
On the Insecurity of SMS One-Time

Password Messages against Local Attackers

in Modern Mobile Devices

Zeyu Lei1, Yuhong Nan1, Yanick Fratantonio2, and Antonio Bianchi1

1Purdue University, 2EURECOM & Cisco Talos
1{lei76, nan1, antoniob}@purdue.edu, 2yanick@fratantonio.me

code to this number. Finally, either the user is asked to insert the
received authentication code, or the app automatically reads it
from the incoming SMS, at which point the app can send the code
back to the app’s backend. This procedure proves ownership of
a specific phone number (and of the corresponding SIM card). We
note how this protocol effectively uses the SMS channel as the
only “factor” to authenticate to a user’s account.

This mechanism brings significant convenience to users,
especially since users no longer need to create and remember a new
password for each app requiring authentication. It thus does not
come as a surprise that this mechanism is widely used, including
top-popular messaging apps such as Telegram [48]. In particular,
we found that among the top 100 Android apps from the commu-
nication category in Google Play, 24 apps support using SMS OTP
code as the only “factor” for user account authentication. This is
a growing pattern, to the point that Google has introduced three
new APIs in the last few years to support this specific use case.

Unfortunately, this mechanism also brings significant security
implications, since the SMS communication channel has been
proven insecure on many occasions. Multiple times, attackers have
been able to target the telephony networks and successfully redirect
the OTP messages to an unintended receiver. The most prominent
example is SIM-swapping [39] attack, in which an attacker can
lure the telephony company to obtain a SIM card associated with
the victim’s phone number. Another instance of this issue is the
exploitation of the SS7 network (the network internally used of
telecom company to route calls and SMS messages) [21]. More-
over, it is known that state-level attackers can intercept SMS OTP
messages, by interfering with local telecom companies [59]. Most
recently, a study [45] has shown that many Android apps insecurely
implement the generation and verification of SMS OTPs, used in
their authentication protocols. For example, some apps generate
SMS OTPs with insufficient randomness or insufficient length.

Local attacks against SMS OTP authentication schemes.
While previous works have focused on exploiting vulnerabilities
in the SMS channel itself, in this paper, we focus on a different
class of attacks against SMS OTP messages, which we call local
attacks. With local attacks, we indicate a threat model in which an
attacker has control over a malicious third-party app installed on
the victim’s device. The goal of the malicious app is then to “steal”
authentication codes sent via SMS. These attacks are devastating
for apps using the aforementioned 1FA OTP authentication
mechanism since they allow obtaining the only factor used to
authenticate a user. In addition, they also weaken the security of

Abstract—SMS messages containing One-Time Passwords 
(OTPs) are a widely used mechanism for performing authentication 
in mobile applications. In fact, many popular apps use OTPs 
received via SMS as the only authentication factor, entirely 
replacing password-based authentication schemes. Although SMS 
OTP authentication mechanisms provide significant convenience to 
end-users, they also have significant security implications. In this 
paper, we study these mobile apps’ authentication schemes based on 
SMS OTPs, and, in particular, we perform a systematic study on the 
threats posed by “local attacks,” a scenario in which an attacker has 
control over an unprivileged third-party app on the victim’s device.

This study was carried out using a combination of reverse 
engineering, formal verification, user studies, and large-scale 
automated analysis. Our work not only revealed vulnerabilities 
in third-party apps, but it also uncovered several new design and 
implementation flaws in core APIs implemented by the mobile 
operating systems themselves. For instance, we found two official 
Android APIs to be vulnerable by design, i.e., APIs that inevitably 
lead to the implementation of insecure authentication schemes, even 
when used according to their documentation. Moreover, we found 
that other APIs are prone to be used unsafely by apps’ developers.

Our large-scale study found 36 apps, sharing hundreds of 
millions of installations, that misuse these APIs, allowing a malicious 
local attacker to completely hijack their accounts. Such vulnerable 
apps include Telegram and KakaoTalk, some of the most popular 
messaging apps worldwide. Finally, we proposed a new and safer 
mechanism to perform SMS-based authentication, and we prove its 
safety using formal verification.

I. INTRODUCTION

SMS messages (also known as “text messages”) are widely 
used to Two-Factor Authentication mechanisms (2FA). In these 
scenarios, a user is asked to provide a token received via SMS 
in addition to their username and password. In addition, within 
the realm of mobile apps, the SMS channel has also started being 
used as One-Factor One-Time Passwords (1FA OTPs, in short). In 
these scenarios, the user is asked to “prove” the ownership or their 
own telephone number, which acts as the main user identifier: 
“owning a telephone number” equates to “owning the user account” 
associated with it. This mechanism is implemented by first asking 
the user’s phone number, and then sending an authentication

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24212
www.ndss-symposium.org



traditional SMS-based 2FA solutions, since they allow obtaining
one of the two factors.

Although these attacks have been previously studied [10], [18],
[20], [32], [46], modern devices and operating systems implement
new APIs and mechanisms to ease developers and users’ lives,
when implementing and using SMS OTP authentication schemes.
To the best of our knowledge, no study has systematically analyzed
the security of these new mechanisms, and no study has performed
a large-scale evaluation to determine the relevance and the impact
of these threats. Our research aims at filling this gap.

Recent operating systems’ changes to support SMS OTP au-
thentication. To move toward a more secure way for SMS OTP au-
thentication, both Android and iOS employ protection mechanisms
to prevent SMS OTP messages from being read by unauthorized
apps. For example, iOS does not allow any third-party apps to
read or access SMS messages. On the other hand, in Android
devices, third-party apps can request permission to read received
SMS messages, including those messages potentially containing
OTPs. However, starting from January 2019, restrictions have been
put in place to limit the usage of SMS-relevant permissions [12].

Preventing apps from arbitrary reading SMS messages
improves the security of SMS-based authentication schemes since
it blocks automated exploitation (i.e., without user involvement).
However, it also affects the overall user experience, since users
may be required to manually type these OTP messages character
by character in the legitimate app requesting them. For this
reason, new mechanisms for handling OTP messages have been
introduced by iOS [58] and Android [27], [28], [30], aiming at
providing, at the same time, more security guarantees and better
user experience.1

Although these mechanisms are more feasible and promising
as the future mainstream for SMS OTP authentication, little has
been done regarding understanding whether these mechanisms
are indeed secure, which is the most critical thing for SMS OTP
authentication. Unfortunately, as we will show in this paper,
these new mechanisms introduce a new set of weaknesses and
vulnerabilities in mobile apps using them. We believe our findings
are important and concerning, particularly because these recent
OTP-protecting security mechanisms were specifically designed
to protect from the local attacker threat model.

Our work. In this paper, we conduct the first in-depth systematic
analysis of the security of SMS authentication usage in modern
mobile platforms. Our study started with analyzing how modern
mobile operating systems allow users and apps to access SMS
OTP messages. This analysis was carried out using a combination
of studying the official documentation and sample code, reverse
engineering, and formal verification (using ProVerif [11]). These
analyses led to surprising results, identifying a set of attack
surfaces that are either new or existing for a long time but still
have not been fixed yet.

Our research shows that the newly introduced mechanisms
to access SMS OTP messages, while designed to improve the
security and the usability of this authentication method, severely
hinder the security of the application using them.

1We note that since Android provides to developers most of the innovative ways
to access SMS OTP code, our research is mostly focused on Android. However,
our paper also discusses the limited scenarios specific to iOS (Section III-A).

For example, we show that some of the APIs introduced
to ease the usage of these authentication schemes suffer from
profound design bugs that make it impossible to be used safely.
Therefore, apps that use them are susceptible to account hijacking
attacks (see Section VII), which can be carried out by a malicious
third-party app that does not request any permission.

In addition, we also performed two user studies to evaluate if
and how a malicious app can lure a victim user to perform actions
allowing an attacker to steal SMS OTP messages.

To evaluate the severity and real-world impact of these
security threats, we then conducted a large-scale measurement
on 140,586 Android apps, to understand how developers use
SMS-authentication-related APIs and semi-automatically detect
vulnerable apps. This large-scale measurement revealed common
pitfalls in the usage of these APIs that make several apps
vulnerable, including extremely popular communication apps such
as Telegram [48] and KakaoTalk [47]. A successful adversary
who obtains the SMS OTP messages could take full control of
the victim’s account (see Section IX-B).

Compared to prior research, we systematically studied the ways
that enable an adversary to obtain the SMS OTP messages through
a malicious app running on a victim’s device, running a modern
mobile operating system. Our study not only shows that the exist-
ing threats are not well mitigated by current security enhancements,
but it also reveals a set of new threats that are possible due to design
and implementation errors in new mechanisms to access SMS OTP
messages, introduced by modern mobile operating systems.

