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Abstract—Microfluidic biochips have recently emerged with
significant promise and versatility in automating a variety of
biochemical protocols on a tiny chip. Sample preparation, which
involves mixing of fluids with a specified target ratio in the
minuscule scale, is an essential component of these protocols.
Algorithms that optimize on-chip sample-preparation cost and
time are closely intertwined with the underlying mixing model,
mixing sequence, and fluidic architecture. Although numerous
mixing models have been studied in the literature, their impact on
the dynamics of mixing steps is hitherto not fully understood. In
this paper, we show that various mixing models can be envisaged
in the light of prime factorization of integers thus establishing
a connection among mixing algorithms, chip architectures, and
performance. This insight has led to the development of the
proposed factorization-based dilution algorithm (FacDA) consid-
ering a generalized mixing model suitable for micro-electrode-
dot-array (MEDA) biochips. It further leads to target volume
oriented dilution algorithm (TVODA) to cater to user’s demand
for an output with a given volume. We formulate the optimization
problem on the fabric of the Satisfiability Modulo Theory (SMT)
while determining mixing sequences. Simulation results on a large
number of test-cases reveal that FacDA and TVODA outperform
the state-of-the-art dilution algorithms for MEDA biochips with
respect to reactant cost, mixing time, and waste production.

I. INTRODUCTION

Microfluidic biochips or lab-on-a-chips (LoCs) have paved
the way to the miniaturization of the biochemical protocols
(bio-protocols) on a tiny device [2]–[4]. These chips integrate
multiple fluidic operations (dispensing, mixing, detection, etc.)
for reliable and cost-effective implementation of bio-protocols.
LoCs have brought a paradigm shift in several biochemical
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Fig. 1: Schematic view of various mixing models realized in
(a) a MEDA biochip with Mixer-2, Mixer-3 and Mixer-4. (b)
a 4-segment rotary mixer (RMixer-4).

applications such as point-of-care diagnostics [5], genomics [6,
7], drug design [8], and biomedical research [9, 10].

Several platforms have been proposed such as continuous-
flow microfluidic biochips (CFMBs) and digital microfluidic
biochips (DMFBs). CFMBs manipulate fluid flow through a
network of micro-channels by actuating the micro-valves [2].
DMFBs can manipulate discrete fluid droplets on a 2D-
array of electrodes using electrical actuations [11, 12]. Recent
advances in fabrication technology for DMFBs have led the
development of micro-electrode-dot-array (MEDA) [13]. As
shown in Fig. 1(a), a MEDA-based DMFB (referred as MEDA
biochip in this paper) comprises of a sea of micro-electrodes
with integrated sensors [13, 14].

Sample preparation is a fundamental preprocessing step
of many bio-protocols, where the task is to mix two (in
case of dilution) or more (in case of mixing) biochemical
reagents (fluids) in a volumetric ratio. For DMFBs, many
sample preparation algorithms [15]–[23] have been reported.
In DMFB we can mix two different fluids by taking only
two unit-volume of each, which is modelled as 1 : 1 and
implemented with Mixer-2 as shown in Fig. 1(a). In contrast,
several sample preparation algorithms for CFMBs have also
been reported [24, 25], which exploit flexible mixing models
supported by a rotary mixer [26]. In an M -segment rotary
mixer denoted as RMixer-M , each supported mixing model
has an one-to-one correspondence with an unordered integer
partition of the integer M into two or more parts. For example,
the possible integer partitions of 4 are 2+2, 1+3, 2+1+1 and
1+1+1+1, and the corresponding mixing models supported
by RMixer-4 are (1 : 1), (1 : 3), (1 : 2 : 1), and (1 : 1 : 1 : 1),
respectively as shown in Fig. 1(b).

MEDA biochips offer more granularity over the shape and
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size of the droplets and more flexibility of droplet opera-
tions [13]. Let M denotes the maximum volume that can
be mixed at a time on a MEDA biochip. Then M defines
the mixing-volume constraint where the possible volumes of
a mixture produced by Mixer-M on a MEDA biochip are
(M,M − 1, · · · , 2) [27, 28]. For Mixer-M , the supported
mixing models can be abstracted as the integer partitions
of M,M − 1, · · · , 2. As shown in Fig. 1(a), for Mixer-4
(M = 4), the supported mixing models are (1 : 1), (1 : 2),
(1 : 1 : 1), (1 : 3), (1 : 2 : 1), and (1 : 1 : 1 : 1).
This opens a new problem, where the quest is to design a
sample preparation method that can exploit all mixing models
supported by a MEDA biochip. Unlike DMFB chips, the mix-
and-split operations on MEDA are referred to as “mix-and-
separate” steps since separation of mixed fluid into multiple
components is supported by such architectures. For simplicity,
in this paper, we refer this mix-and-separate step as the mixing
step.

Two algorithms for automated sample preparation on
MEDA biochips have been reported in the recent past. Li et
al. proposed a dilution algorithm for MEDA biochips known
as weighted sample preparation method (WSPM) [27] that
uses only (m : n) mixing model ((m : n) ⊂ Mixer-M )
in each step. Therefore, it can use only a subset of mixing
models supported by MEDA biochips. Recently, Liang et al.
proposed a top-down approach called multiple-reactant cost
minimization (MRCM) [28] to determine a mixing tree. MRCM
exploits possible mixing models supported by a Mixer-M ,
though the volume obtained in a mixing step is not shared
with any of its ancestors except its parent mixing step.

In this paper, we present a new dilution algorithm for
MEDA biochip called division-by-factor method (DFM) to
generate a skewed dilution graph which exploits all the mixing
models of Mixer-M . We present factorization-based dilution
algorithm (FacDA), which uses the structure of the dilution
tree determined by DFM and models a dilution graph that
attempts to maximize sharing edges. We deploy a satisfiability
modulo theory (SMT) based solver to implement FacDA for
generating a dilution graph/tree that reduces the amount of
sample usage. For dilution of a fluid with any given target
volume, we further extend FacDA to propose target volume
oriented dilution algorithm (TVODA). In TVODA, the underly-
ing optimization problem is modeled as an SMT formulation.
This determines a dilution graph that can be tuned to reduce
the number of mixing steps, the amount of sample usage and
total wastage significantly.

The remainder of the paper is organized as follows. Sec. II
describes preliminaries and prior work. Sec. III explains the
proposed approach, FacDA. Sec. IV presents TVODA and
Sec. V describes the optimization criteria and scopes for both
FacDA and TVODA. Sec. VI reports simulation results for
performance evaluation. Finally, Sec. VII concludes the paper.

II. PRELIMINARIES AND PRIOR WORK

This section presents the basics of dilution and MEDA
biochips and related prior work on sample preparation.
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Fig. 2: Dilution tree for Ct = 7
27 , M = 4 and ε = 0.005,

using NWayMix [24].

