,g2

)
(γ)−I

(
Φsw
g1,g2

)
(γ)

)
.

A change of variables using the definition of I−1(Φ) and I(Φ) then implies the

identity in the theorem.

We are left with explaining why we can replace the implicit constant

in Oε,Φ,g1,g2
(X

3
2
+ε) with one that depends only on the compact set Ω ⊂

G(AF )×G(AF ). To see this we note that the basic result used in bounding

the error term in Theorem 1.1 is [Get18b, Theorem 3.2]. The proof of this theorem

can be easily modified to yield a version that is uniform over (g1,g2) in the
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compact set Ω. More precisely, the modification necessary is just the argument

used in the proof of Theorem 3.2 to replace the bound (3.1.6) with (3.1.7). �

6. Godement-Jacquet-type zeta integrals. In this section we prove The-

orem 1.2. We begin by using Theorem 5.1 to deduce some of the analytic behavior

of LS(s,π,ρ) without using Rankin-Selberg theory. For V ∈ C∞

c (R>0) let

Ṽ (s) :=

∫
∞

0

V (x)xs−1dx

be its Mellin transform.

THEOREM 6.1. Let V ∈C∞

c (R>0). Assume that π is infinite dimensional. One

has

1

2πi

∫

iR+σ

LS(s,π,ρ)

LS(2s,χπ)
Xs+1Ṽ (s+1)ds= cV,πX

2 +Oε,π

(
X

3
2
+ε)

for some cV,π ∈ R.

This theorem is a consequence of well-known properties of the Rankin-Selberg

L-function. We will give a new proof based on the summation formula in Theorem

1.1. The value at cV,π is nonzero for some choice of V if and only if LS(s,π,ρ) has

a pole at s = 1. Of course one knows via Rankin-Selberg theory that LS(s,π,ρ)

has a pole at s = 1 if and only if π is in res(π0 ⊗π∨
0 ) (see Section 4.2) for some

automorphic representation π0 of B×
AF

, but unfortunately we do not know how to

give a new proof of this fact.

Proof. Let fS ∈ C∞

c (G(FS)) be chosen so that for a ∈ R>0 and g ∈ G(FS)
1

one has

fS
(
∆(a)g

)
= V (a)f 1

S(g)

for some f 1
S ∈C∞

c (G(FS)
1). We also choose a function f̃S ∈C∞

c (G(FS)) such that∫
AG

f̃S(ag) = f 1
S(g) for g ∈G(AF )

1. Let f̃ := f̃S�G(ÔS
F
), f = fS�G(ÔS

F
).

We start with the identity of Theorem 5.1. We will multiply both sides by

K
π(f̃)

(g1,g2) and integrate along (G(F )\G(AF )
1)2. Since the domain of integra-

tion is compact the uniform convergence statements of Proposition 5.3 and Lemma

5.4 imply that we are free to bring this integral inside the other sums and integrals

occurring in the identity of Theorem 5.1.

The integral of the spectral side (5.0.5) times K
π(f̃)

(g1,g2) over

(G(F )\G(AF )
1)2 is

∫

(G(F )\G(AF )1)2

K
π(f̃)

(g1,g2)

× 1

2πi

∑

π′

∫

iR+σ

LS(s,π′,ρ)
LS(2s,χπ′)

Xs+1Kπ′
s+1

(f)(g1,g2)dsdg1dg2
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=
∑

π′

1

2πi

∫

iR+σ

LS(s,π′,ρ)
LS(2s,χπ)

Xs+1Ṽ (s+1)ds

×
∫

(G(F )\G(AF )1)2

K
π′(f̃)(g1,g2)Kπ(f̃)

(g1,g2)dg1dg2

=
1

2πi

∫

iR+σ

LS(s,π,ρ)

LS(2s,χπ)
Xs+1Ṽ (s+1)dsmπ trπ(f̃ ∗ ∗ f̃)

where f̃ ∗(x) := f̃(x−1) and mπ is the multiplicity of π in L2(G(F )\G(AF )
1).