Lastly, we propose modifications and improvements to the
currently available APIs in mobile operating systems to implement
a more secure scheme for SMS-based authentication. We show
that, differently than previously thought, there is a technical way
to achieve the sweet spot between usability and security. Our
design provides stronger security guarantees without losing any
practicality. For example, our design, similar to the current APIs,
does not require user interaction or permissions. At the same time,
it prevents malicious third-party apps from reading SMS used for
authentication by legitimate apps (see Section X).

In summary, this paper makes the following contributions:

• We systematize how the different mechanisms offered by the
mobile operating system to implement SMS-based authen-
tication can be attacked. We uncover design bugs in recent
Android APIs that were introduced specifically to protect from
the threat of local attackers, which we consider in this paper.

• We perform a user study and a large-scale automated study to
show the impact of these attacks in practice. Our studies lead
to the discovery of several critical vulnerabilities, affecting
several highly popular mobile applications, including Telegram
and KakaoTalk.

• We propose improvements and modifications to the APIs
currently available in mobile operating systems to implement
SMS-based authentication.

II. THREAT MODEL AND 1FA SMS SCHEMES

In this section, we first discuss the threat model and assump-
tions considered in our research, and we then present an overview
of 1FA OTP SMS-based authentication schemes adopted by many
popular apps and how a local attacker can exploit their weaknesses.

2











that this API is as secure (or as insecure) as the previous SMS
Token.

To our surprise, we found that this is not the case: while
the two APIs appear to work in the same way and they have
a very similar documentation (with the only stated difference
of being able to filter based on prefixes), these two APIs are
internally implemented in a very different way. What is even more
interesting is that our analysis found that SMS Token+ is still
vulnerable to our attacks, but due to different reasons. We discuss
these attacks in Section VII-C.

IV. HOW TO MALICIOUSLY OBTAIN SMS OTPS

As explained in the previous section, in modern platforms,
there are a variety of ways for an app to read SMS OTP messages
used for authentication (Step 3 in Figure 1). Unfortunately, as we
explain in detail in the following sections, all these approaches
include potential pitfalls. This is true even for those methods that
were designed to make accessing SMS OTPs more secure.

Specifically, in Section V we show that the newly introduced
mechanisms to streamline the copy-and-paste of OTPs from SMS
messages do not improve the overall security, since they are still
prone to deception attacks.

Then, in Section VI, we will show that, users may be willing
to give the READ_SMS permission to malicious apps. Our
results are complementary to previous studies on how users
(mis-)understand permissions. In fact, our study shows that, for
the specific case of the READ_SMS permission, most of the
users have a general understanding of how it works, but they
are unaware that an app able to read SMS can also potentially
compromise other apps’ accounts.

Finally, in Section VII we will show that the new APIs
introduced to automatically read SMS OTP messages in Android
are either error prone or intrinsically unsafe. Consequently, many
apps using these APIs are vulnerable. In addition, attacking these
vulnerable apps can be done automatically, without requiring any
user interaction. In fact, while the attacks presented in Section V
and Section VI require to deceive users to perform some kind
of UI interaction (either to copy-and-paste an OTP or to grant a
permission), these attacks do not require user interaction.

V. GETTING SMS OTPS BY DECEIVING USERS

In this section, we elaborate on the attack in which an adversary
can deceive users and obtain the SMS OTP message through a mali-
cious installed app without any SMS-related permissions. Different
from the previous phishing attacks in which the malicious app
mimics the authentic UI and steal user inputs [14], [20], here, we
focus on understanding how the newly introduced user-interaction-
based mechanisms (e.g., the One-Tap mechanism) can affect the
efficacy of UI deception attacks. Specifically, we first elaborate
on the attack scenario and its root cause. Then, we perform a
user study to objectively measure potential weaknesses of such
user-interaction-based mechanisms for SMS OTP authentication.

A. Assumptions

The attack presented in this section assumes that an attacker is
able to deceive the user. To deceive the user, the attacker controls a
malicious app that requests an SMS OTP message in a seemingly
legitimate scenario (e.g., while registering a new account in
an SMS OTP 1FA scenario). Note that as mentioned earlier

in Section II-A, this attack is orthogonal to other UI deception
attacks that exploits the OS-level weakness (e.g., task hijacking
or activity hijacking [13], [50]). Specifically, the attacker first
asks the user for their phone number, as it typically happens when
interacting with an app using SMS OTP for the first time. Then,
the attacker remotely requests the SMS OTP message of a user’s
legitimate account (e.g., Facebook) by contacting the legitimate
app’s backend server and specifying as phone number the one just
inserted by the victim. At this point, the victim will receive an
SMS message containing the legitimate account’s OTP, and the
attacker-controlled app will try to deceive the user into inserting
the received OTP into it. Notice that in here, since the victim will
receive one and only one message after the insertion of their phone
number, it is impossible for the victim to distinguish the attack
by the timing of the message. Since the incoming message exactly
meets the user expectation of receiving an SMS OTP message,
the victim user will likely input the OTP code in the phishing app.
This deception attack can be made even worse by the fact that the
SMS sent by the legitimate app’s backend may not contain a clear
indication of the name of the app that it is targeting.

B. Understanding User Reactions to Deception Attacks

Previous studies have already explored this type of attack and
empirically showed that users are likely to be lured by them [23].
However, no one has studied if the newly introduced mechanisms
to ease the OTP copy-and-paste user interaction mitigate this
threat. (recall the “ask-to-copy” and One-Tap mechanisms
described in Section III-A)

Therefore, in this section, we evaluate the impact that these
new mechanisms have in mitigating this attack. To this aim, we
performed a user study to measure the effectiveness of these de-
ceiving attacks in different scenarios, including situations in which
these newly introduced OTP code insertion mechanisms are used.

Design of the user study. To perform the user study, we obtained
IRB approval from our institution, and we used subjects recruited
using mTurk [4], a popular task recruitment platform, successfully
used in similar security-related user studies [9]. By using a
dedicated mTurk feature, which allows us to know user experience
with different OSes, we selected users familiar with iOS to
test iOS-specific scenarios, and users familiar with Android for
Android-specific scenarios. During our evaluation, we removed
those subjects not completing the assigned task or incorrectly
answering our validation questions.

The participating subjects were asked to use their browser to
access an interactive environment for a usability study, simulating
an Android phone or an iOS phone. We implemented this
interactive environment by using an app prototyping online tool
named Marvel App [2]. This interactive environment was used
to simulate a phishing scenario in which the user is required to
register a new account in a malicious app. The registration process
requires the user to input the OTP received in an SMS message.
During this process, the malicious app uses the user’s phone
number to request an OTP message from another account (in our
test, Telegram, a popular communication app). In this simulated
environment, the participants can either input the OTP by clicking
the OS-provided copy button or manually type it through the
on-screen keyboard. We present the details of these scenarios
step-by-step in Appendix (Figure 11 and Figure 12).

We divided subjects into four groups: Android-Manual,
Android-One-Tap, iOS-Manual, and iOS-Autofill. Subjects in

7



the two “Manual” groups had to insert the OTP by exclusively
using the system keyboard. Subjects in the groups of Android-
One-Tap and iOS-Autofill were respectively offered the two new
mechanisms in Android and iOS for SMS OTP authentication.
We consider the subjects’ accounts as compromised once they
inserted the OTP code into the malicious app.

TABLE II. USER REACTIONS TO DIFFERENT PHISHING

SCENARIOS FOR STEALING SMS OTP MESSAGES BY A MALICIOUS APP

Test Case Total # Escaped users # (%) Compromised users # (%)

Android-Manual 51 28 (55%) 23 (45%)

Android-One-Tap 61 26 (43%) 35 (57%)

iOS-Manual 51 15 (29%) 36 (71%)

iOS-Autofill 51 16 (31%) 35 (69%)

Results and findings. As shown in Table II, our study first
confirms that the percentage of subjects inserting the OTP in
the malicious app is high over the different scenarios, ranging
between 45% to 71%. More importantly, our study shows that the
percentage of subjects that escaped the attacks does not change
significantly between the manual input and the new mechanisms
(i.e., Android-One-Tap and iOS-Autofill). Therefore, we conclude
that all current available methods that require user-interaction to
acquire an OTP, including the newly introduced ones, are highly
vulnerable to deception attacks.

As a more concrete example, consider the Android One-Tap
SMS mechanism. Recall that, as shown in Figure 4(c), the interface
of this mechanism clearly shows the app name when the user is
about to insert the OTP code. In our simulation, we set this name
to be “FunnyChat” instead of being “Telegram”. In other words,
the name appearing in the One-Tap interface is the name of the
malicious app trying to steal the OTP. Nevertheless, based on the
results of our user study, this additional indication still did not
prevent users from inserting the OTP into the malicious app.

