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Abstract—SMS messages containing One-Time Passwords
(OTPs) are a widely used mechanism for performing authentication
in mobile applications. In fact, many popular apps use OTPs
received via SMS as the only authentication factor, entirely
replacing password-based authentication schemes. Although SMS
OTP authentication mechanisms provide significant convenience to
end-users, they also have significant security implications. In this
paper, we study these mobile apps’ authentication schemes based on
SMS OTPs, and, in particular, we perform a systematic study on the
threats posed by ‘local attacks,” a scenario in which an attacker has
control over an unprivileged third-party app on the victim’s device.

This study was carried out using a combination of reverse
engineering, formal verification, user studies, and large-scale
automated analysis. Our work not only revealed vulnerabilities
in third-party apps, but it also uncovered several new design and
implementation flaws in core APIs implemented by the mobile
operating systems themselves. For instance, we found two official
Android APIs to be vulnerable by design, i.e., APIs that inevitably
lead to the implementation of insecure authentication schemes, even
when used according to their documentation. Moreover, we found
that other APIs are prone to be used unsafely by apps’ developers.

Our large-scale study found 36 apps, sharing hundreds of
millions of installations, that misuse these APIs, allowing a malicious
local attacker to completely hijack their accounts. Such vulnerable
apps include Telegram and KakaoTalk, some of the most popular
messaging apps worldwide. Finally, we proposed a new and safer
mechanism to perform SMS-based authentication, and we prove its
safety using formal verification.

I. INTRODUCTION

SMS messages (also known as “text messages”) are widely
used to Two-Factor Authentication mechanisms (2FA). In these
scenarios, a user is asked to provide a token received via SMS
in addition to their username and password. In addition, within
the realm of mobile apps, the SMS channel has also started being
used as One-Factor One-Time Passwords (1FA OTPs, in short). In
these scenarios, the user is asked to “prove” the ownership or their
own telephone number, which acts as the main user identifier:
“owning a telephone number” equates to “owning the user account”
associated with it. This mechanism is implemented by first asking
the user’s phone number, and then sending an authentication
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code to this number. Finally, either the user is asked to insert the
received authentication code, or the app automatically reads it
from the incoming SMS, at which point the app can send the code
back to the app’s backend. This procedure proves ownership of
a specific phone number (and of the corresponding SIM card). We
note how this protocol effectively uses the SMS channel as the
only “factor” to authenticate to a user’s account.

This mechanism brings significant convenience to users,
especially since users no longer need to create and remember a new
password for each app requiring authentication. It thus does not
come as a surprise that this mechanism is widely used, including
top-popular messaging apps such as Telegram [48]. In particular,
we found that among the top 100 Android apps from the commu-
nication category in Google Play, 24 apps support using SMS OTP
code as the only “factor” for user account authentication. This is
a growing pattern, to the point that Google has introduced three
new APIs in the last few years to support this specific use case.

Unfortunately, this mechanism also brings significant security
implications, since the SMS communication channel has been
proven insecure on many occasions. Multiple times, attackers have
been able to target the telephony networks and successfully redirect
the OTP messages to an unintended receiver. The most prominent
example is SIM-swapping [39] attack, in which an attacker can
lure the telephony company to obtain a SIM card associated with
the victim’s phone number. Another instance of this issue is the
exploitation of the SS7 network (the network internally used of
telecom company to route calls and SMS messages) [21]. More-
over, it is known that state-level attackers can intercept SMS OTP
messages, by interfering with local telecom companies [59]. Most
recently, a study [45] has shown that many Android apps insecurely
implement the generation and verification of SMS OTPs, used in
their authentication protocols. For example, some apps generate
SMS OTPs with insufficient randomness or insufficient length.

Local attacks against SMS OTP authentication schemes.
While previous works have focused on exploiting vulnerabilities
in the SMS channel itself, in this paper, we focus on a different
class of attacks against SMS OTP messages, which we call local
attacks. With local attacks, we indicate a threat model in which an
attacker has control over a malicious third-party app installed on
the victim’s device. The goal of the malicious app is then to “steal”
authentication codes sent via SMS. These attacks are devastating
for apps using the aforementioned 1FA OTP authentication
mechanism since they allow obtaining the only factor used to
authenticate a user. In addition, they also weaken the security of



traditional SMS-based 2FA solutions, since they allow obtaining
one of the two factors.

Although these attacks have been previously studied [10], [18],
[20], [32], [46], modern devices and operating systems implement
new APIs and mechanisms to ease developers and users’ lives,
when implementing and using SMS OTP authentication schemes.
To the best of our knowledge, no study has systematically analyzed
the security of these new mechanisms, and no study has performed
a large-scale evaluation to determine the relevance and the impact
of these threats. Our research aims at filling this gap.

Recent operating systems’ changes to support SMS OTP au-
thentication. To move toward a more secure way for SMS OTP au-
thentication, both Android and iOS employ protection mechanisms
to prevent SMS OTP messages from being read by unauthorized
apps. For example, iOS does not allow any third-party apps to
read or access SMS messages. On the other hand, in Android
devices, third-party apps can request permission to read received
SMS messages, including those messages potentially containing
OTPs. However, starting from January 2019, restrictions have been
put in place to limit the usage of SMS-relevant permissions [12].

Preventing apps from arbitrary reading SMS messages
improves the security of SMS-based authentication schemes since
it blocks automated exploitation (i.e., without user involvement).
However, it also affects the overall user experience, since users
may be required to manually type these OTP messages character
by character in the legitimate app requesting them. For this
reason, new mechanisms for handling OTP messages have been
introduced by iOS [58] and Android [27], [28], [30], aiming at
providing, at the same time, more security guarantees and better
user experience.'

Although these mechanisms are more feasible and promising
as the future mainstream for SMS OTP authentication, little has
been done regarding understanding whether these mechanisms
are indeed secure, which is the most critical thing for SMS OTP
authentication. Unfortunately, as we will show in this paper,
these new mechanisms introduce a new set of weaknesses and
vulnerabilities in mobile apps using them. We believe our findings
are important and concerning, particularly because these recent
OTP-protecting security mechanisms were specifically designed
to protect from the local attacker threat model.

Our work. In this paper, we conduct the first in-depth systematic
analysis of the security of SMS authentication usage in modern
mobile platforms. Our study started with analyzing how modern
mobile operating systems allow users and apps to access SMS
OTP messages. This analysis was carried out using a combination
of studying the official documentation and sample code, reverse
engineering, and formal verification (using ProVerif [11]). These
analyses led to surprising results, identifying a set of attack
surfaces that are either new or existing for a long time but still
have not been fixed yet.

Our research shows that the newly introduced mechanisms
to access SMS OTP messages, while designed to improve the
security and the usability of this authentication method, severely
hinder the security of the application using them.

'We note that since Android provides to developers most of the innovative ways
to access SMS OTP code, our research is mostly focused on Android. However,
our paper also discusses the limited scenarios specific to i0S (Section III-A).

For example, we show that some of the APIs introduced
to ease the usage of these authentication schemes suffer from
profound design bugs that make it impossible to be used safely.
Therefore, apps that use them are susceptible to account hijacking
attacks (see Section VII), which can be carried out by a malicious
third-party app that does not request any permission.

In addition, we also performed two user studies to evaluate if
and how a malicious app can lure a victim user to perform actions
allowing an attacker to steal SMS OTP messages.

To evaluate the severity and real-world impact of these
security threats, we then conducted a large-scale measurement
on 140,586 Android apps, to understand how developers use
SMS-authentication-related APIs and semi-automatically detect
vulnerable apps. This large-scale measurement revealed common
pitfalls in the usage of these APIs that make several apps
vulnerable, including extremely popular communication apps such
as Telegram [48] and KakaoTalk [47]. A successful adversary
who obtains the SMS OTP messages could take full control of
the victim’s account (see Section IX-B).

Compared to prior research, we systematically studied the ways
that enable an adversary to obtain the SMS OTP messages through
a malicious app running on a victim’s device, running a modern
mobile operating system. Our study not only shows that the exist-
ing threats are not well mitigated by current security enhancements,
but it also reveals a set of new threats that are possible due to design
and implementation errors in new mechanisms to access SMS OTP
messages, introduced by modern mobile operating systems.

Lastly, we propose modifications and improvements to the
currently available APIs in mobile operating systems to implement
a more secure scheme for SMS-based authentication. We show
that, differently than previously thought, there is a technical way
to achieve the sweet spot between usability and security. Our
design provides stronger security guarantees without losing any
practicality. For example, our design, similar to the current APIs,
does not require user interaction or permissions. At the same time,
it prevents malicious third-party apps from reading SMS used for
authentication by legitimate apps (see Section X).

In summary, this paper makes the following contributions:

o We systematize how the different mechanisms offered by the
mobile operating system to implement SMS-based authen-
tication can be attacked. We uncover design bugs in recent
Android APIs that were introduced specifically to protect from
the threat of local attackers, which we consider in this paper.

e We perform a user study and a large-scale automated study to
show the impact of these attacks in practice. Our studies lead
to the discovery of several critical vulnerabilities, affecting
several highly popular mobile applications, including Telegram
and KakaoTalk.

e We propose improvements and modifications to the APIs
currently available in mobile operating systems to implement
SMS-based authentication.

II. THREAT MODEL AND 1FA SMS SCHEMES

In this section, we first discuss the threat model and assump-
tions considered in our research, and we then present an overview
of 1FA OTP SMS-based authentication schemes adopted by many
popular apps and how a local attacker can exploit their weaknesses.



A. Threat Model

Attacker model and capabilities. This paper focuses on local
attacks. These attacks consist of an adversary who controls a
malicious app installed on a victim’s mobile device. We note
that this is a common threat model in the field of mobile security,
in-line with prior works [9], [10], [49], [50], [64]. In fact, it is
unfortunately feasible and practical for an attacker to include
malicious functionality in a seemingly benign and useful app, and
distribute it through app markets [34], [42].

We also assume that the malicious app can communicate
through the Internet to send the SMS OTP message (or the code
it contains) to the attacker. In Android, this requires the Internet
permission. Note that this permission is not suspicious as it is re-
quested by the vast majority of mobile apps (e.g., a recent report [8]
showed that 83% apps in Google Play Store require this permis-
sion). Additionally, since the Internet permission is considered
“normal,” obtaining it does not require any user interaction, and it is
not listed in the menu allowing users to grant/revoke permissions.

