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Abstract—The Message-Passing Interface (MPI) is the de-
facto standard for designing and executing applications on
massively parallel hardware. MPI collectives provide a conve-
nient abstraction for multiple processes/threads to communicate
with one another. Mellanox’s HDR InfiniBand switches pro-
vide Scalable Hierarchical Aggregation and Reduction Protocol
(SHARP) capabilities to offload collective communication to the
network and reduce CPU involvement in the process. In this
paper, we design and implement SHARP-based solutions for
MPI_Reduce and MPI_Barrier in MVAPICH2-X. We evaluate
the impact of proposed and existing SHARP-based solutions for
MPI_Allreduce, MPI_Reduce, and MPI_Barrier operations have
on the performance of the collective operation on the 8" ranked
TACC Frontera HPC system.

Our experimental evaluation of the SHARP-based designs
show up to 5.4X reduction in latency for Reduce, 5.1X for
Allreduce, and 7.1X for Barrier at full system scale of 7,861
nodes over a host-based solution.

Index Terms—SHARP, MPI, MPI collectives, MPI_Allreduce,
MPI_Reduce, MPI_Barrier

I. INTRODUCTION

Super-computing systems have grown in size and scale
over the last decade. Two key drivers fueling the growth
of supercomputers are the current trends in multi-/many-
core architectures and the availability of commodity, RDMA-
enabled, and high-performance interconnects such as Infini-
Band [1] (IB). Such HPC systems are allowing scientists
and engineers to tackle grand challenges in various scientific
domains. Users of HPC systems rely on parallel programming
models to parallelize their applications and obtain performance
improvements.

Message Passing Interface (MPI) [2] is a very popular
parallel programming model for developing parallel scientific
applications. The MPI Standard [3] offers primitives for vari-
ous point-to-point, collective, and synchronization operations.
Collective operations defined in the MPI standard offer a very
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convenient abstraction to implement group communication
operations. Owing to their ease of use and performance
portability, collective operations are widely used across various
scientific domains. Due to this wide use, the performance of
collective operations has a significant impact on the overall
performance of high-end applications running on modern HPC
systems.

Historically, researchers have proposed several solutions
that take advantage of specific features offered by modern
high-end interconnects such as InfiniBand [4] to offload col-
lective operations to the network and thereby achieve excellent
performance and scalability on very large High Performance
Computing (HPC) systems. One such example is the use of In-
finiBand Hardware Multicast feature to offload the MPI_Bcast
collective operation [5]. However, the multi-cast based solution
had the significant disadvantage of being “unreliable” and was
limited in its capability to implement other collective opera-
tions such as MPI_Allreduce, MPI_Reduce, and MPI_Barrier
that are some of the most frequently used operations in
scientific applications.

Recognizing this need, interconnect vendors such as Mel-
lanox introduced high-performance hardware-based network
solutions like core-direct [6], [7], [8] and SHARP [9] to
enable offloading of more complex communication and some
computation to the fabric. However, the compute capability
offered by Core-direct is quite limited. Scalable Hierarchical
Aggregation Protocol (SHARP) [9] is a new solution in this
space that can offload large amount of computation to the
network switch. For instance, while SHARP-based collectives
can provide excellent performance and scalability for small
message sizes [9], they have some performance issues and
limitations that need to be handled intelligently to achieve
the best performance for larger message sizes and process
counts [10].

While researchers have addressed some of these chal-
lenges in earlier scientific literature, there exists no scholarly
work that systematically studies the impact SHARP-based
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network offload can have on the performance of important
collective operations like MPI_Allreduce, MPI_Reduce, and
MPI_Barrier at very large scales on modern HPC systems.