In addition, there is another issue making this mechanism
more prone to deception attacks. Specifically, although the
One-Tap API clearly shows the user the name of the app in
which the text message is going to be inserted (see Figure 2(c)),
we verified that a malicious app can arbitrarily name itself as
the target app, and hence making itself harder to detect when
requesting the OTP code of the target app. In fact, we were able
to create an app showing the name “Telegram” on its One-Tap
interface and get it published on the Google Play Store.

Design Weakness #1: Users do not have a reliable way to
identify the identity of the app in which they are asked to copy
an SMS OTP message.

In summary, we conclude that users can be easily deceived in
inserting an OTP into a malicious app, and the newly introduced
mechanisms (i.e., the “ask-to-copy” and One-Tap mechanism) do
not improve the user’s ability to detect these deceiving attacks.

VI. BYPASSING OS PERMISSIONS

AND MARKET RESTRICTIONS TO ACCESS SMS MESSAGES

For an attacker, the most straightforward way to steal the
SMS OTP in Android is to have the permissions to read/intercept
all the incoming SMS sent to a device. This attack scenario has
been widely known and discussed by previous research [32],
[46], and modern OSes has employed extra restrictions as
countermeasures [12], [17], [57]. Specifically, for an attacker,
obtaining this permission is hindered by both OS-level restrictions,
imposing that the user has to explicitly grant this permission to an

app, and by Market-level restrictions, which mandates additional
vetting for apps requesting this permission. However, in the rest
of this section, we will show how, and under which conditions,
it is still possible to bypass these restrictions due to the various
related design weaknesses.

A. Bypassing OS-level Restrictions

Exploiting users’ misunderstanding about SMS permissions.
The permission to read SMS is categorized as Dangerous in
Android. Therefore, an app wanting to obtain it has to show a
specific system-managed dialog box on which the user has to
press the button “ALLOW” (shown in Figure 3).

Prior studies have demonstrated that due to the lack of
understanding about technical details, certain users will either
totally ignore the warnings about the permission usage or fail to
understand the meaning of the different permissions [35]. However,
we claim that, in the specific case of the permission to read text
messages, the situation is even more worrisome. In this case, the
majority of the users do not understand the full consequences of
pressing the “ALLOW” button in the interface shown in Figure 3.

To empirically investigate this claim, we performed a
second user study, in which we asked Android users what the
consequences of pressing the button “ALLOW” (in the dialog
box shown in Figure 3) are. This user study has been performed
under the same setting as the previous user study (described in
Section V-B), using mTurk [4] for recruiting participants and
Marvel App [2] for simulating the interaction with a phone.

In this study, we first show the home screen of an Android
phone, in which a set of well-known popular apps (e.g., WhatsApp,
TikTok, and Amazon) are installed. Then, we show that this device
is installing a new app requiring the permissions to send and
read SMS messages with a system dialog window (see Figure 4).
Finally, we ask our subjects to answer a set of questions (as shown
in the left column of Table III) about the potential consequences
of pressing the “ALLOW” button in this dialog window. Subjects
were allowed to select multiple options. Details of the survey are
presented in Appendix (Figure 10).

TABLE III.
STATISTICAL RESULTS OF THE SURVEY WITH 57 VALID PARTICIPANTS.

Available options # Subjects choosing True

1) Read all my SMS messages 52 (91%)

2) Get access to my accounts on WhatsApp or Telegram 22 (39%)

3) Modify any SMS messages in my inbox 23 (60%)

4) Destroy my phone 16 (28%)

5) Leak my location 33 (58%)

1. Question – Please choose “True” for all potential consequences of clicking “ALLOW”

in the prompt window.

2. Option 1 and 2 are correct and the others are incorrect.

In total, we collected answers from 57 valid participants. As
can be seen from Table III, since 91% (52/57) of our subjects
correctly selected option-1, we can conclude that it is clear to
the vast majority of the users that pressing the “ALLOW” button
in the permission prompt allows an app to read all SMS messages
on the device. While previous studies [35] have shown that many
users struggle to understand Android permissions, our study
shows that for the specific case of the READ_SMS permission,
most of the users have a general understanding of how it works.
However, most of them are unaware that by allowing an app
to read SMS, the app can potentially compromise accounts of
other applications. In fact, most of the subjects know how the
permission system works in general, but only 39% of them know

8



that an app that can read SMS messages can also read OTPs and,
therefore, compromise accounts of popular apps. We believe this
is an indication that many users are unaware of this specific threat
when taking permission-related decisions in Android.

We believe that this is due to the fact that the permission
dialog box does not provide a sufficient explanation of the
security consequences of this choice. More specifically, the dialog
box simply says “Allow 〈app name〉 to send and view SMS
messages?”, but it does not mention that having the ability to
read SMS messages also allows a malicious app to compromise
accounts of those apps using 1FA SMS OTPs.

In summary, we conclude that the SMS permission prompt
does not provide sufficient information regarding the security
consequences of pressing its “ALLOW” button.

Design Weakness #2: The system interface asking for the
permission to read SMS do not explain the severe security
implications that this choice can have.

B. Bypassing Market-level Restrictions

App version update. As mentioned earlier, an app requiring
the permission to read the SMS inbox is subjected to additional
policies when uploaded to the Google Play Store. Specifically,
the app is manually checked by Google Play to ensure it is
suitable for being an SMS handler app. However, we found that
the enforcement of this policy can be easily bypassed. In fact,
we were able to publish on the Google Play Store an app not
following these requirements.

To achieve this goal, we first implemented an app that respects
these requirements. Then, we uploaded it to the market and waited
for its approval. Once approved, we modified it (by publishing an
update), transforming it in an app that does not show the default
SMS prompt (Figure 4) and that it is able to silently read text
messages and upload them online 3. While the initial approval
took several days (suggesting a comprehensive analysis performed
by market operators), the updated was accepted in a few hours.
Theoretically, it is also possible to detect the malicious behavior we
added to the uploaded app through static analysis. Unfortunately,
this was not the case in our experiment. We also tried to upload an
application requesting the permission to read text messages, but
not following the market policies. In this case, the app was rejected.

To this end, our experiments suggest that, most likely, the
human-assisted verification is not performed when the app is
updated, since app updates are accepted in a few hours while
new submissions are accepted after days. We acknowledge that
the Play Store may be treating differently apps than have a
meaningful number of users. However, as of November 2020, our
uploaded app has been downloaded more than 100 times and it
even received one comment from a legitimate user. Still, it does
not exhibit any sign of further verification.

Design Weakness #3: Market-level policies are not verified
for updated versions of an already published app.

Requesting alternative permission. We also found another way
to bypass this vetting process. An Android app can obtain a permis-
sion named BIND_NOTIFICATION_LISTENER_SERVICE

to read notifications received by the user. All received SMS

3Due to ethical considerations, we implemented the app so that it only exhibits
the malicious behavior when running on our testing devices.

messages trigger a notification containing their content. Therefore,
an app having the permission to read notifications can effectively
read all the incoming messages, including those containing OTPs.

Indeed, recent researchers [52] found malware in the Google
Play Store, which specifically utilizes the notification system
as a sidestep to SMS-related permission restrictions, and hence
steal the OTP messages of other accounts. In addition to what
already found by this work, we noticed inconsistencies on how
the permission to read notifications is handled compared to the
READ_SMS permissions.

Specifically, the “reading notification” permission is
considered as Special by the Android OS [29]. To obtain this
permission, the app has to ask the user to open a dedicated
interface and select the name of the app. Thus, from the perspective
of convincing the user to grant this permission to a malicious
app, obtaining the permission to read notifications is harder than
obtaining the read SMS permission, since it requires complex user
interaction (not just pressing an “ALLOW” button). Surprisingly,
publishing on the Google Play Store an app asking the permission
to read notifications is easier than publishing an app requesting
the permission to read SMS messages, since it does not trigger any
extra vetting. We confirmed this by submitting to the market an app
whose only behavior is to ask the permission to read notifications.
The app was accepted without any particular request or delay.

Design Weakness #4: Market-level policies and OS-level
policies are not aligned.

VII. EXPLOITING MODERN SMS APIS

In previous sections, we have described attacks requiring some
form of user interaction, either in the form of the user copy-pasting
the OTP, or granting specific permission to an app. Instead, in
this section, we will show how to abuse recent APIs in modern
Android versions (the ones discussed in Section III-C) to perform
automated, stealthy, and user-interaction-free attacks in various
circumstances. We will also report the results of a large-scale study
on how many apps are affected by these attacks in Section IX.

Assumptions. For this type of attack, we assume that the victim
app uses one of the system-provided APIs for authentication.
However, we do not assume our malicious app to have any
permission other than Internet (for sending out the SMS
OTP code), and we do not assume any user interaction. The
permission-less and interaction-free nature of these attacks makes
them more worrisome than the previous ones.