On the other hand the integral of Kπ(f)(g1,g2) times (5.0.6) over

(G(F )\G(AF )
1)2 is

X3

∫

(G(F )\G(AF )1)2

Kπ(f)

(
g1,g2

)

×
(∣∣ω

(
g1g

−1
2

)∣∣4I−1(Φ)(0)−
∣∣ω

(
g1g

−1
2

)∣∣3I−1

(
Φsw

)
(0)

)
dg1dg2

+X2

∫

(G(F )\G(AF )1)2

Kπ(f)

(
g1,g2

)

×
(
∣∣ω

(
g1g

−1
2

)∣∣4 ∑

γ∈M(F )

I(Φ)
(
g−1

2 γg1

)

−
∣∣ω

(
g1g

−1
2

)∣∣ ∑

γ∈M(F )

I
(
Φsw

)(
ω
(
g−1

1 g2

)
g−1

2 γg1

)
)
dg1dg2.

Since π is infinite dimensional, the first term here vanishes by orthogonality.

In Theorem 5.1 take Ω to be any set containing a product of two fundamental

domains for G(F ) acting on G(AF )
1 and take 1

2
> ε > 0. We have shown that for

any ε > 0 one has

1

2πi

∫

iR+σ

LS(s,π′,ρ)
LS(2s,χπ)

Xs+1Ṽ (s+1)dsmπ trπ
(
f̃ ∗ ∗ f̃

)
+Oε,Φ

(
X

3
2
+ε)

=X2

∫

(G(F )\G(AF )1)2

Kπ(f)

(
g1,g2

)

×
(
∣∣ω

(
g1g

−1
2

)∣∣4 ∑

γ∈M(F )

I(Φ)
(
g−1

2 γg1

)

−
∣∣ω

(
g1g

−1
2

)∣∣ ∑

γ∈M(F )

I
(
Φsw

)(
ω
(
g−1

1 g2

)
g−1

2 γg1

)
)
.

We can choose f̃ so that mπ trπ(f̃ ∗ ∗ f̃) �= 0. For such an f we can take cV,π to be

the coefficient of X2 in this equality divided by mπ trπ(f̃ ∗ ∗ f̃). �
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With Theorem 6.1 in hand, to prove the functional equation of Theorem 1.2 we

proceed as in the work of Godement and Jacquet. Let π be an infinite dimensional

representation of G(AF ) and let ϕ be a smooth form in its space. We consider first

the integral

Za

(
I(Φ),ϕ

)
:=

∫

G(AF )1

I(Φ)(ag)ϕ(g)dg

for a ∈AG.

For the remainder of this section we choose fS ∈ C∞

c (G(FS)) such that for

a ∈ R>0 and g ∈G(FS)
1 one has

fS
(
∆(a)g

)
= V (a)f 1

S(g)(6.0.1)

for some f 1
S ∈ C∞

c (G(FS)
1) and some V ∈ C∞

c (R>0). We also choose a func-

tion f̃S ∈ C∞

c (G(FS)) such that
∫
AG

f̃S(ag) = f 1
S(g) for g ∈ G(AF )

1. Let f :=

fS�G(ÔS
F
)
, f̃ := f̃S�G(ÔS

F
)

and let

Φ :=Φ0 ⊗ fS�ÔS
B
∈ S

(
A2
F ×B2

AF

)

satisfy the standard assumptions.

Write

cV,π := lim
X→∞

1

2πiX2

∫

iR+σ

LS(s,π,ρ)

LS(2s,χπ)
Xs+1Ṽ (s+1)ds.(6.0.2)

This quantity is well defined by Theorem 6.1. Of course, if we apply Rankin-

Selberg theory we see that it is

Ṽ (1)Ress=1L
S(s,π,ρ)

LS(2,χπ)
,

but part of the point of the current section is to see how much we can derive directly

from Theorem 5.1 without assuming this.

PROPOSITION 6.2. One has

Za

(
I(Φ),ϕ

)
= |ω(a)|−3Za−1

(
I(Φsw),ϕ∨)+|ω(a)|−2cV,π

∫

G(AF )1

f̃
(
g−1

)
ϕ(g)dg.
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Proof. We take the identity of Theorem 5.1 for (g1,g2) = (ag,I) and integrate

it times ϕ(g) along G(F )\G(AF )
1. Since π is an infinite-dimensional representa-

tion the coefficients of X3 vanish identically and we arrive at the equality of

lim
X→∞

1

X2

∫

G(F )\G(AF )1

1

2πi

∫

iR+σ

∑

π′

LS(s,π,ρ)

LS(2s,χπ)
Xs+1Kπs+1(f)(ag,I)ϕ(g)dsdg

= lim
X→∞

1

2πiX2

∫

iR+σ

LS
(
s,π∨,ρ

)

LS
(
2s,χπ∨

)Xs+1Ṽ (s+1)ds

∫

G(AF )1

f̃
(
g−1

)
ϕ(g)dg

=
∣∣ω(a)

∣∣2cV,π∨

∫

G(AF )1

f̃
(
g−1

)
ϕ(g)dg

(6.0.3)

and

|ω(a)|4
∫

G(F )\G(AF )1

∑

γ∈M(F )

I(Φ)(γag)ϕ(g)dg

−|ω(a)|
∫

G(F )\G(AF )1

∑

γ∈M(F )

I(Φsw)(ω(ag)−1γag)ϕ(g)dg.

