On the Insecurity of SMS One-Time
Password Messages against Local Attackers
In Modern Mobile Devices

Zeyu Let, Yuhong Nad, Yanick Fratantoni®, and Antonio BiancHi

1Purdue University?’EURECOM & Cisco Talos
1f1ei76, nanl, antoniop@purdue.edu, 2yanick@fratantonio.me

Abstract—SMS messages containing One-Time Passwords
(OTPs) are a widely usedmechanismfor performing authentication
in mobile applications. In fact, many popular apps use OTPs
received via SMS as the only authentication factor, entirely
replacing password-basedauthentication schemesAlthough SMS
OTP authentication mechanismsprovide significant convenienceto
end-users,they also have significant security implications. In this
paper, we study thesemobile apps' authentication schemedasedon
SMSOTPs,and, in particular, we perform a systematicstudy on the
threats posedby “local attacks,” a scenarioin which an attacker has
control over an unprivileged third-party app on the victim's device.

This study was carried out using a combination of reverse
engineering, formal verification, user studies, and large-scale
automated analysis. Our work not only revealed vulnerabilities
in third-party apps, but it also uncovered several new designand
implementation flaws in core APIs implemented by the mobile
operating systemsthemselves.For instance, we found two official
Android APIs to be vulnerable by design,i.e., APIs that inevitably
lead to the implementation of insecureauthentication schemesgven
when used according to their documentation. Moreover, we found
that other APIs are prone to be usedunsafelyby apps' developers.

Our large-scale study found 36 apps, sharing hundreds of
millions of installations, that misusetheseAPIs, allowing a malicious
local attacker to completely hijack their accounts.Such vulnerable
apps include Telegram and KakaoTalk, someof the most popular
messagingapps worldwide. Finally, we proposed a new and safer
mechanismto perform SMS-basedauthentication, and we prove its
safetyusing formal verification.

I. INTRODUCTION

SMS messageélsoknown as“text messages"arewidely
usedto Two-FactorAuthenticationmechanismg$2FA). In these
scenariosa useris askedto providea tokenreceivedvia SMS
in additionto their usernamendpasswordIn addition,within
therealmof mobileappsthe SMSchannehasalsostartedbeing
usedasOne-FactoOne-TimePassword$1FA OTPs,in short).In
thesescenariosthe useris askedo “prove” the ownershipor their
own telephonenumber,which actsasthe main useridentifier:
“owning atelephonenumber’equateso “owning theuseraccount”
associategvith it. This mechanisnis implementedy first asking
the user's phonenumber,and then sendingan authentication

NetworkandDistributedSystemsSecurity(NDSS)Symposium2021
21-2 February2021 7JSUVBM

ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24212
Www.ndss-symposium.org

codeto this number. Finally, either the user is asked to insert th
received authentication code, or the app automaticallgtsréa
from the incoming SMS, at which point the app can send the code
back to the app's backend. This procedure proves ownerghip o
a specific phone number (and of the corresponding SIM céve).
note how this protocol effectively uses the SMS channel as th
only “factor” to authenticate to a user's account.

This mechanism brings significant convenience to users,
especially since users no longer need to create and remamber
password for each app requiring authentication. It thus doe
come as a surprise that this mechanism is widely used, ingud
top-popular messaging apps such as Telegram [48]. In plartic
we found that among the top 100 Android apps from the commu-
nication category in Google Play, 24 apps support using SMB O
code as thenly “factor” for user account authentication. This is
a growing pattern, to the point that Google has introduceskth
new APIs in the last few years to support this specific use.cas

Unfortunately, this mechanism also brings significanusie
implications, since the SMS communication channel has been
proven insecure on many occasions. Multiple times, attadkave
been able to target the telephony networks and successfdlhect
the OTP messages to an unintended receiver. The most prdmine
example is SIM-swapping [39] attack, in which an attacker ca
lure the telephony company to obtain a SIM card associatéd wi
the victim's phone number. Another instance of this issubes
exploitation of the SS7 network (the network internallydisé
telecom company to route calls and SMS messages) [21]. More-
over, it is known that state-level attackers can intercdf TP
messages, by interfering with local telecom companies [88kt
recently, a study [45] has shown that many Android apps ureéc
implement the generation and verification of SMS OTPs, used
their authentication protocols. For example, some appsrgén
SMS OTPs with insufficient randomness or insufficient lgng

Local attacks against SMS OTP authentication schemes.
While previous works have focused on exploiting vulnertaed

in the SMS channel itself, in this paper, we focus on a differe
class of attacks against SMS OTP messages, which wiacall
attacks With local attacks, we indicate a threat model in which an
attacker has control over a malicious third-party app llestaon

the victim's device. The goal of the malicious app is thendizal”
authentication codes sent via SMS. These attacks are dtwgst
for apps using the aforementioned 1FA OTP authentication
mechanism since they allow obtaining the only factor used to
authenticate a user. In addition, they also weaken theigeotir

traditional SMS-based 2FA solutions, since they allow iolbtg For example, we show that some of the APIs introduced
one of the two factors. to ease the usage of these authentication schemes suffer fro

Although these attacks have been previously studied [18], [Profound design bugs that makeritpossibleto be used safely.

201, [32], [46], modern devices and operating systemsémygint | nerefore, apps that use them are susceptible to accoackiniy
[nev]v EAP]Is[an]d mechanisms to easepdevelgpeyrs and eﬂrg:rs‘ lvadacks (see Section VII), which can be carried out by a roatic
when implementing and using SMS OTP authentication schemd8ifd-party app thatloes not request any permission
To the best of our knowledgap study has systematically analyzed In addition, we also performed two user studies to evaldate i
the security of these new mechanisms, and no study hasmpedor and how a malicious app can lure a victim user to perform astio
a large-scale evaluation to determine the relevance anihtipact allowing an attacker to steal SMS OTP messages.

of these threatOur research aims at filling this gap. To evaluate the severity and real-world impact of these

Recent operating systems' changes to support SMS OTP au- S€curity threats, we then conducted a large-scale measatem
thentication. To move toward a more secure way for SMS OTP au®n 140,586 Android apps, to understand how developers use
thentication, both Android and iOS employ protection meisras ~ SMS-authentication-related APIs and semi-automaticitect

to prevent SMS OTP messages from being read by unauthorizéinerable apps. This large-scale measurement reveatecheo
apps. For example, iOS does not allow any third-party apps tBitfalls in the usage of these APIs that make several apps
read or access SMS messages. On the other hand, in Androfdinerable, including extremely popular communicatiopsaguch
devices, third-party apps can request permission to reaivesl ~ aS Telegram [48] and KakaoTalk [47]. A successful adversary
SMS messages, including those messages potentially ciogai who pb_tams the SMS OTP messages could take full control of
OTPs. However, starting from January 2019, restrictions been the victim's account (see Section IX-B).

put in place to limit the usage of SMS-relevant permissidiz$. | Compared to prior research, we systematically studied dysw

Preventing apps from arbitrary reading SMS messagelat enable an adversary to obtain the SMS OTP messageglthrou
improves the security of SMS-based authentication scheines & malicious app running on a victim's device, running a moder
it blocks automated exploitation (i.e., without user imeshent). Mobile operating system. Our study not only shows that thet-ex
However, it also affects the overall user experience, sisees N threats are not well mitigated by current security esearents,
may be required to manually type these OTP messages chriarachut it also reveal; a set of new threats that are possibleodiestgn
by character in the legitimate app requesting them. For thidnd implementation errors in new mechanisms to access S\8S OT
reason, new mechanisms for handling OTP messages have béBgssages, introduced by modern mobile operating systems.
introduced by iOS [58] and Android [27], [28], [30], aiming a Lastly, we propose modifications and improvements to the
providing, at the same time, more security guarantees atef be currently available APIs in mobile operating systems tolenment
user experience. a more secure scheme for SMS-based authentication. We show

Although these mechanisms are more feasible and promisirf§at. differently than previously thought, thésea technical way
as the future mainstream for SMS OTP authentication, liie O achieve the sweet spot between usability and security. Ou
been done regarding understanding whether these mectsanisAESIgn provides stronger security guarantees withoutdasny
are indeed secure, which is the most critical thing for SM$OT Practicality. For example, our design, similar to the cor@pls,
authentication. Unfortunately, as we will show in this pape does notrequire user interaction or permissions. At theedane,
these new mechanisms introduce a new set of weaknesses dherevents malicious third-party apps from reading SMSiifse
vulnerabilities in mobile apps using them. We believe ondifigs ~ authentication by legitimate apps (see Section X).
are important and concerning, particularly because thexsent In summary, this paper makes the following contributions:
OTP-protecting security mechanisms wepecificallydesigned

to protect from the local attacker threat model. We systematize how the different mechanisms offered by the

mobile operating system to implement SMS-based authen-
Our work. In this paper, we conduct the first in-depth systematic tication can be attacked. We uncover design bugs in recent
analysis of the security of SMS authentication usage in mode Android APIs that were introduced specifically to proteci
mobile platforms. Our study started with analyzing how niaode the threat ofocal attackerswhich we consider in this paper.
mobile operating systems allow users and apps to access SMSWe perform a user study and a large-scale automated study to
OTP messages. This analysis was carried out using a comobinat ~ show the impact of these attacks in practice. Our studieks lea
of studying the official documentation and sample codegns to the discovery of several critical vulnerabilities, atiag
engineering, and formal verification (using ProVerif [LIThese several highly popular mobile applications, includingebgam
analyses led to surprising results, identifying a set cdictt and KakaoTalk.

surfaces that are either new or existing for a long time blit st ~We propose improvements and modifications to the APIs
have not been fixed yet. currently available in mobile operating systems to impletne

Our research shows that the newly introduced mechanisms SMS-based authentication.

to access SMS OTP messages, while designed to improve the
security and the usability of this authentication methedesely
hinder the security of the application using them.