To trigger the delivery of an SMS OTP message to the victim’s
device, we also assume that the attacker knows the phone number
of the victim. This assumption is in-line with similar attacks
performed in previous work [10]. There are a number of ways
an attacker can obtain a victim’s phone number. For example,
many messaging apps use the phone number as the main user
identifier. In these apps, having a victim as a “friend”” automatically
reveals their phone number. Moreover, in Android, a malicious
app may use the Android API getLinelNumber () to getthe
phone number (requiring the READ_PHONE_STATE permission).
Furthermore, a malicious app installed on the victim’s phone could
show a legitimate-looking UI, requesting a phone number for au-
thentication purposes. We acknowledge that this is a non-trivial re-
quirement. Thus, we do not envision our attacks to be used in large-
scale automated campaigns, but rather as part of targeted attacks.

While the aforementioned threat model and assumptions are
valid throughout the entire paper, some of the attacks we will
present are subjected to different constraints. In particular, some
attacks we will present are harder and less likely to be carried
out since, for example, they require specific interaction with the
victim (see Section V) or they require a specific permission (see
Section VI). Conversely, others can be carried out in a completely
automated fashion (see Section VII). We will precisely specify
the additional assumptions when we discuss each type of attack.

Assumptions on OS integrity. Throughout this paper, we make
some additional assumptions. These assumptions are important
when discussing the relevance of our attacks (e.g., some attacks
are trivial if some of these assumptions do not hold) and when
discussing the reliability of our proposed defense mechanism.

In this paper, we assume that the Android OS, including
the kernel and the various system components (e.g., Android
system services) are not compromised. Thus, we assume that
app isolation and permissions are properly enforced. In our
paper we also assume that the OS and apps can establish a
secure Inter-process-communication (IPC) channel, and that, by
using dedicated APIs (e.g., binding to system services [26], [55],
pending intents [25]), an app can safely communicate with a
system service, and, at the same time, a system service can know
the identity of the app it is communicating with.

Previous works have shown how the OS and apps may
be vulnerable to a number of attacks, such as broadcast
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Fig. 1. A typical scenario using SMS OTP for 1FA.

injection and broadcast receiver hijacking [15], component
hijacking vulnerabilities [43], and component leaks and
service hijacking [36], [41]. These are well-studied classes of
vulnerabilities and we assume that apps are protected from them.

Finally, we consider out-of-scope Ul-based attacks that try
to surreptitiously hijack user interaction, such as activity hijack-
ing [13], [50] or accessibility-based attacks [22]. Modern Android
versions enable several protection mechanisms to prevent these
attacks [24]. For instance, the user now sees a warning if any over-
lay is present, and a malicious app cannot know anymore the app a
user is interacting with. While it could be theoretically possible to
still use Ul-level attacks under some circumstances, we consider
exploring these attacks as orthogonal to our main contributions.

B. SMS-based I-factor-authentication Schemes

A common pattern used by popular messaging apps is to
identify a user with a phone number, for which the user supposedly
owns the corresponding SIM card. This aims to replace the more
traditional username. In this scenario, an SMS OTP message is
used to prove ownership of a specific phone number. Such an au-
thentication scheme is widely adopted by many popular apps nowa-
days. Specifically, in a preliminary study we have done in May
2020, we have inspected the top 100 popular apps from the commu-
nication category in Google Play and found that 24 apps are indeed
using the SMS OTP message as the only factor for authentication.

Figure 1 shows the multiple steps of the SMS OTP
authentication procedure. As can be seen, in this scenario, the
client (the legitimate app) first sends the phone number to the
app’s backend server (Step 1). Then, the app’s backend server
generates the OTP code and sends it to the phone which requested
to authenticate, using an SMS message (Step 2). Later, at the
mobile device side, the legitimate app obtains the SMS (Step
3), extracts the OTP code and sends it back to the app’s server
through a network connection (Step 4). Finally, the app’s backend
server performs the verification by comparing the received OTP
code with the previous one, which it sends out via SMS (Step 5).
Once the verification is passed, the backend server will send a
token used by itself to authenticate subsequent interactions with
the mobile app for further communications.

During this process, different properties need to be true to
ensure a secure verification scheme. For instance, during Step 2,
the generated OTP needs to have enough entropy to be resistant
to a brute force attack by an adversary. Also, during Step 5, the



generated OTP needs to be compared against the one provided
by the app. These security properties have been previously
studied and discussed [51] and found to be violated in some apps’
implementations [45].

Specifically, AUTH-EYE [45] shows that, in many cases, the
SMS OTP is generated incorrectly (e.g., insufficient OTP random-
ness or insufficient OTP length), or that the OTP code is incorrectly
verified (e.g., too many allowed retry attempts or too long renewal
interval). Our work is complementary to AUTH-EYE.

In fact, in our work we assume that the OTP generation and
the OTP verification are implemented correctly, and, instead,
we focus on how the SMS OTP is delivered to the app and
read from it. In particular, we focus on the potential weakness
in OTP confidentiality used during the authentication process.
More specifically, in Step 3 of Figure 1, it is crucial that only
the legitimate app can read the OTP message sent by the app’s
backend, rather than other apps hosted on the device.

C. Example of an End-to-end Attack Scenario.

If an attacker-controlled malicious app is able to obtain
the OTP targeting another app, an attacker can easily bypass
SMS-based 1-factor-authentication schemes. In particular, the
attacker controlling a malicious app on a victim’s phone can
achieve this malicious goal through the following three steps:

1) The attacker initiates authentication with a victim app’s
backend, specifying as phone number the victim’s one;

2) The attacker uses the malicious app to steal the OTP that
is received via SMS by the victim’s device, and sends the
OTP out (e.g., to an attacker-controlled device) through the
malicious app;

3) When asked to insert the OTP in the authentication procedure
initiated during the first step, the attacker uses the stolen
OTP to complete the authentication procedure with the app’s
backend, effectively pretending to be the victim.

We note that our paper is focused on explaining how an
attacker can maliciously obtain the SMS OTP messages, i.e.,
the second step in the list above. The other two steps, while
slightly different for each victim’s app, can be trivially performed
(and potentially also fully automated), using, for instance, an
attacker-controlled device. Nevertheless, in Section IX-B, we will
provide concrete examples of this attack.

We also note that the different presented attacks may introduce
a delay between the time a SMS OTP is sent to the victim’s device
and the time the attacker sends the OTP to the app’s backend server.
While properly implemented SMS-based 1-factor-authentication
schemes should set a maximum validity time for OTPs, this value
is typically in the order of minutes, while the delays our attacks
introduce are in the order of seconds.

I11.
LEGITIMATE METHODS TO ACCESS SMS OTP MESSAGES

In this section, we enumerate the different methods that apps
can use to access received SMS OTP messages, on both Android
and i0S. Later, we will then describe how the different presented
methods are susceptible to different attacks.

In this paper we consider features available in Android and
10S up to their versions 10 and 12, respectively. While for i0S
the available methods to SMS OTP messages are very limited,
Android offers a plethora of different methods, backed by different
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Fig. 2. Tllustration of different methods for accessing SMS OTP code with
user-interaction

APIs, with sometimes subtle or poorly documented differences.
This section discusses these methods in detail (for both OSes), and
it is organized in three parts, according to the type of interaction
(if any) required by the user: methods requiring per-message
user interaction (Section III-A), methods requiring SMS-related
permissions (Section III-B), and fully-automated methods that do
not require user interaction (Section III-C).

A. Access with User Interactions

An app may ask users to manually copy the OTP code (i.e.,
inserting character-by-character) from the received SMS to the
app’s user interface. This method does not require any particular
app permission nor the usage of any specific API. However, this
kind of user interaction is susceptible to “phishing attacks,” in
which a user may be tricked into inserting the just-received OTP
into the app in foreground, which may be malicious. In addition,
this procedure involves a somewhat laborious user interaction,
introducing “friction” in the app authentication procedure.

Therefore, to enhance the user experience, modern versions
of both Android and iOS provide a more user-friendly interface
for SMS OTP verification. Specifically, in both Android (starting
from its default messaging app with version 3.3+) and iOS
(starting from iOS 12), the system provides an “ask-to-copy”
feature, which can automatically parse each incoming SMS
message to see if they contain OTP tokens [58], [61]. As shown
in Figure 2(a), for Android, once the OTP code is identified from
the incoming SMS message, the system will show on the system
keyboard a “copy” option that automatically copies the OTP in
the device’s clipboard. This enables the user to paste the OTP
to the current waiting app. Similarly, for iOS (Figure 2(b)), the
parsed OTP code will be listed in the input keyboard. Once the
user clicks it, the OTP code will be automatically filled into the
current input field of the app. The two functionalities allow users
to no longer keep switching between the SMS inbox and the app
waiting for the OTP, streamlining the authentication procedure.

We note that in i0S, the “ask-to-copy” feature is the only
option available for boosting SMS OTP input. For instance, i0S
does not offer third-party apps any mechanism to read messages
stored in the SMS inbox.

One-Tap SMS verification. Android also provides an alternative
approach, which is called One-Tap SMS for SMS OTP
authentication. Compared to approaches as mentioned earlier, the
One-Tap SMS provides additional user prompt and eliminates
the copy-paste interaction. Specifically, as shown in Figure 2(c),
this mechanism presents a pop-up window as a user-consent,
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to directly fill a given OTP code to a specific app. If the user
allows the app to access and parse the incoming message
containing the OTP code, the code will be directly delivered
to the app. However, this approach requires additional app-side
implementation by developers rather than the Android operating
system. It is important to note that different from the “ask-to-copy”
mechanism; the One-Tap mechanism shows the app name to the
user, in which the message is going to be copied into (compare
Figure 2 (a) and Figure 2 (c)). This design may help in preventing
phishing attacks, but it does not solve the problem at its roots.

In Section V, we will study the impact that these more
streamlined OTP insertion user interfaces (allowing the user to
copy the OTP automatically) have on the security of an SMS OTP
authentication procedure.

B. Access by Requesting SMS Permissions

In Android, apps can request SMS-related permissions to
access the SMS inbox programmatically. The two relevant
permissions are READ_SMS and RECEIVE_SMS: the first
allows an app to read the SMS inbox at any time, while the second
allows the app to only read the “new” incoming messages just
before they are saved into the inbox.