A. Basics of Dilution

Dilution is a special case of sample preparation, where
only two reagents (sample and buffer) are mixed in a desired
volumetric ratio. An automated dilution problem consists of a
sequence of mixing steps is represented as a directed acyclic
graph called dilution tree/graph, where each node represents
a mixing step. The inputs of a dilution problem are: (1) target
ratio, sample : buffer = x : y, which can also be represented as
a target concentration factor (CF ), Ct = x

x+y , (2) a set of mix-
ing models corresponding to the mixing volume constraint M ,
and (3) error-tolerance, where CF s of pure sample and buffer
are 1 and 0, respectively. The CF of a mixing node at depth
i is calculated as CFi =

c1 × v1 + c2 × v2 + · · ·+ cn × vn
v1 + v2 + · · ·+ vn

, for n incoming edges having CF and volume contribution
as cjs and vjs, respectively. The volumetric ratio of sample
and buffer in the mixing node at depth i is computed as
Xi : Yi = CFi : (1 − CFi), where Xi and Yi denote the
contribution of sample and buffer in that mixing node. We
avoid the fractional representation of the CF s in the figures
and represent CFi with their numerator only. Due to the
unavailability of a desired mixing model in a microfluidic
platform, a target ratio may require to be transformed into
another ratio, which may incur an error in it. Given an error-
tolerance ε, the transformation procedure of target ratio x : y
into x′ : y′ is demonstrated in Appendix A. After performing
the ratio transformation, for target ratio x : y = 7 : 27
(Ct = 7

27 ), ε = 0.005 and M = 4, the dilution tree determined
by NWayMix [24] is shown in Fig. 2. The total number
of mixing steps (nm), the total volume of sample required
(number of sample units ns) and the total volume of waste
droplets (number of waste units nw) for the dilution tree shown
in Fig. 2 are 4, 3 and 9, respectively. The following example
illustrates the calculation of the CF s at different depths of the
dilution tree shown in Fig. 2.

Example 1: The CF s at the mixing nodes from the bottom-
most depth are calculated as follows: CF3 = 1×2+0×2

2+2 = 2
4

(written as 2
4 × 256 = 128 in Fig. 2) and X3 : Y3 = 2

4 : (1−
2
4 ) = 2 : 2. Similarly, CF2 = CF3×1+0×3

4 =
2
4×1+0×3

4 = 2
16

and X2 : Y2 = 2 : 14. Likewise, CF1 =
2
16×1+0×3

4 = 2
64

and X1 : Y1 = 2 : 62. Finally, at depth 0, CF0 =
1×1+ 2

64×1+0×2
4 = 66

256 and the corresponding target ratio
X0 : Y0 = 66 : 190.
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B. Mix-Operation on MEDA Biochips

Here, we discuss how the mix-operation works on a MEDA
biochip that involves a mix-and-separate (mixing) step for
dilution of a fluid. A split-and-recombine (SAR) based laminar
mixer [13] performs a number of mix-cycles, where each mix-
cycle consists of four different phases: (1) merge, (2) split,
(3) shift and (4) merge. With the mixing volume constraint
M , an SAR based laminar mixer supports various mixing
models of Mixer-M An SAR based laminar mixer can be
configured as two regions: (1) merging region, and (2) split-
and-recombine or mixing region. As shown in Fig. 3(a), a set
of 8× 8 micro-electrode cell is considered as a mixing region
and within it the 4 × 4 shaded region indicates the merging
region. Fig. 3(b) shows three different fluids of 1, 3, and 4
unit volumes, which are to be mixed within an SAR based
laminar mixer of M = 8 using (1 : 3 : 4) mixing model.
Fig. 3 depicts four different phases of the corresponding
mix-cycle such as merge (Fig. 3(c)), split (Fig. 3(d)), shift
(Fig. 3(e)), and merge again (Fig. 3(f)). This kind of mix-
operation decreases the diffusion length between the fluids by
exponentially increasing the interfacial surface area (shown
in Fig. 3(f)), which accelerates the mix-operation in MEDA
biochips compared to that in DMFBs [13].

C. Sample Preparation on MEDA Biochips: Prior Work

LoC-based sample preparation algorithms consider three
different optimization objectives: minimization of (1) the
number of mixing steps, (2) the consumption of valuable
reagents, and (3) the amount of overall wastage. Li et al.
proposed weighted sample preparation method (WSPM) [27]
for dilution, which considers reagent saving as the primary
objective. WSPM initially generates a set of primary droplets
(PDs) through a sequence of dilution operations using only
(m : n) mixing model and always taking one of the input
as buffer. The main purpose of the primary dilution operation
is to minimize the sample usage. For a mixer of size 4 (i.e.,
M = 4), WSPM can use only (1 : 1), (1 : 2) and (1 : 3)
mixing models out of six possible mixing models shown in
Fig. 1(a) for a Mixer-4. After constructing an estimated cost
table for the PDs and their intermediate fluids, WSPM adopts
a top-down approach to generate the initial dilution tree using
(m : n) mixing models, in which only the PDs appear as

(a)

(e) (f)

(b)

(d)

(c)

Fig. 3: Schematic view of SAR based laminar MEDA mixer
showing different phases of a mix-cycle.
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(a) WSPM [27], (b) MRCM [28], and (c) FacDA.

leaf nodes. Finally, the sample usage is reduced by sharing of
PDs in the dilution tree if possible. Using the PDs 14

27 and 4
27 ,

WSPM determines the dilution graph for Ct = 7
27 as shown in

Fig. 4(a). Recently Liang et al. proposed a top-down approach
for mixing in MEDA (a.k.a. multiple-reactant cost minimiza-
tion (MRCM) [28]) that minimizes the usage of the most
costly reagent. For a given target ratio, MRCM determines the
mixing tree by enumerating all possible mixing models using
intermediate and/or pure concentrations, and then choosing
the mixing model with the minimum usage of the concerned
reagent. The same process continues recursively for the set
of newly generated intermediate concentrations until all the
leaf nodes of the mixing tree have pure reagents. Fig. 4(b)
shows two different dilution trees determined by MRCM for
a target ratio sample : buffer = 7 : 20, where the number of
mixing steps and sample usage are considered as optimization
objectives, respectively.

III. FACTORIZATION BASED DILUTION ON MEDA

A. Motivation and Overview

As discussed in Sec. I, a MEDA biochip supports the
most general mixing models by deploying variable size mixers
within the area of a mixing volume constraint M . This moti-
vates us to propose a dilution method, called as factorization-
based dilution algorithm (FacDA), exploiting all possible
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mixing models and also sharing the intermediate fluids from
a mixing node to any of its ancestors for reducing the overall
wastage. Figs. 4(a), 4(b) and 4(c) present the comparative val-
ues of concerned parameters for the dilution graphs obtained
by WSPM, MRCM and FacDA for the same example.

Given a target ratio x : y, where x + y = N , the basic
problem lies in the nature of factors present in the prime
factorization of ratio-sum N while approximating the target
ratio. The largest composite or prime factor (≤ M ) from
those factors of N determines the mixing area within M ,
the possible exploitation of the mixing models, and the fluid
splitting strategy for Mixer-M . The choice of distinct factors
determines the mixing models to be used, and the ordering of
these factors determines the performance parameters (nm, ns
and nw) of the dilution tree. The chosen integer factorization
of the ratio-sum abstracts the mixing models to be used on
the given MEDA biochip. Hence, the choice of the ratio-sum
while approximating the target ratio, without compromising
its accuracy, plays a crucial role in determining the efficient
dilution tree. This work is based on this philosophy and more
importantly, all previous mixing models considered so far will
become special cases of this framework.

