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Abstract

Motivated by growing evidence for pathway heterogeneity and alternative functions of
molecular machines, we demonstrate a computational approach for investigating two ques-
tions: (1) Are there multiple mechanisms (state-space pathways) by which a machine can
perform a given function, such as cotransport across a membrane? (2) How can additional
functionality, such as proofreading/error-correction, be built into machine function using
standard biochemical processes? Answers to these questions will aid both the understand-
ing of molecular-scale cell biology and the design of synthetic machines. Focusing on trans-
port in this initial study, we sample a variety of mechanisms by employing Metropolis
Markov chain Monte Carlo. Trial moves adjust transition rates among an automatically gen-
erated set of conformational and binding states while maintaining fidelity to thermodynamic
principles and a user-supplied fithess/functionality goal. Each accepted move generates a
new model. The simulations yield both single and mixed reaction pathways for cotransport
in a simple environment with a single substrate along with a driving ion. In a “competitive”
environment including an additional decoy substrate, several qualitatively distinct reaction
pathways are found which are capable of extremely high discrimination coupled to a leak of
the driving ion, akin to proofreading. The array of functional models would be difficult to find
by intuition alone in the complex state-spaces of interest.

Author summary

Molecular machines, which operate on the nanoscale, are proteins/complexes that per-
form remarkable tasks such as the selective absorption of nutrients into the cell by trans-
porters. These complex machines are often described using a fairly simple set of states and
transitions that may not account for the stochasticity and heterogeneity generally expected
at the nanoscale at body temperature. New tools are needed to study the full array of possi-
bilities. This study presents a novel in silico method to systematically generate testable
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molecular-machine kinetic models and explore alternative mechanisms, applied first to
membrane transport proteins. Our initial results suggest these transport machines may
contain mechanisms which ‘detoxify’ the cell of an unwanted toxin, as well as significantly
discriminate against the import of the toxin. This novel approach should aid the experi-
mental study of key physiological processes such as renal glucose re-absorption, rational
drug design, and potentially the development of synthetic machines.

Introduction

The proteins and protein complexes known as molecular machines perform essential func-
tions in the cell, including transport, locomotion, energy production, and gene expression [1].
Secondary active transporters, the focus of the present study, move ions and small molecules
across a membrane driven by an electrochemical gradient of an ion [1]. For example, sodium-
glucose transporters (SGLT) are of biomedical interest due to the vital role that SGLT1 and
SGLT?2 play in the uptake of glucose in the small intestines and reabsorption in the kidneys,
respectively [2], which in turn has prompted biophysical scrutiny of their mechanisms [3-6].
Numerous other transporters have also been assayed on a quantitative basis [7-12].

The biological mechanisms of transporters as well as other molecular machines can be
modeled using chemical reaction networks, typically along with mass action kinetics [13]. In a
chemical reaction network, the system process is decomposed into discrete states connected
by transition rates between states [13] forming a network of interconnected reactions in the
state-space (Fig 1). These networks can be modeled using the chemical master equation: a set
of differential equations describing the state probabilities and connected transition rates for
each state [14]. Biochemical networks are generally Markovian [15], have a number of differ-
ent control patterns [16], and typically adhere to specific design principles [17].

Despite the complex state-spaces accessible to molecular machines such as transporters,
their mechanisms are often described using single-pathway, highly machine-like cartoon-like
models [1, 18, 19], building on the seminal suggestions of Mitchell [20] and Jardetzky [21] (see
Fig 1). While such models are helpful for a qualitative understanding of complex protein
behavior and chemical networks, simple models may also build in unwarranted assumptions
about the system. There is growing evidence that molecular machines may exhibit complexity
beyond that embodied in typical ‘textbook’ cartoons models [7, 8]. Recent experimental stud-
ies have shown that certain traditional model assumptions such as fixed stoichiometry [9, 10],
homogeneous pathways [11], and unique binding sites [12] may be incorrect.