IIl. THREAT MODEL AND 1FA SMS SHEMES

In this section, we first discuss the threat model and assump
1We note that since Android provides to developers most ofievative ways tions considered in our researCh.’ an.d we then present aviewer
to access SMS OTP code, our research is mostly focused omidntiowever, ~ Of LFA OTP SMS-based authentication SCheme§ adqpted by many
our paper also discusses the limited scenarios specif@3d$ection I11-A). popular apps and how a local attacker can exploit their wesdes.

that this API is as secure (or as insecure) as the previous SM8 Sectionll-A, this attack is orthogonal to other Ul deception
Token. attacks that exploits the OS-level weakness (e.g., tagkkiijg

To our surprise, we found that this it the case: while ©OF activity hijacking [13], [50]). Specifically, the attier first
the two APIsappearto work in the same way and they have @SKS the user for their phone number, as it typically happéres
a very similar documentation (with the only stated differenceiNteracting with an app using SMS OTP for the first time. Then
of being able to filter based on prefixeshese two APIs are (he attacker remotely requests the SMS OTP message of a user
internally implemented in a very different wayhat is even more |€gitimate account (e.g., Facebook) by contacting thditegie

interesting is that our analysis found th&MS Token+ isstill PP bgcgeng server and Sﬁ_ecifyi_ng ai phone nurqllaer theisne |
vulnerable to our attacks, but due to different reasiie discuss ~ INSerted by the victim. At this point, the victim will recenan
these attacks in Section VII-C. SMS message containing the legitimate account's OTP, and th

attacker-controlled app will try to deceive the user inteeiring
the received OTP into it. Notice that in here, since the wiatiill
IV.. 'How ToMaLiciousLy OBTAIN SMS OTFs receive one and only one message after the insertion oftheire

As explained in the previous section, in modern platformspumber, it is impossible for the victim to distinguish theaak
there are a variety of ways for an app to read SMS OTP messagbg the timing of the message. Since the incoming messagéyexac
used for authentication (Step 3 in Figure 1). Unfortunatedywe meets the user expectation of receiving an SMS OTP message,
explain in detail in the following sections, all these amizes the victim user will likely input the OTP code in the phishiagp.
include potential pitfalls. This is true even for those neelhithat ~ This deception attack can be made even worse by the fachthat t
were designed to make accessing SMS OTPs more secure. SMS sent by the legitimate app's backend may not containaa cle

Specifically, in Section V we show that the newly introduced ndication of the name of the app that it is targeting.
mechanisms to streamline the copy-and-paste of OTPs fro® SM]] .
messages do not improve the overall security, since thestidre B. Understanding User Reactions to Deception Attacks
prone to deception attacks. Previous studies have already explored this type of attadk a
Then, in Section VI, we will show that, users may be willing empirically showed that users are likely to be lured by th28j.[
to give the READ_SMSpermission to malicious apps. Our However,no one has studied if the newly introduced mechanisms
results are complementary to previous studies on how uset§ ease the OTP copy-and-paste user interaction mitigage th
(mis-)understand permissions. In fact, our study shows fima threat. (recall the “ask-to-copy” and One-Tap mechanisms
the specific case of thd®READ_SMSpermission, most of the described in Section II-A)

users have a general understanding of how it works, but they Therefore, in this section, we evaluate the impact thakethes
are unaware that an app able to read SMS can also potentialiw mechanisms have in mitigating this attack. To this aim, w
compromise other apps' accounts. performed a user study to measure the effectiveness of deese
Finally, in Section VII we will show that the new APIs Ceiving attacks in different scenarios, including sitoasi in which
introduced to automatically read SMS OTP messages in Asidroithese newly introduced OTP code insertion mechanisms etk us
are either error prone or intrinsically unsafe. Consedyenany
apps using these APIs are vulnerable. In addition, attgdkiase
vulnerable apps can be done automatically, without reagiainy
user interaction. In fact, while the attacks presented ¢tiGeV
and Section VI require to deceive users to perform some kin
of Ul interaction (either to copy-and-paste an OTP or to gaan
permission), these attacks do not require user interaction

Design of the user studyTo perform the user study, we obtained
IRB approval from our institution, and we used subjectsuised
using mTurk [4], a popular task recruitment platform, swstelly
éjsed in similar security-related user studies [9]. By using
edicated mTurk feature, which allows us to know user egpeg
with different OSes, we selected users familiar with iOS to
test i0S-specific scenarios, and users familiar with Arttifor
Android-specific scenarios. During our evaluation, we oged
V. GETTING SMS OTFs BY DECEIVING USERS those subjects not completing the assigned task or inttyrrec
In this section, we elaborate on the attack in which an adwers answering our validation questions.
can deceive users and obtain the SMS OTP message through amal The participating subjects were asked to use their browser t
cious installed appithout any SMS-related permissiofisfferent access an interactive environment for a usability studyykiting
from the previous phishing attacks in which the malicious ap an Android phone or an iOS phone. We implemented this
mimics the authentic Ul and steal user inputs [14], [20]ehere jnteractive environment by using an app prototyping ontiow
focus on understanding how the newly introduced userantem- named Marvel App [2]. This interactive environment was used
based mechanisms (e.g., the One-Tap mechanism) can hfect to simulate a phishing scenario in which the user is requived
efficacy of Ul deception attacks. Specifically, we firsalebrate register a new account in a malicious app. The registratiocgss
on the attack scenario and its root cause. Then, we performquires the user to input the OTP received in an SMS message.
user study to objectively measure potential weaknessaschf s pyring this process, the malicious app uses the user's phone
User'|nteract|0n'based meChanlsmS for SMS OTP authG(]tlca number to request an OTP message from another account (|n our
test, Telegram, a popular communication app). In this sited|
A. Assumptions environment, the participants can either input the OTP iokioly
The attack presented in this section assumes that an atiscke e OS-provided copy button or manually type it through the
able to deceive the user. To deceive the user, the attackiolsca. ~ ON-SCreen keyboard. We present the details of these soenari
malicious app that requests an SMS OTP message in a seemingffP-PY-step in Appendix (Figure 11 and Figure 12).
legitimate scenario (e.g., while registering a new accoant We divided subjects into four groups: Android-Manual,
an SMS OTP 1FA scenario). Note that as mentioned earliehndroid-One-Tap, iOS-Manual, and iOS-Autofill. Subjeats

the two “Manual” groups had to insert the OTP by exclusivelyapp, and by Market-level restrictions, which mandatesteuidil
using the system keyboard. Subjects in the groups of Androidetting for apps requesting this permission. However, énrést
One-Tap and iOS-Autofill were respectively offered the vasv ~ of this section, we will show how, and under which conditions
mechanisms in Android and iOS for SMS OTP authenticatiorit is still possible to bypass these restrictions due to #ré@us
We consider the subjects' accounts as compromised once theglated design weaknesses.
inserted the OTP code into the malicious app.

A. Bypassing OS-level Restrictions

TABLE Il U SER REACTIONS TO DIFFERENT PHISHING »)) o
SCENARIOS FOR STEALINGSMS OTPMESSAGES BY A MALICIOUS APP Exploiting users' misunderstanding about SMS permissions
Test Case Total # | Escaped users # (%) Compromised users # (%) The pgrm|SS|on to read SMS |s_categor|ze.dD_amgerou5|n
Android-Manual | 51 28 (55%) 23 (45%) Android. Therefore, an app wanting to obtain it has to show a
Android-One-Tap 61 26 (43%) 35 (57%) ifi _ i i
oS anual o1 15 (20%) 36 (71%) specific system 5nanage9l dialog box on which the user has to
i0S-Autofill 51 16 (31%) 35 (69%) press the button “ALLOW (ShOWﬂ n Flgure 3)

Prior studies have demonstrated that due to the lack of

Results and findings. As shown in Table I, our study first understanding about technical details, certain userseitiler

confirms that the percentage of subjects inserting the @TP itotally ignore the warnings about the permission usageildofa
the malicious app is high over the different scenarios, irapg understand the meaning of the different permissions [3ajvéver,

between 45% to 71%. More importantly, our study shows tret thwe claim that, in the specific case of the permission to read t
percentage of subjects that escaped the attacks does ngechamessages, the situation is even more worrisome. In this tese
significantly between the manual input and the new mechamis majority of the users do not understand the full consequseoice
(i.e., Android-One-Tap and iOS-Autofill). Therefore, wenclude pressing the "ALLOW” button in the interface shown in Figdre

thatall current available methods that require user-interactio To empirically investigate this claim, we performed a
acquire an OTP, including the newly introduced ones, arélj§ig second user study, in which we asked Android users what the
vulnerable to deception attacks consequences of pressing the button “ALLOW” (in the dialog