II. CONTRIBUTIONS

In this paper, we take up this challenge and do a thorough
study of the performance impact SHARP-based collective
algorithm designs can have on the performance of MPI col-
lective operations on the 8™ ranked TACC Frontera system,
which provides a grand total of 7,861 compute nodes and
the capability of running 440,216 processes at full system
scale. We also propose enhanced SHARP-based designs for
MPI_Reduce and MPI_Barrier in MVAPICH2-X. To summa-
rize, this paper makes the following important contributions:

e Design and implement SHARP-based solutions for
MPI_Reduce and MPI_Barrier in MVAPICH2-X

o Evaluate the impact the proposed SHARP-based so-
Iutions have on the performance of MPI_Reduce and
MPI_Barrier at scale on Frontera

o Evaluate the impact existing SHARP-based solutions
have on the performance of MPI_Allreduce at scale on
Frontera

o Perform a careful analysis of the benefits of SHARP-
based collective operations

Our experimental evaluation shows that our proposed de-
signs are able to deliver up to 5.4X reduction in latency for
Reduce, 5.1X for Allreduce, and 7.1X for Barrier at full system
scale of 7,861 nodes.

III. BACKGROUND
A. Reduction Collectives and MPI_Barrier

The reduction collectives in MPI (i.e. MPI_Allreduce and
MPI_Reduce) are used widely in applications. Both collec-
tives use a reduction operation in order to combine elements
in the input buffer. The operation can be one of the pre-
defined operations (sum, min, etc.) or it can be user-defined.
MPI_Reduce returns the result of the operation to only the root
while MPI_Allreduce will broadcast the result to all ranks.

MPI Implementations will optimize most collective opera-
tions, including the reduction collectives, to utilize a shared-
memory channel for transferring data between processes
within the same node for relatively small message sizes
(< 2,048 bytes). For the reduction collectives, each node
designates a “leader” process who gets the intermediate result
and then uses the network fabric to reduce its result with
other node-leaders. The final result is then returned on the
root process in the case of MPI_Reduce, and broadcast using
the shared-memory channel on each node in the case of
MPI_Allreduce.

MPI_Barrier is a relatively simple collective. A process that
calls it will block until all other processes in the communicator
also call MPI_Barrier. This allows the application to synchro-
nize all processes, only allowing itself to continue until all
processes are ready.

B. Mellanox SHARP

Mellanox Scalable Hierarchical Aggregation and Reduction
Protocol (SHARP) is a technology that allows reduction col-
lectives to be offloaded to the network. At a high level, a subset
of processes within MPI communicators (one per node, one
per socket, etc.) are used to form a SHARP group. This group
is used to define end nodes in a SHARP tree in which these
nodes (leaves in the tree) feed in data that is to be reduced and
traversed upwards. Each non-leaf node in the tree is called an
Aggregation Node (AN). ANs are responsible for performing
the reduction operation. When the data reaches the root of
the tree, it is then distributed. The benefit of using SHARP
is that CPU time is freed for application use. Additionally,
the application does not need to wait for the data to reach
the CPU to perform the reduction application, minimizing the
effect of system noise. An example of using ANs in a tree
based fashion is shown in Figure 1.

Host
AN
Switch

Tree edge

Network link

Fig. 1: Sharp sample logical tree. The circles represent hosts,
hexagons represent switches, rectangles represent Aggregation
nodes (ANs), dotted lines represent the reduction tree and
other lines represent network links. Not all switches function
as ANs in a reduction tree, as shown in the figure

IV. DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of Hierarchical SHARP-based MPI_Reduce, MPI_Allreduce
and MPI_Barrier in MVAPICH2-X using shared memory
within the node and using SHARP-based support or native
point to point operations for inter-node operations.

A. Shared-memory collectives

Most MPI libraries utilize shared-memory and/or kernel-
assisted copy mechanisms to optimize intra-node transfers.
In this paper, we do not consider evaluating using kernel-
assisted mechanisms such as CMA and XPMEM, since our
focus is on smaller messages sizes (< 2,048 bytes) for
which shared memory implementations have the same relative
performance [11]. MVAPICH2-X uses a cache-aligned shared
memory region created using the mmap unix system call. On
systems with multiple sockets per node, MVAPICH2-X creates
a separate shared-memory region for each socket in the node
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Algorithm 1 Implementing MPI_Reduce on top of SHARP
allreduce
1: Definition of Variables

2: sendbuf : Pointer to the send buffer

3: recvbuf : Pointer to the receive buffer

4: root : Rank of the root process in MPI_Reduce

5: comm_ptr : Communicator passed to MPI_Reduce
6: rank : Logical rank of process in comm_ptr