As an example of mechanistic alternatives within a simple state-space, consider a hypotheti-
cal cotransporter motivated by the SGLT symporter which transports a single substrate and is
driven by an ion gradient. The state-space is constructed using three state ‘dimensions’: con-
formational state, ion binding state, and substrate binding state. For this hypothetical trans-
porter there are two conformations, each permitting four ion/substrate binding states: fully
unbound, ion bound, substrate bound, and fully bound. Within this relatively simple state-
space, we can construct four ideal kinetic pathways (Fig 1) that connect the minimum number
of states to produce a symport cycle (i.e., intracellular transport of the substrate coupled to ion
flow). However, there are numerous additional mechanistic possibilities: combinations of the
ideal pathways, or even non-ideal pathways including, e.g., an ion leak. Note that antiport
cycles can be similarly constructed using this same state-space [22].

Beyond the nominal functions of transporters, we also take note of one of the most remark-
able properties of some molecular machines: the ability to perform “proofreading” or error-
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Fig 1. Multiple mechanisms for ideal symport. The four “ideal” kinetic pathways of a hypothetical symporter that transports substrate
using the available free energy of the driving ion are shown. This state-space contains eight states, and symport models include at least
six connecting transitions.

https://doi.org/10.1371/journal.pcbi.1007884.9001

correction [23-25]. Specifically, certain network topologies promote enhanced selectivity

(i.e., reduced error) in systems with a competing substrate [23-25]; this enhancement in selec-
tivity incurs a free energy cost, typically paid via hydrolysis of a phosphodiester bond. While
some aspects of proofreading networks have been examined—such as the speed, accuracy,
and dissipation trade-offs [26, 27], as well as non-equilibrium proofreading regimes [28]—the
possibility that transporters might exhibit proofreading has not been explored to our
knowledge.

Here we pursue a systematic exploration of mechanistic and functional diversity, building
on strategies developed largely within the field of systems biology. Due to the challenges of
modeling complex biochemical networks, such as enumerating combinatorically large state-
spaces, new approaches have been developed to keep these systems tractable. Genetic-algo-
rithm sampling has been used to evolve complex biochemical networks such as metabolic
pathways [29, 30].

In related work applied to ion channels, models have been fit to experimental data using
genetic algorithms and simulated annealing [31-33]. These reverse-engineering studies pri-
marily sought optimal individual models, not the model-sets we pursue here, and also did not
account for non-equilibrium constraints on transition rates [13].
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Motivated by the possibility of discovering new potential mechanisms and the limitations
of current “manual” approaches for analyzing molecular machines, we systematically explore
the biochemical network model space for a given molecular machine or function. Our
approach generates diverse models that are both thermodynamically consistent and testable.
Due to their biomedical significance, we first examined transporters motivated by SGLT-type
proteins. Our results suggest there is a diverse set of possible mechanisms for these cotranspor-
ters, including proofreading driven by an ion leak.

Methods

We have developed a custom software prototype, ModelExplorer, to study molecular machine
behavior. Although this study is focused primarily on membrane cotransporters, the software
is designed to be general enough for the exploration of other molecular systems. ModelEx-
plorer automatically generates combinatorial state-spaces and then uses a modified Monte
Carlo Metropolis algorithm to sample the model space with a user-defined “energy” or fitness
function. This fitness function could embody experimental measurements via a weighted sum
of residuals (loss function), but here we use functionality-motivated fitness functions. The soft-
ware can also impose constraints motivated by structural or biochemical knowledge, such as
prohibited states or a known order of binding events.

Model specification

We create a system model consisting of states and connecting rate constants. Systems states
are created from all the allowed combinations of user-specified conformational and chemical
substates, and placed into physically equivalent groupings (see S1 Text). The Monte Carlo
sampling generates a trajectory in model space (Fig 2 and see below) that allows the selection
of the fittest models, with a tempering procedure used to avoid trapping. Each model is
assessed by its steady-state behavior in the current implementation, although transient infor-
mation could be employed. The generated models may then be analyzed for kinetic pathways
as well as flow stoichiometry over a range of chemical potential conditions, resulting in experi-
mentally testable models.

The behavior of each model is determined by the rate constants governing transitions
among the states. Only elementary transitions are allowed, i.e., single (un)binding transitions
or single conformational changes. To ensure thermodynamic consistency among all rate con-
stants [13], we use an energy-based formulation [34-36] where a free energy value is assigned
to each state and transition state. To simplify equations, we use reduced units, with all energies
expressed in units of kzT. For a conformational transition from state i — j, the Arrhenius-like
first-order rate constant is expressed using Hill’s notation [13] as:

= kye (1)

The user-defined prefactor ky is set arbitrarily to 107 s~", while EE?" corresponds to the transi-
tion state (free) energy and E, < E}* is the free energy of state i. Because k is the pre-factor for
all rate constants, its value does not affect the mechanisms discovered, but rather it influences
the overall rates as a scaling factor.