As a more concrete example, consider the Andéie-Tap box shown in Figure 3) are. This user study has been performed
SMSmechanism. Recall that, as shown in Figure 4(c), the interfa under the same setting as the previous user study (desamibed
of this mechanism clearly shows the app name when the user &ctionV-B), using mTurk [4] for recruiting participants and
about to insert the OTP code. In our simulation, we set thissna Marvel App [2] for simulating the interaction with a phone.

to be “FunnyChat” instead of being “Telegram”. In otherward | this study, we first show the home screen of an Android
the hame appearing in the One-Tap interface is the name of t"fﬂﬁone, in which a set of well-known popular apps (e.g., Wiags
malicious app trying to steal the OTP. Nevertheless, basébeo TikTok, and Amazon) are installed. Then, we show that thisode
results of our user _study, this addltlo_nal |nd|cat|9n stid not g installing a new app requiring the permissions to send and
prevent users from inserting the OTP into the malicious app. read SMS messages with a system dialog window (see Figure 4).
In addition, there is another issue making this mechanisnfrinally, we ask our subjects to answer a set of question$\(asrs
more prone to deception attacks. Specifically, although thin the left column of Table Iil) about the potential conseages
One-Tap API clearly shows the ustire name of the apm of pressing the “ALLOW” button in this dialog window. Subjsc
which the text message is going to be inserted (see Figuyg 2(cwere allowed to select multiple options. Details of the syrare
we verified thata malicious app can arbitrarily name itself as presented in Appendix (Figure 10).
the target appand hence making itself harder to detect when
requesting the OTP code of the target app. In fact, we weee abl
to create an app showing the name “Telegram” on its One-Tap

TABLE Il
STATISTICAL RESULTS OF THE SURVEY WITH57 VALID PARTICIPANTS.

H H H Available options # Subjects choosing True
interface and get it published on the Google Play Store. T) Road all iy SWIS 6553588 55 O1%%)

. . 2) Get access to my accounts on WhatsApp or Telegram 22 (39%
Design Weakness #1Users do not have a reliable way fo D e e o e oy iy 710 2 o
identify the identity of the app in which they are asked toycop 4) Destroy my phone 16 (28%)
an SMS OTP message 5) Leak my location 33 (58%)

’ 1. Question — Please choose “True” for all potential conseges of clicking “ALLOW”

In summary, we conclude that users can be easily deceived in g‘ggtgﬁf‘l“gn‘gigda‘;gco”em and the athers are incormect
inserting an OTP into a malicious app, and the newly intreduc ' '
mechanisms (i.e., the “ask-to-copy” and One-Tap mechgrdsm

. i o In total, we collected answers from 57 valid participants. A
not improve the user's ability to detect these deceivingckt. P b

can be seen from Table lll, since 91% (52/57) of our subjects
correctly selectedoption-1 , we can conclude that it is clear to
VI. BYPASSINGOS FERMISSIONS the vast majority of the users that pressing the “ALLOW" batt
AND MARKET RESTRICTIONS TOACCESSSMS MESSAGES i the permission prompt allows an app to read all SMS message
For an attacker, the most straightforward way to steal th@n the device. While previous studies [35] have shown thalyma
SMS OTP in Android is to have the permissions to read/infgrce users struggle to understand Android permissions, outystud
all the incoming SMS sent to a device. This attack scenaso hashows that for the specific case of ttREAD_SMSpermission,
been widely known and discussed by previous research [32fost of the users have a general understanding of how it works
[46], and modern OSes has employed extra restrictions adowever, most of them are unaware that by allowing an app
countermeasures [12], [17], [57]. Specifically, for araeker, to read SMS, the app can potentially compromise accounts of
obtaining this permission is hindered by both OS-levelietiins, other applications. In fact, most of the subjects know hogv th
imposing that the user has to explicitly grant this permis$d an permission system works in general, but only 39% of them know

that an app that can read SMS messages can also read OTPs ameksages trigger a notification containing their contEmérefore,
therefore, compromise accounts of popular apps. We bdliéve an app having the permission to read notifications can wfédyg
is an indication that many users are unaware of this spehifi@t read all the incoming messages, including those contaliFigs.

when taking permission-related decisions in Android. Indeed, recent researchers [52] found malware in the Google

We believe that this is due to the fact that the permissiorPlay Store, which specifically utilizes the notificatiopstem
dialog box does not provide a sufficient explanation of theas a sidestep to SMS-related permission restrictions, enceh
security consequences of this choice. More specificdlydialog steal the OTP messages of other accounts. In addition to what
box simply says “Allowhapp name to send and view SMS already found by this work, we noticed inconsistencies om ho
messages?”, but it does not mention that having the ability tthe permission to read notifications is handled comparebeo
read SMS messages also allows a malicious app to compromi&EAD_SMSpermissions.

accounts of those apps using 1FA SMS OTPs. Specifically, the “reading notification” permission is

In summary, we conclude that the SMS permission promptonsidered aspecialby the Android OS [29]. To obtain this
does not provide sufficient information regarding the siggu permission, the app has to ask the user to open a dedicated
consequences of pressing its “ALLOW"” button. interface and select the name of the app. Thus, from the gxetiep
of convincing the user to grant this permission to a maligiou
app, obtaining the permission to read notificationsasderthan
obtaining the read SMS permission, since it requires comser
interaction (not just pressing an “ALLOW” button). Surmigly,
publishing on the Google Play Store an app asking the paomiss
B. Bypassing Market-level Restrictions to read notifications igasierthan publishing an app requesting
the permission to read SMS messages, since it does notrtegge

App version update. As mentioned earlier, an app requiring extra vetting. We confirmed this by submitting to the magset
the permission to read the SMS inbox is subjected to addition whose onlygbehavior is to ask thg permissiogn to read ndli'rﬁr?s?

policies when uploaded to the Google Play Store. Spedifical ; ;
the app is manually checked by Google Play to ensure it i;I'he app was accepted without any particular request or.delay

suitable for being an SMS handler app. However, we found thatDesign Weakness #4Market-level policies and OS-leve
the enforcement of this policy can be easily bypassed. Iy fag policies are not aligned.
we were able to publish on the Google Play Store an app not
following these requirements.

To achieve this goal, we first implemented an app that réspec VIl. EXPLOITING MODERN SMS APIs
these requirements. Then, we uploaded it to the market aitedva |y previous sections, we have described attacks requioimgs
for its approval. Once approved, we modified it (by publi&han form of user interaction, either in the form of the user cpagting
update), transforming it in an app that does not show theitefa. the OTP, or granting specific permission to an app. Instiead,
SMS prompt (Figure 4) and that it is able to silently read textyis section, we will show how to abuse recent APIs in modern
messages and upload them onfin&Vhile the initial approval android versions (the ones discussed in Sediib&) to perform
took several days (suggesting a comprehensive analyéismed aytomated, stealthy, and user-interaction-free attackarious
by market operators), the updated was accejptedfew hours cjrcumstances. We will also report the results of a largeesstudy

added to the uploaded app through static analysis. Unfmeiyn

this was not the case in our experiment. We also tried to dpoa Assumptions.For this type of attack, we assume that the victim
application requesting the permission to read text messhge app uses one of the system-provided APIs for authentication
not following the market policies. In this case, the app vegsated. However, we donot assume our malicious app to have any

To this end, our experiments suggest that, most likely, th ?I'r;miglc?:) o;r:%r \:\t];r:jrgginaestsumgc;nseﬂgg:ginct)gggt?or?MTSI?]e
human-assisted verification i®t performedwhen the app is Zeh . . y y
updated, since app updates are accepted in a few hours wh 8rm|55|on-less and interaction-free nature of theselattamakes
new submissions are accepted after days. We acknowledge t em more worrisome than the previous ones.

the Play Store may be treating differently apps than have greliminary observations. There are two fundamental observa-
meaningful number of users. However, as of November 2020, ouions that lay the basis for our attacks against these m@&®
uploaded app has been downloaded more than 100 times anchibls. The first observation is that, in modern Android vensiif a
even received one comment from a legitimate user. Stilbésd malicious app can control part of the content of an SMS OTR mes
not exhibit any sign of further verification. sage, the malicious app can read the entire message, witmuit-

ing any permission nor user interactiohhis surprising behavior is
due to the existence of the three APIs described in SelitiGhal-
lowing to access SMS messages without requiring any peomiss

Requesting alternative permissionWe also found another way depending on whether they contain specific strings (he.foken
to bypass this vetting process. An Android app can obtainraipe ©F the hashcode). For example, consider Figure 7, and seiipats
sion namedBIND_NOTIFICATION_LISTENER_SERVICE an attacker is able to lure (|n Step l) avictim app's backemndes

to read notifications received by the user. All received SMS0 send an SMS OTP message (in Step 2) whose content includes
the hashcode associated to the malicious app: in this sogether

3Due to ethical considerations, we implemented the app it twaly exhibits ~ OS _WOUldaUtomfitical|yredireCt the OTP'C_arrying SMS. to the
the malicious behavior when running on our testing devices. malicious app, without the need of requesting any permissio

Design Weakness #2The system interface asking for the
permission to read SMS do not explain the severe security
implications that this choice can have.