(6.0.4)

Here in (6.0.3) we have moved the integral over G(F )\G(AF )
1 inside the inte-

gral over iR+σ and the sum over π; this is justified by the uniform convergence

statement of Proposition 5.3.

Since B is a division algebra

M(F ) =G(F )� (0,0)

is a decomposition of M(F ) into its G(F ) orbits. The contribution of the term

(0,0) to both the sums in (6.0.4) vanishes since π is infinite dimensional. Unfolding

the remaining terms is justified by the uniform convergence statement of Lemma

5.4 and we see that (6.0.4) is equal to

|ω(a)|4
∫

G(AF )1

I(Φ)(ag)ϕ(g)dg−|ω(a)|
∫

G(AF )1

I(Φsw)(ω(ag)−1ag)ϕ(g)dg.

(6.0.5)

The first summand here is |ω(a)|4Za(I(Φ),ϕ). Taking a change of variable g 	→ g∨

we see that the second integral is |ω(a)|Za−1(I(Φsw),ϕ∨). �

LEMMA 6.3. For all Φ ∈ S(A2
F ⊕B2

AF
) (not necessarily satisfying the stan-

dard assumptions) and all s ∈ C the integral

∫

|ω(a)|>1

∫

G(AF )1

∣∣I(Φ)(ag)
∣∣∣∣ω(a)

∣∣sdadg

is bounded.
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Proof. By Theorem 3.2 for any compact set Ω⊂G(AF ) one has a bound

∣∣I(Φ)(aγg)
∣∣�Φ,N,Ω

∣∣ω(a)
∣∣−N/2

∏

v|∞

(
|γ|v,1

)−N
(6.0.6)

for any N ∈ Z≥0 provided that g ∈ Ω and a ∈ AG satisfies |ω(a)| ≥ 1. Moreover,

I(Φ)(aγg) vanishes unless γ ∈ β−1OB for some β ∈ F× that depends only on Ω.

Taking Ω to be a compact measurable fundamental domain for the action of

G(F ) on G(AF )
1 we have

∫

|ω(a)|>1

∫

G(AF )1

|I(Φ)(ag)||ω(a)|sdadg

=

∫

|ω(a)|>1

∫

G(F )\G(AF )1

∑

γ∈G(F )

|I(Φ)(aγg)||ω(a)|sdadg

�N

∫

|ω(a)|>1

|ω(a)|s−N/2da
∑

γ∈β−1OB

∏

v|∞
max(1, |γ|v)−N .

For any s we can choose N large enough that this converges. �

We now prove Theorem 1.2:

Proof of Theorem 1.2. One has

Z
(
I(Φ),s,ϕ

)
=

∫

AG

Za

(
I(Φ),ϕ

)∣∣ω(a)
∣∣s+1

da

=

∫

|ω(a)|<1

Za

(
I(Φ),ϕ

)∣∣ω(a)
∣∣s+1

da

+

∫

|ω(a)|>1

Za

(
I(Φ),ϕ

)∣∣ω(a)
∣∣s+1

da.

The latter integral converges absolutely for all s by Lemma 6.3. As for the former

integral by Proposition 6.2 we have

∫

|ω(a)|<1

Za

(
I(Φ),ϕ

)∣∣ω(a)
∣∣s+1

da

=

∫

|ω(a)|<1

Za−1

(
I(Φsw),ϕ∨)∣∣ω(a)

∣∣s−2
da+

∫

|ω(a)|<1

∣∣ω(a)
∣∣s−1

cf,ϕda

where

cf,ϕ := cV,π

∫

G(AF )1

f̃
(
g−1

)
ϕ(g)dg.
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For s > 1 the last term here is
cf,ϕ

2(s−1) , and hence by analytic continuation it takes

this value for all s �= 1. The former term is

∫

|ω(a)|>1

Za

(
I
(
Φsw

)
,ϕ∨)∣∣ω(a)

∣∣2−s
da.

