
Scalable MPI Collectives using SHARP: Large
Scale Performance Evaluation on the TACC

Frontera System

Bharath Ramesh, Kaushik Kandadi Suresh, Nick Sarkauskas, Mohammadreza Bayatpour, Jahanzeb Maqbool Hashmi,
Hari Subramoni, Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, USA

{ramesh.113, kandadisuresh.1, sarkauskas.1, bayatpour.1, hashmi.29, subramoni.1, panda.2}@osu.edu

Abstract—The Message-Passing Interface (MPI) is the de-
facto standard for designing and executing applications on
massively parallel hardware. MPI collectives provide a conve-
nient abstraction for multiple processes/threads to communicate
with one another. Mellanox’s HDR InfiniBand switches pro-
vide Scalable Hierarchical Aggregation and Reduction Protocol
(SHARP) capabilities to offload collective communication to the
network and reduce CPU involvement in the process. In this
paper, we design and implement SHARP-based solutions for
MPI Reduce and MPI Barrier in MVAPICH2-X. We evaluate
the impact of proposed and existing SHARP-based solutions for
MPI Allreduce, MPI Reduce, and MPI Barrier operations have
on the performance of the collective operation on the 8th ranked
TACC Frontera HPC system.

Our experimental evaluation of the SHARP-based designs
show up to 5.4X reduction in latency for Reduce, 5.1X for
Allreduce, and 7.1X for Barrier at full system scale of 7,861
nodes over a host-based solution.

Index Terms—SHARP, MPI, MPI collectives, MPI Allreduce,
MPI Reduce, MPI Barrier

I. INTRODUCTION

Super-computing systems have grown in size and scale

over the last decade. Two key drivers fueling the growth

of supercomputers are the current trends in multi-/many-

core architectures and the availability of commodity, RDMA-

enabled, and high-performance interconnects such as Infini-

Band [1] (IB). Such HPC systems are allowing scientists

and engineers to tackle grand challenges in various scientific

domains. Users of HPC systems rely on parallel programming

models to parallelize their applications and obtain performance

improvements.

Message Passing Interface (MPI) [2] is a very popular

parallel programming model for developing parallel scientific

applications. The MPI Standard [3] offers primitives for vari-

ous point-to-point, collective, and synchronization operations.

Collective operations defined in the MPI standard offer a very

*This research is supported in part by NSF grants #1931537, #1450440,
#1664137, #1818253, #2007991 and XRAC grant #NCR-130002

convenient abstraction to implement group communication

operations. Owing to their ease of use and performance

portability, collective operations are widely used across various

scientific domains. Due to this wide use, the performance of

collective operations has a significant impact on the overall

performance of high-end applications running on modern HPC

systems.

Historically, researchers have proposed several solutions

that take advantage of specific features offered by modern

high-end interconnects such as InfiniBand [4] to offload col-

lective operations to the network and thereby achieve excellent

performance and scalability on very large High Performance

Computing (HPC) systems. One such example is the use of In-

finiBand Hardware Multicast feature to offload the MPI Bcast

collective operation [5]. However, the multi-cast based solution

had the significant disadvantage of being “unreliable” and was

limited in its capability to implement other collective opera-

tions such as MPI Allreduce, MPI Reduce, and MPI Barrier

that are some of the most frequently used operations in

scientific applications.

Recognizing this need, interconnect vendors such as Mel-

lanox introduced high-performance hardware-based network

solutions like core-direct [6], [7], [8] and SHARP [9] to

enable offloading of more complex communication and some

computation to the fabric. However, the compute capability

offered by Core-direct is quite limited. Scalable Hierarchical

Aggregation Protocol (SHARP) [9] is a new solution in this

space that can offload large amount of computation to the

network switch. For instance, while SHARP-based collectives

can provide excellent performance and scalability for small

message sizes [9], they have some performance issues and

limitations that need to be handled intelligently to achieve

the best performance for larger message sizes and process

counts [10].

While researchers have addressed some of these chal-

lenges in earlier scientific literature, there exists no scholarly

work that systematically studies the impact SHARP-based
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network offload can have on the performance of important

collective operations like MPI Allreduce, MPI Reduce, and

MPI Barrier at very large scales on modern HPC systems.