Design Weakness #3Market-level policies are not verified
for updated versions of an already published app.

To further corroborate our claim, we used ProVerif [11],][37 VIII.
to demonstrate the fundamental design flaw of B&lS Token ADDITIONAL DESIGN WEAKNESSES OF THEMODERNAPIS
API. ProVerif is a software for automated reasoning andfiveri In addition to what described in the previous sections
cation about the security properties of a given cryptogaph e jdentified other design weaknesses affecting §MS
communication protocol. In our case, we modeled the interac Ratriever SMS Token and SMS Token+ APIs
between an app using thEMS Token API and a corresponding ' '
backend server, according to what shown in Figure 6. PrbWes
able to show how an attacker can obtain the OTP from the servéy- Modern APIs’ Inbox Management

The details of the proof can be found in Appendix (Figure 13). The SMS Retriever , SMS Token, and SMS

: Token+ APIs are designed to deliver the content of an
Design Weakness #6The usage of theSMS Token API o .
(creag'ieAppSpecificSmsTokeng) for authentication SMS OTP only to a specific app. TherEfOTe’ SMS recglved
purposes is unsafe due to its vulnerable design by using these APIs should not be stored in the SMS inbox.

Otherwise, a malicious app able to obtain the Android pesiais
Unfortunately, the official documentation of this API does to read SMS (as explained in Section VI) can read them and
not warn against the dangerousness of its usage. For tBmrea obtain the OTPs they contain.

we found developers of widely used apps (e.g., Telegramgdo U ynfortunately, we found that this is not the case. Spedifica
it as part of their SMS-bas_ed authentication, making thefr a ne SMS Retriever API always stores the received SMS
vulnerable to the aforementioned attack. messages (i.e., messages containing the app's hashcdtie) in
SMS inbox. Interestingly, for the other two APIs (i.eSMS
Token and SMS Token+), the received message does not
. : go normallyin the SMS inbox, but an attacker can force this to
C. Attacking Apps usingsMS Token+ happen. In fact, these APIs avoid storing the received rgedsa
The official documentation of theésMS Token+ APl the inbox if and only if the following two conditions are bdtle:
suggests using this API in the same way as 8dS Token T ; :
APL. In this case, the app using this API is vulnerable to drmae :2;‘ ggt(;ir:]tehdeg/ |tc(:)t||(rg_hs device has previously called thesesAP!
attack as inSMS Token because the only described difference the incomina SMS méssa e contains
is about the presence of a potential custom prefix in the SNB O 9) 9 ST))
message, which is irrelevant from a security standpoint. Aﬁn zti)ttaclz(kerdcan easn%/ exploit this beanor by reqUSStggot
. : . , the backend server of an app using these APIs an SMS OTP
_ However, |t||s_ po;gblﬁ to #.S? ;tdm a safer way, ?Ut mt\h:; r;]ECh"’lspecifying a random token rgtpher thgn a token returnedeseth
nism is not explained in the official documentation. In otiverds, : ' - ;
e = . ; . APIs. Once received, the message containing a random taken w
the vulnerability in this AP! is due to the incorrect docurtaion ., ¢ o 1'in the SMS inbox andghence it willgbe readable bg app
rather than its implementation (as 8BMS Token). By reverse- '

engineering the implementation of this API, we found treiriter- allowed to read text messages.
nal behavior is very similar tcSMS Retriever . Specifically, Design Weakness #8SMS OTP Messages are stored in the

the returned token is always equal to the calling app's f@Bhc | SMS inbox (making them readable by any app with proper
rather than a random one. Likewise, a received messagéringta | permissions), even when obtained with APIs designed to
a hashcodd is only delivered to the app whose hashcodg.is deliver them only to a specific app.

Consequently, the correct way to use this API safely is to
ignore its return value and, instead, place the app's haghito g cryptographic Weaknesses
the SMS OTP messages generated by the app’s backend server. ryprograp . . .
Unfortunately, this critical information is never mentashin the From a cryptographic standpoint, tHeMS Retriever
documentation, and hence app developer will still implemenAP! does not follow proper guidelines. Recall that the haslec
this API in the same vulnerable way as BMS Token Onthe 1S computed by converting a SHA256 hash to a base64 string and
contrary, the official documentation states: “The tokeority good truncating it to 11 characters. Eff_ectlvely, this redudesdtrength
for one use within a reasonable amount of time,” hinting eofet Of the hashing algorithm to 66 bits (since a base64 charaater

that the token is randomly generated or, at least, it maygghan 6 bits_of entropy). Althoug_h tryncating a hash in itself is ao
security problem, NIST guidelines [16] mandate not to taiac

Design Weakness #7 The SMS Token+ API a SHA256 hash to less than 224 bits. In fact, an attacker could
(createAppSpecificSmsTokenWithPackagelnfo) be able to craft a malicious application having a speciatjted
documentation suggests using it in the same way of$MS package name so that it has the same hashcode of a victim's app
Token API, thus making its usage equally insecure. This attack requires finding a second pre-image of a 66dsihh

which, although hard, it could be computationally feasfblea
determined attacker.

. . , To test how Android and the Google Play Store behave in
D. Responsible Disclosure and Developers’ Response case of hashcode collision, we created two applicationséake

We reported our findings about th8MS Token and SMS same hashcode. We note that due to the Birthday Attackjmgeat
Token+ APIs to the Android Security team. We had a meetingtwo colliding applications only required a few hours of CRidd.
with several Google engineers, they acknowledged thessameé Interestingly, we were able to upload and get approved eth t
we discuss possible mitigations. Later, Google informethag applications on the Google Play Store. Therefore, we cdedu
in an upcoming quarterly update of Android, they plan to fix o that market operators do not verify the absence of hashcode
deprecate these APIs. collisions among published apps.

11

Once two apps with the same hashcode are installed omandroid.content. Contextwrapper: getPackageName()

the same device, we noticed that both apps stop receiving any?ndroid-content.pm.Signature: toCharsString()
. . X java.security.MessageDigest: update(byte [])

messagedellvered Wlth thSMS . Retnever APl. HOWGVGF, java_utiLArrays; copyOfRange(by[e I], int s int)
if a malicious app (with a colliding hashcode) is installeda android.util.Base64: encodeToString(byte [J, int)
device in which the collided legitimate app is not installdue
ma“C'O_L_'S app Car? receive any SMS OTP message delivered *&)@ 9. Method signatures for dynamically generating arisdpgshcode.
the legitimate app's backend.

Design Weakness #9The SMS Retriever APl does
not respect security guidelines in terms of hashing sthengt
The market does not check for hashcode collisions.

provided by FlowDroid to detect if the hashcode is indeed sen
out through a network API.

IX. L ARGE-SCALE APPMEASUREMENT We note that developing a static analysis tool that can tletec
To better understand how apps use the modern APIs forulnerable apps with high precision is outside this pagsatspe.
SMS OTP authentication, we perform a large-scale measmtemeOur goal is to have a tool that we can use to focus our subsequen
analysis over Android apps in the Google Play Store. Oulteesu dynamic analysis on those apps that are potentially vufiera

show a number of highly popular apps confirmed to be vulderab .])))
due to the usage of these APIs. Dynamic confirmation. Further, we use dynamic analysis and

manual reverse engineering to confirm if the candidate apps
Dataset.To build our dataset, we obtain the package names afletected by our static analysis are indeed vulnerable if@jadly,
all available apps in Google Play Store using AndroidZoo [3]we reverse engineer the apps to confirm the usage of thetetétec
Starting from this list, we downloaded all those apps with@éno APIs as part of their authentication scheme. We classifys app
than 50,000 downloads, based on the app's information showpassing our reverse engineering analysis as “Suspicidbgh,
in the Google Play Store. To boost our app collecting proeess to confirm that an app is vulnerable (i.e., a malicious appsteal
downloaded the apps' APK files from both Google Play andithir its OTP without requiring any permission nor user intecaot
party websites (e.g., APKPure [5]) based on their uniqu&age we verified that it is possible to lure the app's backend toegate
names. Our final dataset includes a total number of 140,686,a an OTP message in a way in which an attacker can control its
downloaded between December 2019 and February 2020. content. This property implies that a malicious app carl ttea
OTP, as we explained in Section VII.