Given a target ratio x : y, the error-tolerance ε, and the
mixing volume constraint M , in order to determine the mix-
split operations for dilution in a MEDA biochip, there exists
some number-theoretic challenges (shown in Fig. 5), i.e., three
problems to solve:

(i) choosing the largest prime factor (≤M ) while approxi-
mating the target ratio within the error tolerance ε,

(ii) choosing the number of distinct (prime and/or compos-
ite) factors (≤M ), and

(iii) choosing the order of those factors.
Fig. 5 depicts the flowchart of the proposed method along

with a demonstration of these number theoretic challenges
with the help of a problem instance having x : y = 70 : 49,
ε = 0.005 and M = 6. For the same problem instance, Fig. 6
presents four possible dilution trees for arbitrary ordering of
different feasible factors, where all the dilution trees have the
largest factor (6 or 5) within M . Still, the values of nm, ns
and nw for those dilution trees vary with the solutions to

the challenges discussed above, i.e., choosing the number of
distinct factors and their orders. Comparing the dilution trees
shown in Fig. 6(a) or Fig. 6(b) with Fig. 6(c) and Fig. 6(d),
we can visualize that nm increases with the increase in the
number of distinct factors (challenge (ii)). However, with the
same set of feasible factors considered in the dilution trees
of Fig. 6(a) and Fig. 6(b), the values of ns and nw also vary
with different orderings of those factors in the corresponding
dilution trees (challenge (iii)).

In this paper, we proposed an approach to solve these prob-
lems in three phases. At first, FacDA-Transformation (detailed
in Sec. III-B) approximates the target ratio (if required) and
determines the feasible mixer-set M`. Second, DFM (detailed
in Sec. III-C) uses the output of FacDA-Transformation to
determine the ordered feasible mixer-set M̂`. Third, FacDA
(detailed in Sec. III-D) is invoked to build a skeleton tree TS
corresponding to the dilution tree returned by DFM. Then,
it generates the SMT instances for a sequence of decision
problems using M̂` and a set of constraints over integers,
and finally, FacDA utilizes the SMT solver to determine the
dilution graph GD with minimum sample requirement.

B. Transformation of Target Ratio

Given the target ratio sample : buffer = x : y, a valid factor-
set Fi = {f0, f1, · · · , fni

} is defined as a set of factors of
ratio-sum N (= x + y) such that each element of Fi lies
within the range of 2 and M , i.e., 2 ≤ f0, f1, · · · , fni

≤ M .
Furthermore, the product of all the elements of Fi must be
equals to N , i.e.,

∏ni

j=0 fj = N . In the proposed approach,
the target ratio x : y needs to be transformed, if the ratio-
sum (N = x+ y) is a prime number greater than the mixing
volume constraint M , or N has no valid factor-set. From the
list of all valid factor-sets LM , the least cardinality set is
defined as the feasible mixer-set M`. Algorithm 1 presents
the procedure FacDA-Transformation, which is executed in
a recursive manner until both the objectives for satisfying
the mixing volume constraint (M ) and the error-tolerance (ε)
are met. FacDA-Transformation returns the transformed target
ratio (if required) and the feasible mixer-set M` as illustrated
in Example 2. The elements of M` determine the mixer size
at different depths of the dilution graph to be obtained later.

Algorithm 1: FacDA-Transformation(x : y, ε,M )
Input: Target ratio sample : buffer = x : y, where x+ y = N ,

error-tolerance ε, mixing volume constraint M
Output: Transformed ratio x′ : y′, feasible mixer-set M`

1 begin
/* Factorization of N. */

2 Obtain the set of all valid factor-sets of N , i.e.,
LM = {F0, F1, F2, · · · , Fm}, where each factor-set
Fi = {f0, f1, · · · , fni

} such that ∀fj ∈ Fi, 2 ≤ fj ≤M and
N =

∏ni
j=0 fj ;

3 if LM 6= φ then
4 Find the least cardinality set M` from LM ;
5 return (x : y,M`);

6 N ′ = N + 1; x′ = RoundOff( x
x+y ·N

′); y′ = N ′ − x′;
7 while

∣∣ x
N −

x′
N′
∣∣ > ε do

8 N ′ = N + 1; x′ = RoundOff( x′
x′+y′ ·N

′); y′ = N ′ − x′;

9 return FacDA-Transformation(x′ : y′, ε,M );
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Example 2: Consider a target ratio {sample : buffer = 70 :
49}, where target CF Ct = 70

119 , M = 6 and ε = 0.005. Here,
N = 70 + 49 = 119 and its factors are 17, 7 and 1. As M is
less than both 17 and 7 no valid factor-set can be obtained,
i.e., LM = φ and we need to transform the target ratio. After
increasing the ratio-sum N by one we get N ′ = 120. The
transformed ratio becomes x′ : y′ = 71 : 49, which satisfies
the error-tolerance, i.e., |( 70

119 ) − ( 71
120 )| < ε. For N ′ = 120,

we get LM = {{6, 5, 4}, {5, 4, 3, 2}}, i.e, F0 = {6, 5, 4} and
F1 = {5, 4, 3, 2}, which implies that M` is {6, 5, 4}.

C. Division-by-Factor-Method (DFM)
We propose an approach called division-by-factor-method

(DFM), which leverages the support of variable size mixers in
MEDA for diluting the sample with buffer. Given the target
ratio x : y, the mixing volume constraint M and the error-
tolerance ε, DFM calls FacDA-Transformation and obtain a
transformed ratio x : y and M` to determine a dilution tree.

1) Determining a dilution tree using mixed radix rep-
resentation: Let the cardinality of the feasible mixer-set
M` returned by FacDA-Transformation be d, where M` =
{f0, f1, · · · , fd−1}. Then we can use any ordered arrangement
of M` as a mixed radix to represent x and y as d-digit
numbers, where x : y is the target ratio returned by FacDA-
Transformation. Without loss of generality, we assume that
the radix at position i is fi, for i = 0, 1, · · · , d − 1 and
{f0, f1, · · · , fd−1} is referred as the mixed radix vector. We
use the conventional division method to represent x and y as
two d-digit numbers in mixed radix {f0, f1, · · · , fd−1}. Let
x is represented as xd−1xd−2 · · ·x1x0 in mixed radix, where
fi is used as the radix at position i for i = 0, 1, · · · , d −
1. Therefore, the decimal value of x can be calculated
as
(∑d−1

i=1 (
∏i−1
j=0 fj)xi

)
+ x0. Similarly, the decimal value

of y can also be calculated. Fig. 7(a) depicts the generic
representations of x and y in d-digit mixed radix vector
{f0, f1, · · · , fd−1}, stored in a table called decomposition-
table. In the decomposition-table, the first column shows
the mixed radix vector, and the second and third column
contains x and y in mixed radix {f0, f1, · · · , fd−1}, i.e.,
xd−1xd−2 · · ·x1x0 and yd−1yd−2 · · · y1y0, respectively. We
can determine the dilution tree of height d in a bottom-up
approach by scanning the elements of the first three columns of
the decomposition-table in a top-down order, where fi denotes
the size of the mixer and xi (yi) determines the volume of pure
sample (buffer) used in the mixing node at depth (d− 1− i).
Alternately at depth i of the dilution tree, the size of the mixer
and the volume of pure sample (buffer) are represented as
fd−1−i and xd−1−i (yd−1−i), respectively.