Preliminary observations. There are two fundamental observa-
tions that lay the basis for our attacks against these modern SMS
APIs. The first observation is that, in modern Android versions, if a
malicious app can control part of the content of an SMS OTP mes-
sage, the malicious app can read the entire message, without requir-
ing any permission nor user interaction. This surprising behavior is
due to the existence of the three APIs described in Section III-C al-
lowing to access SMS messages without requiring any permission
depending on whether they contain specific strings (i.e., the token
or the hashcode). For example, consider Figure 7, and suppose that
an attacker is able to lure (in Step 1) a victim app’s backend server
to send an SMS OTP message (in Step 2) whose content includes
the hashcode associated to the malicious app: in this scenario, the
OS would automatically redirect the OTP-carrying SMS to the
malicious app, without the need of requesting any permission.

9





To further corroborate our claim, we used ProVerif [11], [37]
to demonstrate the fundamental design flaw of the SMS Token

API. ProVerif is a software for automated reasoning and verifi-
cation about the security properties of a given cryptographic or
communication protocol. In our case, we modeled the interaction
between an app using the SMS Token API and a corresponding
backend server, according to what shown in Figure 6. ProVerif was
able to show how an attacker can obtain the OTP from the server.
The details of the proof can be found in Appendix (Figure 13).

Design Weakness #6: The usage of the SMS Token API
(createAppSpecificSmsToken) for authentication
purposes is unsafe due to its vulnerable design.

Unfortunately, the official documentation of this API does
not warn against the dangerousness of its usage. For this reason,
we found developers of widely used apps (e.g., Telegram) to use
it as part of their SMS-based authentication, making their app
vulnerable to the aforementioned attack.

C. Attacking Apps using SMS Token+

The official documentation of the SMS Token+ API
suggests using this API in the same way as the SMS Token

API. In this case, the app using this API is vulnerable to the same
attack as in SMS Token, because the only described difference
is about the presence of a potential custom prefix in the SMS OTP
message, which is irrelevant from a security standpoint.

However, it is possible to use it in a safer way, but this mecha-
nism is not explained in the official documentation. In other words,
the vulnerability in this API is due to the incorrect documentation
rather than its implementation (as in SMS Token). By reverse-
engineering the implementation of this API, we found that its inter-
nal behavior is very similar to SMS Retriever. Specifically,
the returned token is always equal to the calling app’s hashcode
rather than a random one. Likewise, a received message containing
a hashcode A is only delivered to the app whose hashcode is A.

Consequently, the correct way to use this API safely is to
ignore its return value and, instead, place the app’s hashcode in
the SMS OTP messages generated by the app’s backend server.
Unfortunately, this critical information is never mentioned in the
documentation, and hence app developer will still implement
this API in the same vulnerable way as in SMS Token. On the
contrary, the official documentation states: “The token is only good
for one use within a reasonable amount of time,” hinting to the fact
that the token is randomly generated or, at least, it may change.

Design Weakness #7: The SMS Token+ API
(createAppSpecificSmsTokenWithPackageInfo)
documentation suggests using it in the same way of the SMS

Token API, thus making its usage equally insecure.

D. Responsible Disclosure and Developers’ Response

We reported our findings about the SMS Token and SMS

Token+ APIs to the Android Security team. We had a meeting
with several Google engineers, they acknowledged the issues, and
we discuss possible mitigations. Later, Google informed us that,
in an upcoming quarterly update of Android, they plan to fix or
deprecate these APIs.

VIII.
ADDITIONAL DESIGN WEAKNESSES OF THE MODERN APIS

In addition to what described in the previous sections,
we identified other design weaknesses affecting the SMS

Retriever, SMS Token, and SMS Token+ APIs.

A. Modern APIs’ Inbox Management

The SMS Retriever, SMS Token, and SMS

Token+ APIs are designed to deliver the content of an
SMS OTP only to a specific app. Therefore, SMS received
by using these APIs should not be stored in the SMS inbox.
Otherwise, a malicious app able to obtain the Android permission
to read SMS (as explained in Section VI) can read them and
obtain the OTPs they contain.

Unfortunately, we found that this is not the case. Specifically,
the SMS Retriever API always stores the received SMS
messages (i.e., messages containing the app’s hashcode) in the
SMS inbox. Interestingly, for the other two APIs (i.e., SMS

Token and SMS Token+), the received message does not
go normally in the SMS inbox, but an attacker can force this to
happen. In fact, these APIs avoid storing the received message in
the inbox if and only if the following two conditions are both true:

• an app on the victim’s device has previously called these APIs
and obtained a token T ;

• the incoming SMS message contains T .

An attacker can easily exploit this behavior by requesting to
the backend server of an app using these APIs an SMS OTP
specifying a random token, rather than a token returned by these
APIs. Once received, the message containing a random token will
be stored in the SMS inbox, and hence it will be readable by apps
allowed to read text messages.

Design Weakness #8: SMS OTP Messages are stored in the
SMS inbox (making them readable by any app with proper
permissions), even when obtained with APIs designed to
deliver them only to a specific app.

B. Cryptographic Weaknesses

From a cryptographic standpoint, the SMS Retriever

API does not follow proper guidelines. Recall that the hashcode
is computed by converting a SHA256 hash to a base64 string and
truncating it to 11 characters. Effectively, this reduces the strength
of the hashing algorithm to 66 bits (since a base64 character has
6 bits of entropy). Although truncating a hash in itself is not a
security problem, NIST guidelines [16] mandate not to truncate
a SHA256 hash to less than 224 bits. In fact, an attacker could
be able to craft a malicious application having a specially crafted
package name so that it has the same hashcode of a victim’s app.
This attack requires finding a second pre-image of a 66-bit hash,
which, although hard, it could be computationally feasible for a
determined attacker.

To test how Android and the Google Play Store behave in
case of hashcode collision, we created two applications having the
same hashcode. We note that due to the Birthday Attack, creating
two colliding applications only required a few hours of CPU time.
Interestingly, we were able to upload and get approved both the
applications on the Google Play Store. Therefore, we concluded
that market operators do not verify the absence of hashcode
collisions among published apps.

11



Once two apps with the same hashcode are installed on
the same device, we noticed that both apps stop receiving any
message delivered with the SMS Retriever API. However,
if a malicious app (with a colliding hashcode) is installed on a
device in which the collided legitimate app is not installed, the
malicious app can receive any SMS OTP message delivered by
the legitimate app’s backend.

Design Weakness #9: The SMS Retriever API does
not respect security guidelines in terms of hashing strength.
The market does not check for hashcode collisions.

IX. LARGE-SCALE APP MEASUREMENT

To better understand how apps use the modern APIs for
SMS OTP authentication, we perform a large-scale measurement
analysis over Android apps in the Google Play Store. Our results
show a number of highly popular apps confirmed to be vulnerable
due to the usage of these APIs.

Dataset. To build our dataset, we obtain the package names of
all available apps in Google Play Store using AndroidZoo [3].
Starting from this list, we downloaded all those apps with more
than 50,000 downloads, based on the app’s information shown
in the Google Play Store. To boost our app collecting process, we
downloaded the apps’ APK files from both Google Play and third-
party websites (e.g., APKPure [5]) based on their unique package
names. Our final dataset includes a total number of 140,586 apps,
downloaded between December 2019 and February 2020.

A. Vulnerable App Identification

We use a mix of static and dynamic analysis mechanisms to
find apps that are vulnerable due to their usage of the modern
SMS authentication APIs.

Static analysis. Our tool uses FlowDroid [7], together with a set
of heuristics for locating those apps that are highly likely to be
vulnerable.

To detect the usage of the SMS Token and SMS

Token+, our analysis first checks for the method
signatures (i.e., createAppSpecificToken() and
create...WithPackageInfo()) along with the call graph
constructed by FlowDroid. The call graph helps us to eliminate
those dead code which are actually not invoked by the app.
These two APIs are intrinsically unsafe if used according to their
documentation (as explained in Section VII-B and Section VII-C).
As a result, their usage is an indication of a possible vulnerable
authentication scheme.

For apps using the SMS Retriever mechanism, our
static analysis attempts to detect if (1) the app either contains its
own hashcode or it dynamically computes it, and (2) sends it to a
server. These features strongly indicate that the backend server may
use the obtained hashcode from the app to create an SMS OTP mes-
sage (making the app vulnerable, as explained in Section VII-A).

To detect the presence of a hardcoded hashcode, we compute
the app’s hashcode on our own, and we use string matching
to find its presence in the app’s code. Besides, to detect if an
app dynamically computes its own hashcode, we check if the
app invokes specific APIs needed for obtaining its own signing
certificate (as shown in Figure 9) and how the results of these
APIs are chained together. Lastly, we use the data flow analysis

android.content.ContextWrapper: getPackageName()

android.content.pm.Signature: toCharsString()

java.security.MessageDigest: update(byte[])

java.util.Arrays: copyOfRange(byte[],int,int)

android.util.Base64: encodeToString(byte[],int)

Fig. 9. Method signatures for dynamically generating an app’s hashcode.

provided by FlowDroid to detect if the hashcode is indeed sent
out through a network API.