II. CONTRIBUTIONS

In this paper, we take up this challenge and do a thorough

study of the performance impact SHARP-based collective

algorithm designs can have on the performance of MPI col-

lective operations on the 8th ranked TACC Frontera system,

which provides a grand total of 7,861 compute nodes and

the capability of running 440,216 processes at full system

scale. We also propose enhanced SHARP-based designs for

MPI Reduce and MPI Barrier in MVAPICH2-X. To summa-

rize, this paper makes the following important contributions:

• Design and implement SHARP-based solutions for

MPI Reduce and MPI Barrier in MVAPICH2-X

• Evaluate the impact the proposed SHARP-based so-

lutions have on the performance of MPI Reduce and

MPI Barrier at scale on Frontera

• Evaluate the impact existing SHARP-based solutions

have on the performance of MPI Allreduce at scale on

Frontera

• Perform a careful analysis of the benefits of SHARP-

based collective operations

Our experimental evaluation shows that our proposed de-

signs are able to deliver up to 5.4X reduction in latency for

Reduce, 5.1X for Allreduce, and 7.1X for Barrier at full system

scale of 7,861 nodes.

III. BACKGROUND

A. Reduction Collectives and MPI Barrier

The reduction collectives in MPI (i.e. MPI Allreduce and

MPI Reduce) are used widely in applications. Both collec-

tives use a reduction operation in order to combine elements

in the input buffer. The operation can be one of the pre-

defined operations (sum, min, etc.) or it can be user-defined.

MPI Reduce returns the result of the operation to only the root

while MPI Allreduce will broadcast the result to all ranks.

MPI Implementations will optimize most collective opera-

tions, including the reduction collectives, to utilize a shared-

memory channel for transferring data between processes

within the same node for relatively small message sizes

(≤ 2,048 bytes). For the reduction collectives, each node

designates a “leader” process who gets the intermediate result

and then uses the network fabric to reduce its result with

other node-leaders. The final result is then returned on the

root process in the case of MPI Reduce, and broadcast using

the shared-memory channel on each node in the case of

MPI Allreduce.

MPI Barrier is a relatively simple collective. A process that

calls it will block until all other processes in the communicator

also call MPI Barrier. This allows the application to synchro-

nize all processes, only allowing itself to continue until all

processes are ready.

B. Mellanox SHARP

Mellanox Scalable Hierarchical Aggregation and Reduction

Protocol (SHARP) is a technology that allows reduction col-

lectives to be offloaded to the network. At a high level, a subset

of processes within MPI communicators (one per node, one

per socket, etc.) are used to form a SHARP group. This group

is used to define end nodes in a SHARP tree in which these

nodes (leaves in the tree) feed in data that is to be reduced and

traversed upwards. Each non-leaf node in the tree is called an

Aggregation Node (AN). ANs are responsible for performing

the reduction operation. When the data reaches the root of

the tree, it is then distributed. The benefit of using SHARP

is that CPU time is freed for application use. Additionally,

the application does not need to wait for the data to reach

the CPU to perform the reduction application, minimizing the

effect of system noise. An example of using ANs in a tree

based fashion is shown in Figure 1.

Host

AN

Switch

Tree edge

Network link

Fig. 1: Sharp sample logical tree. The circles represent hosts,

hexagons represent switches, rectangles represent Aggregation

nodes (ANs), dotted lines represent the reduction tree and

other lines represent network links. Not all switches function

as ANs in a reduction tree, as shown in the figure

IV. DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation

of Hierarchical SHARP-based MPI Reduce, MPI Allreduce

and MPI Barrier in MVAPICH2-X using shared memory

within the node and using SHARP-based support or native

point to point operations for inter-node operations.

A. Shared-memory collectives

Most MPI libraries utilize shared-memory and/or kernel-

assisted copy mechanisms to optimize intra-node transfers.