A. Vulnerable App Identification To dynamically verify this property, we instrument the app-(
ing re-packaging and the Xposed instrumentation tool {&Jmod-

We use a mix of static and dynamic analysis mechanisms t@ ine hashcode (incase BMS Retriever) or Token (in case

find apps tha_t are vulnerable due to their usage of the modergt spms Token and SMS Token+). Then, we manually inter-
SMS authentication APIs. act with the app, triggering its authentication procedEieally,
Static analysis.Our tool uses FlowDroid [7], together with a set We classify the app as “Confirmed” if the app’s backend sersds

of heuristics for locating those apps that are highly likeljoe ~ an SMS OTP containing a modified hashcode or Token. Also note
vulnerable. that, in some of the apps, the backend server code logic gategh

after we notified the developers of the vulnerability afieg their
To detect the usage of thBMS Token and SMS ihentication scheme. We classified those apps as “Fixed”
Token+, our analysis first checks for the method

create...WithPackagelnfo()) along with the call graph reported by the static analysis are caused by those appy usin
constructed by FlowDroid. The call graph helps us to elitgina hashcode for app integrity check (e.g., re-packaging tetgc
those dead code which are actually not invoked by the apfather thanimplementing th&MS Retriever ~ API.
These two APIs are intrinsically unsafe if used accordinpér \1o45urement results. Table IV summarizes our findings. We
documentation (as explained in Sectidt-B and SectioVIl-C). t4,nq 20 apps confirmed as vulnerable (Column 3 in Table 1V)
As a result, their usage is an indication of a possible valoler 1, 16 time of our dynamic analysis, which accounts for d tota
authentication scheme. number of more than 133 million installations in the Google
For apps using theSMS Retriever mechanism, our Play store. Meanwhile, we have found 16 apps (Column 4 in
static analysis attempts to detect if (1) the app eitheraingits Table IV), which we previously confirmed as vulnerable antia
own hashcode or it dynamically computes it, and (2) sendsatt server-side fix, after we reported our findings to them.umsary,
server. These features strongly indicate that the baclkewdramay by considering both “Confirmed” and “Fixed” apps, we had 36
use the obtained hashcode from the app to create an SMS OFP masinerable apps, sharing more than 230 million instalfegio

sage (making the app vulnerable, as explained in SecticAVII Note that, due to several reasons, there are certain apps for

To detect the presence of a hardcoded hashcode, we computhich we cannot trigger the authentication procedure. fsiance,
the app's hashcode on our own, and we use string matchingpme apps' backend servers only send SMS messages tointerna
to find its presence in the app's code. Besides, to detect if ational phone numbers, which we cannot obtain. For this reaso
app dynamically computes its own hashcode, we check if theven if our reverse engineering suggested that their aithéon
app invokes specific APIs needed for obtaining its own signi scheme is vulnerable, we flagged them as Suspicious. Wel foun
certificate (as shown in Figure 9) and how the results ofe¢hesapps usingtheSMS Token+ mechanism. We believe that this is
APIs are chained together. Lastly, we use the data flow aigaly because this API has only been introduced recently in Addi0i

12

TABLE IV.

RESULTS OF OUR ANALYSIS 0F140,586 ANDROID APPS NOTE

THAT THE NUMBER OF UNIQUE APPS CAN BE LOWER THAN THE SUM OF THE IMBERS IN EACH CATEGORY SINCE SOME APPS EXHIBIT MULTIPLE FERURES.

Candidates| Suspicious Confirmed Fixed
SMS Retriever: dynamic hashcode 56 20 9 0
SMS Retriever: hardcoded hashcode 38 7 4 3
SMS Token (createAppSpecificToken) 38 2 7 13
SMS Token+ (createAppSpecificTokenWithPackagelnfo) 0 0 0 0
Total number of unique apps 129 29 20 16

B. Case Studies

We also noted that on the Google Play Store, there exist many

Telegram unofficial clients. These apps allow users to alitt

her Telegram users and connect to the Telegram backeret.ser

e found that many of these apps did not update their code as
quickly as the official Telegram client. This aspect expaihe
apps that we classified as “Fixed” in Table IV, since thegesagill
geontain the unpatched Telegram code, but they cannot beited!

1) KakaoTalk: KakaoTalk [47] is a popular instant messaging
app, used by 93% of the smartphone owners in South Korea. T
app is also extremely popular in other Asian countries [6#].
found that KakaoTalk's backend us&MS Retriever with
an app-provided hashcode. Specifically, the app's codatma
hardcoded hashcode that is sent to the app's backend antysed”:
the backend to generate the SMS OTP message. Hence, its impi&'ce they use the, now patched, Telegram backend server.
mentation is vulnerable (as we described in Section VII).tRis 3) Sinch Library: The Sinch Library is an Android
reason, an attacker can create an account associated iitime p authentication library, targeting Android apps' develepb3].
number that they do not own and impersonating the legitimsge We found that Sinch Library provides SMS authentication

We have recorded a demo viddo illustrate an end-to-end functionalities that not only uses the vulneral#S Token
attack against KakaoTalk. The attack is carried out wittfolew ~ Mechanism but also uses #&MS Retriever ~mechanism
steps: in a vulnerable way. Specifically, one of our “Confirmed’pap

- .) . is vulnerable because it uses a Sinch Library's functiont tha
1) On the victim's device, the installed malicious app jnternally uses theSMS Token API.
(BadAppForVictim) invokes SMS Retriever
2) On the attacker's device, the attacker starts the sign upein t . Furthermore, another app we found was vulnerable because
KakaoTalk app, specifying the victim's phone number. it uses a Sinch Library's function that internally uses t8#S

3) On the attacker's device, the attacker alters the KakaoTallR€U1€Ver APl incorrectly. Specifically, we found that the
app behavior (e.g., through the Xposed framework [1]), an ocumentation of the Sinch Libragxplicitly instructs developers
ity to KakaoTaIk'é o insert their hardcoded hashcods an argument of a function

used to start the library-provided SMS authentication fienelity.

hen, the library sends the hashcode to the library-pravide

ackend server [54]. This app-provided hashcode is used to

ndenerate the SMS OTP message, making the app vulnerable to
the attack described in Section VII-A.

sends the hashcode @adAppForVictim
backend server.

4) The KakaoTalk's backend server sends the verification te>(<]g
message to the victim's device, inserting the hashcode
BadAppForVictim . Consequently, this text message ca
be read by BadAppForVictim

5) On the victim's device, theBadAppForVictim sends the
received SMS OTP message back to the attacker's device V@_ Responsib|e Disclosure and Deve|opers' Response
Internet.

. ; For all apps identified as vulnerable in our study, we have
6) On the attacker's device, BadAppForHacker spoofs an ;
incoming text message containing the stolen SMS O.I.ﬁontacted their developers. Telegram, KakaoTalk, and the

. ; developers of the Sinch Library acknowledged our findifgygh
message. Consequently, on the attacker's device, the Kakao
app signs in as the victim. the developers of KakaoTalk and Telegram offered us bugttesun

. As of our submission, the Sinch Library developers have not
Through the steps above, the attacker has successfulldsign . ;
up using the victim's phone number and can now act as thawicti released any update to fix the found issues yet. For KakkoTal

to receive and response incoming messages. Someone add}nnﬁl developers have updated its server-side implementetio

to their KakaoTalk contact list the victim's phone numbeHt wi a Ol%err.lt_relfzt trgi]hzﬁéogj rrﬁgﬁ}}/ggigﬂr?ot?ﬁ ecléeer\lltélsomlmlm
end up communicating with the attacker's device, instedtief pp. gram, pte

victim's device backend's code was quickly updated, not to include in thé sen
' SMS the token used by th8MS Token API. Later, the app's

2) Telegram: Telegram is one of the most popular instantcode was updated [60], removing the usage of both SIS
messaging apps in mobile platforms. As of January 2020, iToken APl andthe SMS Retriever API.
has more than 100 million downloads in the Google Play [48].
The app was identified as vulnerable in a previous run of our
experiment, performed in June 2019. During our research, we X. MITIGATION STRATEGIES
found that the SMS OTP authentication process in Telegram Throughout this paper, we have discussed many different
used bothSMS Retriever and SMS Token (based on proposals for secure mechanisms and APIs to implement
the Android version). The usage of tHe8MS Token APImade SMS-related authentication functionality. However, eafthese
the app vulnerable, as explained in Section VII-B. proposals has some security concerns and explores differen
trade-offs in the design space. In this section, we start by
systematically enumerating all the “ideal features” thathsa
security mechanism and API should have.