We note that developing a static analysis tool that can detect
vulnerable apps with high precision is outside this paper’s scope.
Our goal is to have a tool that we can use to focus our subsequent
dynamic analysis on those apps that are potentially vulnerable.

Dynamic confirmation. Further, we use dynamic analysis and
manual reverse engineering to confirm if the candidate apps
detected by our static analysis are indeed vulnerable. Specifically,
we reverse engineer the apps to confirm the usage of the detected
APIs as part of their authentication scheme. We classify apps
passing our reverse engineering analysis as “Suspicious”. Then,
to confirm that an app is vulnerable (i.e., a malicious app can steal
its OTP without requiring any permission nor user interaction),
we verified that it is possible to lure the app’s backend to generate
an OTP message in a way in which an attacker can control its
content. This property implies that a malicious app can steal the
OTP, as we explained in Section VII.

To dynamically verify this property, we instrument the app (us-
ing re-packaging and the Xposed instrumentation tool [1]), to mod-
ify the hashcode (in case of SMS Retriever) or Token (in case
of SMS Token and SMS Token+). Then, we manually inter-
act with the app, triggering its authentication procedure. Finally,
we classify the app as “Confirmed” if the app’s backend sends us
an SMS OTP containing a modified hashcode or Token. Also note
that, in some of the apps, the backend server code logic got updated
after we notified the developers of the vulnerability affecting their
authentication scheme. We classified those apps as “Fixed”.

Our dynamic verification reveals that most of the false positives
reported by the static analysis are caused by those apps using
hashcode for app integrity check (e.g., re-packaging detection)
rather than implementing the SMS Retriever API.

Measurement results. Table IV summarizes our findings. We
found 20 apps confirmed as vulnerable (Column 3 in Table IV)
by the time of our dynamic analysis, which accounts for a total
number of more than 133 million installations in the Google
Play store. Meanwhile, we have found 16 apps (Column 4 in
Table IV), which we previously confirmed as vulnerable and got a
server-side fix, after we reported our findings to them. In summary,
by considering both “Confirmed” and “Fixed” apps, we had 36
vulnerable apps, sharing more than 230 million installations.

Note that, due to several reasons, there are certain apps for
which we cannot trigger the authentication procedure. For instance,
some apps’ backend servers only send SMS messages to interna-
tional phone numbers, which we cannot obtain. For this reason,
even if our reverse engineering suggested that their authentication
scheme is vulnerable, we flagged them as Suspicious. We found 0
apps using the SMS Token+ mechanism. We believe that this is
because this API has only been introduced recently in Android 10.

12



TABLE IV. RESULTS OF OUR ANALYSIS OF 140,586 ANDROID APPS. NOTE

THAT THE NUMBER OF UNIQUE APPS CAN BE LOWER THAN THE SUM OF THE NUMBERS IN EACH CATEGORY SINCE SOME APPS EXHIBIT MULTIPLE FEATURES.

Candidates Suspicious Confirmed Fixed

SMS Retriever: dynamic hashcode 56 20 9 0
SMS Retriever: hardcoded hashcode 38 7 4 3
SMS Token (createAppSpecificToken) 38 2 7 13
SMS Token+ (createAppSpecificTokenWithPackageInfo) 0 0 0 0

Total number of unique apps 129 29 20 16

B. Case Studies

1) KakaoTalk: KakaoTalk [47] is a popular instant messaging
app, used by 93% of the smartphone owners in South Korea. The
app is also extremely popular in other Asian countries [62]. We
found that KakaoTalk’s backend uses SMS Retriever with
an app-provided hashcode. Specifically, the app’s code contains a
hardcoded hashcode that is sent to the app’s backend and used by
the backend to generate the SMS OTP message. Hence, its imple-
mentation is vulnerable (as we described in Section VII). For this
reason, an attacker can create an account associated with a phone
number that they do not own and impersonating the legitimate user.

We have recorded a demo video4 to illustrate an end-to-end
attack against KakaoTalk. The attack is carried out with the follow
steps:

1) On the victim’s device, the installed malicious app
(BadAppForVictim) invokes SMS Retriever.

2) On the attacker’s device, the attacker starts the sign up in the
KakaoTalk app, specifying the victim’s phone number.

3) On the attacker’s device, the attacker alters the KakaoTalk
app behavior (e.g., through the Xposed framework [1]), and
sends the hashcode of BadAppForVictim to KakaoTalk’s
backend server.

4) The KakaoTalk’s backend server sends the verification text
message to the victim’s device, inserting the hashcode of
BadAppForVictim. Consequently, this text message can
be read by BadAppForVictim.

5) On the victim’s device, the BadAppForVictim sends the
received SMS OTP message back to the attacker’s device via
Internet.

6) On the attacker’s device, BadAppForHacker spoofs an
incoming text message containing the stolen SMS OTP
message. Consequently, on the attacker’s device, the KakaoTalk
app signs in as the victim.

Through the steps above, the attacker has successfully signed
up using the victim’s phone number and can now act as the victim
to receive and response incoming messages. Someone adding
to their KakaoTalk contact list the victim’s phone number will
end up communicating with the attacker’s device, instead of the
victim’s device.

2) Telegram: Telegram is one of the most popular instant
messaging apps in mobile platforms. As of January 2020, it
has more than 100 million downloads in the Google Play [48].
The app was identified as vulnerable in a previous run of our
experiment, performed in June 2019. During our research, we
found that the SMS OTP authentication process in Telegram
used both SMS Retriever and SMS Token (based on
the Android version). The usage of the SMS Token API made
the app vulnerable, as explained in Section VII-B.

4https://pursec.cs.purdue.edu/projects/sms mobile.html

We also noted that on the Google Play Store, there exist many
Telegram unofficial clients. These apps allow users to chat with
other Telegram users and connect to the Telegram backend server.
We found that many of these apps did not update their code as
quickly as the official Telegram client. This aspect explains the
apps that we classified as “Fixed” in Table IV, since these apps still
contain the unpatched Telegram code, but they cannot be exploited,
since they use the, now patched, Telegram backend server.

3) Sinch Library: The Sinch Library is an Android
authentication library, targeting Android apps’ developers [53].
We found that Sinch Library provides SMS authentication
functionalities that not only uses the vulnerable SMS Token

mechanism but also uses the SMS Retriever mechanism
in a vulnerable way. Specifically, one of our “Confirmed” app
is vulnerable because it uses a Sinch Library’s function that
internally uses the SMS Token API.

Furthermore, another app we found was vulnerable because
it uses a Sinch Library’s function that internally uses the SMS

Retriever API incorrectly. Specifically, we found that the
documentation of the Sinch Library explicitly instructs developers
to insert their hardcoded hashcode as an argument of a function
used to start the library-provided SMS authentication functionality.
Then, the library sends the hashcode to the library-provided
backend server [54]. This app-provided hashcode is used to
generate the SMS OTP message, making the app vulnerable to
the attack described in Section VII-A.

C. Responsible Disclosure and Developers’ Response

For all apps identified as vulnerable in our study, we have
contacted their developers. Telegram, KakaoTalk, and the
developers of the Sinch Library acknowledged our findings. Both
the developers of KakaoTalk and Telegram offered us bug bounties.

As of our submission, the Sinch Library developers have not
released any update to fix the found issues yet. For KakaoTalk,
the developers have updated its server-side implementation to
no longer trust the hashcode received from the client-side mobile
app. For Telegram, after our notification to the developers, the
backend’s code was quickly updated, not to include in the sent
SMS the token used by the SMS Token API. Later, the app’s
code was updated [60], removing the usage of both the SMS

Token API and the SMS Retriever API.

X. MITIGATION STRATEGIES

Throughout this paper, we have discussed many different
proposals for secure mechanisms and APIs to implement
SMS-related authentication functionality. However, each of these
proposals has some security concerns and explores different
trade-offs in the design space. In this section, we start by
systematically enumerating all the “ideal features” that such a
security mechanism and API should have.

13



We note that none of these features, when considered
independently, is novel per se. For instance, the idea of using
a dedicated channel for SMS OTP messages and the idea of
filtering OTP messages based on their content was initially
explored by Mulliner et al. [46]. However, this solution does not
cryptographically link the delivered SMS with the app it targets.

Given that this research area is well explored and that there
have been several proposals by both academia and industry
(including Google’s several attempts to provide such APIs) [9],
[10], [12], [17], [23], [27], [28], [30], [46], [57], one may think
that it is not possible to obtain a solution that achieves all these
properties at the same time, and that there necessarily is some
sort of trade-off. We believe that is not the case, and we offer a
proposal that satisfies all these properties.