Since ϕ is bounded this converges absolutely for all s by Lemma 6.3. Thus we

have obtained the meromorphic continuation of Z(I(Φ),s,ϕ) with poles as speci-

fied in the statement of the theorem. Combining the equalities above we have also

obtained

Z
(
I(Φ),s,ϕ

)
=

∫

|ω(a)|>1

Za

(
I
(
Φsw

)
,ϕ∨)∣∣ω(a)

∣∣2−s
da

+

∫

|ω(a)|>1

Za

(
I(Φ),ϕ

)∣∣ω(a)
∣∣s+1

da+
cf,ϕ

2(s−1)
.

(6.0.7)

In the traditional argument for the functional equation of zeta functions going

back to Tate’s thesis one would now argue that one is done by symmetry. However,

this will not work for us because, as already observed, if Φ satisfies the standard

assumptions then Φsw does not. Moreover, the expression for the residues we ob-

tained above is asymmetric in Φ and Φsw.

Instead we start over, this time with Φ replaced by Φsw. We have

Z
(
Φsw,1− s,ϕ∨)=

∫

AG

Za

(
I(Φsw),ϕ∨)∣∣ω(a)

∣∣2−s
da

=

∫

|ω(a)|<1

Za

(
I
(
Φsw

)
,ϕ∨)∣∣ω(a)

∣∣2−s
da

+

∫

|ω(a)|>1

Za

(
I
(
Φsw

)
,ϕ∨)∣∣ω(a)

∣∣2−s
da.

The second summand here converges absolutely for all s by Lemma 6.3. By Propo-

sition 6.2 the first summand is equal to

∫

|ω(a)|<1

Za−1

(
I(Φ),ϕ

)∣∣ω(a)
∣∣−1−s

da−
∫

ω(a)<1

∣∣ω(a)
∣∣1−s

cf,ϕda

=

∫

|ω(a)|>1

Za

(
I(Φ),ϕ

)∣∣ω(a)
∣∣1+s

da+
cf,ϕ

2(s−1)
.

Here the second summand is only defined for Re(s)< 1 at first, but after evaluating

the integral one obtains a function that obviously extends meromorphically to the

plane. The first summand here converges absolutely for all s by Lemma 6.3, so

we have obtained the analytic continuation of Z(I(Φsw),ϕ∨,s) to a meromorphic
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function of s. Combining the previous equalities also yields

Z
(
I
(
Φsw

)
,1− s,ϕ∨)=

∫

|ω(a)|>1

Za

(
I(Φ),ϕ

)∣∣ω(a)
∣∣1+s

da

+

∫

|ω(a)|>1

Za

(
I
(
Φsw

)
,ϕ∨)∣∣ω(a)

∣∣2−s
da+

cf,ϕ
2(s−1)

which is equal to (6.0.7), proving the desired functional equation. �

7. Four variable kernel functions. From this section onward we allow

ourselves to use the entirety of Rankin-Selberg theory. Using it we can give the

following more precise version of Theorem 5.1. Let fS ∈ C∞

c (G(FS)) and let

Φ=Φ0 ⊗ fS�ÔS
F

satisfy the standard assumptions. Recall that S is assumed to satisfy A(S) from

Section 1.3.

THEOREM 7.1. Assume that fS is finite under a maximal compact subgroup

of G(FS). One has

∑

π

Ress=1L
S(s,π,ρ)

ζS(2)
Kπ2(f)

(
g1,g2

)
(7.0.1)

=
∣∣ω

(
g1g

−1
2

)∣∣4 ∑

γ∈M(F )

I(Φ)
(
g1γg

−1
2

)

−
∣∣ω

(
g1g

−1
2

)∣∣ ∑

γ∈M(F )

I
(
Φsw

)(
ω(g−1

1 g2)g1γg
−1
2

)(7.0.2)

where the sum on π is over isomorphism classes of automorphic representations of

AG\G(AF ) that are irreducible constituents of π0 ⊗π∨
0 |G(AF ) for some automor-

phic representation π0 of B×
AF

.

Note that in the theorem Kπ2(f)(g1,g2) is Kπs(f)(g1,g2) evaluated at s = 2.