7: tmp_buf : Temporary buffer to store results

8: Pseudo Code for MPI_Reduce

9: Initialize sharp reduce_spec

10: Shared memory reduce to root process on each node
11: if rank # root then

12: reduce_spec.recvbuf < tmp_buf

13: else

14: reduce_spec.recvbuf < recvbu f

15: end if

16: sharp_do_allreduce(comm_ptr.sharp_comm,

reduce_spec)

in order to build hierarchical intra-node collectives that can
minimize inter-socket traffic, thereby reducing latency. The
processes are then grouped in a communicator for simplicity
of use in other MPI operations. A set of flags are maintained
for each process to aid synchronization operations.

B. Hierarchical SHARP-based MPI_Reduce

In MVAPICH2-X, a hierarchical algorithm is implemented
for MPI_Reduce in two steps. The first step involves an intra-
node reduction operation to a designated root process on each
node. This is followed by an inter-node reduction operation
(which could use algorithms such as binomial, k-nomial, and
others), with one process per node participating in the step.
However, at larger scales, a software-based tree algorithm
would not necessarily obtain the best performance, especially
considering hardware-based offload protocols such as SHARP.
Since SHARP currently only has support for allreduce, barrier
and not reduce, we implemented MPI_Reduce on top of the
allreduce SHARP primitive to take advantage of hardware-
based offload. Algorithm 1 shows the pseudo-code implemen-
tation of the proposed sharp based MPI_Reduce. Since an
MPI_Allreduce is semantically equivalent to every process
calling MPI_Reduce, MPI_Reduce can be implemented on
top of supported SHARP primitives by just ignoring the
receive buffer on every non-root process. In the first phase,
we do an intra-node reduction using shared-memory on a
designated root process on every node. For the inter-node step,
we call SHARP APIs to utilize network offload capabilities.
The SHARP APIs provide a “reduce_spec” structure that is
filled with details on the datatype, operations, aggregation
modes, send buffer, receive buffer, and others. As described
in Algorithm 1, setting the receive buffer of “reduce_spec” on
non-root processes and then calling SHARP based Allreduce
will complete the reduction operation.

C. Hierarchical SHARP-based MPI_Allreduce

For this paper, we primarily evaluate a socket-aware hierar-
chical Allreduce algorithm. In MVAPICH2-X, this algorithm
is implemented in five steps. First, we perform an intra-socket
reduction operation to a designated root process on each socket
as shown in Figure 2(a). Then, socket-leaders within the node
perform an inter-socket reduction as shown in Figure 2(b). At
this stage, one designated root process on every node contains
the reduced data for that node. The third step, depicted in
Figure 2(c), involves an inter-node Allreduce operation. The
algorithm used could either be based on point-to-point opera-
tions tuned for a particular message/system size or use other
primitives such as the ones provided by SHARP. Figure 2(d)
shows the next step, which involves a broadcast operation
across socket-leaders. At the end of the 4™ step, socket level
leaders have the final result of the allreduce operation. Finally,
an intra-socket broadcast is performed among processes within
a socket after which the final result is obtained at every
process. This is depicted in Figure 2(e).

D. Hierarchical SHARP-based MPI_Barrier

The implementation of the MPI_Barrier primitive
in MVAPICH2-X is similar to the implementation of
MPI_Allreduce, since an Allreduce can essentially be viewed
as a Barrier without compute or any data buffer to be moved.
In the first step, a root process on each socket polls an array
of “gather” flags on shared-memory. These flags are set by
other non-root processes and then reset by the root process
thereby indicating that the gather operation is complete.
This is followed by an inter-socket gather phase. The third
step involves an inter-node barrier, either implemented using
a point-to-point pairwise exchange or using SHARP. The
last two steps mirror the first two steps by performing an
inter-socket broadcast followed by an intra-socket broadcast
using shared-memory.

V. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we describe the experimental setup used to
conduct our experiments. An in-depth analysis of the results
is also provided to correlate design motivations and observed
behavior. All results reported here are averages of multiple
(five) runs to discard the effect of system noise.