In this paper, we do not consider evaluating using kernel-

assisted mechanisms such as CMA and XPMEM, since our

focus is on smaller messages sizes (≤ 2,048 bytes) for

which shared memory implementations have the same relative

performance [11]. MVAPICH2-X uses a cache-aligned shared

memory region created using the mmap unix system call. On

systems with multiple sockets per node, MVAPICH2-X creates

a separate shared-memory region for each socket in the node
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Algorithm 1 Implementing MPI Reduce on top of SHARP

allreduce

1: Definition of Variables
2: sendbuf : Pointer to the send buffer

3: recvbuf : Pointer to the receive buffer

4: root : Rank of the root process in MPI Reduce

5: comm ptr : Communicator passed to MPI Reduce

6: rank : Logical rank of process in comm ptr
7: tmp buf : Temporary buffer to store results

8: Pseudo Code for MPI Reduce
9: Initialize sharp reduce spec

10: Shared memory reduce to root process on each node

11: if rank �= root then
12: reduce spec.recvbuf ← tmp buf
13: else
14: reduce spec.recvbuf ← recvbuf
15: end if
16: sharp do allreduce(comm ptr.sharp comm,

reduce spec)

in order to build hierarchical intra-node collectives that can

minimize inter-socket traffic, thereby reducing latency. The

processes are then grouped in a communicator for simplicity

of use in other MPI operations. A set of flags are maintained

for each process to aid synchronization operations.

B. Hierarchical SHARP-based MPI Reduce

In MVAPICH2-X, a hierarchical algorithm is implemented

for MPI Reduce in two steps. The first step involves an intra-

node reduction operation to a designated root process on each

node. This is followed by an inter-node reduction operation

(which could use algorithms such as binomial, k-nomial, and

others), with one process per node participating in the step.

However, at larger scales, a software-based tree algorithm

would not necessarily obtain the best performance, especially

considering hardware-based offload protocols such as SHARP.

Since SHARP currently only has support for allreduce, barrier

and not reduce, we implemented MPI Reduce on top of the

allreduce SHARP primitive to take advantage of hardware-

based offload. Algorithm 1 shows the pseudo-code implemen-

tation of the proposed sharp based MPI Reduce. Since an

MPI Allreduce is semantically equivalent to every process

calling MPI Reduce, MPI Reduce can be implemented on

top of supported SHARP primitives by just ignoring the

receive buffer on every non-root process. In the first phase,

we do an intra-node reduction using shared-memory on a

designated root process on every node. For the inter-node step,

we call SHARP APIs to utilize network offload capabilities.

The SHARP APIs provide a “reduce spec” structure that is

filled with details on the datatype, operations, aggregation

modes, send buffer, receive buffer, and others. As described

in Algorithm 1, setting the receive buffer of “reduce spec” on

non-root processes and then calling SHARP based Allreduce

will complete the reduction operation.

C. Hierarchical SHARP-based MPI Allreduce

For this paper, we primarily evaluate a socket-aware hierar-

chical Allreduce algorithm. In MVAPICH2-X, this algorithm

is implemented in five steps. First, we perform an intra-socket

reduction operation to a designated root process on each socket

as shown in Figure 2(a). Then, socket-leaders within the node

perform an inter-socket reduction as shown in Figure 2(b). At

this stage, one designated root process on every node contains

the reduced data for that node. The third step, depicted in

Figure 2(c), involves an inter-node Allreduce operation. The

algorithm used could either be based on point-to-point opera-

tions tuned for a particular message/system size or use other

primitives such as the ones provided by SHARP. Figure 2(d)

shows the next step, which involves a broadcast operation

across socket-leaders. At the end of the 4th step, socket level

leaders have the final result of the allreduce operation. Finally,

an intra-socket broadcast is performed among processes within

a socket after which the final result is obtained at every

process. This is depicted in Figure 2(e).

D. Hierarchical SHARP-based MPI Barrier

The implementation of the MPI Barrier primitive

in MVAPICH2-X is similar to the implementation of

MPI Allreduce, since an Allreduce can essentially be viewed

as a Barrier without compute or any data buffer to be moved.

In the first step, a root process on each socket polls an array

of “gather” flags on shared-memory. These flags are set by

other non-root processes and then reset by the root process

thereby indicating that the gather operation is complete.