For a process i — j involving binding or unbinding, the ion or substrate concentration is
built into an effective first-order rate constant [13] given by:

) —(Ebar_E;
o, = eAu,}kO e (B ~Ei) (2)
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Fig 2. Exploration of model space using Markov-chain Monte Carlo. The plot shows a ModelExplorer trajectory based on a symporter
energy function during a 1e6 MC step simulation. Note that each point represents a different fully specified model. Energy minima
correspond to models that are more fit, using Enic = —/Jsubstrate @8 @ fitness function in this case, where Jpstrate is the flux of substrate.
Models are initially at a high energy but quickly find local minima. A tempering schedule (see S1 Text) of alternating temperature
increases and decreases prevents the simulation from being trapped in local minima.

https://doi.org/10.1371/journal.pcbi.1007884.9002

with the same parameters as above, and with Ay;; being the non-equilibrium difference in the
chemical potential for the i — j state transition:

—A
'u", if the i — j transition is a binding event for species x

Ay = { ®)
+Au,

5 if the i — j transition is an unbinding event for species x

Here, Ay, is the difference in the chemical potential across the membrane for species x (e.g.
ion or substrate) [13]:
[xin}

Ap, = p? — " =In—= (4)
[xout]

where [x;,] and [x,y,] are the intracellular and extracellular concentrations of species x. Note
that by construction only one species can have a binding/unbinding event during an i — j
state transition. The factor of 1/2 in Eq 3 is an arbitrary choice for dividing the driving force
and results in a symmetrical splitting of the binding chemical potential difference. Although in
principle such splitting factors can affect driven processes [37], we found empirically that
changing the factor had a minimal effect on the models discovered for the transporter systems
of interest. Note that Eq 4 does not include the membrane potential for charged species (e.g., a
sodium ion), which is excluded from this study to focus on the simplest cases.
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We use a novel string-based approach to construct the state-space for a molecular machine
in a combinatorial fashion, filtering out user-defined exclusions. This is best illustrated with an
example for a hypothetical alternating-access transporter of substrate (S) driven by a sodium
ion (N): the state “OF-Nb-Si” represents the outward-facing (OF) conformation with a sodium
bound (Nb) and substrate inside the pertinent cell or organelle. The string OF-Nb-Si fully
defines the system state in a sufficient way for our kinetic scheme explained below, with further
details given in S1 Text.

In order to investigate Hopfield-like enhanced discrimination [23], the cotransport system
with a decoy substrate has additional parameters and constraints. The decoy-bound state free
energies differ from their equivalent substrate-bound states by a fixed amount (AAG parame-
ter), and have equal barrier energies. This constraint forces the enhanced selectivity to result
from the difference in binding affinities alone (AAG), and not “internal proofreading”, which
is consistent with Hopfield’s kinetic proofreading network [23]. Note that the difference in
binding affinities in our Hopfield-like scheme effectively changes the activation barrier height,
as seen via Eq 2. See Discussion. We note that occluded states (open to neither inside nor out-
side) are omitted for simplicity, and that decoy and substrate are mutually exclusive binders.

Model sampling

We use the Monte Carlo (MC) Metropolis-Hastings algorithm [38, 39] with tempering to sam-
ple model space, where a trial move consists of randomly adjusting a single state or transition
energy, E; or Ej;, along with the energies of its equivalent tied members. As noted in the SI, the
tied members consist of states which are physically equivalent given a steady state where the
outside and inside concentrations are fixed. Physically equivalent transitions are those occur-
ring between physically equivalent states; see S1 Text. Adjusting all the “tied” states during a
trial move prevents physically equivalent states in the model from having different free ener-
gies, maintaining thermodynamic consistency.

