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ABSTRACT
In dense star clusters, such as globular and open clusters, dynamical interactions between stars and black holes (BHs) can be
extremely frequent, leading to various astrophysical transients. Close encounters between a star and a stellar mass BH make
it possible for the star to be tidally disrupted by the BH. Due to the relative low mass of the BH and the small cross-section
of the tidal disruption event (TDE) for cases with high penetration, disruptions caused by close encounters are usually partial
disruptions. The existence of the remnant stellar core and its non-negligible mass compared to the stellar mass BH alters the
accretion process significantly. We study this problem with SPH simulations using the code Phantom, with the inclusion of
radiation pressure, which is important for small mass BHs. Additionally, we develop a new, more general method of computing
the fallback rate which does not rely on any approximation. Our study shows that the powerlaw slope of the fallback rate has a
strong dependence on the mass of the BH in the stellar mass BH regime. Furthermore, in this regime, self-gravity of the fallback
stream and local instabilities become more significant, and cause the disrupted material to collapse into small clumps before
returning to the BH. This results in an abrupt increase of the fallback rate, which can significantly deviate from a powerlaw. Our
results will help in the identification of TDEs by stellar mass BHs in dense clusters.
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1 IN T RO D U C T I O N

The tidal disruption of stars by supermassive black holes (SMBHs)
in galactic centres has been extensively studied over the past few
decades both numerically and observationally (Komossa 2015; Roth
et al. 2020; Dai, Lodato & Cheng 2021). The properties of the
resulting flares from tidal disruption events (TDEs) have been used
as probes to study the SMBHs in quiescent galactic nuclei and their
surrounding stellar population.

The first direct detection of a binary black hole (BH) merger, by
the LIGO observatory (Abbott et al. 2016), has further increased
interest in stellar dynamical processes in dense star clusters. In high-
density star clusters, such as young massive clusters and globular
clusters, the presence of small-N bound systems increases the rate
of close flybys between compact objects (BHs; neutron stars and
white dwarfs) and stars (Bacon, Sigurdsson & Davies 1996; Fregeau
et al. 2004). If the flyby is sufficiently close, the star can be tidally
disrupted by the compact object. Perets et al. (2016) suggested that
the disruption of stars by stellar mass BHs (described as micro-
TDEs) may give rise to long X-ray/gamma-ray flares, which could
possibly resemble ultra-long gamma-ray bursts. Dynamical studies
(e.g. Fragione et al. 2019; Kremer et al. 2019; Samsing et al.
2019; Fragione, Perna & Loeb 2020) have suggested that stellar
TDEs could be important probes of the BH population in star
clusters.

� E-mail: yihan.wang.1@stonybrook.edu

The characteristics of the light curves from TDEs are largely
determined by the rate at which debris falls back, circularizes, and
subsequently accretes on to the BH (Lodato & Rossi 2011; Roth
et al. 2016). Calculations of the fallback rate often rely on the
‘frozen-in’ approximation, according to which the star is destroyed
impulsively at the tidal radius, with the debris then following ballistic
trajectories (Rees 1988). The accretion rate will track the fallback
rate if, additionally: (i) the kinetic energy of the returning debris is
dissipated efficiently, (ii) the material rapidly circularizes, and (iii)
the viscous time-scale in the newly formed disc is short compared to
the fallback time. If the star is fully tidally disrupted by the compact
object, then, within these approximations, the gas parcels comprising
the disrupted star follow pure Keplerian orbits. During the late stages
of the accretion process (Cannizzo, Lee & Goodman 1990; Mockler,
Guillochon & Ramirez-Ruiz 2019; Miles, Coughlin & Nixon 2020),
the fallback rate from full disruptions will asymptote to t−5/3 (Phinney
1989).

Hydrodynamical simulations performed by Guillochon &
Ramirez-Ruiz (2013) showed that there is a critical penetration factor
β = rt/rp that separates TDEs into full and partial disruptions, where
rt and rp are the tidal radius and pericentre distance of the star,
respectively. In partial TDEs, a stellar remnant core survives from the
first encounter with the compact object. The surviving remnant stellar
core can then interact gravitationally with the returning debris. Due to
this additional interaction, the material in the stream no longer obeys
the Keplerian trajectory as it falls back to the pericentre. Therefore,
the fallback rate from such partial TDEs could be significantly
steeper than the t−5/3 scaling (Ryu et al. 2020a). Due to the relatively
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small cross-section of high-β encounters between stars and compact
objects in dense clusters, most of the TDEs by stellar mass compact
objects are partial TDEs. This makes the study of partial TDEs by
stellar mass compact objects especially interesting.