Note that, a mixing node of the obtained dilution tree shares
one-unit volume, only to its parent mixing node.

The total number of mixing steps nm, the number of sample
units ns and the number of waste units nw of the dilution
tree can be calculated directly from the decomposition-table as
shown in Fig. 7(a). The following example illustrates the pro-
cess of determining the dilution tree from the decomposition-
table for a given target ratio.

Example 3: Assume that the mixed radix vector correspond-
ing to the feasible mixer-set M` = {6, 5, 4} in Example 2 is

{4, 5, 6}. Then, x = 7110 = (4 × 5 × 3) + (4 × 2) + 3 and
x is represented as 323 in mixed radix {4, 5, 6}. Similarly,
y = 49 = (4 × 5 × 2) + (4 × 2) + 1 and y is represented
as 221 in mixed radix {4, 5, 6}. Scanning the values of mixed
radix vector, xi and yi, in a top-down order we can determine
the corresponding dilution tree in a bottom-up approach as
shown in Fig. 7(b).

2) Determining the ordering of feasible mixer-set (M`):
If M` of cardinality d is considered as a d-digit radix vector,
then d! number of dilution trees can be realised corresponding
to d! ordered arrangements of M`. Each of these dilution trees
of height d is different and may have different values of ns
and nw. Thus, for choosing an ordered arrangement of M`

(referred as M̂`) to determine a suitable dilution tree, we adopt
the following greedy-approach. In order to get the maximum
volume of the target ratio, initially the largest element of M`

is selected as the last, i.e., the (d− 1)th element of M̂`. Next,
in order to determine all the other elements of M̂`, we build
a function that performs the following two steps:

(i) computing the volume of pure sample (xd−1−i) required
at depth i for each element of M`, which are not yet selected
for M̂`, and

(ii) selecting an element of M` from step (i) as the (d −
1− i)th element of M̂`, which requires the least xd−1−i. We
recursively call the said function, starting from depth d − 1
to depth 1 sequentially, to determine M̂`. The estimation for
determining M̂` returned by DFM is in the O(|M`|2).

This greedy approach is explained with Example. 4.
The DFM comprises of two methods explained above in
Sec. III-C1 and Sec. III-C2 to determine the corresponding
dilution tree for the target ratio x : y using M̂`.

Example 4: Considering Example 2, from the feasible
mixer-set M` = {6, 4, 5} returned by FacDA-Transformation
we can generate 3! ordered arrangements of mixed radix
vector as {4, 5, 6}, {4, 6, 5}, {5, 4, 6}, {5, 6, 4}, {6, 4, 5} and
{6, 5, 4}. DFM determines M̂` as follows: initially the largest
element of M` = {6, 4, 5}, i.e., 6 is inserted in the 2nd position
of M̂`, so M̂` = { , , 6}. Since x0 for 5 (=1) in Fig. 7(c)
is lesser than x0 for 4 (=3) in Fig. 7(b), 5 is inserted in
the 0th position of M̂`, so M̂` = {5, , 6}. Next, as 4 is the
remaining element of M` which has not yet been selected, 4
is inserted in the 1st position of M̂`, so M̂` = {5, 4, 6} and
the corresponding dilution tree is shown in Fig. 7(c).

D. Factorization-based Dilution Algorithm (FacDA)

DFM determines a skewed dilution tree, where each mixing
node of size fd−1−i shares only one unit volume to their
parent node. As a result, (fd−1−i − 1) unit volume of waste
is generated at depth i of a dilution tree. In order to reduce
these wastage, we consider sharing edges from a mixing node
to all of its ancestors. Similar to the dilution tree determined
by DFM, we construct an unweighted tree with all the valid
sharing edges, and two edges for pure sample and buffer
corresponding to each mixing node. This tree is coined as
skeleton tree TS, which uses the same ordered feasible mixer-
set M̂` as determined by DFM. The different components of
a TS are the mixing nodes, the valid sharing edges and the
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Fig. 7: (a) Decomposition-table for a target ratio x : y and mixed radix vector {f0, f1, · · · , fd−1}, and closed-form formulae
for estimating nm, ns, nw and M` from the table. For target ratio x : y = 71 : 49 and M = 6, decomposition-table and dilution
tree, (b) if M` = {4, 5, 6}, and (c) if M` = {5, 4, 6}.

edges for pure sample and pure buffer, as shown in Fig. 8(a).
In Fig. 8(a), all the dashed edges represent the edges which are
not considered in DFM. The variables corresponding to mix-i
of TS are Xi, Yi, xd−1−i, yd−1−i, and all the valid sharing
edges from mix-i, i.e., wi,js, where j = {i− 1, i− 2, · · · , 0},
to mix-j are as follows (Fig. 8(b)):
• Xi : Yi: the ratio of sample and buffer at depth i.
• wi,j : volume of the fluid shared from mix-i at depth i to

mix-j at depth j.
• xd−1−i, yd−1−i: volume of sample and buffer used in

mix-i at depth i, respectively.
Next, we model the problem of dilution by defining integer

variables corresponding to each variable of mix-i, i = {d −
1, d − 2, · · · , 0}, of a TS and build a set of linear and non-
linear constraints over those variables. Some key properties
of a TS are presented as the following observations, and
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Fig. 8: (a) Skeleton tree TS of height d with all of its
components. (b) Variables corresponding to a mixing node
mix-i of TS. (c) Sharing of k1 unit volume of pure sample and
k2 unit volume from mix-i to mix-j of TS. For x : y = 71 : 49
and M = 6, (d) TS and (e) GD determined by FacDA.

illustrated with Example 5 and Example 6 for the dilution
graph shown in Fig. 8(e).

Observation 1: If k1 unit volume of pure sample is used in
mix-j at depth j of TS, i.e., xd−1−j = k1 (Fig. 8(c)), where
0 ≤ j ≤ (d − 1), then the contribution of sample in Xj : Yj
at mix-j is k1

∏d−1
p=j+1 fd−1−p.

Example 5: For the dilution graph of Fig. 8(e), in mix-0,
the contribution of sample is x2 × f0 × f1 = 3× 5× 4 = 60,
and the contribution of buffer is y2×f0×f0 = 0×5×4 = 0.
Similarly, in mix-1, the contribution of sample is x1 × f0 =
0×5 = 0 and the contribution of buffer is y1×f0 = 1×5 = 5.
Finally, in mix-2, the contribution of sample is x0 = 1 and
the contribution of pure buffer is y0 = 4.

Observation 2: If k2 unit volume from mix-i at depth i is
shared to mix-j at depth j of TS, i.e., wi,j = k2 (Fig. 8(c)),
where 0 ≤ j < i ≤ (d − 1), then the contributions of
sample and buffer in Xj : Yj are Xik2

∏i−1
p=j+1 fd−1−p and

Yik2
∏i−1
p=j+1 fd−1−p, respectively.