This notation also occurs below. We view this as a geometric expansion of a four-

variable kernel function. To explain this, note that each kernel Kπ2(f)(g1,g2) is

controlled by a single automorphic representation of B×
AF

, namely π0, but, up to

center, there are four copies of B×
AF

that can be integrated over in the kernel. These

extra copies will be put to good use in Section 8 below.

The main step in deriving Theorem 7.1 from Theorem 5.1 is the following

proposition:
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PROPOSITION 7.2. Assume that fS is finite under a maximal compact sub-

group of G(FS). For any ε > 0 the sum (5.0.5) is equal to Oε(X
3
2
+ε) plus

∑

π

(
Ress=2L

S(s,π,ρ)

ζS(4)
X3Kπ3(f)

(
g1,g2

)
+

Ress=1L
S(s,π,ρ)

ζS(2)
X2Kπ2(f)

(
g1,g2

))

where the sum on π is as in Theorem 7.1. The sum is absolutely uniformly conver-

gent for (g1,g2) in compact subsets of G(AF )×G(AF ).

Indeed, assuming this proposition, Theorem 7.1 follows upon comparing the

coefficients of X2 in Theorem 5.1 and Proposition 7.2.

Proof. Assume that π is a subrepresentation of π′⊗π′′|G(AF ). If π is infinite

dimensional (which is to say that at least one of π′ and π′′ is infinite dimensional)

then the Rankin-Selberg L-function LS(s,π,ρ) is holomorphic in the plane except

for a possible simple pole at s = 1 which occurs if and only if π′⊗π′′ ∼= π0 ⊗π∨
0 .

If π is finite dimensional, then π = χ◦ω for some character χ ∈ [̂Gm]. In this case

LS(s,π,ρ) = LS(s+1,χ)LS(s,χ)2LS(s−1,χ)(7.0.3)

which again is holomorphic in the plane except for possible poles at s = 0,1,2

which can only occur if χ= 1. Since S contains finite places, LS(s−1,χ) vanishes

at s= 1, so the pole of LS(s,π,ρ) at s= 1 is at worst simple.

These comments on the residues of LS(s,π,ρ)Kπs+1(f)(g1,g2) together with a

contour shift imply that (5.0.5) is equal to the sum in the statement of the proposi-

tion plus

1

2πi

∑

π

∫

iR+ 1
2
+ε

LS(s,π,ρ)

LS(2s,χπ)
Xs+1Kπs+1(f)

(
g1,g2

)
ds.(7.0.4)

We will show that this is Oε(X
3
2
+ε). We will first give the argument when BFv

splits for all v|∞, and then explain how to alter it when we remove this assumption.

For π an automorphic representation of AG\G(AF ) let

C(π∞,ρ) :=
∏

v|∞
C(πv,ρ)

where C(πv,ρ) is the analytic conductor of L(s,πv,ρ) as in (4.1.5).

For π occurring in the restriction of π′⊗π′′ (an automorphic representation of

(B×
AF

)2) we claim that one has a preconvexity bound

(s−1)δ1,π′,π′′∨ (s−2)δ2,π′,π′′∨LS(s,π,ρ)�f C(π∞,ρ)
δ
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valid for sufficiently large δ > 0 and 1
2
≤ Re(s)≤ 2, where

δ1,π′,π′′∨ =

{
1 if π′ ∼= π′′∨ and π′ is infinite dimensional

0 otherwise,

δ2,π′,π′′∨ :=

{
1 if π′ ∼= π′′∨ and π′ is finite dimensional

0 otherwise.

We remind the reader that S contains finite places, so the pole at s = 1 is only

simple, and not of order 2, when π′ and π′′ are finite dimensional. We also note

that we are only claiming the bound for π contributing to our sum; this set of π

has the property that the nonarchimedean parts of their conductors are bounded in

terms of our test function f (this is why we have put in a subscript f in the bound).

If π′ and π′′ are both infinite dimensional then this is trivial for Re(s)> 1 and

for 1
2
≤ Re(s)≤ 1 this is proven in [Bru06, Section 1]. If exactly one of π′ and π′′

is infinite dimensional, say π′, and π′′ = χ◦ν, then

LS(s,π,ρ) = LS
(
s+

1

2
,π′⊗χ

)
LS

(
s− 1

2
,π′⊗χ

)

and we can again use the same reference. If π = χ ◦ω then we have the identity

(7.0.3). We can then use [Mor05, Section III.6, Theorem 14A].