Coughlin & Nixon (2019) developed a model to analytically
calculate the asymptotic temporal scaling of the late time fallback rate
of partial TDEs. By solving the equation of motion of the elements in
the stream together with the mass conservation law, they concluded
that the late time fallback rate from a partial TDE asymptotically
scales approximately as t−9/4, and is effectively independent of the
mass of the remnant stellar core which survives the encounter. This
scaling is derived based on several approximations: (i) the self-
gravity of the debris can be ignored, (ii) the trajectory of the remnant
core is parabolic, (iii) the angular momentum of the stream with
respect to the compact object is zero, and (iv) the mass of the remnant
stellar core is much smaller than the mass of the compact object.
Coughlin & Nixon (2019) validated those assumptions in the SMBH
regime and found that the analytical solution fits the numerical results
very well. However, for TDEs by stellar mass compact objects, where
the mass of the remnant stellar core is more significant compared to
the mass of the compact object, these assumptions become more
difficult to maintain. For instance, due to the lower mass of the
accreting compact object, the self-gravity of the debris in the stream
exerts a stronger impact on the local dynamics of the stream, leading
to more prominent local gravitational instabilities. The trajectory of
the remnant core could be elliptical. Furthermore, as accretion discs
around stellar mass BHs are known to be pressure-dominated in
the highly hyper-accreting regime (Narayan, Piran & Kumar 2001;
Di Matteo, Perna & Narayan 2002; Janiuk et al. 2004), radiation
pressure can be dominant in the discs formed during TDEs from
stellar-mass BHs.

In order to study the partial TDE problem from stellar-mass BHs,
we perform a series of hydrodynamic simulations with the SPH code
Phantom (Price et al. 2018). We implement a new radiative equation
of state (EoS) to better capture the shock heating and radiation from
the falling-back material, and use a new method to calculate the
fallback rate for partial TDEs which does not rely on the frozen-
in approximation. We derive the fallback rate scalings of partial
TDEs and explore the dependence on the BH mass, highlighting the
significant differences that are caused by the presence of radiation
pressure.

Our paper is organized as follows. Section 2 describes the details of
the implementation of the new radiative EoS in Phantom, the new
method to calculate the fallback rate of the partial TDEs, and the
simulation setup. We present our results in Section 3 and summarize
our conclusions in Section 4.

2 EQUATION O F STATE AND FA LLBAC K R ATE

In simulations of TDEs with the SPH code Phantom, to save
computing time and stabilize the initial model of the star, a polytropic
EoS is typically used,

P = Kργ , (1)

where K and γ are global constants. With this option,1 the tempera-
ture remains low even after shock generation, implying that the shock
heating is radiated away immediately after the shock. Therefore,
shock heating cannot be correctly tracked. On the other hand, if
the heat from the shock is not efficiently cooled via radiation, then

1It is selected in the code as the ‘isothermal’ compiling option.

the local temperature increases significantly and radiation pressure
can become dominant over gas pressure. Under these conditions,
the inclusion of radiation pressure is required in the code. In the
following (Section 2.1), we show that cooling in the flow is in fact not
efficient enough, and hence radiation pressure needs to be included;
its implementation in Phantom is described in Section 2.2.

2.1 Radiative cooling

If the accretion disc is optical thin, the approximation of efficient
radiative cooling is good if the time-scale of radiative cooling is
shorter than the dynamical time-scale.

Whether heat can be quickly radiated away depends on the local
optical depth of the accretion disc; at the leading order approxima-
tion, the optical depth near the apocentre can be estimated as (Piran
et al. 2015; Ryu et al. 2020b),

τ ∼ κM�

4πa2
min

, (2)

where κ = 0.34 cm2g−1 is the Thomson opacity, M� is the mass of
the star, and amin is the semi-major axis of the most bound material,

amin ∼ ζ
r2

t

2R�

. (3)

In the above, rt = (M•/M�)1/3R� is the tidal radius for a Solar type star,
R� the radius of the star, and ζa geometry factor. A 10 M� BH yields
τ ∼ 2 × 109 with a geometry factor of 1. However, the outskirts of
the accretion disc are more optically thin. To make a more precise
estimate, we also run a test simulation of a TDE by a 10 M� BH
with the simulation setups described in Section 2.5 and calculate the
optical depth of the emission region from the snapshot. The optical
depth is calculated via the equation,

τ (r) =
∫ +∞

r

ne(r ′)σKdr ′. (4)

For fully ionized hydrogen,

ne = nH+ = ρH+

mH

∼ ρ

mH

. (5)

Hence, the optical depth of the fully ionized hydrogen gas is

τ (r) =
∫ +∞

r

ρ(r ′)
mH

σKdr ′ . (6)

The electron-photon cross-section σ K in the non-relativistic regime
can be approximated with the Thompson cross-section, σ T.

The upper and middle panels of Fig. 1 show the optical depth of
the accretion disc in the radial direction for different azimuthal and
polar angles. As shown in this figure, the optical depth is on the order
of 107. By comparing with the value calculated from equation (2)
with geometry factor γ = 1, we find that a more precise value for
this factor is γ ∼ 30.

With such a large scattering optical depth, we assume the radiation
is well thermalized and escapes with a roughly blackbody spectrum
on a photon diffusion time-scale,

tdiff ∼ τamin

c
, (7)

where c is the speed of light. The dynamical time-scale of the most
bound material is

t0 ∼
√

a3
min

G(M• + M�)
. (8)
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Micro-tidal disruption events 6007

Figure 1. Optical depth of the accretion disc formed from a TDE by a 10 M�
BH, along the radial direction. Upper panel: Optical depth for different values
of the azimuthal angle φ. Middle panel: Optical depth for different values of
the polar angle θ . Bottom panel: Ratio between the photon diffusion time-
scale and the dynamical time-scale of the fallback material as a function of
the BH mass. Radiative cooling of the disc is efficient in the region below the
dashed line, and hence only for BHs of masses � 104 M�.