Both these permissions provide sensitive (in terms of security
and privacy) capabilities to an app since they allow it to read
arbitrary SMS messages, even when these messages are not
relevant to the app functionality. For this reason, these permissions
are classified by the Android OS as Dangerous [12] (starting
from Android 6) and require a one-off user-consent at runtime
(as shown in Figure 3).

Additional restrictions. Given the security relevance of these
permissions, starting from January 2019, Google has introduced
additional restrictions for any app uploaded to the Play Store that
requests SMS-related permissions [17], [57]. The first restriction
is that these permissions can only be requested by apps that are
designed to be an “SMS handler,” i.e., a replacement of the default
SMS handler app. Apps that aim to be “SMS handlers” must
follow additional policies:

e The app needs to be suitable for being an SMS handler app
(e.g., it needs to allow the user to read received text messages,
send new ones, etc.).

e The app must ask the user if they want to change the current
default SMS app to this one, upon its first usage.
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Fig. 5. Authentication process for SMS Retriever.

To enforce these restrictions, the market performs manual, human-
assisted verification of every app requiring these permissions.
Unfortunately, even with these restrictions in place, we will show
that a developer can still manage to publish their malicious app to
the Google Play Store (see Section VI-B). In addition, our study
also shows that users are not aware of the security implications
of granting the permission to read SMS messages to an app (see
Section VI-A).

C. Fully-automated Access via Modern SMS APIs

To further improve the user experience of the app, Android
introduced three different APIs to support the SMS OTP
authentication in a fully automated way without requiring any
permission and user interaction. In the rest of the paper, we will
collectively refer to these APIs as “Modern SMS APIs.”

Key design and benefits. The overall idea of these modern SMS
APIs is to require the app server to send the authentication SMS
message with an additional identifiable string (e.g., a hash obtained
from a cryptographic signature) which would indicate the intended
receiver of the OTP code. The identifiable string allows the OS
to only deliver the SMS message to the intended target app rather
than the others. Recalling Figure 1, these mechanisms streamline
Step 3 of the described procedure in an automated way instead
of user intervention (i.e., asking the user to input the OTP code
manually). In addition, the design of these mechanisms does not
require the app asking for any Android permission. These benefits
further encourage the adoption of these methods by app developers
to implement SMS OTP 1FA, since apps are no longer subjected
to the limitations and restrictions by requiring permissions, nor
they require user interaction to copy the received message content.

Here, we present the details of these three different APIs. For
simplicity, we will refer to these APIs with SMS Retriever,
SMS Token, and SMS Token+, respectively. The details of
these three APIs are summarized in Table 1.

We note that with the term “APL,” we refer not to a specific Java
method, but to a specific authentication functionality provided by
the Android framework (which usage may require calling multiple



TABLE L. SAMPLE AND HIGHLIGHTED DIFFERENCE BETWEEN THE MODERN APIS FOR SMS OTP AUTHENTICATION.
API Saved to inbox? Sample SMS App identifier Key code snippet used in app for implementation
. Your ExampleApp code is: 1234~ Hashcode, fixed string SmsRetriever.getClient(context).startSmsRetriever()
SMS Retriever Yes FA+99CX9VSu Intent.extras.get(SmsRetriever EXTRA_SMS_MESSAGE);
SMS Token No* Your ExampleApp code is: 1234 Token, randomly genrated. create AppSpecificSmsToken (intent)
Eghn_SOxhzw
. [WhatsApp]: Your code is: 1234 Same as in SMS Token create AppSpecificSmsTokenWithPackagelnfo (prefixes, intent)
SMS Token+ No

dF4Sse6U7d

(Based on the documentation)

* The SMS will not be saved in the inbox if it can be correctly delivered to the intended app, see Section VIII-A for more details.

methods). We will use the term “method” instead when referring
to a specific Java method (e.g., startSMSRetriever ()).

SMS Retriever. The SMS Retriever API uses a hashcode
(e.g., FA+9gCX9VSu) to specify to which app an SMS OTP
should be delivered. This app-specific hashcode is computed
starting from the app’s signing certificate and its package name.
Specifically, it is computed using the following formula:

x = concat (app_package_name, app_signing_certificate)
hashcode = truncate (base64encode (SHA256 (x)), 11)

concatenation  and
string  truncation

where concat stands for string
truncate (string, X) stands for
after X characters.

The signing certificate in Android is embedded in the app’s
package file, and it is associated with the private key used by the de-
veloper to sign the app. The package name is a string that uniquely
identifies an app on a mobile device and on the Google Play Store
(that is, two apps on the same device or on the Google Play Store
cannot have the same package name). Since the developer is sup-
posed to securely holding the private key, an attacker cannot create
a valid signed APK with the same app certificate. In turn, this
should imply that an attacker could not easily create a malicious
app so that its hashcode collides with the hashcode of the benign
app (due to the SHA256 second pre-image resistance [38]) 2.

As shown in Figure 5, after an app invokes the
method startSmsRetriever () and register for the
SmsRetriever.SMS_RETRIEVED_ACTION Android
listener (the Step 0), subsequent text messages containing the
app-specific hashcode will be automatically routed to the app. In
other words, an app does not need any Android permission to read
a message containing its own hashcode. For this reason, when
an app uses the SMS Retriever APIL in Step 2, the server
sends a message containing both the OTP code and the hashcode.

SMS Token. One limitation for SMS Retriever is that it
is only supported when the Google Play Service is available.
This limitation makes it not feasible for some Android devices
in specific scenarios, e.g., Android devices in China, which do
not come with Google Play Service installed. As a result, starting
from August 2017, Google provides a new API to implement
automatic SMS OTP authentication, which is available for all
devices with Android version 8 or higher. In this paper, we refer
to this APl as SMS Token.

The intended usage of SMS Token is similar to SMS Retriever.
However, SMS Token differs in how it generates the app-specific
token that, when included in an SMS, causes the OS to redirect
it to the intended app. Specifically, as shown in Figure 6, while

2Unf0rtunately, the formula truncates the hash to 11 base64 characters,
potentially allowing malicious collisions, as we will explain in Section VIII-B.
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Fig. 6. Authentication process for SMS Token (and SMS Token+).

SMS Retriever uses a fixed, app-specific hashcode, the
SMS Token API generates a random token every time the cre-—
ateAppSpecificSmsToken () method is invoked (Step 0).
This token is supposed to be sent to the backend server (in Step 1)
from the phone. Further, the SMS OTP message is delivered to the

legitimate app, based on the token included in the SMS message.
For example, if an app A obtained the random token Eqhn_SOxhzw
as a return value of the createAppSpecificSmsToken ()

method invocation, a subsequently received SMS message
containing the text Eghn_SOxhzw will be delivered to the app A.

Unfortunately, as we will explain in Section VII-B, this API
is inherently unsafe due to its design flaw.

SMS Token+. Android 10 introduced yet another SMS-related
API, invoked by using the createAppSpecificSmsTokenWithPack-
agelnfo() method, which we refer to as SMS Token+, in short.
This API generates another type of token for automatic SMS
authentication. Based on the API description from the Developer
guide [27], one may think that this API works in a very similar
way as the SMS Token APL

In fact, according to the documentation, the only difference
is that this new API allows a developer to provide an additional
list of prefixes for SMS filtering. Only SMS starting with one of
these specified prefixes will be delivered to the calling app.

The reader may note how the possibility of specifying a prefix
should not affect the security of this API. Thus, one would think



that this API is as secure (or as insecure) as the previous SMS
Token.

To our surprise, we found that this is not the case: while
the two APIs appear to work in the same way and they have
a very similar documentation (with the only stated difference
of being able to filter based on prefixes), these two APIs are
internally implemented in a very different way. What is even more
interesting is that our analysis found that SMS Token+ is still
vulnerable to our attacks, but due to different reasons. We discuss
these attacks in Section VII-C.

IV. How TO MALICIOUSLY OBTAIN SMS OTPs

As explained in the previous section, in modern platforms,
there are a variety of ways for an app to read SMS OTP messages
used for authentication (Step 3 in Figure 1). Unfortunately, as we
explain in detail in the following sections, all these approaches
include potential pitfalls. This is true even for those methods that
were designed to make accessing SMS OTPs more secure.

Specifically, in Section V we show that the newly introduced
mechanisms to streamline the copy-and-paste of OTPs from SMS
messages do not improve the overall security, since they are still
prone to deception attacks.

Then, in Section VI, we will show that, users may be willing
to give the READ_SMS permission to malicious apps. Our
results are complementary to previous studies on how users
(mis-)understand permissions. In fact, our study shows that, for
the specific case of the READ_SMS permission, most of the
users have a general understanding of how it works, but they
are unaware that an app able to read SMS can also potentially
compromise other apps’ accounts.

Finally, in Section VII we will show that the new APIs
introduced to automatically read SMS OTP messages in Android
are either error prone or intrinsically unsafe. Consequently, many
apps using these APIs are vulnerable. In addition, attacking these
vulnerable apps can be done automatically, without requiring any
user interaction. In fact, while the attacks presented in Section V
and Section VI require to deceive users to perform some kind
of Ul interaction (either to copy-and-paste an OTP or to grant a
permission), these attacks do not require user interaction.

V. GETTING SMS OTPS BY DECEIVING USERS

In this section, we elaborate on the attack in which an adversary
can deceive users and obtain the SMS OTP message through a mali-
cious installed app without any SMS-related permissions. Different
from the previous phishing attacks in which the malicious app
mimics the authentic Ul and steal user inputs [14], [20], here, we
focus on understanding how the newly introduced user-interaction-
based mechanisms (e.g., the One-Tap mechanism) can affect the
efficacy of UI deception attacks. Specifically, we first elaborate
on the attack scenario and its root cause. Then, we perform a
user study to objectively measure potential weaknesses of such
user-interaction-based mechanisms for SMS OTP authentication.