This is followed by an inter-socket gather phase. The third

step involves an inter-node barrier, either implemented using

a point-to-point pairwise exchange or using SHARP. The

last two steps mirror the first two steps by performing an

inter-socket broadcast followed by an intra-socket broadcast

using shared-memory.

V. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we describe the experimental setup used to

conduct our experiments. An in-depth analysis of the results

is also provided to correlate design motivations and observed

behavior. All results reported here are averages of multiple

(five) runs to discard the effect of system noise.

A. Experimental Setup

We ran all evaluations on the 8th ranked Frontera

super-computer at the Texas Advanced Computing Center

(TACC) [12]. The cluster comprises of dual-socket Intel Xeon

8280 (“Cascade Lake”) nodes. Each node contains a two-

socket motherboard, with 192 GB of DDR-4 RAM and each

socket containing a 28-core processor running at 2.7 Ghz. The

interconnect is arranged in a fat-tree topology and contains

Mellanox InfiniBand HDR adapters providing 100 Gb/s of

bandwidth between compute nodes and 200 Gb/s between

switches in the fabric. The nodes run the RedHat Enterprise

Linux (RHEL) 7 operating system with kernel version 3.10.0-

1127.13.1.el7.x86 64. We compare an optimized version of
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Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Reduce from shared memory

Intra-socket leader process

Regular process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

(a) First phase: It involves an intra-socket reduction in parallel across nodes to a leader process designated as the root. The socket-level
leaders then participate in the second phase of the algorithm

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Reduce from shared memory

Intra-socket leader process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

(b) Second phase: In this phase, the socket-leaders within each node participate in an intra-node reduction using their common shared
memory, to a specific root process on each node

Legend

Socket leader shared memory

Intra-socket shared memory

Intra-socket leader process

Inter-node allreduceSocket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

(c) Third phase: Node-level leaders perform an inter-node allreduce. The inter-node algorithm either uses SHARP (if enabled) or a
tuned algorithm for a particular message and system size

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Read from shared memory

Intra-socket leader process

Socket 1 Socket 2 Socket 1 Socket 2

Node 1 Node 2

(d) Fourth phase: The fourth phase mirrors the second phase. The node-level leader broadcasts results to other socket level leaders
within the node using shared-memory. After this phase, all socket leaders have the final result of the allreduce operation

Legend

Socket leader shared memory

Intra-socket shared memory

Write to shared memory
Read from shared memory

Intra-socket leader process

Regular process

Socket 1 Socket 2

Node 1

Socket 1 Socket 2

Node 2

(e) Fifth phase: The final phase involves an intra-socket broadcast using the shared-memory channel. This completes the allreduce
operation

Fig. 2: Five phases in the socket-aware algorithm for MPI Allreduce in MVAPICH2-X taking four processes per node as an

example
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MVAPICH2-X 2.3 with and without SHARP enabled, com-

piled with GCC v8.3.0. We use the Dynamic Connected (DC)

transport protocol support in MVAPICH2-X [13] to achieve

good scale-out performance with a large number of processes.

B. Micro-Benchmark Level Evaluation

We primarily show results from the Micro-Benchmarks

listed below.

1) OSU Micro Benchmarks: We show results using the

OSU Micro Benchmarks (OMB) suite v5.6.3 [14]. We re-

port the average latency on running 1,000 iterations of

osu allreduce and osu barrier with 100 warm-up iterations (it-

erations that are skipped entirely) over five different runs. The

osu allreduce and osu barrier tests report the average latency

among all the processes for the given run-time parameters

above. For osu reduce, we run 1,000 iterations over five runs

and choose to report the maximum latency of all processes,

since the upper-bound of reduction operations is defined by the

time the root takes to exit. Reducing the maximum latency also

has the potential to reduce skews in application code, which is

beneficial as well. We report numbers up to a message size of

2,048 bytes, where applicable. The latency is always reported

in micro-seconds (us), unless specified otherwise.

C. Results for MPI Reduce

This sub-section describes the experimental results and

scaling for MPI Reduce over different node counts, processes

per node (ppn) counts and message sizes.