The bottom panel of Fig. 1 shows the ratio between the diffusive
and the dynamical time-scale as a function of the BH mass. It is
evident that, unlike for the SMBH case, in the stellar BH case, the
time-scale for photon diffusion is much longer than the dynamical

time-scale. Therefore, cooling is inefficient in the stellar mass BH
regime, resulting in heating of the gas, and hence in a potentially
dominant role of radiation pressure in the flow.

2.2 Implementation of the equation of state in Phantom

The SPH code Phantom tracks shock heating when compiled
without the ‘isothermal’ option; however, the central regions of the
accretion disc – where the gas is strongly shock-heated – can reach
very high temperatures, making radiation pressure non-negligible.
Therefore, we implemented an EoS that includes a radiation pressure
term in Phantom. In the following, we discuss the details of this
implementation.

The equations of compressible hydrodynamics are solved in
Phantom in the form of,

dv
dt

= −∇P

ρ
+ 
shock + aext + asink−gas + aselfgrav (9)

du

dt
= −P

ρ
(∇ · v) + �shock − �cool

ρ
, (10)

where v is the velocity field, aext, asink−gas, and aselfgrav refer to
accelerations from an external force, sink particle, and self-gravity,
respectively. 
shock and �shock are dissipation terms required to give
the correct entropy increase at the shock front, and �cool is the cooling
term.

We implemented an EoS including radiation pressure as,

u = 4σ

ρc
T 4 + kB(γ − 1)

μmH
T , (11)

where u is the specific thermal energy, σ is the Stefan-Boltzmann
constant, ρ the density of the SPH particle gas, T the temperature, kB

the Boltzmann constant, γ the adiabatic index, μ the mean molecular
weight, and mH the hydrogen mass.

At each time step, the current value of the specific thermal energy
u is used to calculate the temperature of each SPH particle via
equation (11) through Newton–Raphson iteration. The temperature
in the last step is adopted as the initial guess of the temperature, while
the density of the particle is obtained from the original computation
in Phantom,

ρa =
∑

b

mbW (|ra − rb|, ha) , (12)

where a and b are particle labels, m is the mass of the particle, h
is the smoothing length, and W the smoothing kernel. Hence, the
corresponding ratio of pressure over density, which is used to evolve
the thermal energy, can be calculated from the updated temperature
and density via

P

ρ
= 4σ

3ρc
T 4 + kB

μmH
T . (13)

Fig. 2 shows the results of a test of the implementation of the
modified EoS. Specifically, in order to check that the variable u
representing the internal energy is correctly evolved with the new
EoS (equation 10), we calculate the internal energy also in a different
way, that is from the stored temperature value T in equation (11). We
call this quantity uc, and check the consistency (i.e. the magnitude
of the relative error) of u with respect to uc. Fig. 2 shows the
distribution of the relative error of the specific thermal energy of all
SPH particles. By setting the relative tolerance parameter of Newton–
Raphson iteration to be 10−6, the relative error on the specific thermal
energy is under 10−4.
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Figure 2. The distribution of the relative error of the specific thermal energy
of all SPH particles in the implementation of the new EoS. uc is the thermal
energy calculated directly from the EoS in equation (11) with temperature
obtained from the simulation, while u is the corresponding thermal energy
evolved via equation (10).

2.3 Fallback rate of partial TDEs: powerlaws with the
frozen-in approximation

To estimate the fallback rate, the so-called ‘frozen-in’ approximation
(Rees 1988; Phinney 1989; Ulmer 1999) is often adopted; according
to this,

dM

dt
= dM

dE

dE

dt
= 1

3
(2πGM•)2/3 dM

dE
t−5/3 , (14)

where M• is the BH mass. By calculating the dM/dE distribution of
the gas particles from the snapshots of the simulation, one can then
estimate the fallback rate as a function of time. In this approximation,
the accretion rate is calculated from the time that the debris take
to return to the pericentre. It requires the following conditions to
be satisfied: (i) the viscous time-scale of the disc be much shorter
than the fallback time; (ii) the kinetic energy of the falling back
material dissipate efficiently; and (iii) the material can be rapidly
circularized. For full tidal disruption by SMBHs, the specific energies
of the debris can approximately be taken to be ‘frozen-in’ at the
tidal radius; thus, the fallback rate will asymptote to t−5/3 at late
times. However, for partial disruption by stellar mass BHs, where
the remnant core provides additional significant time-dependent
potential to the BH potential, the fallback rate will be steeper than
t−5/3. Coughlin & Nixon (2019) developed a model to analytically
calculate the asymptotic scaling of the fallback rate at late times from
a partial TDE. By solving the equation of motion of the particles in
the stream together with the continuity equation, they found that the
fallback rate can be expressed as,

ṁ ∝ t−1− 2
3 ω+ = tn∞ , (15)

where the variable ω+ is derived from the equations,

ω+ = 1

4

(
− 1 +

√
9 + 16

ξ 3∞
+ 16μ

(1 − ξ∞)3

)
(16)

ξ∞ = 1

ξ 2∞
− μ

(1 − ξ∞)2
, (17)

where μ ≡ Mc/M• is the mass ratio between the remnant core and
the BH, and ξ∞ = r(t → ∞)/R(t → ∞), where r(t → ∞) is the
distance between the BH and the test particle and R(t → ∞) is the

Figure 3. The powerlaw slope of the fallback rate for partial TDEs by stellar
mass BHs. The value of the slope is −2.409, −2.456, −2.568, and −2.676
for the BH masses M• =5, 10, 30, and 60 M�, respectively with a 0.5 M�
remnant core. The value of the core mass is chosen based on what we find
via SPH simulations (Section 3.3).

distance between the remnant core and the test particle. The symbol
‘∞’ is to remind us that this is the asymptotic time.