In order to compute the contributions of sample and buffer
in mix-j from all the mixing nodes below it, we have to add
the corresponding contributions of all wp,js, where p = {j +
1, j + 2, · · · , d− 1}.

Example 6: In the dilution graph of Fig. 8(e), from mix-
2 to mix-0, the contribution of sample is X2 × w2,0 × f1 =
1×2×4 = 8, and the contribution of buffer is Y2×w2,0×f1 =
4×2×4 = 32. From mix-2 to mix-1, the contribution of sample
is X2 × w2,1 = 1 × 3 = 3, and the contribution of buffer is
Y2 × w2,1 = 4 × 3 = 12. Similarly, from mix-1 to mix-0, the
contribution of sample is X1 × w1,0 = 1 × 3 = 3, and the
contribution of buffer is Y1×w1,0 = 1×17 = 17. As a result,
the total contribution of sample in mix-0 from mix-1 and mix-2
is X2×w2,0×f1+X1×w1,0 = 1×2×4+3×1 = 8+3 = 11.
Similarly, the total contribution of buffer in mix-0 from mix-1
and mix-2 is Y2×w2,0×f1+Y1×w1,0 = 2×4×4+17×1 =
32 + 17 = 49.

The proofs of Observation 1 and Observation 2 are detailed
in Appendix B1 and Appendix B2, respectively. From Obser-
vation 1 and Observation 2, the total contributions of sample
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and buffer in Xj : Yj at depth j of a TS are computed as(
xd−1−j

d−1∏
q=j+1

fd−1−q +
d−1∑
p=j+1

(Xpwp,j

p−1∏
q=j+1

fd−1−q)

)

:
(
yd−1−j

d−1∏
q=j+1

fd−1−q +
d−1∑
p=j+1

(Ypwp,j

p−1∏
q=j+1

fd−1−q)

)
.

The validation of the contributions mentioned in Observation
1 and Observation 2 for the GD shown in Fig. 8(e) is
demonstrated in the following example.

Example 7: For the GD shown in Fig. 8(e), we can calculate
the CF at depth 0 of TS using the formula explained in
Sec. II-A as 3+( 1

5×2+
3
20×1)

6 = 71
120 , i.e., X0 : Y0 = 71

120 :
(1− 71

120 ) = 71 : 49. In order to validate our observations, we
derive X0 : Y0 as X0 : Y0 = (x2×f0×f1 +X2×w2,0×f1 +
X1×w1,0) : (y2×f0×f1+Y2×w2,0×f1+Y1×w1,0) = (3×
5×4+1×2×4+3×1) : (0×5×4+4×2×4+17×1) = 71 : 49.

Now, we also need to ensure the following consistency con-
straints with respect to mix-j at depth j of TS:

• As the size of the mixer corresponding to mix-j is
fd−1−j , the total volume of input-reagents (sample and/or
buffer) and/or intermediate fluids must be equal to
fd−1−j , i.e.,

xd−1−j + yd−1−j +
d−1∑
p=j+1

wp,j = fd−1−j .

• As the size of the mixer corresponding to mix-j is
fd−1−j , the maximum volume that mix-j can share to
its ancestors must be less than or equal to fd−1−j , i.e.,

0 ≤
j−1∑
p=0

wj,p ≤ fd−1−j .

Algorithm 2: FacDA(x : y, ε,M )
Input: Target ratio sample : buffer = x : y, error-tolerance ε, mixing volume

constraint M
Output: Dilution graph GD

1 begin
2 Obtain the transformed ratio x : y and the ordered feasible mixer set

M̂` by calling DFM(x : y, ε,M );
/* Linear and non-linear equations have been given

in Sec. III-D. */
3 S = SMT instance obtained from (x : y) and the TS of height d, where

d = |M̂`|;
4 sample unit = 1; /* sample_unit is the variable

storing the total number of sample unit(s)
used. */

5 S
′

= S
∧ (∑d−1

i=0 xi == sample unit
)

;
6 checkSAT(S

′
); /* checkSAT(S

′
) checks for a

satisfiable assignment of the variables in S′.

*/
7 while S

′
is unsatisfiable do

8 sample unit = sample unit + 1;
9 S

′
= S

∧ (∑d−1
i=0 xi == sample unit

)
;

10 checkSAT(S
′
);

11 Obtain dilution graph GD from the satisfiable assignments of S
′
;

12 return Dilution graph GD ;

• The variables shown in Fig. 8(b) must satisfy

Xi + Yi =
d−1∏
p=i

fd−1−p,

0 ≤ wi,j ≤ fd−1−j − 1,

0 ≤ xd−1−i ≤ fd−1−i − 1, and
0 ≤ yd−1−i ≤ fd−1−i − 1,

where 0 ≤ j < i ≤ (d− 1).

Finally, we add these constraints and invoke the SMT
solver [29] by calling the function checkSAT() to generate
a satisfiable assignment of the variables in order to determine
a dilution graph GD, where the total sample usage ns is
minimized. This procedure is referred as FacDA and the
corresponding pseudo-code is written as Algorithm 2. After
generating the set of linear and non-linear equations for the
skeleton tree TS depicted in Fig. 8(d) corresponding to the
dilution tree shown in Fig. 7(c) (determined by DFM), we get
an optimized dilution graph GD as shown in Fig. 8(e). In case
of DFM, ns = 6 and nw = 7, and after applying FacDA we
get better results, where ns = 4 and nw = 3. The set of linear
and non-linear equations for determining the dilution graph
shown in Fig. 8(e) is illustrated in Appendix B3.

IV. DEMAND DRIVEN SAMPLE PREPARATION ON MEDA
Target volume oriented dilution algorithm (TVODA) consid-

ers a target volume Vt as one of its input parameters and use
SMT solver to determine the GD. Fig. 9(a) and 9(b) depict the
comparison between the dilution graphs obtained by MRCM
and TVODA for a target ratio x : y = 71 : 49, i.e., Ct = 71

120 ,
where Vt = 13 and M = 6. In TVODA, the values of nm, ns
and nw are less than those corresponding values for MRCM,
where the same GD determined by MRCM is repeated.
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Fig. 9: For target ratio x : y = 71 : 49, M = 6 and Vt = 13,
GD obtained by (a) MRCM [28] and (b) TVODA.

A. Problem Formulation

The problem of determining the dilution graph producing
the target volume of a target ratio can be formulated as follows:
Input: Target ratio sample : buffer = x : y, target volume Vt
and mixing volume constraint M .
Output: A dilution graph GD, which produces Vt unit volume
of the desired target ratio.
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Objectives: To reuse the intermediate fluids efficiently such
that the number of sample units ns is minimized.

B. Target Volume Oriented Dilution Algorithm (TVODA)

The process of determining the dilution graph GD using
TVODA consists of two phases:
(1) construction of a forest of skeleton trees to ensure that the
target volume Vt is satisfied, and
(2) determining a dilution graph GD for Vt by realizing a
satisfiable condition of a set of constraints using SMT solver.