Ideal properties. An “ideal” API should implement (note: “Wn”
refers to Design Weakness #n): 1) the OTP-carrying SMS should
be automatically forwarded to the appropriate app (no manual
insertion), making W1 irrelevant; 2) the SMS should only be deliv-
ered to the proper app using an SMS Retriever-like method,
making W6 and W7 irrelevant; 3) it should have appropriate docu-
mentation (addressing W5) and use proper crypto (addressing W9);
4) an OTP-carrying SMS should never reach the SMS inbox (ad-
dressing W2, W3, W4, and W8); 5) the user should be able to see
the received messages, so to prevent that the presence of this func-
tionality in a device can be exploited to silently send text messages
to a phone number, which could result in financial damage; 6) it
should be easily usable by existing apps on existing mobile devices.

Our proposal. We now present a safer variant of existing APIs
that can be used by an app to receive OTP-carrying SMS messages
and satisfy the ideal properties discussed above. Our proposed
API relies on the assumption that the Android OS can established
a secure communication channel with third party apps. Also, we
assume that a system service can reliably identify the app it com-
municates with (and its signature). A system service can achieve
this goal by using the Binder.getCallingUid() API.
These assumptions are in-line with our threat model (Section II-A).

Our proposed API works similarly as the SMS Retriever

API, but with the following modifications:

1) SMS OTP messages using this API must start with a precise
prefix (e.g., “<OTP >”).

2) Messages starting with the specific prefix, under no
circumstances, are delivered to the SMS inbox.

3) Messages starting with the specific prefix can be visualized
by the user using a dedicated system app.

4) Messages are delivered to the app whose hashcode is contained
in the message itself.

5) The hashcode is computed as in the current SMS

Retriever API, but its length is truncated to 38 base64
characters instead of 11 (ensuring 228 bits of entropy, as
suggested by NIST guidelines).

We now explain how each of these modifications satisfies the
ideal properties listed above. Condition 1 and Condition 2 enforce
that SMS OTP messages are unequivocally flagged and never
delivered to the SMS inbox. In this way, a malicious app, even if
able to obtain the permission to read text messages, cannot access
them. Condition 3 avoids that the presence of this functionality in
a device can be exploited to silently send text messages (which
can potentially cause financial damage) to a phone number. In fact,
even if normal apps cannot access these messages, the user will

always be notified of their arrival and able to see them. Condition
4 and Condition 5 makes this API deliver messages like the current
SMS Retriever API. However, the longer hashcode ensures
that a malicious app cannot obtain the same hashcode of a legit-
imate app. In turn, this property, thanks to the SHA256 pre-image
resistance, guarantee that an app’s backend server can be sure that
the SMS will only be delivered to the app itself. Considering the
required prefix, the typical length of an OTP, the length of the
hashcode, and the fact that an SMS message can be long up to
160 characters (without incurring in any extra cost), the SMS OTP
message still has about 100 characters freely usable by a developer.

We implemented the aforementioned system using ProVerif,
and we verified that a malicious app, even if able to read the
content of the normal inbox, cannot obtain unauthorized access
to an OTP. Details of our ProVerif implementation and proof are
provided in Appendix (Figure 14).

Compared to previously presented solutions, including the
Google’s implementation of the SMS Retriever API, our
solution is able to achieve all the aforementioned “Ideal Properties.”
In addition, to the best of our knowledge, this is the first work
formally verifying the properties of an API to access SMS OTPs.

Additional recommendations. As we explained in Section VII-A,
developers have difficulties in computing the required hashcode,
and this aspect leads them to mistakenly implement backend
servers that, instead of hardcoding the correct hashcode, obtain
it from the app. Therefore, we recommend that, in addition to
implement the proposed API:

• The current documentation is updated to clearly state that, the
backend server should not obtain the hashcode value from an
app. Alternatively, in case supporting several legitimate client
apps is needed, the server must verify that the hashcode sent
by the app matches one of the legittimate apps’ hashcodes.

• Developers should be offered a tool to easily compute the
hashcode of a given app (starting from its APK file). The
hashcode should also be shown in standard development tools,
such as Android Studio and the Developer Console on the
Google Play Store.

Note that the above recommendations are not part of our
proposed defense mechanism, but they aim to prevent the misuses
of the current APIs.

XI. RELATED WORK

SMS-based authentication issues. Previous studies have identi-
fied a set of implementation issues [10], [45], which can result
in a vulnerable SMS-based authentication scheme. For example,
whether the OTP code generated with less entropy or with
longer expiration time. In contrast, other works identify and
summarize the different channels that can leak SMS OTP messages.
Specifically, there exist vulnerabilities allowing the adversary to
obtain the SMS OTP messages by compromising the telephony
networks, including the SIM swapping attack [39], as well as the
wireless interception attacks (e.g., SS7 network exploitation [21]).
Other than these methods, a more straightforward way, as we
studied in our research, is to obtain the message from the mobile
device itself [18], [20], [32], [46]. Following this line of research,
in earlier years, research highlighted various attack channels. This
includes physical access to the device [46], mobile malware which
steals the SMS OTP message by requesting the less-restricted SMS
permissions [12], as well as phishing attacks [9], [13], [14] that can

14



get the SMS OTP code from the user input. Different from prior
research, we systematically studied the practical ways an adversary
can use to obtain the SMS OTP message through a malicious app
running on a victim’s device, dealing with the various new features
introduced in modern mobile operating systems. In addition,
our identified vulnerabilities in the automatic SMS APIs follow
the observation of previous research [10], that is, any device-
public controlled information (e.g., the content of accessible SMS
messages) should not be used in any authentication scheme.

Understanding the security implications of SMS OTP mes-
sages. Another line of research focused on better understanding
the real-world security implications of SMS OTP authentication
issues [23], [35], [45], [63]. Specifically, AUTH-EYE [45]
proposed a fully automated approach to identify and detect the
implementation flaws of apps using the SMS OTP authentication
scheme on a large scale. Their analysis focuses on whether the
SMS OTP code is securely generated (e.g., the OTP randomness,
length) and verified (e.g., allowed retry attempts, renewal interval).
The results highlighted that 98.5% of apps violate different
security rules during the SMS OTP authentication scheme.

Yoo et al. [63] studied the vulnerable SMS OTP
implementations for bank apps in South Korea, while
Gutmann et al. [31] discussed the security risks of the
security code autofill mechanism in iOS and macOS. Besides,
Fahl et al. [19] demonstrated that a malicious app can monitor
the clipboard and steal passwords during a copy-and-paste user
interaction. This attack vector could also be used for stealing SMS
OTP code. In contrast, our work focuses primarily on how a local
attacker can obtain SMS OTP code by exploiting weaknesses in
the implementations of apps and mobile operating systems.

Mitigation and defense mechanisms. As countermeasures, some
research proposed different defense mechanisms against attacks
in SMS OTP authentication [33], [40], [44], [46], [56]. Among
them, the mechanisms proposed by Mulliner et al. [46] (i.e., using
a dedicated channel for SMS OTP delivery) is similar to what
implemented by Google in the modern APIs, in which our work
highlights several implementation issues and pitfalls. Besides,
DroidPAD [44] proposed a heuristic-based approach for iden-
tifying malicious apps based on their pattern when reading SMS
messages. As more fundamental solutions, Hamdare et al. [33]
proposed encryption-based mechanisms to secure the process of
OTP transmission, while CodeTracker [40] employs dynamic taint
analysis to track and protect the flow of SMS OTP messages
runtime using pre-defined policies. Moreover, TrustOTP [56] used
TrustZone to isolate the OTP code at the mobile OS-level. This sys-
tem provides a security guarantee to the integrity of the OTP code
even when the system is compromised by attackers. Unfortunately,
these approaches have not yet been adopted by mobile OSes in
practice, due to various limitations and requirements. For instance,
the usage of TrustZone [6] might not be feasible in all mobile
devices, and it requires integrating SMS reading capabilities
within the trusted computing base. In comparison, our proposed
mechanism extends the existing authentication mechanisms and
does not rely on any hardware feature.

XII. CONCLUSION

In this paper, we conduct the first in-depth, systematic
study on the specific ways in which a malicious local app can
obtain unauthorized access to SMS OTP messages in modern
mobile operating systems. Our research identified a set of new

attack channels that are primarily caused by newly introduced
mechanisms. While these mechanisms were developed to allow
more usable and safer SMS-based authentication, in reality, they
introduce new attack opportunities. To better understand the
real-world impact of these security issues, we performed both
user-studies and a large-scale measurement study over 140,586
apps. Our measurement found 36 apps (sharing hundreds of
millions of installations) that are vulnerable to the identified
attacks, including the popular messaging apps Telegram and
KakaoTalk. Furthermore, we provided suggestions on how to
mitigate this threat to both app developers, as well as OS vendors.

ACKNOWLEDGMENTS

We are grateful to our shepherd, William Enck, and to the
anonymous reviewers for their insightful feedback and suggestions.