For full tidal disruption, where μ = 0, ξ∞ = 1, ω+ = 1,
equation (15) yields the classic ṁ ∝ t−5/3. For partial disruption
by a SMBH, where μ � 1, ξ∞ can be approximated by

ξ∞ ∼ 1 −
(μ

3

)1/3
+ 3

8

(μ

3

)2/3
+ O(μ) (18)

which yields

ṁ ∝ t−2.257−0.690μ1/3
. (19)

Since for tidal disruption by a SMBH the ratio μ is always �1
and insensitive to the mass of the core, they conclude that for
partial TDEs by SMBHs the fallback rate will asymptote to t−2.257

∼ t−9/4 and is effectively independent of the mass of the remnant
core that survives the encounter. Coughlin & Nixon (2019) solved
equation (17) numerically within the range μ ∈ [10−9, 10−5] and
found that the solution agrees well with the t−9/4 decay. However, for
TDEs by stellar mass BHs, the approximation μ � 1 no longer holds
true; thus, numerical solution of equation (17) is needed to obtain a
more accurate value of ξ∞ (Note that Coughlin et al. 2020 provided
an example simulation where μ ≈ 0.01).

Fig. 3 shows the corresponding powerlaw index of the fallback
rate, n∞, computed from the numerical solution of ξ∞ as a function of
μ. The calculation assumes a mass of the remnant core Mc = 0.5 M�,
chosen to match what is found from the SPH simulations presented
later (Section 3.3).

We see that in the stellar mass regime, n∞ changes significantly
with the mass of the BH. For masses from about 5 M� up to 90 M�,
n∞ ranges from ∼ −2.4 to ∼ −2.7. Therefore, for partial TDEs by
stellar mass BHs, due to the time-dependent impact of the remnant
core on to the falling back material, the power law slope of the
fallback rate shows a significant dependence on the BH mass.

2.4 Fallback rate calculation

As discussed in the previous subsection, the fallback process of the
debris for TDEs by stellar mass BHs is more complicated than for
full TDEs by SMBHs (which yield the traditional −5/3 powerlaw
slope), due to the existence of a remnant core of non-negligible mass
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compared to that of the BH. To calculate the fallback rate from the
simulation, traditional methods usually extract the quantity dM/dE
from the snapshots, and then compute the fallback rate according
to the frozen-in approximation (equation 14). In order to estimate
dM/dE from the snapshots, the first step is a calculation of the total
specific energy of the SPH particles with respect to the BH, of mass
M•,

E = v2

2
− GM•

r
, (20)

and then a sorting on all SPH particles to determine the distribution
dM/dE. While this method is still used in the literature, it becomes
invalid in the case of partial TDEs, and especially so for TDEs by
a stellar mass BH. Because of the presence of the remnant core,
the material in the stream no longer obeys the Keplerian law when
falling back to the pericentre. Hence, the underlying assumption
leading to equation (14) is no longer correct. Therefore, a more
precise method that can handle this case is required and to this
effect, several alternative approaches have been employed in the last
few years which measure the accretion rate directly (Coughlin et al.
2017; Coughlin et al. 2020).

In this paper, we propose another new direct method to estimate
the fallback rate: we classify the SPH particles directly from the
snapshots into disc particle, accreted particles, stream particles, and
remnant particles.

During accretion, the bound particles continuously fall back on
the BH. However, the particles in the stream are nearly parabolic
with extremely large semimajor axis, while the particles in the
accretion disc have circularized following collision with the stream.
The semimajor axis and the eccentricity of the individual particles
are calculated from

a = − GM•r
rv2 − 2GM•

(21)

e = rv2 − GM•
GM•

, (22)

where r and v are the absolute values of the relative position and
velocity between the SPH particles and the BH.

Due to self-collision, circularization of the accreted material will
create a natural separation in the distribution of the semimajor
axis/eccentricity of the bound particles, where all the particles with
small semimajor axis/small eccentricity belong to the disc, while
all the particles with large semimajor axis/large eccentricity are part
of the stream/remnant. If we add the mass of the disc particles by
snapshots, we thus obtain the fallback mass as a function of time.
Then the fallback rate can be readily obtained from the derivative
without any approximation. Fig. 4 shows the distribution of the
semimajor axis in the particles in several snapshots, together with
the corresponding results of the classification method (note that the
accreted particles have not been indicated since they are added to
the BH mass and no longer evolved). The upper three panels show
the distribution of the SPH particles which remain bound to the
BH, at different times after the first encounter. We can see a clear
bimodality in the distribution of the semimajor axis of the falling-
back debris, with a sharp separation between the two peaks. This
is because circularization rapidly decreases the semimajor axis once
the material falls back to the BH. Therefore, we can easily distinguish
the SPH particles that have been accreted. Based on these findings,
we compute the fallback rate as follows:

(i) Identify all the SPH particles that have been removed from the
simulations due to accretion by the BH and mark them as accreted
particles.