1) Scaling trends with one process per node: First, we

evaluate how MPI Reduce scales with one process per node

and different node counts for MVAPICH2-X and MVAPICH2-

X with SHARP. We report the maximum latency since this is

often the bottleneck in MPI Reduce calls at the root process.

We observe that MVAPICH2-X without SHARP has a close

to linear scaling with an increase in node count. For instance,

its latency for a 16 byte message starts at around 3.17us
for 4 nodes going all the way up to 126.12us for 7,861

nodes (full system size). This highlights the limitation of

software-only optimizations of MPI Reduce. On the other

hand, MVAPICH2-X with SHARP demonstrates close to flat

scaling up to 4,096 nodes, with the latency hovering between

1.86us - 6.9us for the same message size of 16 bytes. We

see a jump, with the absolute value of MVAPICH2-X-SHARP

increasing 2-fold when the node count is 7,861. This is usually

attributed to variation when the entire cluster is being used at

once. The results are demonstrated in Figures 3(a) and 3(b),

which represent the absolute latency across the system. We

can also infer the speedup of MVAPICH2-X-SHARP for the

sample message size of 16 bytes. When analyzing the speedup

of MVAPICH2-X-SHARP over MVAPICH-X, we observe

linear scaling with MVAPICH2-X and close to flat scaling

with MVAPICH2-X-SHARP, with speedups of up to 9.5X for

a message size of 16 bytes. The scaling trend is similar for

messages up to 2,048 bytes.

2) Scaling trends with multiple processes per node: In

general, the expected trends for multiple processes per node

are very similar to trends seen in the single process per node

scenarios. However, due to the involvement of shared-memory

in the hierarchical collective step as described in section IV,

the max latency for the reduction operation goes up. This

in turn reduces the scaling efficiency from the ideal case

of one process per node (ppn). To evaluate the impact of

increasing processes per node, we take a sample message size

of 16 bytes and show how an increase in processes per node

affects scaling. This is described in Figures 4(a), 4(b), 5(a),

and 5(b). The X-axis represents different node counts starting

from 4 to 1,024 nodes. The Y-axis indicates latency for the

MPI operation. Figures 3(a), 3(b) represent 1 process per

node, 4(a), 4(b) represent 2 processes per node and 5(a),

5(b) represent 16 processes per node numbers for two chosen

message sizes of 16 bytes and 2,048 bytes. Due to a lack of

time available to run large scale tests in the cluster, we only

ran experiments up to 1024 nodes with the process per node

counts greater than 1. In Summary, we see that MVAPICH2-

X-SHARP still has a speedup of up to 3.6X for multi processes

per node scenarios, but with up to 2.6X decrease in scaling

efficiency when compared to the one process per node case.

3) Scaling trends with increasing message size: Fig-

ures 3(c), 4(c), and 5(c) show the impact of message size

on the latency of MVAPICH2-X with SHARP. We show a

specific set of node/process per node counts to simplify the

amount of data shown in the paper and also because they

are representative of the entire set of node/process per node

pairs. We observe that the latency for MVAPICH2-X-SHARP

remains largely the same up to the inline size of 64 bytes, after

which it gradually increases. The speedup over MVAPICH2-X

follows a similar trend as seen in sub-sections V-C1 and V-C2,

with MVAPICH2-X-SHARP showing large benefits of up to

3.6X over the baseline of MVAPICH2-X for 2 processes per

node scenarios. We observe a variation in numbers, where the

latency of MVAPICH2-X reduces with increase in message

size in certain cases. This is attributed to the fact that certain

message sizes are not tuned properly, which results in a

decrease in latency with an increase in message size for some

cases. However, the trends for MVAPICH2-X-SHARP will

still remain largely the same due to the limitations of pure

software-based approaches.

D. Results for MPI Allreduce

This sub-section describes the experimental results and

scaling for MPI Allreduce over different node counts and

number of processes.