This material is based upon work supported in part by the NSF
under Grant No. NS-1849803. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] “Xposed Installer,” http://repo.xposed.info/module/
de.robv.android.xposed.installer, 2017.

[2] “Marvel - the design platform for digital products,” https://marvelapp.com/,
2020.

[3] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collecting
millions of android apps for the research community,” in Proceedings of the

13th Working Conference on Mining Software Repositories (MSR), 2016.

[4] Amazon, “Amazon mechanical turk,” https://www.mturk.com/, 2020.

[5] APKPure, “Apkpure, download apk free online.” https://apkpure.com/, 2020.

[6] ARM, “ARM TrustZone,” https://www.arm.com/products/security-on-arm/
trustzone, 2017.

[7] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,” Acm

Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[8] M. Atkinson, “An analysis of android app permissions,”
https://www.pewresearch.org/internet/2015/11/10/an-analysis-of-android-
app-permissions/, 2015.

[9] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna, “What the App is That? Deception and Countermeasures in
the Android User Interface,” in Proceedings of the IEEE Symposium on

Security and Privacy (S&P), 2015.

[10] A. Bianchi, E. Gustafson, Y. Fratantonio, C. Kruegel, and G. Vigna,
“Exploitation and Mitigation of Authentication Schemes Based on
Device-Public Information,” in Proceedings of the Annual Computer

Security Applications Conference (ACSAC), 2017.

[11] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.00:
Automatic cryptographic protocol verifier,” User Manual and Tutorial, 2018.

[12] A. D. P. Center, “Additional requirements for the use of specific permissions.”
https://play.google.com/about/privacy-security-deception/permissions/,
2019.

[13] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking Into Your App Without
Actually Seeing It: UI State Inference and Novel Android Attacks,” in
Proceedings of the USENIX Security Symposium (Usenix SEC), 2014.

[14] S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu, “Gui-squatting attack:
Automated generation of android phishing apps,” IEEE Transactions on

Dependable and Secure Computing, 2019.

[15] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of the 9th in-

ternational conference on Mobile systems, applications, and services, 2011.

[16] Q. Dang, “Recommendation for applications using approved
hash algorithms,” https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-107r1.pdf, 2020.

15



[17] P. A. Dev, “No more sms and call log permissions, now what?”
https://proandroiddev.com/no-more-sms-call-log-permissions-now-what-
9b8226de7827, 2019.

[18] A. Dmitrienko, C. Liebchen, C. Rossow, and A. Sadeghi, “On the
(In)Security of Mobile Two-Factor Authentication,” in Proceedings of the

International Conference on Financial Cryptography and Data Security

(FC), 2014.

[19] S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, “Hey, you,
get off of my clipboard,” in Proceedings of the International Conference

on Financial Cryptography and Data Security (FC), 2013.

[20] A. P. Felt and D. Wagner, “Phishing on Mobile Devices,” in Proceedings

of the IEEE Workshop on Web 2.0 Security & Privacy (W2SP), 2011.

[21] T. Fox-Brewster, “Watch as hackers hijack whatsapp accounts via critical
telecoms flaws.” https://www.forbes.com/sites/thomasbrewster/2016/06/
01/whatsapp-telegram-ss7-hacks/, 2016.

[22] Y. Fratantonio, C. Qian, P. Chung, and W. Lee, “Cloak and Dagger: From
Two Permissions to Complete Control of the UI Feedback Loop,” in
Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2017.

[23] N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan, “The password reset
mitm attack,” in Proceedings of the IEEE Symposium on Security and

Privacy (S&P), 2017.

[24] Google, “Android-behavior-changes,” https://developer.android.com/about/
versions/10/behavior-changes-all, 2020.

[25] ——, “Android-pendingintent,” https://developer.android.com/reference/
android/app/PendingIntent, 2020.

[26] ——, “Use binder and messenger interfaces,” https://developer.android.com/
training/articles/security-tips#IPC, 2020.

[27] A. D. Guide, “Android sms manager,” https://
developer.android.com/reference/android/telephony/
SmsManager.html#createAppSpecificSmsToken, 2020.

[28] ——, “Automatic sms verification with the sms retriever api,”
https://developers.google.com/identity/sms-retriever/, 2020.

[29] ——, “Notificationlistenerservice,” https://developer.android.com/
reference/android/service/notification/NotificationListenerService, 2020.

[30] ——, “One-tap sms verification with the sms user consent api,” https://
developers.google.com/identity/sms-retriever/user-consent/overview, 2020.

[31] A. Gutmann and S. J. Murdoch, “Taken out of context: Security risks with
security code autofill in ios & macos,” in Proceedings of the USENIX

Security Symposium (Usenix SEC), 2019.

[32] K. Hamandi, A. Chehab, I. Elhajj, and A. Kayssi, “Android SMS Malware:
Vulnerability and Mitigation,” in Proceedings of the Advanced Information

Networking and Applications (AINA), 2013.

[33] S. Hamdare, V. Nagpurkar, and J. Mittal, “Securing sms based one time
password technique from man in the middle attack,” arXiv preprint

arXiv:1405.4828, 2014.

[34] Y. Z. X. Jiang and Z. Xuxian, “Detecting passive content leaks and
pollution in android applications,” in Proceedings of the Annual Network

& Distributed System Security Symposium (NDSS), 2013.

[35] Z. Jorgensen, J. Chen, C. S. Gates, N. Li, R. W. Proctor, and T. Yu,
“Dimensions of risk in mobile applications: A user study,” in Proceedings

of the ACM Conference on Data and Application Security and Privacy

(CODASPY), 2015.

[36] D. Kantola, E. Chin, W. He, and D. Wagner, “Reducing attack surfaces for
intra-application communication in android,” in Proceedings of the ACM

Workshop on Security and Privacy in Smartphones and Mobile Devices

(SPSM), 2012.

[37] R. Küsters and T. Truderung, “Using proverif to analyze protocols with
diffie-hellman exponentiation,” in Proceedings of the 22nd IEEE Computer

Security Foundations Symposium, 2009.

[38] S. Landau, “Find me a hash,” Notices of the AMS, vol. 53, no. 3, 2006.

[39] K. Lee, B. Kaiser, J. Mayer, and A. Narayanan, “An empirical study of
wireless carrier authentication for sim swaps.”

[40] J. Li, Y. Ye, Y. Zhou, and J. Ma, “Codetracker: A lightweight approach to
track and protect authorization codes in sms messages,” IEEE Access, 2018.

[41] L. Li, A. Bartel, J. Klein, and Y. Le Traon, “Automatically exploiting
potential component leaks in android applications,” in Proceedings of the

IEEE International Conference on Trust, Security and Privacy in Computing

and Communications, 2014.

[42] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. Van Der Veen, and C. Platzer, “Andrubis–1,000,000 apps later: A
view on current android malware behaviors,” in Proceedings of the third

international workshop on building analysis datasets and gathering

experience returns for security (BADGERS), 2014.

[43] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically Vetting An-
droid Apps for Component Hijacking Vulnerabilities,” in Proceedings of the

ACM Conference on Computer and Communications Security (CCS), 2012.

[44] W. Luo, S. Xu, and X. Jiang, “Real-time Detection and Prevention of
Android SMS Permission Abuses,” in Proceedings of the Security in

Embedded Systems and Smartphones Workshop: Preface (SESP), 2013.

[45] S. Ma, R. Feng, J. Li, Y. Liu, S. Nepal, E. Bertino, R. H. Deng, Z. Ma, and
S. Jha, “An empirical study of sms one-time password authentication in
android apps,” in Proceedings of the Annual Computer Security Applications

Conference (ACSAC), 2019.

[46] C. Mulliner, R. Borgaonkar, P. Stewin, and J.-P. Seifert, “SMS-Based One-
Time Passwords: Attacks and Defense,” in Proceedings of the Detection

of Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2013.

[47] G. Play, “Kakaotalk on google play,” https://play.google.com/store/apps/
details?id=com.kakao.talk, 2020.

[48] ——, “Telegram on google play,” https://play.google.com/store/apps/
details?id=org.telegram.messenger, 2020.

[49] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in Proceedings of the

USENIX Security Symposium (Usenix SEC), 2019.

[50] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards Discovering and
Understanding Task Hijacking in Android,” in Proceedings of the USENIX

Security Symposium (Usenix SEC), 2015.

[51] S. Schrittwieser, P. Frühwirt, P. Kieseberg, M. Leithner, M. Mulazzani,
M. Huber, and E. R. Weippl, “Guess who’s texting you? evaluating the
security of smartphone messaging applications.” in Proceedings of the

Annual Network & Distributed System Security Symposium (NDSS), 2012.

[52] W. L. Security, “Malware sidesteps google permissions policy with new 2fa
bypass technique,” https://www.welivesecurity.com/2019/06/17/malware-
google-permissions-2fa-bypass/, 2020.