“https://pursecs purdueedu/projects/smsnobile html

13

We note that none of these features, when considereaglways be notified of their arrival and able to see them. QGamd
independently, is novel per se. For instance, the idea ofusi 4 and Condition 5 makes this API deliver messages like threectr
a dedicated channel for SMS OTP messages and the idea ®MS Retriever API. However, the longer hashcode ensures
filtering OTP messages based on their content was initiallghat a malicious app cannot obtain the same hashcode ofta legi
explored by Mulliner et al. [46]. However, this solution da@t imate app. In turn, this property, thanks to the SHA256 prage
cryptographically link the delivered SMS with the app igts. resistance, guarantee that an app's backend server caretteai

Given that this research area is well explored and that therif'® SMS will only be delivered to the app itself. Considerting
have been several proposals by both academia and indus{]rzq“'red prefix, the typical length of an OTP, the lengthiw t
(including Google's several attempts to provide such AFgk) shcode, and the fact that an SMS message can be long up to
; 160 characters (without incurring in any extra cost), theSSOTP
[10], [12], [17], [23], [27], [28], [30], [46], [57], one maghink .
that it is not possible to obtain a solution that achievethatte =~ MESSage still has about 100 characters freely usable bystoger.
properties at the same time, and that there necessarilyrie so We implemented the aforementioned system using ProVerif,
sort of trade-off. We believe that is not the case, and we affe and we verified that a malicious app, even if able to read the
proposal that satisfies all these properties. content of the normal inbox, cannot obtain unauthorizeésgc
to an OTP. Details of our ProVerif implementation and praef a

Ideal properties. An “ideal” API should implement (note: “\iv" ulprovided in Appendix (Figure 14).

refers to Design Weakness #n): 1) the OTP-carrying SMS gho) , .)
be automatically forwarded to the appropriate app (no manua_ Compared to previously presented solutions, including the
insertion), making W1 irrelevant; 2) the SMS should only btnd ~ G0Ogle’s implementation of th&&MS Retriever API, our
mentation (addressing W5) and use proper crypto (addgeeéa); formally verifying the properties of an API to access SMS &TP
4) an OTP-carrying SMS shoutgverreach the SMS inbox (ad- A qditional recommendations.As we explai ; ;

. s . plained in Sectiovll-A ,
dhressmg W2, W3, W4, and W8); 5) thehuserr]should be able 10 S&gq\elopers have difficulties in computing the requirechcase,
the received messages, so to prevent that the presence iribi 5 this aspect leads them to mistakenly implement backend

tionality in a device can t_)e exploited to si_Ien.tIy send teesgag_es servers that, instead of hardcoding the correct hashcot&no
to a phone number, which could resultin financial damagé; 6) i from the app. Therefore, we recommend that, in addition to
should be easily usable by existing apps on existing mobileds. implement the proposed API:

Our proposal. We now present a safer variant of existing APIs The current documentation is updated to clearly statettit,
that can be used by an app to receive OTP-carrying SMS message backend serveshould nobbtain the hashcode value from an
and satisfy the ideal properties discussed above. Our gedpo app. Alternatively, in case supporting several legitinwint
API relies on the assumption that the Android OS can estwlis apps is needed, the senrmustverify that the hashcode sent

a secure communication channel with third party apps. Also, by the app matches one of the legittimate apps' hashcodes.
assume that a system service can reliably identify the agmpmt Developers should be offered a tool to easily compute the
municates with (and its signature). A system service caieeaeh hashcode of a given app (starting from its APK file). The
this goal by using theBinder.getCallingUid() API. hashcode should also be shown in standard development tools
These assumptions are in-line with our threat model (Sedtia). such as Android Studio and the Developer Console on the
Our proposed API works similarly as th8MS Retriever Google Play Store.
API, but with the following modifications: Note that the above recommendations are not part of our
1) SMS OTP messages using this API must start with a precis@roposed defense mechanism, but they aim to prevent theesisu
prefix (e.g., <OTP >). of the current APIs.
2) Messages starting with the specific prefix, under no
circumstances, are delivered to the SMS inbox. X|. RELATED WORK
3) Messages starting with the specific prefix can be visudlize o))) .
by the user using a dedicated system app. SMS-based authentication issuesrevious studies have identi-
4) Messages are delivered to the app whose hashcode is contairféed @ set of implementation issues [10], [45], which canultes
in the message itself. in a vulnerable SMS-based authentication scheme. For dgamp

5) The hashcode is computed as in the currMS whether the OTP code generated with less entropy or with

Retriever AP, but its length is truncated to 38 base64 0nger expiration time. In contrast, other works identifyda

characters instead of 11 (ensuring 228 bits of entropy, asummarize the different channels that can leak SMS OTP gessa

suggested by NIST guidelines). Specifically, there exist vulnerabilities allowing thevadsary to

. L L obtain the SMS OTP messages by compromising the telephony
We now explain how each of these modifications satisfies th‘?\etworks, including the SIM swapping attack [39], as wellhes

ideal properties listed above. Condition 1 and Conditionf2iee \yireless interception attacks (e.g., SS7 network expioitd21]).

that SMS OTP messages are unequivocally flagged and nevefiner than these methods, a more straightforward way, as we

delivered to the SMS inbox. In this way, a malicious app, 8i/en stdied in our research, is to obtain the message from théemob

able to obtain the permission to read text messages, CaITEE® qeyice itself [18], [20], [32], [46]. Following this line aksearch,

them. Condition 3 avoids that the presence of this funcligria i earlier years, research highlighted various attack obianThis

a device can be exploited to silently send text messagestiwhi jncjudes physical access to the device [46], mobile malwduieh

can pptentlally cause financial damage) to a phone numbfact, steals the SMS OTP message by requesting the less-res88

even if normal apps cannot access these messages, the luser Wérmissions [12], as well as phishing attacks [9], [13]] bt can

14

get the SMS OTP code from the user input. Different from priorattack channels that are primarily caused by newly intreduc

research, we systematically studied the practical waysegrsary

mechanisms. While these mechanisms were developed to allow

can use to obtain the SMS OTP message through a malicious appore usable and safer SMS-based authentication, in rethkity

running on a victim's device, dealing with the various neatees

introduce new attack opportunities. To better understéued t

introduced in modern mobile operating systems. In additiorreal-world impact of these security issues, we performat bo

our identified vulnerabilities in the automatic SMS APIdda
the observation of previous research [10], that is, anycgevi
public controlled information (e.g., the content of acd@esSMS
messages) should not be used in any authentication scheme.

user-studies and a large-scale measurement study ové&8640,
apps. Our measurement found 36 apps (sharing hundreds of
millions of installations) that are vulnerable to the idfed
attacks, including the popular messaging apps Telegram and

Understanding the security implications of SMS OTP mes-
sagesAnother line of research focused on better understanding
the real-world security implications of SMS OTP autheritara
issues [23], [35], [45], [63]. Specifically, AUTH-EYE [45]
proposed a fully automated approach to identify and delect t

KakaoTalk. Furthermore, we provided suggestions on how to
mitigate this threat to both app developers, as well as O8aoren

ACKNOWLEDGMENTS

We are grateful to our shepherd, William Enck, and to the

implementation flaws of apps using the SMS OTP authentisati anonymous reviewers for their insightful feedback and sstigns.

scheme on a large scale. Their analysis focuses on whether th
SMS OTP code is securely generated (e.g., the OTP randomness
length) and verified (e.g., allowed retry attempts, reriemiarval).
The results highlighted that 98.5% of apps violate differen
security rules during the SMS OTP authentication scheme.

Yoo et al. [63] studied the vulnerable SMS OTP
implementations for bank apps in South Korea, while
Gutmann et al. [31] discussed the security risks of thel[l]
security code autofill mechanism in iOS and macOS. Besides,
Fahl et al. [19] demonstrated that a malicious app can monito [2]
the clipboard and steal passwords during a copy-and-paste u
interaction. This attack vector could also be used for stg&MS
OTP code. In contrast, our work focuses primarily on how alloc
attacker can obtain SMS OTP code by exploiting weaknesses i
the implementations of apps and mobile operating systems.

[3]
T
[5]
Mitigation and defense mechanismsAs countermeasures, some [6]
research proposed different defense mechanisms agaacitsat
in SMS OTP authentication [33], [40], [44], [46], [56]. Amgn
them, the mechanisms proposed by Mulliner et al. [46] (i€ing

a dedicated channel for SMS OTP delivery) is similar to what
implemented by Google in the modern APIs, in which our work
highlights several implementation issues and pitfallssi@es,
DroidPAD [44] proposed a heuristic-based approach for-iden
tifying malicious apps based on their pattern when readi§S 9]
messages. As more fundamental solutions, Hamdare et §l. [33
proposed encryption-based mechanisms to secure the piafces
OTP transmission, while CodeTracker [40] employs dynaaiitt t
analysis to track and protect the flow of SMS OTP messageld?
runtime using pre-defined policies. Moreover, TrustOTé] [Tsed
TrustZone to isolate the OTP code at the mobile OS-leves 3y8-
tem provides a security guarantee to the integrity of the €jde
even when the system is compromised by attackers. Unfdaeiyna
these approaches have not yet been adopted by mobile OSesiin
practice, due to various limitations and requirements.ifsiance,

the usage of TrustZone [6] might not be feasible in all mobile
devices, and it requires integrating SMS reading capiasilit [13]
within the trusted computing base. In comparison, our pgegdo
mechanism extends the existing authentication mecharisths
does not rely on any hardware feature.