1) Scaling trends with one process per node: Similar to

MPI Reduce, we evaluate how MPI Allreduce scales with one

process per node for node counts from 4 to 7,861 (full system

scale) for both MVAPICH2-X and MVAPICH2-X-SHARP. We

report the average latency for all experiments pertaining to

MPI Allreduce. The trends would be the same with minimum

and maximum latency since Allreduce is a balanced collective,

where the differences in latency arise only due to the final
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(b) Scaling of MPI Reduce for 1ppn, 2,048 bytes
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to 4.5X better than MVAPICH2-X
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Fig. 3: Performance of MPI Reduce with MVAPICH2-X and MVAPICH2-X-SHARP for one process per node (ppn) across

various message and system sizes
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(a) Scaling of MPI Reduce for 2ppn, 16 bytes up
to 1,024 nodes. MVAPICH2-X-SHARP provides
a benefit of up to 3.5X over MVAPICH2-X
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(b) Scaling of MPI Reduce for 2ppn, 2,048 bytes
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to 4X better than MVAPICH2-X
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Fig. 4: Performance of MPI Reduce with MVAPICH2-X and MVAPICH2-X-SHARP for 2 processes per node (ppn) across

various message and system sizes
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(a) Scaling of MPI Reduce for 16ppn, 16 bytes
up to 1,024 nodes. MVAPICH2-X-SHARP pro-
vides a benefit of up to X over MVAPICH2-X
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Fig. 5: Performance of MPI Reduce with MVAPICH2-X and MVAPICH2-X-SHARP for 16 processes per node (ppn) across

various message and system sizes
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Fig. 6: Performance of MPI Allreduce with MVAPICH2-X and MVAPICH2-X-SHARP for one process per node (ppn) across

various message and system sizes

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

4 16 64 256 1k

La
te

nc
y 

(u
s)

Nodes

MVAPICH2-X
MVAPICH2-X-SHARP

(a) Scaling of MPI Allreduce for 2ppn, 16 bytes
up to 1,024 nodes. MVAPICH2-X-SHARP pro-
vides a benefit of up to 4.8X over MVAPICH2-X
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(b) Scaling of MPI Allreduce for 2ppn, 2,048
bytes up to 7,861 nodes. MVAPICH2-X-SHARP
is up to 3.2X better than MVAPICH2-X
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(c) Message size scaling of MPI Allreduce for
2ppn, 1,024 nodes. MVAPICH2-X-SHARP pro-
vides a flat latency curve for message sizes from
4 to 2,048 bytes

Fig. 7: Performance of MPI Allreduce with MVAPICH2-X and MVAPICH2-X-SHARP for 2 processes per node (ppn) across

various message and system sizes
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(a) Scaling of MPI Allreduce for 16ppn, 16 bytes
up to 1,024 nodes. MVAPICH2-X-SHARP pro-
vides a benefit of up to 2.5X over MVAPICH2-X
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(b) Scaling of MPI Allreduce for 16ppn, 2,048
bytes up to 1,024 nodes. MVAPICH2-X-SHARP
provides a benefit of up to 7.06X over
MVAPICH2-X
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(c) Message size scaling of MPI Allreduce for
16ppn, 1,024 nodes. MVAPICH2-X-SHARP pro-
vides a flat latency curve for message sizes from
4 to 2,048 bytes

Fig. 8: Performance of MPI Allreduce with MVAPICH2-X and MVAPICH2-X-SHARP for 16 processes per node (ppn) across

various message and system sizes
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(a) Scaling of MPI Barrier for 1ppn, up to 7,861
nodes. MVAPICH2-X-SHARP provides a benefit
of up to 11.5X over MVAPICH2-X
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(b) Scaling of MPI Barrier for 2ppn, up to 1,024
nodes. MVAPICH2-X-SHARP provides a benefit
of up to 7.3X over MVAPICH2-X
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(c) Scaling of MPI Barrier for 16ppn, up to 1,024
nodes. MVAPICH2-X-SHARP provides a benefit
of up to 3.8X over MVAPICH2-X

Fig. 9: Performance of MPI Barrier with MVAPICH2-X and MVAPICH2-X-SHARP for 1 processes per node (ppn), 2ppn and