(ii) For each of the non-accreted particles, calculate the specific
energy via equation (20); for particles with E > 0, mark them as
unbound particles, for particles with E < =0, mark them as bound
particles.

(iii) For all bound state particles, calculate the semimajor axis of
each particle with respect to the BH via equation (21).

(iv) Find the critical value of the semimajor axis, ac (by means of
a peak/valley finding algorithm) that separates stream particles from
disc particles. For particles with a < ac, mark them as disc particle,
while for particles with a > ac, mark them as stream particles.

(v) Add up the mass of all disc particles and accreted particles to
obtain the total mass of fallback material.

(vi) Repeat the process by snapshot to get the fallback mass as a
function of time, Mfallback(t).

(vii) Derive the fallback accretion rate Ṁfallback(t) by taking the
numerical derivative of Mfallback(t).

The bottom three panels of Fig. 4 show the resulting particle
classification by means of our method. In red are disc particle, in
green are stream particles, while orange depicts unbound particles.
The figure shows that the particles are successfully classified into
these three kinds. Therefore, with this method, a more accurate
fallback rate can be extracted from the simulations, without relying
on the frozen-in approximation.

2.5 Simulation setup

In the following, we describe our simulation setup in order to study
the fallback rate of partial TDEs by stellar mass BHs with Phantom.
This code has been highly effective for simulating complex fluid
geometries (Nixon et al. 2012; Nixon, King & Price 2013; Martin
et al. 2014a,b; Doğan et al. 2015; Nealon, Price & Nixon 2015), and
has also been used to study TDEs, including the disruption process
itself (Coughlin & Nixon 2015), the evolution of the disrupted debris
(Coughlin et al. 2016b), and the formation of the accretion disc
(Bonnerot, Rossi & Lodato 2016). For the simulations in this paper,
we adopt an artificial viscosity, αAV, varying between the range
αAV

min = 0.1 and αAV
max = 1.

The disrupted star is initialized as an n = 3/2 polytrope of one
solar mass and one solar radius, while stellar mass BHs of 5, 10, 30,
60, and 90 solar masses are considered. The sizes (accretion radii)
of the BHs are set to be 2000, 1000, 333, 167, and 111 times larger
than their event horizons for practical computational time. Any SPH
particle entering within the sink radius is accreted on to the BH; its
mass is added to that of the BH and it is removed from the simulation.
All stars are assumed to be incident with penetration factor equal to 1
from an initial position of 50 tidal disruption radii. The gravitational
field of the BH is purely Newtonian and treated as a sink particle in
Phantom; thus general relativistic precession is not included in our
simulations.

Each simulation is performed with 5 × 105 SPH particles. We
checked the convergence of the results by performing one simulation
also with 106 SPH particles. Note that self-gravity of the gas is
included in the simulations. Both analytical and numerical studies
have demonstrated that self-gravity plays an important role for
modifying the structure of the disrupted debris (Kochanek 1994;
Coughlin & Nixon 2015; Coughlin et al. 2016a,b), especially when
the pericentre distance of the disrupted star is larger (β ∼ 1) and
the adiabatic index of the gas is stiffer (γ > 5/3) (Coughlin et al.
2016b). The modification of the structure from self-gravity becomes
more significant in the case of tidal disruption by a stellar mass
BH.
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Figure 4. The upper three panels show the distribution of the semimajor axis of the SPH particles around the BH at three different times. A clear separation can
be seen between the disc particles (left peak with small semimajor axis) and the stream particles (right peak with large semimajor axis). The bottom three panels
show the corresponding snapshots with the SPH particles colour coded based on this direct classification method. The red colour indicates the disc particles
which have circularized, the green colour indicates the bound particles falling back, while the yellow shows the unbound particles. The fallback rate can then
be estimated by Ṁdisc. Note that some of the particles bound to the BH (green) may later become unbound (orange) due to the presence of the remnant core or
join the disc (red) and subsequently accrete.

Three different setups are explored in our simulations to study the
impact of shock heating and radiation from accreting material. The
first one is the default setting in Phantom for TDE simulations,
which assumes an adiabatic EoS with index equal to the polytropic
value of γ = 5/3 (the ‘isothermal’ compiling option). This setup
assumes that the gas cools very efficiently after being shocked, and
the temperature remains low enough that the contribution of radiation
to the gas dynamics is small. Both shock heating and radiation would
contribute to inflate the gas and extend the accretion regions. The
second setting we consider is again the adiabatic EoS with index
equal to the polytropic value of γ = 5/3 but without the ‘isothermal’
condition. This setup includes heating from the PdV work and shock
heating and does not assume that the gas cools very efficiently
after being shocked. Therefore, the temperature may not remain low
enough and the contribution from the radiation needs to be taken into
account. The last setup, where the radiation is fully included, is the
one with our implementation of the modified EoS as discussed in
Section 2.2. With this EoS, the temperature is updated in each step
and the influence of radiation pressure (but no other radiative transfer
effects) on the gas dynamics is accounted for. While the third setup is
the one most physically accurate for the problem we are treating, the
other two cases are useful for comparison and to better appreciate the
importance of including both shock heating and radiation pressure
in the simulations.