[

8]

[11]

[14]

XII. CONCLUSION [15]

In this paper, we conduct the first in-depth, systematic
study on the specific ways in which a malicious local app cal 16]
obtain unauthorized access to SMS OTP messages in modern
mobile operating systems. Our research identified a seewf n

15

This material is based upon work supported in part by the NSF
under Grant No. NS-1849803. Any opinions, findings, andcten
sions or recommendations expressed in this publicatiothase

of the authors and do not necessarily reflect the views oRBE.

REFERENCES

“Xposed Installer,”
derobv.androidxposedinstaller, 2017.

“Marvel - the design platform for digital products,” httsaarvelappcom/,
2020.

K. Allix, T. F. Bissyand, J. Klein, and Y. Le Traon, “Androzoo: Collecting
millions of android apps for the research community,Pioceedings of the
13th Working Conference on Mining Software RepositorieSRy2016.

Amazon, “Amazon mechanical turk,” https://wwmvturk.com/, 2020.
APKPure, “Apkpure, download apk free online.” https://ppkecom/, 2020.

ARM, “ARM TrustZone,” https://wwwarmcom/products/security-on-arm/
trustzone, 2017.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klé&f. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise contexawflfield,
object-sensitive and lifecycle-aware taint analysis fatraid apps,’/Acm
Sigplan Noticesvol. 49, no. 6, pp. 259-269, 2014.

M. Atkinson, “An analysis of android app permissions,”
https:/iwwwpewresearclbrg/internet/2015/11/10/an-analysis-of-android-
app-permissions/, 2015.

A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, Cruggel, and
G. Vigna, “What the App is That? Deception and Countermesssur
the Android User Interface,” iProceedings of the IEEE Symposium on
Security and Privacy (S&RPP015.

A. Bianchi, E. Gustafson, Y. Fratantonio, C. Kruegel, and\@na,
“Exploitation and Mitigation of Authentication Schemes $8d on
Device-Public Information,” inProceedings of the Annual Computer
Security Applications Conference (ACSAZ)17.

B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Prdvexi00:
Automatic cryptographic protocol verifietJser Manual and Tutorial2018.

A. D. P. Center, “Additional requirements for the use of $fiepermissions.”
https://playgooglecom/about/privacy-security-deception/permissions/,
2019.

Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking Into Your App Witto
Actually Seeing It: Ul State Inference and Novel Android a&its,” in
Proceedings of the USENIX Security Symposium (Usenix, 2BTC.

S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu, “Gui-squngtattack:
Automated generation of android phishing appSFEE Transactions on
Dependable and Secure Computi@g19.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” Broceedings of the 9th in-
ternational conference on Mobile systems, applicationd, services2011.

Q. Dang, “Recommendation for applications using approved
hash algorithms,” https://nvipulréstgov/nistpubs/Legacy/SP/
nistspecialpublication800-107df, 2020.

http://repaposednfo/module/

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]
(25]
(26]

(27]

(28]
(29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]
(38]
(39]
[40]

[41]

P. A. Dev, “No more sms and call log permissions, now what?"[42]
https://proandroiddegom/no-more-sms-call-log- permissions-now-what-
9b8226de7827, 2019.

A. Dmitrienko, C. Liebchen, C. Rossow, and A. Sadeghi, “Oe th
(In)Security of Mobile Two-Factor Authentication,” Proceedings of the
International Conference on Financial Cryptography andt®&ecurity
(FC), 2014.

S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, yHeu,
get off of my clipboard,” inProceedings of the International Conference [44]
on Financial Cryptography and Data Security (F@QD13.

A. P. Felt and D. Wagner, “Phishing on Mobile Devices,Hroceedings
of the IEEE Workshop on Web 2.0 Security & Privacy (W236)1.

T. Fox-Brewster, “Watch as hackers hijack whatsapp acsotatcritical
telecoms flaws.” https://wwiforbescom/sites/thomasbrewster/2016/06/
01/whatsapp-telegram-ss7-hacks/, 2016.

Y. Fratantonio, C. Qian, P. Chung, and W. Lee, “Cloak and Baggom
Two Permissions to Complete Control of the Ul Feedback Loip,
Proceedings of the IEEE Symposium on Security and Privady)(017.

N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan, “Thespasd reset
mitm attack,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P) 2017.

Google, “Android-behavior-changes,” https://developedroidcom/about/
versions/10/behavior-changes-all, 2020.

——, “Android-pendingintent,” https://developandroidcom/reference/
android/app/Pendinglntent, 2020.

——, “Use binder and messenger interfaces,” https://d@ezlandroidcom/
training/articles/security-tips#IPC, 2020.

A. D. Guide, “Android sms manager,”
developeandroidcom/reference/android/telephony/
SmsManagehtml#createAppSpecificSmsToken, 2020.

“Automatic sms verification with the sms retriever api,
https://developergooglecom/identity/sms-retriever/, 2020.

“Notificationlistenerservice,” https://developandroidcom/
reference/android/service/notification/NotificatigstenerService, 2020.

——, “One-tap sms verification with the sms user consent agips://
developergjooglecom/identity/sms-retriever/user-consent/overvievz®0

A. Gutmann and S. J. Murdoch, “Taken out of context: Secuisis with
security code autofill in ios & macos,” iRroceedings of the USENIX
Security Symposium (Usenix SE2)19.

K. Hamandi, A. Chehab, I. Elhajj, and A. Kayssi, “Android S\W&lware:
Vulnerability and Mitigation,” inProceedings of the Advanced Information
Networking and Applications (AINA2013.

S. Hamdare, V. Nagpurkar, and J. Mittal, “Securing sms basedtiime
password technique from man in the middle attacdeXiv preprint
arXiv:1405.48282014.

Y. Z. X. Jiang and Z. Xuxian, “Detecting passive content feand
pollution in android applications,” iRroceedings of the Annual Network
& Distributed System Security Symposium (ND3&)3.

Z. Jorgensen, J. Chen, C. S. Gates, N. Li, R. W. Proctor, andi,T.
“Dimensions of risk in mobile applications: A user studyRroceedings
of the ACM Conference on Data and Application Security angddey
(CODASPY;)2015.

D. Kantola, E. Chin, W. He, and D. Wagner, “Reducing attackeses for
intra-application communication in android,” Rroceedings of the ACM
Workshop on Security and Privacy in Smartphones and Moleides
(SPSM)2012.

R. Kisters and T. Truderung, “Using proverif to analyze pro®eadth
diffie-hellman exponentiation,” iffroceedings of the 22nd IEEE Computer
Security Foundations Symposiu2009.

S. Landau, “Find me a hashYotices of the AMSol. 53, no. 3, 2006.

K. Lee, B. Kaiser, J. Mayer, and A. Narayanan, “An empiridably of
wireless carrier authentication for sim swaps.”

J. Li, Y. Ye, Y. Zhou, and J. Ma, “Codetracker: A lightweiglgoach to
track and protect authorization codes in sms messalfesZ Access2018.
L. Li, A. Bartel, J. Klein, and Y. Le Traon, “Automatically eloiting
potential component leaks in android applicationsPinceedings of the
IEEE International Conference on Trust, Security and Rejwim Computing
and Communication2014.

[43]

[45]

[46]

[47]
(48]

[49]

[50]
https://
[51]

[52]

(53]
[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]
[63]

[64]

16

M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. &rabnio,
V. Van Der Veen, and C. Platzer, “Andrubis—1,000,000 apper:laA

view on current android malware behaviors,Rroceedings of the third
international workshop on building analysis datasets arathgring

experience returns for security (BADGER®)14.

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically \fety An-
droid Apps for Component Hijacking Vulnerabilities,” Rroceedings of the
ACM Conference on Computer and Communications Securit$}QG12.

W. Luo, S. Xu, and X. Jiang, “Real-time Detection and Preeenof
Android SMS Permission Abuses,” iRroceedings of the Security in
Embedded Systems and Smartphones Workshop: Preface (385R)

S. Ma, R. Feng, J. Li, Y. Liu, S. Nepal, E. Bertino, R. H.igeZ. Ma, and

S. Jha, “An empirical study of sms one-time password auiteitn in
android apps,” ifProceedings of the Annual Computer Security Applications
Conference (ACSAC2019.

C. Mulliner, R. Borgaonkar, P. Stewin, and J.-P. SeiferiSSBased One-
Time Passwords: Attacks and Defense,Pimceedings of the Detection
of Intrusions and Malware, and Vulnerability Assessmehi({A), 2013.

G. Play, “Kakaotalk on google play,” https://ptagpoglecom/store/apps/
details?id=conkakaotalk, 2020.

——, “Telegram on google play,” https://plagooglecom/store/apps/
details?id=orgelegrammessenger, 2020.

J. ReardonA. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An explorationpgfsa
circumvention of the android permissions systemPmceedings of the
USENIX Security Symposium (Usenix SEXD)L9.

C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards Discawgiand
Understanding Task Hijacking in Android,” Proceedings of the USENIX
Security Symposium (Usenix SE2)15.

S. Schrittwieser, P. Bhwirt, P. Kieseberg, M. Leithner, M. Mulazzani,
M. Huber, and E. R. Weippl, “Guess who's texting you? evanhgathe
security of smartphone messaging applications.Pinceedings of the
Annual Network & Distributed System Security SymposiunS8)2012.