16ppn across various system sizes

broadcast phase (As per the socket-aware algorithm described

in section IV). Results for absolute numbers across node

counts are shown in Figures 6(a) and 6(b) for message sizes

of 16 and 2,048 bytes respectively. The X-axes represent

increasing node counts, the Y-axes represent the Latency

in us and two lines colored red and green correspond to

MVAPICH2-X and MVAPICH2-X-SHARP respectively. We

observe that MVAPICH2-X scales linearly with an increase in

node count, starting at 3.66us for 4 nodes to 61us for 7,861

nodes for a message size of 2,048 bytes. We observed random

jumps at certain node counts, which is most likely system

noise. MVAPICH2-X-SHARP shows close to flat scalability

similar to MPI Reduce, with the latency remaining around 3-

8us up to 2,048 nodes and jumping up to 40us at 7,861 nodes.

We see that MVAPICH2-X-SHARP obtains a speed-up of up

to 6.69X versus MVAPICH2-X (at 2,048 nodes for 16 byte

messages) and up to 5.1X for 2,048 byte messages (at 7,861

nodes).

2) Scaling trends with multiple processes per node: We

evaluate the scaling of MPI Allreduce with multiple processes

per node by comparing the latency for different processes

per node for a fixed message sizes of 16 bytes and 2,048

bytes as well as increasing node counts. The absolute la-

tency for different node counts are depicted in Figure 6(a)

and 6(b) for 16 and 2,048 byte messages respectively. The

X-axis represents increasing node counts, Y-axis represents

the latency in us and different colored lines are used to

show absolute latency of MVAPICH2-X and MVAPICH2-

X-SHARP. Due to limited time, we could only run multi

processes per node experiments up to 1,024 nodes. We observe

that scaling efficiency reduces when increasing the number

of processes per node, primarily due to intra-node operations

taking more time in the process. At 1,024 nodes, we observe

an improvement over MVAPICH2-X of 9X for one process

per node jobs, 4X for two processes per node and 2X for

16 processes per node. We observed a decrease in scaling

efficiency for four processes per node runs. Unfortunately, due

to limited time available on the cluster, we were not able to

re-run the experiments. We are planning to do it during the

next maintenance window.

3) Scaling trends with increasing message size: Fig-

ures 6(c), 7(c), and 8(c) show the impact of message size

on the latency of MVAPICH2-X with SHARP. The X-axes

represent message size in bytes, Y-axes represent latency in

us and 2 lines represent MVAPICH2-X and MVAPICH2-X-

SHARP respectively. As in MPI Reduce, we show specific

node/process per node counts because they are representative

of the entire set of node/process per node pairs. We observe

that the latency remains fairly flat for larger messages up

to 2,048 bytes when compared to the 4 byte latency with

a jump of only 1.2X in most node/process counts. The

speed-up over MVAPICH2-X follows a similar trend as seen

for MPI Reduce, with MVAPICH2-X-SHARP showing large

benefits of up to 9X over the baseline of MVAPICH2-X.

E. Results for MPI Barrier

This sub-section evaluates the impact of MPI Barrier for

various processes per node and node counts.

1) Scaling trends with one process per node: For

MPI Barrier, we report the average latency across all pro-

cesses, similar to what we do for MPI Allreduce. Just as

in the case of MPI Allreduce, MPI Barrier shows the same

trends for minimum and maximum latency as well. For the

one process per node scenario, we evaluate the impact of

increasing node counts from 4 nodes up to 7,861 nodes

(full system scale) on the latency of both MVAPICH2-X

and MVAPICH2-X-SHARP. We observe that MVAPICH2-X-

SHARP has near-flat scaling with an increase in node count

up to 4,096 nodes, with an average latency between 1.7us -

8.2us. The numbers at 7,861 nodes increase in the same way

as observed for MPI Allreduce and MPI Barrier. The experi-

mental results show that the speedup obtained by MVAPICH2-

X-SHARP over MVAPICH2-X goes up to a factor of 11.5X

at large scales. These results are shown in Figure 9(a). The

X-axis in the graph represents increasing node counts, Y-axis

represents the latency in us and red and green lines represent

MVAPICH2-X and MVAPICH2-X-SHARP respectively.
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2) Scaling trends with multiple processes per node:
We use 2 processes per node and 16 processes per node