3 R ESULTS

3.1 Morphological evolution

Fig. 5 shows the projection in the x-y plane (defined as the orbital
plane of the incoming star) of the evolution of the debris. In this
simulation, M• = 10 M�, M∗ = 1 M�, penetration number β = 1,
and the adiabatic EoS is used under the isothermal assumption, where

cooling of the gas is assumed to be very efficient after the shock. Since
this is the default setup of Phantom for TDEs, we use this as the
standard simulation for comparison. The three panels of Fig. 5 show
snapshots of the TDE at the times t = 3.2 × 104, t = 4.8 × 104,
and t = 2.56 × 105 s after the first encounter, respectively. In these
panels, the colour shows the projected column density of the gas,
with lighter tones corresponding to denser areas. At the beginning
of the simulation, the centre of mass of the BH-star system is placed
at the origin. However, because of the relatively small mass of the
stellar BH, the BH obtains a recoil velocity from the encounter with
the star. As we can see from the bottom two panels of Fig. 5, the BH,
accompanied by the accretion disc, gradually moves away from the
origin. To zeroth order, if we ignore the self-gravity of the stream, the
dynamics of the falling back material is determined by its relative
position with respect to the BH and the remnant core. Therefore,
the recoil velocity of the BH might in principle affect the fallback
rate of the TDE if a remnant core is present (the motion of the
falling back material is non-Keplerian). To explore the significance
of this dependence, we performed a comparison simulation with
M• = 10 M� that forces the BH to remain at its initial position,
finding that there is no significant difference due to the recoil velocity.
Larger mass BHs will obtain smaller recoil velocity; therefore, we
conclude that the recoil velocity obtained from the encounter between
a 1 M� star and a stellar mass BH (with M• � 10 M�) does not
significantly affect the accretion process. However, close encounters
between massive stars and stellar mass compact objects are possible
in clusters. In close encounters between objects of comparable mass,
the compact object will get a much higher recoil velocity that might
significantly affect the accretion process. We leave the exploration
of the impact from the recoil velocity to future work.

As discussed earlier, the default setup for TDE simulations in
Phantom assumes that shock heating of the gas is radiated efficiently
after the gas is shocked via stream–stream collisions. Numerically,
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Micro-tidal disruption events 6011

Figure 5. Snapshots of the simulation of the tidal disruption of a 1 M� star by a 10 M� BH; an adiabatic EoS with γ = 5/3 is adopted. Each panel shows the
column density projection on the x-y plane at t = 3.2 × 104, t = 4.8 × 104, and t = 2.56 × 105 s, respectively.

this means that the polytropic constant remains unaffected, and hence
shock heating does not contribute to the thermal balance and cannot
‘inflate’ the accretion disc (Hayasaki, Stone & Loeb 2016; Coughlin
et al. 2017), which thus remains confined within a few tidal radii
in the radial direction and stays geometrically thin. Moreover, due
to the high-accretion rate (which can be two orders of magnitude
higher than the Eddington value), the radiation pressure cannot be
ignored. Coughlin & Begelman (2014) found that radiation pressure
can be very important in expelling gas and inflating the accretion
disc. Therefore, shock heating and radiation pressure need to be
included in the simulations. We proceeded in steps of generalization.
First, we performed the same TDE simulation with the polytropic
EoS but without enforcing isothermal conditions in Phantom. This
run allows us to correctly capture shock heating. Then, we performed
another simulation with the modified EoS, where radiation pressure
is added to the thermal dynamics as detailed in Section 2.2.

Fig. 6 shows the structure of the accretion disc from the three
different setups. The snapshots are taken at t = 2.56 × 105 s after
the encounter. The upper three panels show the projection in the
x-y plane, while the bottom three panels show the corresponding
projection in the x-z plane. The first column is the default setup of
the TDE in Phantom where we see a confined, thin disc. In the
second column shock heating is captured, and the accretion disc is
‘puffed up’ by the shock heating from stream–stream collisions. We
observe that a more circular and thicker disc is formed. The third
column shows the accretion disc from the simulation where both
shock heating and radiation pressure are included. Here, the accretion
disc is inflated to a larger size due to the effect of the radiation
pressure. We also found that the gas in the disc is continuously
expelled outward to space.

Fig. 7 shows the column density, temperature, gas pressure, and
radiation pressure of the accretion disc corresponding to the third
column of Fig. 6. We see that radiation pressure (bottom right panel)
dominates over gas pressure in the central regions of the disc. Here,
the radiation pressure exceeds the gas pressure by approximately a
factor of 10. This finding confirms the fact that, to correctly resolve
the accretion disc structure of the TDE by stellar mass BHs, the
inclusion of radiation pressure in the EoS is necessary.

3.2 Stream instability

In the stream, to a first approximation, self-gravity dominates the
tidal field of the BH when

ρ � M•
r3

, (23)

where ρ is the local density of the gas and r is the distance to the BH.
By considering the dynamics of the stream post-disruption, Coughlin

et al. (2016a) found that compression and the onset of significant
stream self-gravity occurs more readily for lower-mass BHs. If any
overdense region with size δR is perturbed and the Jeans condition
is satisfied,

δR � cs

√
π

ρG
, (24)

where cs is the sound speed, the material will collapse into a clump.
Coughlin & Nixon (2015) discussed this effect in the SMBH regime.
They argued that the stream is gravitationally unstable, and any small
perturbation to the distribution of the debris will cause the stream to
fragment. They argued that those collapsed fragments significantly
affect the fallback rate, creating varied, abruptly variable light curves.
Here, due to the relatively weaker gravity of the stellar mass BH, we
argue that the stream is much more gravitationally unstable than the
stream in TDE by SMBHs. We find in the simulations that if shock
heating and radiation pressure are correctly included, the stream
almost entirely collapses into a series of clumps. This significantly
affects the fallback rate, and subsequently induces a series of abrupt
changes in the light curves.