W. L. Security, “Malware sidesteps google permissionsgyakith new 2fa
bypass technique,” https://iwwwelivesecuritycom/2019/06/17/malware-
google-permissions- 2fa-bypass/, 2020.

Sinch, “Introduction,” https://developesinchcom/docs/verification-
introduction, 2020.

——, “The verification process,” https://developsiachcom/docs/
verification-android-the-verification-process#snesification, 2020.

S. Smalley and R. Craig, “Security enhanced (se) androidgBig flexible
mac to android.” inProceedings of the Annual Network & Distributed
System Security Symposium (ND28).3.

H. Sun, K. Sun, Y. Wang, and J. Jing, “TrustOTP: Transforn8ntartphones
into Secure One-Time Password Tokens,"Froceedings of the ACM
Conference on Computer and Communications Security (CX0$5.

A. D. Support, “Declare permissions for your app,” https:
/Isupportgooglecom/googleplay/android-developer/answer/9214102?hl=
en, 2020.

A. Support, “Automatically fill in sms passcodes on
https://supporapplecom/guide/iphone/automatically-fill-in-sms-
passcodes-on-iphone-iphc89a3a3af/ios, 2020.

Telegram, “Keep Calm and Send Telegrams!” https://tetegyeg/blog/
15million-reuters, 2016.

Telegram, “Update to 5.10.0,” https://githabm/DrKLO/Telegram/
commit/53e04b55fbb665fch3859f54f15ae203179a88cR2#dif
1fdb2alcb7f751eeb5964c9d9c3e6957, 2019.

T. Verge, “Android messages now makes it really easy to capyfactor
codes,” https://wwuthevergecom/2018/5/11/17345016/android-messages-
copy-two-factor-codes-update, 2018.

Wikipedia, “Kaokaotalk,” https://emikipediaorg/wiki/KakaoTalk, 2020.

C. Yoo, B.-T. Kang, and H. K. Kim, “Case study of the vulnefipiof otp
implemented in internet banking systems of south kotdajtimedia Tools
and Applicationsvol. 74, no. 10, pp. 3289-3303, 2015.

N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave nomel
App-level protection against runtime information gathgron android,” in
Proceedings of the IEEE Symposium on Security and Privaiy)(R015.

iphdne,

1 Process:

2 {1} in (client_to_server_channel, auth_request: OTP_REQUEST);

3 {2} let number_30: NUMBER = get_number_from_request(auth_request) in

4 {3} let token_31: TOKEN = get_token_from_request(auth_request) in

5 {4} if (number_30 = victim_number) then

6 {5} let auth_sms: SMS_MSG = sms(secret_otp,token_31) in

7 {6} out (server_to_victim_channel, auth_sms);

g {7} if (get_calling_app(read_token_from_sms(auth_sms)) = malicious_app) then

9 I {8} out (broadcast_to_malicious_app_channel, auth_sms)

10 else

11 {9} if (get_calling_app(read_token_from_sms(auth_sms)) = official_app) then
12 {10} out (broadcast_to_official_app_channel, auth_sms)

13 else

14 {11} if (get_calling_app(read_token_from_sms(auth_sms)) = any_other_app) then
15 {12} out (broadcast_to_any_other_app_channel, auth_sms)

16

17
18 -- Query not attacker (secret_otp[])

19 Completing...

20 Starting query not attacker (secret_otp[])

21 goal reachable: attacker (secret_otpl[])

22 1. The attacker initially knows victim_number[].

23 attacker (victim_number[]).

24 2. The attacker initially knows malicious_app[].

25 attacker (malicious_appl[]).

26 3. By 2, the attacker may know malicious_appl[].

27 Using the function generate_token the attacker may obtain generate_token(malicious_appl]).
28 attacker (generate_token(malicious_app[])).

29 4. By 3, the attacker may know generate_token(malicious_appl]).

30 By 1, the attacker may know victim_number[].

31 Using the function request, the attacker may obtain request(generate_token(malicious_app[]),vict im_number(]).

32 attacker (request(generate_token(malicious_appl]),victim_number b

33 5. The message request(generate_token(malicious_appl[]),v ictim_number[]) that the attacker may have by 4 may be received at input {1}.
34 So the message sms(secret_otp[],generate_token(malicious _app[l])) may be sent to the attacker at output {8}.

35 attacker (sms(secret_otp[],generate_token(malicious_appll))).

36 6. By 5, the attacker may know sms(secret_otp[],generate_token(malicious_appl[]))-

37 Using the function read_otp_from_sms the attacker may obtain secret_otp][].

38 attacker (secret_otp[]).

c

40 Could not find a trace corresponding to this derivation.
41 RESULT not attacker (secret_otp[]) cannot be proved.

Fig. 13. ProVerif verification process for SMS Token.

1 Process:

2 {1} in (client_to_server_channel, request(number: NUMBER));

3 {2} if (number = victim_number) then

4

5 {3} let auth_sms: SMS_MSG = sms(otp_prefix,secret_otp,hash_of_G oodApp) in
6 {4} out (server_to_victim_channel, auth_sms);

7 {5} if (read_prefix_from_sms(auth_sms) = otp_prefix) then

8 6} out (broadcast_to_Otplnbox_channel, auth_sms)

9 else

10 {7} if (read_prefix_from_sms(auth_sms) = no_prefix) then

11 {8} out (broadcast_to_Inbox_channel, auth_sms);

12 {9} if (read_suffix_from_sms(auth_sms) = hash_of_BadApp) then

13 : {10} out (broadcast_to_BadApp_channel, auth_sms)

14 else

15 {11} if (read_suffix_from_sms(auth_sms) = hash_of _GoodApp) then
16 {12} out (broadcast_to_GoodApp_channel, auth_sms)

17)1 (

18 {13} let trivial_sms: SMS_MSG = sms(no_prefix,sms_text,no_suffi X) in
19 {14} out (server_to_victim_channel, trivial_sms);

20 {15} if (read_prefix_from_sms(trivial_sms) = otp_prefix) then

21 {16} out (broadcast_to_Otplnbox_channel, trivial_sms)

22

23 {17} if (read_prefix_from_sms(trivial_sms) = no_prefix) then

24 {18} out (broadcast_to_Inbox_channel, trivial_sms);

25 {19} if (read_suffix_from_sms(trivial_sms) = hash_of_BadApp) then
26 {20} out (broadcast_to_BadApp_channel, trivial_sms)

27 else

28 {21} if (read_suffix_from_sms(trivial_sms) = hash_of_GoodApp) then
29) {22} out (broadcast_to_GoodApp_channel, trivial_sms)

30

31

32

33 -- Query not attacker (sms_text)

34 Completing...

35 Starting query not attacker (sms_text)

36 goal reachable: attacker (sms_text)

37 1. Using the function victim_number the attacker may obtain victim_number.
38 attacker (victim_number).

39 2. By 1, the attacker may know victim_number.

40 Using the function request the attacker ~ may obtain request(victim_number).

41 attacker (request(victim_number)).

42 3. The message request(victim_number) that the attacker may have by 2 may be received at input {1}.
43 So the message sms(no_prefix,sms_text,no_suffix) may be s ent to the attacker at output {18}.

44 attacker (sms(no_prefix,sms_text,no_suffix)).

45 4. By 3, the afttacker —may know sms(no_prefix,sms_text,no_suffix).

46 Using the function read_text_from_sms the attacker may obtain sms_text.
47 attacker (sms_text).

49 Could not find a trace corresponding to this derivation.
50 RESULT not attacker (sms_text) cannot be proved.

53 -- Query not attacker (secret_otp)
54 Completing...
55 Starting query not attacker (secret_otp)

RESULT not attacker (secret_otp) is true .

Fig. 14. Pro\Verif verification process for our proposedseSMS authentication scheme.

18

	Introduction
	Threat Model and 1FA SMS Schemes
	Threat Model
	SMS-based 1-factor-authentication Schemes
	Example of an End-to-end Attack Scenario.

	Legitimate Methods to Access SMS OTP Messages
	Access with User Interactions
	Access by Requesting SMS Permissions
	Fully-automated Access via Modern SMS APIs

	How to Maliciously Obtain SMS OTPs
	Getting SMS OTPs by Deceiving Users
	Assumptions
	Understanding User Reactions to Deception Attacks

	Bypassing OS Permissions and Market Restrictions to Access SMS Messages
	Bypassing OS-level Restrictions
	Bypassing Market-level Restrictions

	Exploiting Modern SMS APIs
	Attacking Apps using SMS Retriever
	Attacking Apps using SMS Token
	Attacking Apps using SMS Token+
	Responsible Disclosure and Developers' Response

	Additional Design Weaknesses of the Modern APIs
	Modern APIs' Inbox Management
	Cryptographic Weaknesses

	Large-scale App Measurement
	Vulnerable App Identification
	Case Studies
	KakaoTalk
	Telegram
	Sinch Library

	Responsible Disclosure and Developers' Response

	Mitigation Strategies
	Related Work
	Conclusion
	References