Thus by dominated convergence, to complete the proof that (7.0.4) is

Oε(X
3
2
+ε) it suffices to show that for any f ∈C∞

c (AG\G(AF )) one has that

∑

π

C(π∞,ρ)
N
∣∣Kπ(f)

(
g1,g2

)∣∣

is bounded for any N > 0. This will also imply the absolute uniform convergence

of the sum over residues if we can obtain a bound uniform for (g1,g2) in a compact

set.

By a standard argument (compare the proof of [GH15, Theorem 3.1]), to prove

this it suffices to show that for any N > 0 and h ∈ C∞

c (AG\G(AF )) the sum

∑

π=π′⊗π′′
C(π,ρ)NKπ(f∗f∗)(g,g)(7.0.5)

is bounded, uniformly for g in a compact set. Here h∗(g) := h(g−1), the bar denot-

ing complex conjugation. The Casimir eigenvalue of π is bounded by a constant

times a power of C(π,ρ). This was proven for GLn in [Get12, Lemma 4.5], and

can be proven in the current setting by a trivial modification of the argument. In

view of the Weyl law and [God66, (15’)] (stated in adelic language in [GH15, The-

orem 3.5]), to prove the boundedness of (7.0.5) it suffices to show that trπ(f ∗f ∗)
is rapidly decreasing as a function of C(π∞,ρ). This is the content of Lemma 4.5.

Now to complete the proof we explain how to modify the argument when B

is nonsplit at an infinite place. Let S ⊂ ∞ be the maximal subset such that BFv
is
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nonsplit for all v ∈ S. Then the preconvexity bound from above is given in terms of

the Jacquet-Langlands transfer of an extension of π∞ to (B×
F∞

)2. On the other hand,

our analytic control on trπ∞(f ∗f ∗) comes from Lemma 4.6, which is a statement

about π∞ itself, and not its transfer.

To overcome this difficulty we recall we have assumed that f is finite under a

maximal compact subgroup of G(FS). Thus there is a finite set R of irreducible

unitary representations of G(FS) such that any π contributing to our sum has the

property that a twist of πS by a character is isomorphic to a representation in R.

Twisting by characters is compatible with the Jacquet Langlands correspondence

in the natural way. Moreover one has that

trπSit(f)

is rapidly decreasing as a function of t ∈ R for any fixed πS and f ∈ C∞

c (G(FS)),

and

C
(
(π′×π′′,s)⊗|ν|it

)
= C(π′×π′′,2it+ s).

Using these observations it is not hard to modify the argument above. �

8. A nonabelian trace formula. In this section we prove Theorem 1.3. We

place ourselves in the setting of Section 1.4. Thus we assume that there is a subfield

k ≤ F such that F/k is Galois with Galois group

Gal(F/k) = 〈ι,τ〉;

that is, Gal(F/k) is generated by two elements. Assume moreover that B1 is a

division algebra over k such that B := B1 ⊗k F is nonsplit (i.e., again a division

algebra). We define G0, θ : G0 → G0, and the action of G0 on ResF/kG via θ-

conjugation as before. For γ ∈G(F ) = ResF/kG(k) we let G0γ be the stabilizer of

γ under this action. Since B is a division algebra, a standard argument implies that

G0γ is reductive and anisotropic modulo center.

For suitable smooth test functions f on G(AF ) = ResF/kG(Ak) we let

TOγ(f) :=

∫

G0γ(Ak)\G0(Ak)
f
(
g−1γgθ

)
dġ(8.0.1)

be the usual twisted orbital integral. In addition to depending on the choice of a

Haar measure on G0(Ak) it depends on a choice of Haar measure dtγ on G0γ(Ak).

LEMMA 8.1. For Φ ∈ S(A2
F ⊕B2

AF
) one has

∑

γ

meas
([
Gγ

])∫

G0γ(Ak)\G0(Ak)

∣∣I(Φ)
(
g−1γθ(g)

)∣∣dġ < ∞
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where the sum on γ is over a set of representatives for the G0(k)-orbits in G(F )

under θ-conjugation. In particular TOγ(I(Φ)) is well defined.

Proof. By unfolding we see that

∑

γ

meas
([
Gγ

])∫

G0γ(Ak)\G0(Ak)

∣∣I(Φ)
(
g−1γθ(g)

)∣∣dġ

=

∫

[G0]

∑

γ∈G0(k)

∣∣I(Φ)
(
g−1γθ(g)

)∣∣dg.