Fig. 8 shows a snapshot at time t = 3.2 × 105 s from one of our
simulations that is the tidal disruption of a 1 M� star by a 5 M� BH,
with shock heating and radiation pressure included. From the upper
panel and a zoomed region in the bottom panel, we can clearly see
the collapsed clumps by eye. Unlike the clumps in TDEs by SMBHs
shown in Coughlin & Nixon (2015), the central density of the clumps
is much denser than the nearby areas. Therefore, the abrupt changes
in luminosity caused by those clumps are expected to be much more
prominent.

To make sure that we correctly resolve the collapse of the stream,
we need to test that the smoothing length of the SPH particles is

smaller than the Jeans radius RJeans = cs

√
π

Gρ
. Fig. 9 shows the

distribution of the smoothing length of the SPH particles in the
bottom panel of Fig. 8, in units of RJeans. We see that all particles
have smoothing length smaller than the Jeans radius. Therefore, the
collapse is correctly resolved by our simulations.

3.3 Fallback rate

As discussed earlier, due to the small cross-section for full TDEs
by stellar mass BHs, most of the disruptions in dense clusters in
which close encounters are frequent will result in partial disruptions.
The presence of the remnant stellar core imposes a significant time-
dependent potential on the falling back stream. In the SMBH regime,
where the mass ratio between the remnant core and the BH is
very small, the late time fallback rate asymptotes to t−9/4 and is
independent of the mass of the BH. However, in the stellar mass
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Figure 6. Projection of the accretion disc structure in the x-y plane (upper panels) and in the x-z plane (bottom panels) from three different simulations but
all at the same time t = 2.56 × 105 s for a TDE of a 1 M� star disrupted by a 10 M� BH. Left: Default setup of Phantom, where neither shock heating nor
radiation pressure are included. Middle: Shock heating is correctly captured but radiation pressure is not included. Bottom: Both shock heating and radiation
pressure are included.

regime, where the mass ratio μ is several orders of magnitude higher
than in the SMBH regime, the fallback rate shows a noticeable
dependence on the mass of the BH.

Fig. 10 shows the simulation results of the tidal disruption of
a 1 M� star by a 5, 10, 30, 60, and 90 M� BH with the default
TDE setup in Phantom, which does not include shock heating from
stream–stream collisions and radiation pressure. The penetration
factor is assumed to be β = 1 in all the simulations. The mass of
the accretion disc, the accreted material, the stream, and the remnant
core are estimated by the method discussed in Section 2. The upper
panel shows the mass of the remnant core (identified as the unbound
material) as a function of time. We can see that, for BHs with mass
equal to 10, 30, 60, and 90 M�, the mass of the remnant core is
around 0.5 M�. However, for the 5 M� BH, the disruption is closer
to a full TDE, where the mass of the remnant core is ∼0.1 M�. This is
also the only case, among the ones we studied, in which the remnant
core returns and has a second encounter with the BH. The second
encounter happens at t � 3 × 105 s, and produces the bump seen
in the green line (upper panel of the figure) around that time. Since
the mass of the remnant core in the 5 M� BH case is very different
than the one for the cases with larger BH masses, there cannot be a
uniquely defined variable μ if we include the 5 M� BH simulation.
Hence, in the following exploration of the dependence of the fallback
rate on the mass of the BH, we exclude the 5 M� case.

The middle panel of Fig. 10 shows the fallback rate as a function of
time for different BH masses. The SPH simulations by Coughlin &
Nixon (2019) and Miles et al. (2020) revealed that the fallback rate
of the partial TDE scales with t−5/3 at early times and switches to
t−9/4 after a ‘break time’,

tbreak = α

(
R�

2

)3/2 2πM•
M�

√
GM•

, (25)

where α is a scaling factor dependent on the penetration factor and
on the mass ratio of the surviving core to that of the original star,

Mc/M�. Generally, α is in the range ∼1−100. For a partial TDE by a
stellar mass BH with β = 1 and Mc/M� ∼ 0.5, the typical value of α

is ∼10 (Coughlin & Nixon 2015). Therefore, the typical break time
for the partial TDEs in our simulations, as given by equation (25),
is ∼105 s. As we can see in the bottom right panel of Fig. 10, the
late time fallback rate for different BH masses scales with different
powerlaws, as expected. By fitting the data for times t > tbreak, we find
that the late time fallback rate asymptote to −2.10, −1.77, −1.73,
and −1.72 for a 10, 30, 60, and 90 M� BH, respectively. Hence, we
conclude that the powerlaw of the late-time fallback rate of partial
TDEs depends significantly on the BH mass of the black hole in the
stellar mass BH regime, with a steeper decay for lighter BHs.