A. Assumptions

The attack presented in this section assumes that an attacker is
able to deceive the user. To deceive the user, the attacker controls a
malicious app that requests an SMS OTP message in a seemingly
legitimate scenario (e.g., while registering a new account in
an SMS OTP 1FA scenario). Note that as mentioned earlier

in Section II-A, this attack is orthogonal to other UI deception
attacks that exploits the OS-level weakness (e.g., task hijacking
or activity hijacking [13], [50]). Specifically, the attacker first
asks the user for their phone number, as it typically happens when
interacting with an app using SMS OTP for the first time. Then,
the attacker remotely requests the SMS OTP message of a user’s
legitimate account (e.g., Facebook) by contacting the legitimate
app’s backend server and specifying as phone number the one just
inserted by the victim. At this point, the victim will receive an
SMS message containing the legitimate account’s OTP, and the
attacker-controlled app will try to deceive the user into inserting
the received OTP into it. Notice that in here, since the victim will
receive one and only one message after the insertion of their phone
number, it is impossible for the victim to distinguish the attack
by the timing of the message. Since the incoming message exactly
meets the user expectation of receiving an SMS OTP message,
the victim user will likely input the OTP code in the phishing app.
This deception attack can be made even worse by the fact that the
SMS sent by the legitimate app’s backend may not contain a clear
indication of the name of the app that it is targeting.

B. Understanding User Reactions to Deception Attacks

Previous studies have already explored this type of attack and
empirically showed that users are likely to be lured by them [23].
However, no one has studied if the newly introduced mechanisms
to ease the OTP copy-and-paste user interaction mitigate this
threat. (recall the “ask-to-copy” and One-Tap mechanisms
described in Section III-A)

Therefore, in this section, we evaluate the impact that these
new mechanisms have in mitigating this attack. To this aim, we
performed a user study to measure the effectiveness of these de-
ceiving attacks in different scenarios, including situations in which
these newly introduced OTP code insertion mechanisms are used.

Design of the user study. To perform the user study, we obtained
IRB approval from our institution, and we used subjects recruited
using mTurk [4], a popular task recruitment platform, successfully
used in similar security-related user studies [9]. By using a
dedicated mTurk feature, which allows us to know user experience
with different OSes, we selected users familiar with iOS to
test i10S-specific scenarios, and users familiar with Android for
Android-specific scenarios. During our evaluation, we removed
those subjects not completing the assigned task or incorrectly
answering our validation questions.

The participating subjects were asked to use their browser to
access an interactive environment for a usability study, simulating
an Android phone or an iOS phone. We implemented this
interactive environment by using an app prototyping online tool
named Marvel App [2]. This interactive environment was used
to simulate a phishing scenario in which the user is required to
register a new account in a malicious app. The registration process
requires the user to input the OTP received in an SMS message.
During this process, the malicious app uses the user’s phone
number to request an OTP message from another account (in our
test, Telegram, a popular communication app). In this simulated
environment, the participants can either input the OTP by clicking
the OS-provided copy button or manually type it through the
on-screen keyboard. We present the details of these scenarios
step-by-step in Appendix (Figure 11 and Figure 12).

We divided subjects into four groups: Android-Manual,
Android-One-Tap, i0S-Manual, and iOS-Autofill. Subjects in



the two “Manual” groups had to insert the OTP by exclusively
using the system keyboard. Subjects in the groups of Android-
One-Tap and i0S-Autofill were respectively offered the two new
mechanisms in Android and iOS for SMS OTP authentication.
We consider the subjects’ accounts as compromised once they
inserted the OTP code into the malicious app.

TABLE IL. USER REACTIONS TO DIFFERENT PHISHING
SCENARIOS FOR STEALING SMS OTP MESSAGES BY A MALICIOUS APP

Test Case Total # Escaped users # (%) Compromised users # (%)
Android-Manual 5T 28 (55%) 23 (45%)
Android-One-Tap 61 26 (43%) 35 (57%)
i0S-Manual 51 15 (29%) 36 (71%)
i0S-Autofill 51 16 (31%) 35 (69%)

Results and findings. As shown in Table II, our study first
confirms that the percentage of subjects inserting the OTP in
the malicious app is high over the different scenarios, ranging
between 45% to 71%. More importantly, our study shows that the
percentage of subjects that escaped the attacks does not change
significantly between the manual input and the new mechanisms
(i.e., Android-One-Tap and iOS-Autofill). Therefore, we conclude
that all current available methods that require user-interaction to
acquire an OTP, including the newly introduced ones, are highly
vulnerable to deception attacks.

As a more concrete example, consider the Android One-Tap
SMS mechanism. Recall that, as shown in Figure 4(c), the interface
of this mechanism clearly shows the app name when the user is
about to insert the OTP code. In our simulation, we set this name
to be “FunnyChat” instead of being “Telegram”. In other words,
the name appearing in the One-Tap interface is the name of the
malicious app trying to steal the OTP. Nevertheless, based on the
results of our user study, this additional indication still did not
prevent users from inserting the OTP into the malicious app.

In addition, there is another issue making this mechanism
more prone to deception attacks. Specifically, although the
One-Tap API clearly shows the user the name of the app in
which the text message is going to be inserted (see Figure 2(c)),
we verified that a malicious app can arbitrarily name itself as
the target app, and hence making itself harder to detect when
requesting the OTP code of the target app. In fact, we were able
to create an app showing the name “Telegram” on its One-Tap
interface and get it published on the Google Play Store.

Design Weakness #1: Users do not have a reliable way to
identify the identity of the app in which they are asked to copy
an SMS OTP message.

In summary, we conclude that users can be easily deceived in
inserting an OTP into a malicious app, and the newly introduced
mechanisms (i.e., the “ask-to-copy’” and One-Tap mechanism) do
not improve the user’s ability to detect these deceiving attacks.

VI. BYPASSING OS PERMISSIONS
AND MARKET RESTRICTIONS TO ACCESS SMS MESSAGES

For an attacker, the most straightforward way to steal the
SMS OTP in Android is to have the permissions to read/intercept
all the incoming SMS sent to a device. This attack scenario has
been widely known and discussed by previous research [32],
[46], and modern OSes has employed extra restrictions as
countermeasures [12], [17], [S7]. Specifically, for an attacker,
obtaining this permission is hindered by both OS-level restrictions,
imposing that the user has to explicitly grant this permission to an

app, and by Market-level restrictions, which mandates additional
vetting for apps requesting this permission. However, in the rest
of this section, we will show how, and under which conditions,
it is still possible to bypass these restrictions due to the various
related design weaknesses.

A. Bypassing OS-level Restrictions

Exploiting users’ misunderstanding about SMS permissions.
The permission to read SMS is categorized as Dangerous in
Android. Therefore, an app wanting to obtain it has to show a
specific system-managed dialog box on which the user has to
press the button “ALLOW” (shown in Figure 3).

Prior studies have demonstrated that due to the lack of
understanding about technical details, certain users will either
totally ignore the warnings about the permission usage or fail to
understand the meaning of the different permissions [35]. However,
we claim that, in the specific case of the permission to read text
messages, the situation is even more worrisome. In this case, the
majority of the users do not understand the full consequences of
pressing the “ALLOW” button in the interface shown in Figure 3.

To empirically investigate this claim, we performed a
second user study, in which we asked Android users what the
consequences of pressing the button “ALLOW” (in the dialog
box shown in Figure 3) are. This user study has been performed
under the same setting as the previous user study (described in
Section V-B), using mTurk [4] for recruiting participants and
Marvel App [2] for simulating the interaction with a phone.

In this study, we first show the home screen of an Android
phone, in which a set of well-known popular apps (e.g., WhatsApp,
TikTok, and Amazon) are installed. Then, we show that this device
is installing a new app requiring the permissions to send and
read SMS messages with a system dialog window (see Figure 4).
Finally, we ask our subjects to answer a set of questions (as shown
in the left column of Table III) about the potential consequences
of pressing the “ALLOW” button in this dialog window. Subjects
were allowed to select multiple options. Details of the survey are
presented in Appendix (Figure 10).

TABLE III.
STATISTICAL RESULTS OF THE SURVEY WITH 57 VALID PARTICIPANTS.

Available options # Subjects choosing True
1) Read all my SMS messages 52 (91%)
2) Get access to my accounts on WhatsApp or Telegram 22 (39%)
3) Modify any SMS messages in my inbox 23 (60%)
4) Destroy my phone 16 (28%)
5) Leak my location 33 (58%)

1. Question — Please choose “True” for all potential consequences of clicking “ALLOW”
in the prompt window.
2. Option 1 and 2 are correct and the others are incorrect.

In total, we collected answers from 57 valid participants. As
can be seen from Table III, since 91% (52/57) of our subjects
correctly selected option-—1, we can conclude that it is clear to
the vast majority of the users that pressing the “ALLOW” button
in the permission prompt allows an app to read all SMS messages
on the device. While previous studies [35] have shown that many
users struggle to understand Android permissions, our study
shows that for the specific case of the READ_SMS permission,
most of the users have a general understanding of how it works.
However, most of them are unaware that by allowing an app
to read SMS, the app can potentially compromise accounts of
other applications. In fact, most of the subjects know how the
permission system works in general, but only 39% of them know



that an app that can read SMS messages can also read OTPs and,
therefore, compromise accounts of popular apps. We believe this
is an indication that many users are unaware of this specific threat
when taking permission-related decisions in Android.

We believe that this is due to the fact that the permission
dialog box does not provide a sufficient explanation of the
security consequences of this choice. More specifically, the dialog
box simply says “Allow (app name) to send and view SMS
messages?”’, but it does not mention that having the ability to
read SMS messages also allows a malicious app to compromise
accounts of those apps using 1FA SMS OTPs.

In summary, we conclude that the SMS permission prompt
does not provide sufficient information regarding the security
consequences of pressing its “ALLOW” button.

Design Weakness #2: The system interface asking for the
permission to read SMS do not explain the severe security
implications that this choice can have.

B. Bypassing Market-level Restrictions

App version update. As mentioned earlier, an app requiring
the permission to read the SMS inbox is subjected to additional
policies when uploaded to the Google Play Store. Specifically,
the app is manually checked by Google Play to ensure it is
suitable for being an SMS handler app. However, we found that
the enforcement of this policy can be easily bypassed. In fact,
we were able to publish on the Google Play Store an app not
following these requirements.