[53] Sinch, “Introduction,” https://developers.sinch.com/docs/verification-
introduction, 2020.

[54] ——, “The verification process,” https://developers.sinch.com/docs/
verification-android-the-verification-process#sms-verification, 2020.

[55] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing flexible
mac to android.” in Proceedings of the Annual Network & Distributed

System Security Symposium (NDSS), 2013.

[56] H. Sun, K. Sun, Y. Wang, and J. Jing, “TrustOTP: Transforming Smartphones
into Secure One-Time Password Tokens,” in Proceedings of the ACM

Conference on Computer and Communications Security (CCS), 2015.

[57] A. D. Support, “Declare permissions for your app,” https:
//support.google.com/googleplay/android-developer/answer/9214102?hl=
en, 2020.

[58] A. Support, “Automatically fill in sms passcodes on iphone,”
https://support.apple.com/guide/iphone/automatically-fill-in-sms-
passcodes-on-iphone-iphc89a3a3af/ios, 2020.

[59] Telegram, “Keep Calm and Send Telegrams!” https://telegram.org/blog/
15million-reuters, 2016.

[60] Telegram, “Update to 5.10.0,” https://github.com/DrKLO/Telegram/
commit/53e04b55fbb665fcb3859f54f15ae203179a88c2#diff-
1fdb2a1cb7f751eeb5964c9d9c3e6957, 2019.

[61] T. Verge, “Android messages now makes it really easy to copy two-factor
codes,” https://www.theverge.com/2018/5/11/17345016/android-messages-
copy-two-factor-codes-update, 2018.

[62] Wikipedia, “Kaokaotalk,” https://en.wikipedia.org/wiki/KakaoTalk, 2020.

[63] C. Yoo, B.-T. Kang, and H. K. Kim, “Case study of the vulnerability of otp
implemented in internet banking systems of south korea,” Multimedia Tools

and Applications, vol. 74, no. 10, pp. 3289–3303, 2015.

[64] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave me alone:
App-level protection against runtime information gathering on android,” in
Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2015.

16





1 Process:
2 {1} in(client_to_server_channel, auth_request: OTP_REQUEST);
3 {2} let number_30: NUMBER = get_number_from_request(auth_request) in
4 {3} let token_31: TOKEN = get_token_from_request(auth_request) in
5 {4} if (number_30 = victim_number) then
6 {5} let auth_sms: SMS_MSG = sms(secret_otp,token_31) in
7 {6} out(server_to_victim_channel, auth_sms);
8 {7} if (get_calling_app(read_token_from_sms(auth_sms)) = malicious_app) then
9 {8} out(broadcast_to_malicious_app_channel, auth_sms)

10 else
11 {9} if (get_calling_app(read_token_from_sms(auth_sms)) = official_app) then
12 {10} out(broadcast_to_official_app_channel, auth_sms)
13 else
14 {11} if (get_calling_app(read_token_from_sms(auth_sms)) = any_other_app) then
15 {12} out(broadcast_to_any_other_app_channel, auth_sms)
16

17

18 -- Query not attacker(secret_otp[])
19 Completing...
20 Starting query not attacker(secret_otp[])
21 goal reachable: attacker(secret_otp[])
22 1. The attacker initially knows victim_number[].
23 attacker(victim_number[]).
24 2. The attacker initially knows malicious_app[].
25 attacker(malicious_app[]).
26 3. By 2, the attacker may know malicious_app[].
27 Using the function generate_token the attacker may obtain generate_token(malicious_app[]).
28 attacker(generate_token(malicious_app[])).
29 4. By 3, the attacker may know generate_token(malicious_app[]).
30 By 1, the attacker may know victim_number[].
31 Using the function request, the attacker may obtain request(generate_token(malicious_app[]),victim_number[]).
32 attacker(request(generate_token(malicious_app[]),victim_number[])).
33 5. The message request(generate_token(malicious_app[]),victim_number[]) that the attacker may have by 4 may be received at input {1}.
34 So the message sms(secret_otp[],generate_token(malicious_app[])) may be sent to the attacker at output {8}.
35 attacker(sms(secret_otp[],generate_token(malicious_app[]))).
36 6. By 5, the attacker may know sms(secret_otp[],generate_token(malicious_app[])).
37 Using the function read_otp_from_sms the attacker may obtain secret_otp[].
38 attacker(secret_otp[]).
39

40 Could not find a trace corresponding to this derivation.
41 RESULT not attacker(secret_otp[]) cannot be proved.

Fig. 13. ProVerif verification process for SMS Token.

1 Process:
2 {1} in(client_to_server_channel, request(number: NUMBER));
3 {2} if (number = victim_number) then
4 (
5 {3} let auth_sms: SMS_MSG = sms(otp_prefix,secret_otp,hash_of_GoodApp) in
6 {4} out(server_to_victim_channel, auth_sms);
7 {5} if (read_prefix_from_sms(auth_sms) = otp_prefix) then
8 {6} out(broadcast_to_OtpInbox_channel, auth_sms)
9 else

10 {7} if (read_prefix_from_sms(auth_sms) = no_prefix) then
11 {8} out(broadcast_to_Inbox_channel, auth_sms);
12 {9} if (read_suffix_from_sms(auth_sms) = hash_of_BadApp) then
13 {10} out(broadcast_to_BadApp_channel, auth_sms)
14 else
15 {11} if (read_suffix_from_sms(auth_sms) = hash_of_GoodApp) then
16 {12} out(broadcast_to_GoodApp_channel, auth_sms)
17 ) | (
18 {13} let trivial_sms: SMS_MSG = sms(no_prefix,sms_text,no_suffix) in
19 {14} out(server_to_victim_channel, trivial_sms);
20 {15} if (read_prefix_from_sms(trivial_sms) = otp_prefix) then
21 {16} out(broadcast_to_OtpInbox_channel, trivial_sms)
22 else
23 {17} if (read_prefix_from_sms(trivial_sms) = no_prefix) then
24 {18} out(broadcast_to_Inbox_channel, trivial_sms);
25 {19} if (read_suffix_from_sms(trivial_sms) = hash_of_BadApp) then
26 {20} out(broadcast_to_BadApp_channel, trivial_sms)
27 else
28 {21} if (read_suffix_from_sms(trivial_sms) = hash_of_GoodApp) then
29 {22} out(broadcast_to_GoodApp_channel, trivial_sms)
30 )
31

32

33 -- Query not attacker(sms_text)
34 Completing...
35 Starting query not attacker(sms_text)
36 goal reachable: attacker(sms_text)
37 1. Using the function victim_number the attacker may obtain victim_number.
38 attacker(victim_number).
39 2. By 1, the attacker may know victim_number.
40 Using the function request the attacker may obtain request(victim_number).
41 attacker(request(victim_number)).
42 3. The message request(victim_number) that the attacker may have by 2 may be received at input {1}.
43 So the message sms(no_prefix,sms_text,no_suffix) may be sent to the attacker at output {18}.
44 attacker(sms(no_prefix,sms_text,no_suffix)).
45 4. By 3, the attacker may know sms(no_prefix,sms_text,no_suffix).
46 Using the function read_text_from_sms the attacker may obtain sms_text.
47 attacker(sms_text).
48

49 Could not find a trace corresponding to this derivation.
50 RESULT not attacker(sms_text) cannot be proved.
51

52

53 -- Query not attacker(secret_otp)
54 Completing...
55 Starting query not attacker(secret_otp)
56

57 RESULT not attacker(secret_otp) is true.

Fig. 14. ProVerif verification process for our proposed secure SMS authentication scheme.

18


	Introduction
	Threat Model and 1FA SMS Schemes
	Threat Model
	SMS-based 1-factor-authentication Schemes
	Example of an End-to-end Attack Scenario.

	Legitimate Methods to Access SMS OTP Messages
	Access with User Interactions
	Access by Requesting SMS Permissions
	Fully-automated Access via Modern SMS APIs

	How to Maliciously Obtain SMS OTPs
	Getting SMS OTPs by Deceiving Users
	Assumptions
	Understanding User Reactions to Deception Attacks

	Bypassing OS Permissions and Market Restrictions to Access SMS Messages
	Bypassing OS-level Restrictions
	Bypassing Market-level Restrictions

	Exploiting Modern SMS APIs
	Attacking Apps using SMS Retriever
	Attacking Apps using SMS Token
	Attacking Apps using SMS Token+
	Responsible Disclosure and Developers' Response

	Additional Design Weaknesses of the Modern APIs
	Modern APIs' Inbox Management
	Cryptographic Weaknesses

	Large-scale App Measurement
	Vulnerable App Identification
	Case Studies
	KakaoTalk
	Telegram
	Sinch Library

	Responsible Disclosure and Developers' Response

	Mitigation Strategies
	Related Work
	Conclusion
	References
	Appendix