1) Construction of skeleton forest: In the first phase of
TVODA, we implement a greedy strategy to build a forest of
skeleton trees such that summation of the mixer size of their
root mixing nodes satisfies Vt. Unlike FacDA, here we decide
the ordering of feasible mixer-set of each skeleton trees in
such a way that the number of inter-skeleton sharing edges
among the TSs increases. The condition for the validity of a
sharing edge between any two skeleton trees TSm and TSn
primarily depends on the size of each mixer from bottom-most
depth to the root node and the ordering of the feasible mixer-
set of both the skeleton trees. For x : y = 71 : 49,M = 6
and Vt = 8, FTS of two skeleton trees TS1 and TS2

are shown in Fig. 10(a). For an arbitrary ordered feasible
mixer-sets M̂1

` = {4, 5, 6∗} and M̂2
` = {3, 4, 5, 2∗}, a valid

(check marked) and an invalid (cross marked) inter-skeleton
sharing edge between TS1 and TS2 are shown in Fig. 10(a).
The condition for an inter-skeleton sharing edge to be valid
is detailed in the Sec. IV-B2. If we consider any arbitrary
ordering of the elements of M`s, then we have to individually
check the validity of all possible inter-skeleton sharing edges.
However, if any two skeleton trees TSm and TSn have k
length of common mixer sizes from their bottom-most depths,
then there is no need for checking the validity of inter-skeleton
sharing edges from those k mixing nodes between TSm and
TSn. Determining the ordered feasible mixer-sets of the TS
for the dilution problem mentioned in Fig. 9 is illustrated in
Appendix C1.

The number of skeleton trees for a given Vt is in the O(ϕ),
where ϕ is the cardinality of the factor-set of N , where all
the elements are ≤ M . Moreover the maximum number of
sharing edges among the skeleton trees is in the O(ξ × ψ),
where ξ implies the maximum number of TSs having same
M̂`s and ψ is the cardinality of M̂ i

` .
2) Formal modelling for TVODA: In TVODA, we reuse

the intermediate fluids not only within a particular skeleton
tree (intra-skeleton) but also among the skeleton trees (inter-
skeleton) of FTS and produce an efficient dilution graph in
terms of the concerned parameters. The variables correspond-
ing to the mixing node mix-mi at depth i of TSm are Xm

i ,
Y mi , xmdm−1−i, y

m
dm−1−i, and all the valid sharing edges.

Descriptions of the variables determining different components
of mix-ni of TSn are as follows (Fig. 10(b)):
• Xm

i : Y mi : the ratio of sample and buffer at depth i of
mth skeleton tree TSm.

• wm,ni,j : the volume of fluid shared from the mixing node
mix-mi at depth i of TSm to the mixing node mix-nj at

depth j of TSn, represented as weights of inter-skeleton
edges

• wmr,i: the volume of the fluid shared from the mixing node
mix-mr at depth r to the mixing node mix-mi at depth i
of TSm, represented as weights of intra-skeleton edges

• xmdm−1−i and ymdm−1−i: the volumes of sample and buffer
used in mixing node mix-mi at depth i of TSm, respec-
tively.

• Pmi : the product of the mixer sizes corresponding to the
mixing nodes of TSm from depth dm − 1 to i, i.e.,∏dm−1
q=i fmdm−1−q .

The contributions of sample and buffer from mix-mi to mix-nj
is written as the following observation.
Observation 3: If k3 unit volume from mix-mi at depth i of
TSm is shared to mix-nj at depth j of TSn, i.e., wm,ni,j = k3
(Fig. 10(c)), then the contributions of sample and buffer in
Xn
j : Y nj at mix-nj from Xm

i : Y mi at mix-mi are Xm
i k3

Pn
j+1

Pm
i

and Y mi k3
Pn

j+1

Pm
i

, respectively.

Checking the validity of inter-skeleton sharing edges in
FTS is a crucial task as it contributes the maximum number
of variables to the equations and constraints to the SMT
instance [29]. An inter-skeleton sharing edge wm,ni,j is valid,
iff (Pnj+1 mod Pmi ) = 0, i.e., Pmi is a factor of Pnj+1.
According to this validity condition of inter-skeleton edges,
it is implied that if wm,ni,j is valid, then ∀p, wm,ni,p are also
valid edges, where 0 ≤ p ≤ j − 1. Consequently, there is a
considerable increment in the number of variables fed into the
SMT solver, which increase the computation time and slows
down the process. Hence, in order to speed-up the process we
further restrict the validity condition and state an inter-skeleton
sharing edge wm,ni,j is valid, iff Pnj+1 = Pmi . The FTS for the
GD illustrated in Fig. 9(b) with all the valid sharing edges is
shown in Fig. 10(d). According to this new validity condition
for inter-skeleton edges,

Pn
j+1

Pm
i

= 1. Hence, the contributions
of sample and buffer in Xn

j : Y nj as discussed in Observation
3 is simplified as Xm

i k3 and Y mi k3, respectively. According
to Observation 3, for the dilution graph shown in Fig. 9(b),
the contributions of inter-skeleton edges in the mixing nodes
of TS2 are illustrated with the following example.

Example 8: The contribution of sample from mix-12 to mix-21
is X1

2 × w
1,2
2,1 ×

P 2
2

P 1
2

= 1× 2× 1 = 2, and the contribution of

buffer from mix-12 to mix-21 is Y 1
2 ×w

1,2
2,1×

P 2
2

P 1
2

= 3×2×1 = 6.
Furthermore, the total contribution of sample from mix-11 and
mix-32 to mix-20 is (X1

1 × w
1,2
1,0 ×

P 2
1

P 1
1

) + (X3
2 × w

3,2
2,0 ×

P 2
1

P 3
2

) =

1 × 1 × 1 + 14 × 5 × 1 = 71, and the total contribution of
buffer from mix-11 and mix-32 to mix-20 is (Y 1

1 × w
1,2
1,0 ×

P 2
1

P 1
1

) +

(Y 3
2 × w

3,2
2,0 ×

P 2
1

P 3
2

) = 19× 1× 1 + 6× 5× 1 = 49.

The proof of Observation 3 is mentioned in Appendix C2.

Combining the contributions discussed in Observation 1,
Observation 2 and Observation 3, the desired ratio at depth
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Fig. 10: (a) A valid and an invalid sharing edge between two skeleton trees. (b) Variables corresponding to the components of
mixing node mix-mi in TSm. (c) Volume contributions k1, k2 and k3 in mix-nj from pure sample, mix-nr and mix-mi , respectively.
(d) For target ratio x : y = 71 : 49, M = 6 and Vt = 13, the sharing edges in FTS considered by TVODA.

j of the nth skeleton TSn, i.e., Xn
j : Y nj can be written as(

xndn−1−j

dn−1∏
q=j+1

fndn−1−q︸ ︷︷ ︸
pure sample contribution

+

dn−1∑
p=j+1

(Xn
pw

n
p,j

p−1∏
q=j+1

fndn−1−q)︸ ︷︷ ︸
intra-skeleton contribution

+
∑

∀TSk∈FTS | k 6=n, Pk
i =Pn

j+1

Xk
i w

k,n
i,j

)
︸ ︷︷ ︸

inter-skeleton contribution

:

(
yndn−1−j

dn−1∏
q=j+1

fndn−1−q︸ ︷︷ ︸
pure buffer contribution

+

dn−1∑
p=j+1

(Y np w
n
p,j

p−1∏
q=j+1

fndn−1−q)︸ ︷︷ ︸
intra-skeleton contribution

+
∑

∀TSk∈FTS | k 6=n, Pk
i =Pn

j+1

Y ki w
k,n
i,j

)
︸ ︷︷ ︸

inter-skeleton contribution

.