To achieve this goal, we first implemented an app that respects
these requirements. Then, we uploaded it to the market and waited
for its approval. Once approved, we modified it (by publishing an
update), transforming it in an app that does not show the default
SMS prompt (Figure 4) and that it is able to silently read text
messages and upload them online 3. While the initial approval
took several days (suggesting a comprehensive analysis performed
by market operators), the updated was accepted in a few hours.
Theoretically, it is also possible to detect the malicious behavior we
added to the uploaded app through static analysis. Unfortunately,
this was not the case in our experiment. We also tried to upload an
application requesting the permission to read text messages, but
not following the market policies. In this case, the app was rejected.

To this end, our experiments suggest that, most likely, the
human-assisted verification is not performed when the app is
updated, since app updates are accepted in a few hours while
new submissions are accepted after days. We acknowledge that
the Play Store may be treating differently apps than have a
meaningful number of users. However, as of November 2020, our
uploaded app has been downloaded more than 100 times and it
even received one comment from a legitimate user. Still, it does
not exhibit any sign of further verification.

Design Weakness #3: Market-level policies are not verified
for updated versions of an already published app.

Requesting alternative permission. We also found another way
to bypass this vetting process. An Android app can obtain a permis-
sion named BIND_NOTIFICATION_LISTENER_SERVICE
to read notifications received by the user. All received SMS

3Due to ethical considerations, we implemented the app so that it only exhibits
the malicious behavior when running on our testing devices.

messages trigger a notification containing their content. Therefore,
an app having the permission to read notifications can effectively
read all the incoming messages, including those containing OTPs.

Indeed, recent researchers [52] found malware in the Google
Play Store, which specifically utilizes the notification system
as a sidestep to SMS-related permission restrictions, and hence
steal the OTP messages of other accounts. In addition to what
already found by this work, we noticed inconsistencies on how
the permission to read notifications is handled compared to the
READ_SMS permissions.

Specifically, the “reading notification” permission is
considered as Special by the Android OS [29]. To obtain this
permission, the app has to ask the user to open a dedicated
interface and select the name of the app. Thus, from the perspective
of convincing the user to grant this permission to a malicious
app, obtaining the permission to read notifications is harder than
obtaining the read SMS permission, since it requires complex user
interaction (not just pressing an “ALLOW” button). Surprisingly,
publishing on the Google Play Store an app asking the permission
to read notifications is easier than publishing an app requesting
the permission to read SMS messages, since it does not trigger any
extra vetting. We confirmed this by submitting to the market an app
whose only behavior is to ask the permission to read notifications.
The app was accepted without any particular request or delay.

Design Weakness #4: Market-level policies and OS-level
policies are not aligned.

VII. EXPLOITING MODERN SMS APIs

In previous sections, we have described attacks requiring some
form of user interaction, either in the form of the user copy-pasting
the OTP, or granting specific permission to an app. Instead, in
this section, we will show how to abuse recent APIs in modern
Android versions (the ones discussed in Section III-C) to perform
automated, stealthy, and user-interaction-free attacks in various
circumstances. We will also report the results of a large-scale study
on how many apps are affected by these attacks in Section IX.

Assumptions. For this type of attack, we assume that the victim
app uses one of the system-provided APIs for authentication.
However, we do not assume our malicious app to have any
permission other than Internet (for sending out the SMS
OTP code), and we do not assume any user interaction. The
permission-less and interaction-free nature of these attacks makes
them more worrisome than the previous ones.

Preliminary observations. There are two fundamental observa-
tions that lay the basis for our attacks against these modern SMS
APIs. The first observation is that, in modern Android versions, if a
malicious app can control part of the content of an SMS OTP mes-
sage, the malicious app can read the entire message, without requir-
ing any permission nor user interaction. This surprising behavior is
due to the existence of the three APIs described in Section III-C al-
lowing to access SMS messages without requiring any permission
depending on whether they contain specific strings (i.e., the token
or the hashcode). For example, consider Figure 7, and suppose that
an attacker is able to lure (in Step 1) a victim app’s backend server
to send an SMS OTP message (in Step 2) whose content includes
the hashcode associated to the malicious app: in this scenario, the
OS would automatically redirect the OTP-carrying SMS to the
malicious app, without the need of requesting any permission.
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Fig. 7. Tllustration of how an attacker can obtain the SMS OTP code from a
benign app if its backend server is incorrectly implemented.

The second observation is that, due to how these modern SMS
APIs work, if a victim app (and its associated backend) use SMS
Retriever, SMS Token, or SMS Token+, an attacker
could have a chance to lure the app’s backend in delivering a
partially-attacker-controlled OTP-carrying SMS message, thus
giving an opportunity to the malicious app to intercept it. The
remainder of this section discusses the technical details on how
a malicious app can perform full end-to-end attacks, depending
on which of the three modern APIs is used and how the backend
server’s logic is implemented.

A. Attacking Apps using SMS Retriever

The SMS Retriever API requires the app’s backend
server to save the app’s hashcode and include it in the SMS OTP
messages. If implemented properly, an attacker would have no
way to control the content of the delivered message. In this case,
the presence of the hashcode will cryptographically ensure that
only the legitimate app will be able to read the SMS OTP message
without requiring any permission. This property is true under
the assumption that the hash algorithm used is second-preimage
resistant (we will discuss this assumption in Section VIII-B).

However, this API could be used unsafely if the app developers
implement their backend’s logic in a different and vulnerable
way. Specifically, the backend may be implemented so that it
receives the app’s hashcode from the app itself, and then it inserts
the hashcode to the generated SMS OTP message. At this point,
the legitimate app’s backend will generate an SMS OTP message
(containing the malicious app hashcode) that will be delivered by
the OS to the malicious app, instead of the legitimate one.

We found this issue to be surprisingly common. We speculate
that this happens because computing the hashcode of an app is
surprisingly unintuitive. The official documentation [28] presents
a fairly complicated seven-step procedure to obtain this value,
which involves downloading a signing key from the Google
Play Store. Although possible to implement, we did not find any
publicly available code that, given an APK file (the file format
used to distribute an app), returns its hashcode. On the contrary,
the official documentation provides some code that allows an app
itself to obtain its own hashcode. While the same documentation
also warns not fo include the provided code in the app, we found
that many developers include the code and use it to compute the
hashcode. As a result, the locally generated hashcode is sent to the
backend server and used for the SMS OTP message generation.
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We also noticed another common way in which developers
use this API unsafely. Instead of dynamically computing the
hashcode in the app and sending it to the backend server, they
hardcode the hashcode in the app and send the hardcoded string to
the server, which then uses it to generate the SMS OTP message.
While Google documentation specifically states: “Do not use hash
strings dynamically computed on the client in your verification
messages,” it does not explicitly state not to trust a hardcoded and
app-provided value in an app’s backend code.

Design Weakness #5: The usage of the SMS Retriever
API is error prone.

B. Attacking Apps using SMS Token

The SMS Token API is intrinsically unsafe regardless
of how developers use it. Recall from Section II-C, that
to use the SMS Token API, an app A has to call the
createAppSpecificSmsToken API to obtain a random
token 7'. The app then sends this token to its backend server, which
will answer by sending an SMS containing the OTP, together
with the token 7". The OS will then detect that the received SMS
contains the token 7", and it will dispatch the message to the app A.

However, a malicious app installed on the victim’s device can
use the same mechanism to lure the victim app’s backend. As
shown in Figure 8, in fact, the malicious app can first call the
SMS Token APIto obtain a token 75. Then, the malicious app
sends this token to the attacker (Step 0). The attacker can initiate
authentication with the victim app’s backend server, specifying the
victim’s phone number as phone number, and 75 as token (Step
1). Since the token returned by this API is random and always
changing, the app’s backend cannot tell whether the provided
token comes from a legitimate user or an attacker, and it needs
to trust whatever received during the authentication request. As
a result, the backend will send an SMS OTP to the victim’s phone,
containing 75 (Step 2). This SMS message will be dispatched by
the OS to the malicious app (Step 3).

While it is possible (although error prone) to use the SMS
Retriever API correctly, in the case of the SMS Token
API, the impossibility of recognizing the legitimacy of the
provided token makes the use of this API inherently unsafe for
authentication purposes.



To further corroborate our claim, we used ProVerif [11], [37]
to demonstrate the fundamental design flaw of the SMS Token
API. ProVerif is a software for automated reasoning and verifi-
cation about the security properties of a given cryptographic or
communication protocol. In our case, we modeled the interaction
between an app using the SMS Token APIand a corresponding
backend server, according to what shown in Figure 6. ProVerif was
able to show how an attacker can obtain the OTP from the server.
The details of the proof can be found in Appendix (Figure 13).

Design Weakness #6: The usage of the SMS Token API
(createRppSpecificSmsToken) for authentication
purposes is unsafe due to its vulnerable design.

Unfortunately, the official documentation of this API does
not warn against the dangerousness of its usage. For this reason,
we found developers of widely used apps (e.g., Telegram) to use
it as part of their SMS-based authentication, making their app
vulnerable to the aforementioned attack.

C. Attacking Apps using SMS Token+

The official documentation of the SMS Token+ API
suggests using this API in the same way as the SMS Token
API. In this case, the app using this API is vulnerable to the same
attack asin SMS Token, because the only described difference
is about the presence of a potential custom prefix in the SMS OTP
message, which is irrelevant from a security standpoint.

However, it is possible to use it in a safer way, but this mecha-
nism is not explained in the official documentation. In other words,
the vulnerability in this API is due to the incorrect documentation
rather than its implementation (as in SMS Token). By reverse-
engineering the implementation of this API, we found that its inter-
nal behavior is very similar to SMS Retriever. Specifically,
the returned token is always equal to the calling app’s hashcode
rather than a random one. Likewise, a received message containing
a hashcode A is only delivered to the app whose hashcode is A.

Consequently, the correct way to use this API safely is to
ignore its return value and, instead, place the app’s hashcode in
the SMS OTP messages generated by the app’s backend server.
Unfortunately, this critical information is never mentioned in the
documentation, and hence app developer will still implement
this API in the same vulnerable way as in SMS Token. On the
contrary, the official documentation states: “The token is only good
for one use within a reasonable amount of time,” hinting to the fact
that the token is randomly generated or, at least, it may change.

Design Weakness #7. The SMS Token+ API
(createlppSpecificSmsTokenWithPackageInfo)
documentation suggests using it in the same way of the SMS
Token API, thus making its usage equally insecure.