A. Experimental Setup

We ran all evaluations on the 8th ranked Frontera
super-computer at the Texas Advanced Computing Center
(TACC) [12]. The cluster comprises of dual-socket Intel Xeon
8280 (“Cascade Lake”) nodes. Each node contains a two-
socket motherboard, with 192 GB of DDR-4 RAM and each
socket containing a 28-core processor running at 2.7 Ghz. The
interconnect is arranged in a fat-tree topology and contains
Mellanox InfiniBand HDR adapters providing 100 Gb/s of
bandwidth between compute nodes and 200 Gb/s between
switches in the fabric. The nodes run the RedHat Enterprise
Linux (RHEL) 7 operating system with kernel version 3.10.0-
1127.13.1.el7.x86_64. We compare an optimized version of
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Fig. 2: Five phases in the socket-aware algorithm for MPI_Allreduce in MVAPICH2-X taking four processes per node as an

example
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MVAPICH2-X 2.3 with and without SHARP enabled, com-
piled with GCC v8.3.0. We use the Dynamic Connected (DC)
transport protocol support in MVAPICH2-X [13] to achieve
good scale-out performance with a large number of processes.

B. Micro-Benchmark Level Evaluation

We primarily show results from the Micro-Benchmarks
listed below.

1) OSU Micro Benchmarks: We show results using the
OSU Micro Benchmarks (OMB) suite v5.6.3 [14]. We re-
port the average latency on running 1,000 iterations of
osu_allreduce and osu_barrier with 100 warm-up iterations (it-
erations that are skipped entirely) over five different runs. The
osu_allreduce and osu_barrier tests report the average latency
among all the processes for the given run-time parameters
above. For osu_reduce, we run 1,000 iterations over five runs
and choose to report the maximum latency of all processes,
since the upper-bound of reduction operations is defined by the
time the root takes to exit. Reducing the maximum latency also
has the potential to reduce skews in application code, which is
beneficial as well. We report numbers up to a message size of
2,048 bytes, where applicable. The latency is always reported
in micro-seconds (us), unless specified otherwise.

C. Results for MPI_Reduce

This sub-section describes the experimental results and
scaling for MPI_Reduce over different node counts, processes
per node (ppn) counts and message sizes.

1) Scaling trends with one process per node: First, we
evaluate how MPI_Reduce scales with one process per node
and different node counts for MVAPICH2-X and MVAPICH2-
X with SHARP. We report the maximum latency since this is
often the bottleneck in MPI_Reduce calls at the root process.
We observe that MVAPICH2-X without SHARP has a close
to linear scaling with an increase in node count. For instance,
its latency for a 16 byte message starts at around 3.17us
for 4 nodes going all the way up to 126.12us for 7,861
nodes (full system size). This highlights the limitation of
software-only optimizations of MPI_Reduce. On the other
hand, MVAPICH2-X with SHARP demonstrates close to flat
scaling up to 4,096 nodes, with the latency hovering between
1.86us - 6.9us for the same message size of 16 bytes. We
see a jump, with the absolute value of MVAPICH2-X-SHARP
increasing 2-fold when the node count is 7,861. This is usually
attributed to variation when the entire cluster is being used at
once. The results are demonstrated in Figures 3(a) and 3(b),
which represent the absolute latency across the system. We
can also infer the speedup of MVAPICH2-X-SHARP for the
sample message size of 16 bytes. When analyzing the speedup
of MVAPICH2-X-SHARP over MVAPICH-X, we observe
linear scaling with MVAPICH2-X and close to flat scaling
with MVAPICH2-X-SHARP, with speedups of up to 9.5X for
a message size of 16 bytes. The scaling trend is similar for
messages up to 2,048 bytes.