The validation of the contributions mentioned in Observation
1, Observation 2 and Observation 3 for the GD shown in
Fig. 9(b) is demonstrated in the following example.

Example 9: Using the formula explained in Sec. II-A, we
can calculate the CF at depth 1 of TS2 shown in Fig. 9(b) as
(1×3)+( 1

4×2)
5 = 14

20 , i.e., X2
1 : Y 2

1 = 14
20 : (1 − 14

20 ) = 14 : 6.
To validate our observations, we derive X2

1 : Y 2
1 as, X2

1 :
Y 2
1 = (x21 × f20 ) + (X2

2 ×w2
2,1) + (X1

2 ×w1
2,1 +X3

3 ×w3
3,1) :

(y21 × f20 ) + (Y 2
2 × w2

2,1) + (Y 1
2 × w1

2,1 + Y 3
3 × w3

3,1) = (3×
4) + 0 + (1× 2 + 0) : 0 + 0 + (3× 2 + 0) = 14 : 6.
Similar to FacDA here also we need to impose some con-
sistency constraints for each mixing nodes of TSn in FTS ,
which are detailed in Appendix C3. The set of linear and non-
linear equations for determining the dilution graph GD shown
in Fig. 9(b) corresponding to the FTS shown in Fig. 10(d)

Algorithm 3: TVODA(x : y, Vt,M )
Input: Target ratio sample : buffer = x : y, where x+ y = N , target

volume Vt, and mixing volume constraint M
Output: Dilution graph GD generating Vt unit volume of desired Ct

1 begin
2 Construct FTS and obtain M̂m

` , ∀TSm ∈ FTS ; /* Discussed
in Sec. IV-B1. */

3 S =
(

SMT instance for FTS

)
∧ (

arg min
( ∑
∀TSm∈FTS

dm−1∑
i=0

(xm
i + ymi )

))
;

4 Optimize SAT(S);
5 Obtain dilution graph GD from the satisfiable assignment of S;
6 return Dilution graph GD ;

is illustrated in Appendix C4. The pseudo-code for this
complete procedure TVODA is written as Algorithm 3. Here,
we first generate the clauses corresponding to the equations
and constraints as discussed above to form an SMT instance
S (line no. 3). Moreover, in order to optimize the utilization of
both sample and buffer, we use the Minimize() function in Z3
tool and update S by adding the corresponding clauses (line
no. 3). Finally, we call the Optimize SAT() function with S as
an argument to obtain the satisfiable assignment of S, which
determines the dilution graph GD.

V. DISCUSSIONS ON FacDA AND TVODA

A. Priority of the Objective Parameters in FacDA and TVODA

Sample preparation is a multi-objective problem, where the
objective is to minimize nm, ns and nw simultaneously. The
relationship among nm, ns and nw largely depends on the
structure of a dilution graph (skewed or non-skewed) and the
ordering of the mixers used at different levels, so it is very hard
to minimize all the variables simultaneously. Hence, most of
the methods in the literature assigns a priority among nm, ns
and nw and then minimize them accordingly.
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In FacDA we choose the structure of a dilution graph to be
a skewed one and the general intuition is that with lesser nm
the whole problem becomes simpler because of the reduction
in the number of variables. So initially we choose the lowest
possible nm, which can generate the target ratio maintaining
the error tolerance ε (Sec. III-C). Then we focus on the
minimization of ns and nw. In order to maintain the flow
conservation in a dilution graph,

∑
wnp,j +nw must be equals

to (ns + nb), i.e.,
∑
wnp,j = ns + nb − nw. Here,

∑
wnp,j is

inversely proportional to both ns and nw. Also, ns and nb are
inversely proportional to each other, so it is very difficult to
minimize both ns and nw simultaneously. Hence, we decide
our primary objective as the minimization of ns only. We
maximize the scope of

∑
wnp,j , minimize ns and formulate

the equations in such a way that the SAT solver is able to
determine an overall efficient dilution graph.

In case of TVODA multiple skeleton trees are considered
so there is also a scope for minimizing nm. Along with
the constraints of FacDA we also append the constraints for
minimizing nm and determine efficient dilution graphs for
given target volumes using TVODA.

B. Scopes for FacDA and TVODA
The scope of any dilution algorithm presented in the liter-

ature primarily depend on its exploration of different mixing
models. Both FacDA and TVODA can explore Mixer-M , which
includes maximum number of mixing models. Also, in order
to minimize ns, FacDA and TVODA maximize the utilization
of the sharing edges with the power of SMT solver. So, the
dilution approaches for any other platforms (DMFB or CFMB)
e.g., twoWayMix, FloSPA-D can never perform better than
FacDA. This motivates us to consider the two most efficient
dilution algorithms WSPM and MRCM for comparing the
performances of FacDA and TVODA. In Table I, we present the
scopes of all the dilution algorithms for all the three platforms,
whose primary objective are either reagent minimization or
mixing step minimization. From Table I we realize that FacDA
is the first approach to consider Mixer-M and the utilization
of sharing edges simultaneously. Moreover, TVODA minimize
both nm and ns and also considers the target volume as
another objective, which is beneficial for many real-life bio-
protocols.

VI. SIMULATION RESULTS

We implement all the three dilution algorithms namely
WSPM [27], MRCM [28], and the proposed FacDA in Python.

TABLE I: Comparison of the scopes of different dilution
algorithms designed for different microfluidic platforms.

Dilution
Algo. DMFB CMFB MEDA Mixing

Models
Minimize Target

Vol.
Reuse of

Intermediate Fluidsnm ns

twoWayMix X × × 1:1 − − × ×
REMIA X × × 1:1 − X × X
VOSPA X X × RMixer-M − X × X

FloSPA-D X X × RMixer-M − X × X

WSPM X partial partial m : n
∈ Mixer-M − X × X

MRCM X X X Mixer-M − X × ×
FacDA X X X Mixer-M − X × X
TVODA X X X Mixer-M X X X X

The clauses in the SMT solver Z3 [29] for FacDA and
TVODA are written using Python library Z3Py that can handle
linear constraints with Boolean connectives. All simulations
are performed in a computer with a 3.70 GHz Intel Xeon
processor and 32 GB RAM running 64-bit Windows 10 OS.