Coughlin & Nixon (2019) found in their simulations that the
powerlaw of the fallback rate of partial TDEs by SMBHs varies
from t−5/3 to t−9/4 as a function of partial fraction (see the right-hand
panel of fig. 2 in Coughlin & Nixon 2019). For a full TDE, the late
time fallback rate asymptotes to t−5/3, while for partial TDEs with
varying partial fractions, the early time fallback rate changes from
t−5/3 to t9/4 as the partial fraction increases (larger remnant stellar
core). However, for all partial TDEs with different partial fractions,
the late-time fallback rate asymptotes to t−9/4 so that the late-time
fallback rate is practically independent of the mass of the SMBH.
However, for partial TDEs by stellar mass BHs, we find that the
late-time powerlaw index of the fallback rate still varies from t−5/3

to t−9/4 and does not converge to t−9/4.
The powerlaw slope of the fallback rate at late times calculated

from the fits is different than the one calculated from equation (17)
that is shown in Fig. 3. Equation (17) is a simplified equation that
assumes that the late time fallback rate is dominated by gas near the
marginally bound radius. This is a good estimate if the fallback rate
is approximated from the accretion rate at the pericentre. However,
our new method computes the fallback rate at the separation point
between the accretion disc and the fallback stream (as described in
Section 2.4 and Fig. 4), which can be far away from the marginally
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Micro-tidal disruption events 6013

Figure 7. Column density (upper left), temperature (upper right), gas pressure (bottom left), and radiation pressure (bottom right) of the accretion disc at time
t = 8500 min from a simulation with shock heating and radiation pressure included.

Figure 8. Stream instability in a partial TDE by a BH of 5 M�. The material
in the stream collapses into a series of clumps before falling back to the BH.
The bottom panel shows a zoom-in view of the clumped stream that is seen
in the upper panel.

bound radius, especially if the accretion disc is inflated by shock
heating and radiation pressure.

Here, we provide a fitting formula for the leading order of the
late-time powerlaw index of the fallback rate as a function of μ =

Figure 9. The distribution of the smoothing length of the SPH particles in
unit of Jeans radius.

Mc/M• in the stellar mass BH regime. As indicated in the bottom
panel of Fig. 10, we obtain the fitting formula to be

n∞ ∼ −2.14 + 4.48μ1/3 − 11.82μ2/3 . (26)

Fig. 11 shows the fallback rate of TDEs of 1 M� stars by 10, 30,
and 60 M� BHs from simulations with radiation pressure included.
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Figure 10. The mass of the unbound material (upper panel) and the fallback
rate (middle panel) as a function of time, in TDE simulations with BH mass
equal to 5, 10, 30, 60, and 90 M�. The late-time powerlaw slopes of the
fallback rate for 10, 30, 60, and 90 M� are −2.10, −1.77, −1.73, and −1.72,
respectively. Bottom panel: fit results for the late time slope of the fallback
rate as a function of μ.

Fits yield slopes of the late-time fallback rate of −2.18, −1.82, and
−1.73 for 10, 30, and 60 M� BHs, respectively. Similarly to the
case with adiabatic EoS, we find a dependence of the slope of the
late-time fallback rate on the BH mass. However, a more evident
stream instability is observed from the simulations. A larger number
of collapsed clumps is formed before the stream falls back to the BH.
Although these clumps will be disrupted again when they approach
the BH, the fluctuations of the density of the stream caused by these

Figure 11. Fallback rate for various BH masses, in simulations which include
the effect of radiation pressure. The powerlaw slope at late times for BHs of
10, 30, and 60 M� is −2.18, −1.82, and −1.73, respectively.

clumps lead to a more variable late-time fallback rate compared to
the case without radiation pressure. As we can see from Fig. 11, at
early times there is a bump in the fallback rate that is caused by the
accretion of the most massive clump.

4 SU M M A RY

We have studied the partial tidal disruption of stars by stellar
mass BHs of different mass, using the SPH hydrodynamics code
Phantom, in which we implemented an EoS that includes radiation
pressure. The remnant stellar core and the radiation pressure have a
significant impact on the instability of the falling back stream and
the late-time fallback rate of the debris. Our main results can be
summarized as follows:

(i) The accretion discs formed from the tidal disruption of stars
by stellar mass BHs are optically thick, and the time-scale for
radiation cooling is relatively long compared to the dynamical time-
scale. Therefore, shock heating from stream–stream collisions can
significantly heat up the accretion disc.

(ii) Simulations including of shock heating do indeed show that a
larger and thicker accretion disc is formed, rather than the elliptical,
thin, and confined accretion disc that forms in situations where
radiative cooling is efficient.

(iii) For TDEs by stellar mass BHs, the self-gravity of the falling
back stream causes the collapse of the disrupted material into small
clumps before accreting on to the BH. These collapsed clumps will
cause the fallback rate to fluctuate.

(iv) In TDEs by stellar mass BHs, radiation pressure dominates
over gas pressure in the inner regions of the accretion disc. As a
result, the accretion disc puffs up and some disc material is blown
away. The disc is relatively larger (in units of the gravitational radius
of the BH).

(v) The late-time fallback rate of partial TDEs by stellar mass BHs
asymptotes to a powerlaw with different indices that show a strong
dependence on the mass of the BH. The powerlaw varies from t−5/3

to t−9/4 as the mass of the BH decreases in the stellar mass regime.
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