2) Scaling trends with multiple processes per node: In
general, the expected trends for multiple processes per node
are very similar to trends seen in the single process per node
scenarios. However, due to the involvement of shared-memory
in the hierarchical collective step as described in section IV,
the max latency for the reduction operation goes up. This
in turn reduces the scaling efficiency from the ideal case
of one process per node (ppn). To evaluate the impact of
increasing processes per node, we take a sample message size
of 16 bytes and show how an increase in processes per node
affects scaling. This is described in Figures 4(a), 4(b), 5(a),
and 5(b). The X-axis represents different node counts starting
from 4 to 1,024 nodes. The Y-axis indicates latency for the
MPI operation. Figures 3(a), 3(b) represent 1 process per
node, 4(a), 4(b) represent 2 processes per node and 5(a),
5(b) represent 16 processes per node numbers for two chosen
message sizes of 16 bytes and 2,048 bytes. Due to a lack of
time available to run large scale tests in the cluster, we only
ran experiments up to 1024 nodes with the process per node
counts greater than 1. In Summary, we see that MVAPICH2-
X-SHARP still has a speedup of up to 3.6X for multi processes
per node scenarios, but with up to 2.6X decrease in scaling
efficiency when compared to the one process per node case.

3) Scaling trends with increasing message size: Fig-
ures 3(c), 4(c), and 5(c) show the impact of message size
on the latency of MVAPICH2-X with SHARP. We show a
specific set of node/process per node counts to simplify the
amount of data shown in the paper and also because they
are representative of the entire set of node/process per node
pairs. We observe that the latency for MVAPICH2-X-SHARP
remains largely the same up to the inline size of 64 bytes, after
which it gradually increases. The speedup over MVAPICH2-X
follows a similar trend as seen in sub-sections V-C1 and V-C2,
with MVAPICH2-X-SHARP showing large benefits of up to
3.6X over the baseline of MVAPICH2-X for 2 processes per
node scenarios. We observe a variation in numbers, where the
latency of MVAPICH2-X reduces with increase in message
size in certain cases. This is attributed to the fact that certain
message sizes are not tuned properly, which results in a
decrease in latency with an increase in message size for some
cases. However, the trends for MVAPICH2-X-SHARP will
still remain largely the same due to the limitations of pure
software-based approaches.

D. Results for MPI_Allreduce

This sub-section describes the experimental results and
scaling for MPI_Allreduce over different node counts and
number of processes.

1) Scaling trends with one process per node: Similar to
MPI_Reduce, we evaluate how MPI_Allreduce scales with one
process per node for node counts from 4 to 7,861 (full system
scale) for both MVAPICH2-X and MVAPICH2-X-SHARP. We
report the average latency for all experiments pertaining to
MPI_Allreduce. The trends would be the same with minimum
and maximum latency since Allreduce is a balanced collective,
where the differences in latency arise only due to the final
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Fig. 3: Performance of MPI_Reduce with MVAPICH2-X and MVAPICH2-X-SHARP for one process per node (ppn) across
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Fig. 6: Performance of MPI_Allreduce with MVAPICH2-X and MVAPICH2-X-SHARP for one process per node (ppn) across
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2ppn, 1,024 nodes. MVAPICH2-X-SHARP pro-
vides a flat latency curve for message sizes from
4 to 2,048 bytes

Fig. 7: Performance of MPI_Allreduce with MVAPICH2-X and MVAPICH2-X-SHARP for 2 processes per node (ppn) across

various message and system sizes
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4 to 2,048 bytes

Fig. 8: Performance of MPI_Allreduce with MVAPICH2-X and MVAPICH2-X-SHARP for 16 processes per node (ppn) across

various message and system sizes
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(a) Scaling of MPI_Barrier for 1ppn, up to 7,861
nodes. MVAPICH2-X-SHARP provides a benefit
of up to 11.5X over MVAPICH2-X

(b) Scaling of MPI_Barrier for 2ppn, up to 1,024
nodes. MVAPICH2-X-SHARP provides a benefit
of up to 7.3X over MVAPICH2-X

(c) Scaling of MPI_Barrier for 16ppn, up to 1,024
nodes. MVAPICH2-X-SHARP provides a benefit
of up to 3.8X over MVAPICH2-X

Fig. 9: Performance of MPI_Barrier with MVAPICH2-X and MVAPICH2-X-SHARP for 1 processes per node (ppn), 2ppn and