The latter integral is absolutely convergent by Lemma 5.4 because [G0] is compact.

�

Recall the definition of the nonabelian trace (1.4.1) from Section 1.4. Let

SG(R) :=
{
g ∈B×

R : ν(g) = 1
}
.

To analyze the nonabelian trace it is convenient to first state a lemma on restrictions

of representations of B×
AF

to SG(AF ):

LEMMA 8.2. Let π be an automorphic representation of AGm
\B×

AF
. Its re-

striction to SG(AF ) is a direct sum of admissible representations of SG(AF ).

Two representations π′ and π′′ of B×
AF

have a common constituent when restricted

to SG(AF ) if and only if π′ ∼= π′′⊗χ for some character χ ∈ [̂GmF ].

Proof. For the assertion that the restriction of the representation to SG(AF )

breaks into a direct sum see Section [HS12, Chapter 2]. Moreover, in the same

reference it is proven that if the restrictions of π′ and π′′ to SG(AF ) have a com-

mon constituent, then π′ ∼= π′′⊗χ for some character χ : A×
F → C× (they do not

prove that this character is invariant under F×). To prove that χ must be invari-

ant under AGm
F× we apply [Ram00, Theorem 4.1.2] and the Jacquet-Langlands

correspondence. �

For π an admissible representation of BAF
and ξ ∈ Gal(F/k) let

πξ(g) := π
(
ξ(g)

)

be its Galois conjugate. The key property of the nonabelian trace is that it is nonzero

only for π ∈ res(π0⊗π∨
0 ) where π0 is isomorphic to its conjugates under Gal(F/k)

up to a twist by a Hecke character:

LEMMA 8.3. Let π ∈ res(π0 ⊗π∨
0 ) where π0 is an automorphic representation

of B×
AF

. If

ntrπ(f) �= 0(8.0.2)
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for some f then

π0
∼= πι

0 ⊗χ1
∼= πτ

0 ⊗χ2

for some χ1,χ2 ∈ [̂GmF ].

Here we have used the notation of Section 4.2.

Proof. Let Vπ ⊂ L2(G(F )\G(AF )
1) be the space of π and let

V
θ
π =

{
ϕθ ∈ L2

(
G(F )\G

(
AF

)1)
: ϕ ∈ Vπ

}

where ϕθ(x) := ϕ(θ(x)). The space V
θ
π is a model of the representation π∨θ if we

let G(AF )
1 act on the space via the regular action:

R(g)ϕθ(x) := ϕθ(xg).

One has a C-bilinear map

V sm
π ×

(
V

θ
π

)sm −→ C
(
ϕ1,ϕ

θ
2

)
	−→

∫

[G0]
ϕ1(g)ϕ2

(
θ(g)

)
dg.

Here the superscript sm denotes the subspace of smooth vectors. This pairing is

G0(Ak)-invariant. In particular, if ntrπ(f) is nonzero then there is a G0(Ak)-

invariant linear form on the space of π⊗π∨θ.

Now π|G0(Ak) and πθ|G0(Ak) decompose into finite sums of irreducible rep-

resentations of G0(Ak) since this is even true of the restrictions to SG(AF )×
SG(AF ) by Lemma 8.2. If ntrπ(f) �= 0 then π0 ⊗π∨

0 |G0(Ak) and πι
0 ⊗π∨τ

0 |G0(Ak)

have a constituent in common. Thus the lemma follows from Lemma 8.2. �

We now prove Theorem 1.3:

Proof of Theorem 1.3. In the proof of Lemma 8.1 we proved that

∫

[G0]

∑

γ∈G0(F )

∣∣I(Φ)
(
g−1γθ(g)

)∣∣dg(8.0.3)

is finite. In addition, since [G0] is compact we can apply Proposition 7.2 to see that

∑

π

∣∣∣∣
Ress=1L

S(s,π,ρ)

ζS(2)

∣∣∣∣
∫

[G0]

∣∣Kπ2(f)

(
g,θ(g)

)∣∣dg(8.0.4)

is finite.

Now take the identity of Theorem 7.1 and integrate it over

{(
g,θ(g)

)
: g ∈G0

(
Ak

)}
.
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Since (8.0.3) and (8.0.4) are finite we can bring the integral over [G0] inside the

sums in (7.0.2) and (7.0.1) and deduce the theorem. �
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