for a case study of the impact of multiple processes per

node on the latency of a SHARP based Barrier implemen-

tation in MVAPICH2-X. The trends observed are similar

to the ones seen in MPI Allreduce and MPI Reduce, with

MVAPICH2-X-SHARP providing massive benefits at large

scales. MVAPICH2-X-SHARP shows up to 7.3X and 3.8X

improvement over MVAPICH2-X for 2 processes per node and

16 processes per node respectively. The reduction in scaling

improvement over one process per node runs is explained by

the fact that shared-memory based operations add to the intra-

node latency in the phased hierarchical algorithm implemented

by MVAPICH2-X. These results are shown in Figures 9(b) and

9(c), with the X-axis representing node counts up to 1,024 and

Y-axis representing latency in us.

VI. RELATED WORK

The original sharp paper [15] by Mellanox introduced the

SHARP technology, details reasons for several aspects of its

design, as well as showed an initial evaluation of reduce,

allreduce, and barrier using native benchmarks and MPI level

benchmarks.

Bayatpour et al. [16] created novel designs for reduction

collectives. These designs select multiple leader processes

per node which share computation costs as well as drive

concurrent communication. Computation costs are reduced

using SHARP with node-level or socket-level leaders.

Kandalla et al. [17] designed new MPI Iallreduce algo-

rithms using Mellanox CORE-Direct technology to offload

communication costs to the network. The proposed designs

were demonstrated to overlap communication and computation

in the Preconditioned Conjugate Gradient solver routine in the

Hypre software library.

Kumar et al. [18] accelerated MPI Allreduce’s computation

operations on the Blue Gene/Q supercomputer by taking

advantage of each core’s Quad Processing SIMD unit.

Mellanox enhanced the SHARP protocol with new tech-

nology that ships with the latest Infiniband HDR adapters

called Streaming Aggregation in [19]. Reduction trees can

be defined to use the existing low-latency reduction or use

the new streaming-aggregation capability whose protocol is

optimized to increase bandwidth for reduction operations.

Using shared memory for designing collectives is a well-

researched topic. Li et al. [20], [21] developed performance

models for the collectives using shared memory as well as

investigated the design and optimizations of shared memory

collectives with NUMA nodes. Zhang et al. [22], [23] use

shared memory to handle the communication between virtual

machines running on the same node. Their proposed design

enables MPI applications running in a virtualized environment

have efficient intra-node communication using SR-IOV.

Much work regarding the modeling and redesigning of

collective algorithms has been done in literature. Raben-

seifner [24] proposed new algorithms for reduce and allreduce

which were designed based on the results of an analysis.

[25] improved upon collective communication performance

by extending point-to-point communication models, such as

Hockney [26], LogP/LogGP [27], [28], and PLogP [29] to

collective operations. They also introduced ”split-binary”, an

optimized tree-based broadcast algorithm. [30] improved the

performance of collectives in MPICH. For each collective, they

selected multiple algorithms depending on the message size

and number of processes.

VII. CONCLUSION

In this paper, we Designed, and implemented SHARP-based

solutions for MPI Reduce and MPI Barrier in MVAPICH2-X.

We evaluated the impact the proposed SHARP-based solutions

have on the performance of MPI Reduce and MPI Barrier

at scale on Frontera. We also evaluated the impact that

existing SHARP-based solutions have on the performance of

MPI Allreduce at scale on Frontera. We then performed a

careful analysis of the benefits of SHARP-based collective

operations.

Our experimental evaluation showed that our proposed

designs deliver up to 5.4X reduction in latency for Reduce,

5.1X for Allreduce, and 7.1X for Barrier at full system scale

of 7,861 nodes over a host-based solution.

As part of future work, we aim to do a more comprehensive

evaluation of the SHARP-based collective operations with a

larger number of processes per node and even larger scales.

The proposed SHARP-based solutions for MPI Reduce and

MPI Barrier will be available with future releases of the

MVAPICH2-X MPI library.
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