16ppn across various system sizes

broadcast phase (As per the socket-aware algorithm described
in section IV). Results for absolute numbers across node
counts are shown in Figures 6(a) and 6(b) for message sizes
of 16 and 2,048 bytes respectively. The X-axes represent
increasing node counts, the Y-axes represent the Latency
in us and two lines colored red and green correspond to
MVAPICH2-X and MVAPICH2-X-SHARP respectively. We
observe that MVAPICH2-X scales linearly with an increase in
node count, starting at 3.66us for 4 nodes to 61us for 7,861
nodes for a message size of 2,048 bytes. We observed random
jumps at certain node counts, which is most likely system
noise. MVAPICH2-X-SHARP shows close to flat scalability
similar to MPI_Reduce, with the latency remaining around 3-
8us up to 2,048 nodes and jumping up to 40us at 7,861 nodes.
We see that MVAPICH2-X-SHARP obtains a speed-up of up
to 6.69X versus MVAPICH2-X (at 2,048 nodes for 16 byte
messages) and up to 5.1X for 2,048 byte messages (at 7,861
nodes).

2) Scaling trends with multiple processes per node: We
evaluate the scaling of MPI_Allreduce with multiple processes
per node by comparing the latency for different processes
per node for a fixed message sizes of 16 bytes and 2,048
bytes as well as increasing node counts. The absolute la-
tency for different node counts are depicted in Figure 6(a)
and 6(b) for 16 and 2,048 byte messages respectively. The
X-axis represents increasing node counts, Y-axis represents
the latency in us and different colored lines are used to
show absolute latency of MVAPICH2-X and MVAPICH2-
X-SHARP. Due to limited time, we could only run multi
processes per node experiments up to 1,024 nodes. We observe
that scaling efficiency reduces when increasing the number
of processes per node, primarily due to intra-node operations
taking more time in the process. At 1,024 nodes, we observe
an improvement over MVAPICH2-X of 9X for one process
per node jobs, 4X for two processes per node and 2X for
16 processes per node. We observed a decrease in scaling
efficiency for four processes per node runs. Unfortunately, due
to limited time available on the cluster, we were not able to
re-run the experiments. We are planning to do it during the

next maintenance window.

3) Scaling trends with increasing message size: Fig-
ures 6(c), 7(c), and 8(c) show the impact of message size
on the latency of MVAPICH2-X with SHARP. The X-axes
represent message size in bytes, Y-axes represent latency in
us and 2 lines represent MVAPICH2-X and MVAPICH2-X-
SHARP respectively. As in MPI_Reduce, we show specific
node/process per node counts because they are representative
of the entire set of node/process per node pairs. We observe
that the latency remains fairly flat for larger messages up
to 2,048 bytes when compared to the 4 byte latency with
a jump of only 1.2X in most node/process counts. The
speed-up over MVAPICH2-X follows a similar trend as seen
for MPI_Reduce, with MVAPICH2-X-SHARP showing large
benefits of up to 9X over the baseline of MVAPICH2-X.

E. Results for MPI_Barrier

This sub-section evaluates the impact of MPI_Barrier for
various processes per node and node counts.

1) Scaling trends with one process per node: For
MPI_Barrier, we report the average latency across all pro-
cesses, similar to what we do for MPI_Allreduce. Just as
in the case of MPI_Allreduce, MPI_Barrier shows the same
trends for minimum and maximum latency as well. For the
one process per node scenario, we evaluate the impact of
increasing node counts from 4 nodes up to 7,861 nodes
(full system scale) on the latency of both MVAPICH2-X
and MVAPICH2-X-SHARP. We observe that MVAPICH2-X-
SHARP has near-flat scaling with an increase in node count
up to 4,096 nodes, with an average latency between 1.7us -
8.2us. The numbers at 7,861 nodes increase in the same way
as observed for MPI_Allreduce and MPI_Barrier. The experi-
mental results show that the speedup obtained by MVAPICH2-
X-SHARP over MVAPICH2-X goes up to a factor of 11.5X
at large scales. These results are shown in Figure 9(a). The
X-axis in the graph represents increasing node counts, Y-axis
represents the latency in us and red and green lines represent
MVAPICH2-X and MVAPICH2-X-SHARP respectively.
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2) Scaling trends with multiple processes per node:
We use 2 processes per node and 16 processes per node
for a case study of the impact of multiple processes per
node on the latency of a SHARP based Barrier implemen-
tation in MVAPICH2-X. The trends observed are similar
to the ones seen in MPI_Allreduce and MPI_Reduce, with
MVAPICH2-X-SHARP providing massive benefits at large
scales. MVAPICH2-X-SHARP shows up to 7.3X and 3.8X
improvement over MVAPICH2-X for 2 processes per node and
16 processes per node respectively. The reduction in scaling
improvement over one process per node runs is explained by
the fact that shared-memory based operations add to the intra-
node latency in the phased hierarchical algorithm implemented
by MVAPICH2-X. These results are shown in Figures 9(b) and
9(c), with the X-axis representing node counts up to 1,024 and
Y-axis representing latency in us.