D. Responsible Disclosure and Developers’ Response

We reported our findings about the SMS Token and SMS
Token+ APIs to the Android Security team. We had a meeting
with several Google engineers, they acknowledged the issues, and
we discuss possible mitigations. Later, Google informed us that,
in an upcoming quarterly update of Android, they plan to fix or
deprecate these APIs.
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VIIL
ADDITIONAL DESIGN WEAKNESSES OF THE MODERN APIS

In addition to what described in the previous sections,
we identified other design weaknesses affecting the SMS
Retriever, SMS Token,and SMS Token+ APIs.

A. Modern APIs’ Inbox Management

The SMS Retriever, SMS Token, and SMS
Token+ APIs are designed to deliver the content of an
SMS OTP only to a specific app. Therefore, SMS received
by using these APIs should not be stored in the SMS inbox.
Otherwise, a malicious app able to obtain the Android permission
to read SMS (as explained in Section VI) can read them and
obtain the OTPs they contain.

Unfortunately, we found that this is not the case. Specifically,
the SMS Retriever API always stores the received SMS
messages (i.e., messages containing the app’s hashcode) in the
SMS inbox. Interestingly, for the other two APIs (i.e., SMS
Token and SMS Token+), the received message does not
go normally in the SMS inbox, but an attacker can force this to
happen. In fact, these APIs avoid storing the received message in
the inbox if and only if the following two conditions are both true:

e an app on the victim’s device has previously called these APIs
and obtained a token T;
o the incoming SMS message contains 7.

An attacker can easily exploit this behavior by requesting to
the backend server of an app using these APIs an SMS OTP
specifying a random token, rather than a token returned by these
APIs. Once received, the message containing a random token will
be stored in the SMS inbox, and hence it will be readable by apps
allowed to read text messages.

Design Weakness #8: SMS OTP Messages are stored in the
SMS inbox (making them readable by any app with proper
permissions), even when obtained with APIs designed to
deliver them only to a specific app.

B. Cryptographic Weaknesses

From a cryptographic standpoint, the SMS Retriever
API does not follow proper guidelines. Recall that the hashcode
is computed by converting a SHA256 hash to a base64 string and
truncating it to 11 characters. Effectively, this reduces the strength
of the hashing algorithm to 66 bits (since a base64 character has
6 bits of entropy). Although truncating a hash in itself is not a
security problem, NIST guidelines [16] mandate not to truncate
a SHA256 hash to less than 224 bits. In fact, an attacker could
be able to craft a malicious application having a specially crafted
package name so that it has the same hashcode of a victim’s app.
This attack requires finding a second pre-image of a 66-bit hash,
which, although hard, it could be computationally feasible for a
determined attacker.

To test how Android and the Google Play Store behave in
case of hashcode collision, we created two applications having the
same hashcode. We note that due to the Birthday Attack, creating
two colliding applications only required a few hours of CPU time.
Interestingly, we were able to upload and get approved both the
applications on the Google Play Store. Therefore, we concluded
that market operators do not verify the absence of hashcode
collisions among published apps.



Once two apps with the same hashcode are installed on
the same device, we noticed that both apps stop receiving any
message delivered with the SMS Retriever APIL However,
if a malicious app (with a colliding hashcode) is installed on a
device in which the collided legitimate app is not installed, the
malicious app can receive any SMS OTP message delivered by
the legitimate app’s backend.

Design Weakness #9: The SMS Retriever API does
not respect security guidelines in terms of hashing strength.
The market does not check for hashcode collisions.

IX. LARGE-SCALE APP MEASUREMENT

To better understand how apps use the modern APIs for
SMS OTP authentication, we perform a large-scale measurement
analysis over Android apps in the Google Play Store. Our results
show a number of highly popular apps confirmed to be vulnerable
due to the usage of these APIs.

Dataset. To build our dataset, we obtain the package names of
all available apps in Google Play Store using AndroidZoo [3].
Starting from this list, we downloaded all those apps with more
than 50,000 downloads, based on the app’s information shown
in the Google Play Store. To boost our app collecting process, we
downloaded the apps’ APK files from both Google Play and third-
party websites (e.g., APKPure [5]) based on their unique package
names. Our final dataset includes a total number of 140,586 apps,
downloaded between December 2019 and February 2020.

A. Vulnerable App Identification

We use a mix of static and dynamic analysis mechanisms to
find apps that are vulnerable due to their usage of the modern
SMS authentication APIs.

Static analysis. Our tool uses FlowDroid [7], together with a set
of heuristics for locating those apps that are highly likely to be
vulnerable.

To detect the usage of the SMS Token and SMS
Token+, our analysis first checks for the method
signatures (i.e., createAppSpecificToken () and
create...WithPackageInfo ()) along with the call graph
constructed by FlowDroid. The call graph helps us to eliminate
those dead code which are actually not invoked by the app.
These two APIs are intrinsically unsafe if used according to their
documentation (as explained in Section VII-B and Section VII-C).
As a result, their usage is an indication of a possible vulnerable
authentication scheme.

For apps using the SMS Retriever mechanism, our
static analysis attempts to detect if (1) the app either contains its
own hashcode or it dynamically computes it, and (2) sends it to a
server. These features strongly indicate that the backend server may
use the obtained hashcode from the app to create an SMS OTP mes-
sage (making the app vulnerable, as explained in Section VII-A).

To detect the presence of a hardcoded hashcode, we compute
the app’s hashcode on our own, and we use string matching
to find its presence in the app’s code. Besides, to detect if an
app dynamically computes its own hashcode, we check if the
app invokes specific APIs needed for obtaining its own signing
certificate (as shown in Figure 9) and how the results of these
APIs are chained together. Lastly, we use the data flow analysis
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android.content.ContextWrapper: getPackageName ()
android.content.pm.Signature: toCharsString/()
java.security.MessageDigest: update (byte[])
java.util.Arrays: copyOfRange (byte[],int, int)
android.util.Base64: encodeToString (byte[],int)

Fig. 9. Method signatures for dynamically generating an app’s hashcode.

provided by FlowDroid to detect if the hashcode is indeed sent
out through a network APL

We note that developing a static analysis tool that can detect
vulnerable apps with high precision is outside this paper’s scope.
Our goal is to have a tool that we can use to focus our subsequent
dynamic analysis on those apps that are potentially vulnerable.

Dynamic confirmation. Further, we use dynamic analysis and
manual reverse engineering to confirm if the candidate apps
detected by our static analysis are indeed vulnerable. Specifically,
we reverse engineer the apps to confirm the usage of the detected
APIs as part of their authentication scheme. We classify apps
passing our reverse engineering analysis as “Suspicious”. Then,
to confirm that an app is vulnerable (i.e., a malicious app can steal
its OTP without requiring any permission nor user interaction),
we verified that it is possible to lure the app’s backend to generate
an OTP message in a way in which an attacker can control its
content. This property implies that a malicious app can steal the
OTP, as we explained in Section VII.

To dynamically verify this property, we instrument the app (us-
ing re-packaging and the Xposed instrumentation tool [1]), to mod-
ify the hashcode (in case of SMS Retriever) or Token (in case
of SMS Token and SMS Token+). Then, we manually inter-
act with the app, triggering its authentication procedure. Finally,
we classify the app as “Confirmed” if the app’s backend sends us
an SMS OTP containing a modified hashcode or Token. Also note
that, in some of the apps, the backend server code logic got updated
after we notified the developers of the vulnerability affecting their
authentication scheme. We classified those apps as “Fixed”.

Our dynamic verification reveals that most of the false positives
reported by the static analysis are caused by those apps using
hashcode for app integrity check (e.g., re-packaging detection)
rather than implementing the SMS Retriever APL

Measurement results. Table IV summarizes our findings. We
found 20 apps confirmed as vulnerable (Column 3 in Table IV)
by the time of our dynamic analysis, which accounts for a total
number of more than 133 million installations in the Google
Play store. Meanwhile, we have found 16 apps (Column 4 in
Table IV), which we previously confirmed as vulnerable and got a
server-side fix, after we reported our findings to them. In summary,
by considering both “Confirmed” and “Fixed” apps, we had 36
vulnerable apps, sharing more than 230 million installations.

Note that, due to several reasons, there are certain apps for
which we cannot trigger the authentication procedure. For instance,
some apps’ backend servers only send SMS messages to interna-
tional phone numbers, which we cannot obtain. For this reason,
even if our reverse engineering suggested that their authentication
scheme is vulnerable, we flagged them as Suspicious. We found 0
appsusing the SMS Token+ mechanism. We believe that this is
because this API has only been introduced recently in Android 10.



TABLE IV. RESULTS OF OUR ANALYSIS OF 140,586 ANDROID APPS. NOTE
THAT THE NUMBER OF UNIQUE APPS CAN BE LOWER THAN THE SUM OF THE NUMBERS IN EACH CATEGORY SINCE SOME APPS EXHIBIT MULTIPLE FEATURES.

Candidates | Suspicious  Confirmed  Fixed
SMS Retriever: dynamic hashcode 56 20 9 0
SMS Retriever: hardcoded hashcode 38 7 4 3
SMS Token (createAppSpecificToken) 38 2 7 13
SMS Token+ (create AppSpecificTokenWithPackagelnfo) 0 0 0 0
Total number of unique apps 129 29 20 16

B. Case Studies

1) KakaoTalk: KakaoTalk [47] is a popular instant messaging
app, used by 93% of the smartphone owners in South Korea. The
app is also extremely popular in other Asian countries [62]. We
found that KakaoTalk’s backend uses SMS Retriever with
an app-provided hashcode. Specifically, the app’s code contains a
hardcoded hashcode that is sent to the app’s backend and used by
the backend to generate the SMS OTP message. Hence, its imple-
mentation is vulnerable (as we described in Section VII). For this
reason, an attacker can create an account associated with a phone
number that they do not own and impersonating the legitimate user.

We have recorded a demo video* to illustrate an end-to-end
attack against KakaoTalk. The attack is carried out with the follow
steps:

1) On the victim’s device, the installed malicious app
(BadAppForVictim)invokes SMS Retriever.

2) On the attacker’s device, the attacker starts the sign up in the
KakaoTalk app, specifying the victim’s phone number.

3) On the attacker’s device, the attacker alters the KakaoTalk

app behavior (e.g., through the Xposed framework [1]), and

sends the hashcode of BadAppForVictim to KakaoTalk’s

backend server.