A. Simulation Results for FacDA

MRCM is the most recent algorithm for sample prepara-
tion using MEDA biochips and primarily its objective is to
determine the mixing tree with the minimum requirement of
most costly reagent. However, FacDA deals with an automated
dilution of fluids using MEDA biochips, where only two
reagents are considered namely sample and buffer. For effec-
tive comparison, we consider only two reagents (sample and
buffer) for MRCM, where the cost of sample is assumed to be
greater than that of buffer. For each of these three variants of
MRCM, we compare FacDA and generate the histogram plots
of their performance parameters. In simulations, we randomly
consider a set of 500 co-prime target ratios, where the ratio-
sum N varies between 16 and 150 (i.e., 1 : 15, · · · , 149 : 1).
For different mixing volume constraint M ∈ {4, 5, 6, 7},
and error-tolerance ε = 0.001 the performance of FacDA is
compared with WSPM and MRCM in terms of the number of
mixing steps nm, number of sample units ns, number of waste
units nw and CPU time nt (in sec.) required for execution.
Fig. 11(a), (b), (c), and (d) presents the histogram plots of
the average number of mixing steps (nm), average number of
sample units (ns), and average number of waste units (nw),
and average CPU time (nt), respectively, required for WSPM,
MRCM, and FacDA. From the plots in Fig. 11(a) and Fig. 11(b)
we can conclude that FacDA completely outperforms both
WSPM and MRCM. In Fig. 11(c), for M = 6, 7, FacDA
requires more nw in compare to MRCM, but for all other cases
FacDA manages to reduce nw. As nw is not strictly present
in our optimization criteria, so although the nw generation
in FacDA is comparable with WSPM or MRCM, it is a bit
unpredictable. Considering all the performance parameters,
from these histogram plots we conclude that FacDA can
generate efficient dilutions graphs. Moreover, Fig. 11(d) shows
the distributions of nt for the three methods, from which we
can conclude the efficiency of FacDA over WSPM and MRCM
in execution time also.

B. Simulation Results for TVODA

We compare the variations of nm, ns and nw for the pro-
posed method TVODA with those for WSPM and MRCM over
different values of N , Vt and M . In simulations, we consider
ratio-sum N as 20, 40, 60 and 80, where 8, 16, 16 and 32 are
the number of unique co-prime target ratios, respectively. For
each value of N and with a fixed M = 6, we consider Vt
as 5, 10, 15 and 20. Distributions of the average number of
mixing steps nm, the average number of sample units ns, and
the average number of waste units nw for all the algorithms
are shown in Figs. 12(a)-(d), Figs. 12(e)-(h) and Figs. 12(i)-
(l), respectively. From Fig. 12, we conclude that nm, ns and
nw increase proportionally with the increase in Vt for all three
algorithms, however the lowest rate of this increment is seen
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Fig. 11: Comparison among WSPM [27], MRCM [28] and FacDA in the distributions of (a) nm, (b) ns, (c) nw, and (c) nt,
for 500 random testcases of ratio-sum N ranging between 16− 150, with M ∈ {4, 5, 6, 7} and ε = 0.001.
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(c) N = 60
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(d) N = 80
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(f) N = 40
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(g) N = 60
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(h) N = 80

 0

 5

 10

 15

 20

 25

5 10 15 20

Av
g.

 #
W

as
te

 U
ni

ts

Target Volume (Vt)

WSPM

MRCM

TVODA

(i) N = 20
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(j) N = 40
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(k) N = 60
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Fig. 12: Comparison among WSPM [27], MRCM [28] and TVODA in the distributions of (a)-(d) nm, (e)-(h) ns and (i)-(l) nw,
when M = 6 for ratio-sum N ∈ {20, 40, 60, 80} and for target volume Vt ∈ {5, 10, 15, 20}.

for TVODA. In few instances, when Vt is 5 or 10, TVODA
does not show better results compared to WSPM and MRCM,
whereas TVODA starts outperforming others with increasing
Vt. This is because the number of variables corresponding
to the inter-skeleton sharing edges in FTS is proportional to
Vt. As the number of these variables increases, pruning of
the mixing node(s) increases and subsequently it reduces nm,
ns and nw. Furthermore, with the increase in N , TVODA
outperforms WSPM and MRCM, which implies that it is
an efficient dilution algorithm for a given target volume. In
other simulations, the performance of TVODA is examined by
varying M with a fixed Vt = 18. For each case of N varying
between 30 and 90, and M varying from the set {5, 7, 9},
we consider 100 random co-prime ratios. Table II provides
the values of nm, ns and nw for all three algorithms. We
observe that nm decreases with increasing M for all three
algorithms due to the availability of more mixing models,
whereas TVODA outperforms with increasing M .

Table III depicts the advantages of TVODA over WSPM and
MRCM in regard to nm, ns and nw for four real-life bio-

TABLE II: Comparison among WSPM [27], MRCM [28] and
TVODA when Vt = 18 with M ∈ {5, 7, 9}.

M WSPM MRCM TVODA
nm ns nw nm ns nw nm ns nw

5 13.84 16.69 12.93 18.50 20.41 21 16.66 16.32 14.23
7 11.47 16.39 10.59 9.68 15.60 13.8 8.27 12.94 7.77
9 9.36 16.65 8.61 5.18 12.87 8.85 4.56 11.76 4.74

TABLE III: Comparison among WSPM [27], MRCM [28] and
TVODA for 4 real-life bio-protocols†.

Bio-protocol RatiosM Vt
WSPM MRCM TVODA

nm ns nw nm ns nw nm ns nw

Protein Assay [15]
1 : 127

4 8 8 2
(31.2 nL) 14 8 2

(31.2 nL) 14 7 1
(15.6 nL) 12

Glucose Assay [30]
1 : 319

6 10 8 2
(31.2 nL) 20 10 2

(31.2 nL) 16 6 1
(15.6 nL) 10

RNA extraction
from worms [31]

486 : 26
6 6 17 18

(280.8 nL) 15 10 12
(187.2 nL) 14 4 8

(124.8 nL) 3

In vitro culture of
human PBMCs [31]

51 : 461
6 6 3 3

(46.8 nL) 6 14 4
(62.4 nL) 20 4 1

(15.6 nL) 7

†one droplet has a volume of 4 * 3.9 nL, where the droplet size is 4X with 3.9 nL
capacity of each microelectrode [14].
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protocols. In all these cases ns is the smallest in TVODA
and thus, it reduces sample cost significantly compared to
previous algorithms for MEDA chips. An executable file of our
proposed approaches can be accessed form: https://dkundu-
1.github.io/FacDA.github.io/.

VII. CONCLUSIONS

In this paper we have brought into light some inherent com-
binatorial properties that govern the generic sample prepara-
tion supported by microfluidic biochips and their relationships
with various mixing models. We show that prime factorization
and partitioning of integers play a major role in optimizing
the dilution process given the physical constraints of the
underlying platform. Based on these properties, we study
the interdependence of mixer architectures and propose two
factorization-based algorithms namely FacDA and TVODA that
are capable of generating a target ratio of two fluids using
MEDA biochips.

Both of them are capable of utilizing different mixing
models supported by MEDA. FacDA can determine a sequence
of mixing models and generate a dilution graph with minimum
sample usage. TVODA can determine a dilution graph for a
target ratio with any desired volume. The optimum sequence
of mixing models to achieve the best dilution graph is left as
an open problem.
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