VI. RELATED WORK

The original sharp paper [15] by Mellanox introduced the
SHARP technology, details reasons for several aspects of its
design, as well as showed an initial evaluation of reduce,
allreduce, and barrier using native benchmarks and MPI level
benchmarks.

Bayatpour et al. [16] created novel designs for reduction
collectives. These designs select multiple leader processes
per node which share computation costs as well as drive
concurrent communication. Computation costs are reduced
using SHARP with node-level or socket-level leaders.

Kandalla et al. [17] designed new MPI_Iallreduce algo-
rithms using Mellanox CORE-Direct technology to offload
communication costs to the network. The proposed designs
were demonstrated to overlap communication and computation
in the Preconditioned Conjugate Gradient solver routine in the
Hypre software library.

Kumar et al. [18] accelerated MPI_Allreduce’s computation
operations on the Blue Gene/Q supercomputer by taking
advantage of each core’s Quad Processing SIMD unit.

Mellanox enhanced the SHARP protocol with new tech-
nology that ships with the latest Infiniband HDR adapters
called Streaming Aggregation in [19]. Reduction trees can
be defined to use the existing low-latency reduction or use
the new streaming-aggregation capability whose protocol is
optimized to increase bandwidth for reduction operations.

Using shared memory for designing collectives is a well-
researched topic. Li et al. [20], [21] developed performance
models for the collectives using shared memory as well as
investigated the design and optimizations of shared memory
collectives with NUMA nodes. Zhang et al. [22], [23] use
shared memory to handle the communication between virtual
machines running on the same node. Their proposed design
enables MPI applications running in a virtualized environment
have efficient intra-node communication using SR-IOV.

Much work regarding the modeling and redesigning of
collective algorithms has been done in literature. Raben-
seifner [24] proposed new algorithms for reduce and allreduce
which were designed based on the results of an analysis.

[25] improved upon collective communication performance
by extending point-to-point communication models, such as
Hockney [26], LogP/LogGP [27], [28], and PLogP [29] to
collective operations. They also introduced ’split-binary”, an
optimized tree-based broadcast algorithm. [30] improved the
performance of collectives in MPICH. For each collective, they
selected multiple algorithms depending on the message size
and number of processes.

VII. CONCLUSION

In this paper, we Designed, and implemented SHARP-based
solutions for MPI_Reduce and MPI_Barrier in MVAPICH2-X.
We evaluated the impact the proposed SHARP-based solutions
have on the performance of MPI_Reduce and MPI_Barrier
at scale on Frontera. We also evaluated the impact that
existing SHARP-based solutions have on the performance of
MPI_Allreduce at scale on Frontera. We then performed a
careful analysis of the benefits of SHARP-based collective
operations.

Our experimental evaluation showed that our proposed
designs deliver up to 5.4X reduction in latency for Reduce,
5.1X for Allreduce, and 7.1X for Barrier at full system scale
of 7,861 nodes over a host-based solution.

As part of future work, we aim to do a more comprehensive
evaluation of the SHARP-based collective operations with a
larger number of processes per node and even larger scales.
The proposed SHARP-based solutions for MPI_Reduce and
MPI_Barrier will be available with future releases of the
MVAPICH2-X MPI library.
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