The KakaoTalk’s backend server sends the verification text

message to the victim’s device, inserting the hashcode of

BadAppForVictim. Consequently, this text message can

be read by BadAppForVictim.

On the victim’s device, the BadAppForVictim sends the

received SMS OTP message back to the attacker’s device via

Internet.

On the attacker’s device, BadAppForHacker spoofs an

incoming text message containing the stolen SMS OTP

message. Consequently, on the attacker’s device, the KakaoTalk

app signs in as the victim.

4)

5)

6)

Through the steps above, the attacker has successfully signed
up using the victim’s phone number and can now act as the victim
to receive and response incoming messages. Someone adding
to their KakaoTalk contact list the victim’s phone number will
end up communicating with the attacker’s device, instead of the
victim’s device.

2) Telegram: Telegram is one of the most popular instant
messaging apps in mobile platforms. As of January 2020, it
has more than 100 million downloads in the Google Play [48].
The app was identified as vulnerable in a previous run of our
experiment, performed in June 2019. During our research, we
found that the SMS OTP authentication process in Telegram
used both SMS Retriever and SMS Token (based on
the Android version). The usage of the SMS Token API made
the app vulnerable, as explained in Section VII-B.

“https://pursec.cs.purdue.edu/projects/sms_mobile.html
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We also noted that on the Google Play Store, there exist many
Telegram unofficial clients. These apps allow users to chat with
other Telegram users and connect to the Telegram backend server.
We found that many of these apps did not update their code as
quickly as the official Telegram client. This aspect explains the
apps that we classified as “Fixed” in Table IV, since these apps still
contain the unpatched Telegram code, but they cannot be exploited,
since they use the, now patched, Telegram backend server.

3) Sinch Library: The Sinch Library is an Android
authentication library, targeting Android apps’ developers [53].
We found that Sinch Library provides SMS authentication
functionalities that not only uses the vulnerable SMS Token
mechanism but also uses the SMS Retriever mechanism
in a vulnerable way. Specifically, one of our “Confirmed” app
is vulnerable because it uses a Sinch Library’s function that
internally uses the SMS Token APL

Furthermore, another app we found was vulnerable because
it uses a Sinch Library’s function that internally uses the SMS
Retriever API incorrectly. Specifically, we found that the
documentation of the Sinch Library explicitly instructs developers
to insert their hardcoded hashcode as an argument of a function
used to start the library-provided SMS authentication functionality.
Then, the library sends the hashcode to the library-provided
backend server [54]. This app-provided hashcode is used to
generate the SMS OTP message, making the app vulnerable to
the attack described in Section VII-A.

C. Responsible Disclosure and Developers’ Response

For all apps identified as vulnerable in our study, we have
contacted their developers. Telegram, KakaoTalk, and the
developers of the Sinch Library acknowledged our findings. Both
the developers of KakaoTalk and Telegram offered us bug bounties.

As of our submission, the Sinch Library developers have not
released any update to fix the found issues yet. For KakaoTalk,
the developers have updated its server-side implementation to
no longer trust the hashcode received from the client-side mobile
app. For Telegram, after our notification to the developers, the
backend’s code was quickly updated, not to include in the sent
SMS the token used by the SMS Token API Later, the app’s
code was updated [60], removing the usage of both the SMS
Token APlandthe SMS Retriever APL

X. MITIGATION STRATEGIES

Throughout this paper, we have discussed many different
proposals for secure mechanisms and APIs to implement
SMS-related authentication functionality. However, each of these
proposals has some security concerns and explores different
trade-offs in the design space. In this section, we start by
systematically enumerating all the “ideal features™ that such a
security mechanism and API should have.



We note that none of these features, when considered
independently, is novel per se. For instance, the idea of using
a dedicated channel for SMS OTP messages and the idea of
filtering OTP messages based on their content was initially
explored by Mulliner et al. [46]. However, this solution does not
cryptographically link the delivered SMS with the app it targets.

Given that this research area is well explored and that there
have been several proposals by both academia and industry
(including Google’s several attempts to provide such APIs) [9],
[101, [12], [17], [23], [27], [28], [30], [46], [57], one may think
that it is not possible to obtain a solution that achieves all these
properties at the same time, and that there necessarily is some
sort of trade-off. We believe that is not the case, and we offer a
proposal that satisfies all these properties.

Lt}

Ideal properties. An “ideal” API should implement (note: “Wn
refers to Design Weakness #n): 1) the OTP-carrying SMS should
be automatically forwarded to the appropriate app (no manual
insertion), making W1 irrelevant; 2) the SMS should only be deliv-
ered to the proper app using an SMS Retriever-like method,
making W6 and W7 irrelevant; 3) it should have appropriate docu-
mentation (addressing W5) and use proper crypto (addressing W9);
4) an OTP-carrying SMS should never reach the SMS inbox (ad-
dressing W2, W3, W4, and W8); 5) the user should be able to see
the received messages, so to prevent that the presence of this func-
tionality in a device can be exploited to silently send text messages
to a phone number, which could result in financial damage; 6) it
should be easily usable by existing apps on existing mobile devices.

Our proposal. We now present a safer variant of existing APIs
that can be used by an app to receive OTP-carrying SMS messages
and satisfy the ideal properties discussed above. Our proposed
API relies on the assumption that the Android OS can established
a secure communication channel with third party apps. Also, we
assume that a system service can reliably identify the app it com-
municates with (and its signature). A system service can achieve
this goal by using the Binder.getCallingUid() APL
These assumptions are in-line with our threat model (Section II-A).

Our proposed API works similarly as the SMS Retriever
API, but with the following modifications:

1) SMS OTP messages using this API must start with a precise
prefix (e.g., “<OT' P >").

2) Messages starting with the specific prefix, under no
circumstances, are delivered to the SMS inbox.

3) Messages starting with the specific prefix can be visualized
by the user using a dedicated system app.

4) Messages are delivered to the app whose hashcode is contained
in the message itself.

5) The hashcode is computed as in the current SMS
Retriever API, but its length is truncated to 38 base64
characters instead of 11 (ensuring 228 bits of entropy, as
suggested by NIST guidelines).

We now explain how each of these modifications satisfies the
ideal properties listed above. Condition 1 and Condition 2 enforce
that SMS OTP messages are unequivocally flagged and never
delivered to the SMS inbox. In this way, a malicious app, even if
able to obtain the permission to read text messages, cannot access
them. Condition 3 avoids that the presence of this functionality in
a device can be exploited to silently send text messages (which
can potentially cause financial damage) to a phone number. In fact,
even if normal apps cannot access these messages, the user will
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always be notified of their arrival and able to see them. Condition
4 and Condition 5 makes this API deliver messages like the current
SMS Retriever APIL However, the longer hashcode ensures
that a malicious app cannot obtain the same hashcode of a legit-
imate app. In turn, this property, thanks to the SHA256 pre-image
resistance, guarantee that an app’s backend server can be sure that
the SMS will only be delivered to the app itself. Considering the
required prefix, the typical length of an OTP, the length of the
hashcode, and the fact that an SMS message can be long up to
160 characters (without incurring in any extra cost), the SMS OTP
message still has about 100 characters freely usable by a developer.

We implemented the aforementioned system using ProVerif,
and we verified that a malicious app, even if able to read the
content of the normal inbox, cannot obtain unauthorized access
to an OTP. Details of our ProVerif implementation and proof are
provided in Appendix (Figure 14).

Compared to previously presented solutions, including the
Google’s implementation of the SMS Retriever APIL our
solution is able to achieve all the aforementioned “Ideal Properties.”
In addition, to the best of our knowledge, this is the first work
formally verifying the properties of an API to access SMS OTPs.

Additional recommendations. As we explained in Section VII-A,
developers have difficulties in computing the required hashcode,
and this aspect leads them to mistakenly implement backend
servers that, instead of hardcoding the correct hashcode, obtain
it from the app. Therefore, we recommend that, in addition to
implement the proposed API:

e The current documentation is updated to clearly state that, the
backend server should not obtain the hashcode value from an
app. Alternatively, in case supporting several legitimate client
apps is needed, the server must verify that the hashcode sent
by the app matches one of the legittimate apps’ hashcodes.
Developers should be offered a tool to easily compute the
hashcode of a given app (starting from its APK file). The
hashcode should also be shown in standard development tools,
such as Android Studio and the Developer Console on the
Google Play Store.

Note that the above recommendations are not part of our
proposed defense mechanism, but they aim to prevent the misuses
of the current APIs.

XI. RELATED WORK

SMS-based authentication issues. Previous studies have identi-
fied a set of implementation issues [10], [45], which can result
in a vulnerable SMS-based authentication scheme. For example,
whether the OTP code generated with less entropy or with
longer expiration time. In contrast, other works identify and
summarize the different channels that can leak SM'S OTP messages.
Specifically, there exist vulnerabilities allowing the adversary to
obtain the SMS OTP messages by compromising the telephony
networks, including the SIM swapping attack [39], as well as the
wireless interception attacks (e.g., SS7 network exploitation [21]).
Other than these methods, a more straightforward way, as we
studied in our research, is to obtain the message from the mobile
device itself [18], [20], [32], [46]. Following this line of research,
in earlier years, research highlighted various attack channels. This
includes physical access to the device [46], mobile malware which
steals the SMS OTP message by requesting the less-restricted SM'S
permissions [12], as well as phishing attacks [9], [13], [14] that can



get the SMS OTP code from the user input. Different from prior
research, we systematically studied the practical ways an adversary
can use to obtain the SMS OTP message through a malicious app
running on a victim’s device, dealing with the various new features
introduced in modern mobile operating systems. In addition,
our identified vulnerabilities in the automatic SMS APIs follow
the observation of previous research [10], that is, any device-
public controlled information (e.g., the content of accessible SMS
messages) should not be used in any authentication scheme.

Understanding the security implications of SMS OTP mes-
sages. Another line of research focused on better understanding
the real-world security implications of SMS OTP authentication
issues [23], [35], [45], [63]. Specifically, AUTH-EYE [45]
proposed a fully automated approach to identify and detect the
implementation flaws of apps using the SMS OTP authentication
scheme on a large scale. Their analysis focuses on whether the
SMS OTP code is securely generated (e.g., the OTP randomness,
length) and verified (e.g., allowed retry attempts, renewal interval).
The results highlighted that 98.5% of apps violate different
security rules during the SMS OTP authentication scheme.

Yoo et al. [63] studied the vulnerable SMS OTP
implementations for bank apps in South Korea, while
Gutmann et al. [31] discussed the security risks of the
security code autofill mechanism in iOS and macOS. Besides,
Fahl et al. [19] demonstrated that a malicious app can monitor
the clipboard and steal passwords during a copy-and-paste user
interaction. This attack vector could also be used for stealing SMS
OTP code. In contrast, our work focuses primarily on how a local
attacker can obtain SMS OTP code by exploiting weaknesses in
the implementations of apps and mobile operating systems.

Mitigation and defense mechanisms. As countermeasures, some
research proposed different defense mechanisms against attacks
in SMS OTP authentication [33], [40], [44], [46], [56]. Among
them, the mechanisms proposed by Mulliner et al. [46] (i.e., using
a dedicated channel for SMS OTP delivery) is similar to what
implemented by Google in the modern APIs, in which our work
highlights several implementation issues and pitfalls. Besides,
DroidPAD [44] proposed a heuristic-based approach for iden-
tifying malicious apps based on their pattern when reading SMS
messages. As more fundamental solutions, Hamdare et al. [33]
proposed encryption-based mechanisms to secure the process of
OTP transmission, while CodeTracker [40] employs dynamic taint
analysis to track and protect the flow of SMS OTP messages
runtime using pre-defined policies. Moreover, TrustOTP [56] used
TrustZone to isolate the OTP code at the mobile OS-level. This sys-
tem provides a security guarantee to the integrity of the OTP code
even when the system is compromised by attackers. Unfortunately,
these approaches have not yet been adopted by mobile OSes in
practice, due to various limitations and requirements. For instance,
the usage of TrustZone [6] might not be feasible in all mobile
devices, and it requires integrating SMS reading capabilities
within the trusted computing base. In comparison, our proposed
mechanism extends the existing authentication mechanisms and
does not rely on any hardware feature.

XII.

In this paper, we conduct the first in-depth, systematic
study on the specific ways in which a malicious local app can
obtain unauthorized access to SMS OTP messages in modern
mobile operating systems. Our research identified a set of new
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attack channels that are primarily caused by newly introduced
mechanisms. While these mechanisms were developed to allow
more usable and safer SMS-based authentication, in reality, they
introduce new attack opportunities. To better understand the
real-world impact of these security issues, we performed both
user-studies and a large-scale measurement study over 140,586
apps. Our measurement found 36 apps (sharing hundreds of
millions of installations) that are vulnerable to the identified
attacks, including the popular messaging apps Telegram and
KakaoTalk. Furthermore, we provided suggestions on how to
mitigate this threat to both app developers, as well as OS vendors.
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APPENDIX

Figure 10 shows the questionnaire used to evaluate users’ understanding of the SMS permission. Figure 11 and Figure 12 show the
simulated scenarios of a phishing app requesting SMS OTP code with the android One-Tap SMS and iOS Autofill feature, respectively.

Figure 13 shows ProVerif output run on a model encoding the SMS Token API behavior. The output indicates the existence of
a way to access the OTP code, which coincides with the attack we explained. Figure 14 shows ProVerif output run on a model encoding
the improve SMS Retriever API, which we propose to implement. The output indicates the there is no way in which an attacker
can access the OTP code.

Q1

As shown below, you want to install another app called "SimpleSms® on this phone,
Background

Now, it is asking you for permissions
As shown below, some apps are installed on this phone, including: "Telegram",
"WhatsApp", "TikTok", "Amazon Shopping", and "Spotify" Please choose "True" for all potential consequences of clicking "allow"

Click next to answer a few questions.

EMMVYaa et e - 20®E 0704

[ Allow SimpleSms to
send and view SMS

messages?

DENY  ALLOW

-)

~ N R ' True False don't know
< Say "Hey Google o4 The Simplesims app
can read all my SMS o o o
The Simj
can mod SMS (o) (e] (e]
e @ d~ amazon I smeere e o 0 0
2z The Snplosims app
) accounton Whatshop © o ©
Te egram WhatsApp TikTok AmazoniSh Spotify or Telegram
The SimpleSms app o o o
can destroy my phone.
This is a dummy
choose False 50 we o o S
G pey you
Fig. 10. Designed questionnaire for asking user understanding about SMS permission request.
CEEX D 0630 —
R s sssrn2
\WednesdayJankils °
o
+1 876 654 4321

Click anywhere to interact
with this prototype

Allow FunnyChat to read the message below and

FUNNYCHAT

FunmyChat

Le®09

873
Telogram code: 20620.

Your Phone

Please confirm your country code
‘and enter your phone number.

United States.

@-\% 41 876-654-4321

Click anywhere to interact
with this prototype

FUNNYCHAT

R0

Fig. 12. Simulated phishing scenario with the iOS AutoFill OTP code prompt feature.
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Process:
in(client_to_server_channel, auth_request: OTP_REQUEST);
{2} let number_ 30: NUMBER = get_number_ from request (auth_request) in
4 {3} let token_31l: TOKEN = get_token_from request (auth_request) in
5 {4} if (number_30 = victim_number) then
6 {5} let auth_sms: SMS_MSG = sms (secret_otp,token_31) in
7 {6} out (server_to_victim_channel, auth_sms);
§ {7} if (get_calling app (read token_from sms (auth_sms)) = malicious_app) then
9 {8} out (broadcast_to_malicious_app_channel, auth_sms)

01—
—
[
-~

10 else

11 {9} if (get_calling_app (read_token_from_ sms (auth_sms)) = official app) then

12 {10} out (broadcast_to_official_ app_channel, auth_sms)

13 else

14 {11} if (get_calling app(read_token_from_ sms (auth_sms)) = any other_app) then
15 {12} out (broadcast_to_any other_app_channel, auth_sms)

16

7

18 —— Query not attacker (secret_otp[])

19 Completing...

20 Starting query not attacker (secret_otpl[])

21 goal reachable: attacker (secret_otp[])

22 1. The attacker initially knows victim number[].

23 attacker (victim_number([]) .

24 2. The attacker initially knows malicious_appl[].

25 attacker (malicious_appl[]) .

26 3. By 2, the attacker may know malicious_app[].

2 Using the function generate_token the attacker may obtain generate_token(malicious_app[]) .

28 attacker (generate_token(malicious_app[])) .

29 4. By 3, the attacker may know generate_token (malicious_app[]) .

30 By 1, the attacker may know victim number[].

31 Using the function request, the attacker may obtain request (generate_token (malicious_app[]),victim number([]) .
32 attacker (request (generate_token (malicious_app[]),victim _number[])) .

5. The message request (generate_token (malicious_app[]),victim number[]) that the attacker may have by 4 may be received at input {1}.
31 So the message sms (secret_otp[],generate_token(malicious_app[])) may be sent to the attacker at output {8}.

35 attacker (sms(secret_otp[],generate_token(malicious_app[]))) .

3 6. By 5, the attacker may know sms(secret_otp[],generate_token(malicious_appl[])) .

37 Using the function read otp_from sms the attacker may obtain secret_otpl[].

38 attacker (secret_otp[]) .

40 Could not find a trace corresponding to this derivation.
4] RESULT not attacker (secret_otp[]) cannot be proved.

Fig. 13. ProVerif verification process for SMS Token.

Process:

{1} in(client_to_server_channel, request (number: NUMBER)) ;
{2} if (number = victim number) then

4 (

5 {3} let auth_sms: SMS_MSG = sms (otp_prefix, secret_otp,hash_of_GoodApp) in
6 {4} out (server_to_victim_channel, auth_sms);

7 {5} if (read_prefix from sms(auth_sms) = otp_prefix) then

8 {6} out (broadcast_to_OtpInbox_channel, auth_sms)

9 else

10 {7} if (read_prefix from_sms (auth_sms) = no_prefix) then

11 {8} out (broadcast_to_Inbox_channel, auth_sms);
12 {9} if (read suffix from sms (auth_sms) = hash of BadApp) then
13 {10} out (broadcast_to_BadApp_channel, auth_sms)

14 else

15 {11} if (read_suffix from_ sms (auth_sms) = hash_of GoodApp) then
16 {12} out (broadcast_to_GoodApp_channel, auth_sms)

17y

18 {13} let trivial sms: SMS_MSG = sms(no_prefix,sms_text,no_suffix) in

19 {14} out (server_to_victim channel, trivial_sms);
20 {15} if (read prefix from sms(trivial sms) = otp_prefix) then
21 {16} out (broadcast_to_OtpInbox_channel, trivial_ sms)

22 else

23 {17} if (read prefix from sms(trivial sms) = no_prefix) then

24 {18} out (broadcast_to_Inbox channel, trivial_sms);

25 {19} if (read_suffix from sms(trivial_sms) = hash_of BadApp) then

26 {20} out (broadcast_to_BadApp_channel, trivial sms)

27 else

28 {21} if (read_suffix from sms(trivial sms) = hash of_GoodApp) then

29 {22} out (broadcast_to_GoodApp_channel, trivial sms)

—- Query not attacker (sms_text)

Completing. ..

35 Starting query not attacker (sms_text)

36 goal reachable: attacker (sms_text)

37 1. Using the function victim _number the attacker may obtain victim_number.

¢ attacker (victim_number) .

39 2. By 1, the attacker may know victim number.

40 Using the function request the attacker may obtain request (victim_ number) .

Il attacker (request (victim_ number)) .

42 3. The message request (victim number) that the attacker may have by 2 may be received at input {1}.
43 So the message sms(no_prefix,sms_text,no_suffix) may be sent to the attacker at output {18}.
44 attacker (sms (no_prefix, sms_text,no_suffix)).

45 4. By 3, the attacker may know sms(no_prefix,sms_text,no_suffix).

16 Using the function read text_ from sms the attacker may obtain sms_text.

17 attacker (sms_text) .

49 Could not find a trace corresponding to this derivation.
50 RESULT not attacker (sms_text) cannot be proved.

53 —- Query not attacker (secret_otp)
54 Completing...
55 Starting query not attacker (secret_otp)

RESULT not attacker (secret_otp) is true.

Fig. 14. ProVerif verification process for our proposed secure SMS authentication scheme.
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