For each trial model generated using MC, we evaluate its MC “energy” or fitness based on
its steady-state characteristics. To do so, we construct a rate matrix, K, for the new model
using the equilibrium and non-equilibrium (binding) energies for each state/transition along
with the modified Arrhenius equations, (Eqs 1 and 2). The rate matrix, K, can be written with

the state probabilities column vector, B, to form the chemical master equation [14]:

dP 5
~ = _KP (5)
dt
where Kj; = —a;; for each transition with i # j, and Kj; is the sum over outgoing rate constants,
¥,+i o The chemical master equation can be solved under steady-state conditions using the
s aps . . I
definition of steady-state, —- = 0, and the additional constraint that ¥; P; = 1. This yields the
steady-state probabilities for each state, from which we can calculate the steady flows between

states when combined with the rates [40]:
jy = Pra, (6)

where j; is the steady-state flow from state i to state j, P}* is the steady-state probability of being
in state i, and a; is the transition rate between state i and j. The overall flux, J,, of a species (e.g.
substrate or ion) is then determined from the sum of net flows of user defined transitions, such
as the substrate binding/unbinding transitions in the ‘inward’ facing conformation (see SI):

J. = iji (7)

ije{x unbinding in cell}
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Each model (set of rate constants between states) will have a Monte Carlo ‘energy’ Eysc
assigned (i.e. fitness score) based on a user-defined general function. In this study we use sub-
strate flows into the cell, as specified in the Results section for different choices of the fitness
function.

Each Monte Carlo step results in a model, and thus each simulation yields a trajectory in
“model space” (Fig 2)—i.e., a sequence of models. By convention, lower fitness scores are more
fit. The current model’s ‘energy’ is compared to the previous model’s energy and accepted/
rejected based on the Metropolis-Hastings selection criterion [38, 39]. That is, the probability
of accepting a trial move is the usual p = min[1, e #*Exc], where AEyc is the change in the
Monte Carlo ‘energies’ of the two models, and 3 is the effective inverse thermal-energy param-
eter. We emphasize, however, that our MC procedure does not generate a true Boltzmann-dis-
tributed thermal ensemble, and the MC 8 parameter is used only to aid sampling. In order to
avoid trapping in deep “energy” (high fitness) basins we employ a tempering [41] procedure,
described in S1 Text.

Model analysis

Models can be analyzed in several ways using ModelExplorer: characterizing overall stoichi-
ometries, kinetic pathway analysis, and manual adjustment of selected transition rates. The ion
and substrate flux of a model can be calculated over a range of chemical potential differences
by incrementing the desired chemical potential difference and updating the non-equilibrium
energy terms for each state. The rates, steady state probabilities, flows, and then fluxes are then
recalculated for each chemical potential increment, allowing for the examination of stoichiom-
etry. Since ModelExplorer calculates the net flows between states, a kinetic diagram of the net-
work pathways can be made for a model at user-defined chemical potential differences. Note
that the absolute flow (and flux) values are not physically relevant due to an arbitrary overall
rate constant prefactor: all flows can be scaled by an arbitrary constant and remain consonant
with the governing equations.

Furthermore, individual models may be perturbed by modifying specific state/transition
energies, leading to insights on pathway characteristics (e.g. pathway with or without leaks).
Combining the kinetic pathway diagram with the flux analysis (Fig 3) provides a means to
investigate the dynamic behavior of molecular machines and provide testable mechanistic
hypotheses. Since the flow and flux values are arbitrary (see above) the ion and substrate flux
have been scaled by the maximum flux (i.e. ion flux at largest chemical potential difference).

In addition to single model analysis, we have developed tools for the meta-analysis of the
data—i.e., a “systems” analysis. A simple data pipeline allows for the analysis of sampling
parameters, run-to-run model distributions, and model clustering, based on the differences in
model flows. Sampling efficiency can be evaluated based on the average time to find a suffi-
ciently different model (i.e. cluster) during the simulation as well as the run-to-run comparison.
The run-to-run comparison tool computes the minimum distance between models found in
simulation ‘A’ compared to simulation ‘B’ and vice versa, generating a model distribution
between the runs. This provides insight into unique models found under different simulation
conditions. Models may also be clustered hierarchically [42], allowing for the discovery of dif-
ferent model classes. The model differences are calculated using the Euclidean distance between
the vectors of the scaled (by vector magnitude) net flows between the states of a given model.

Computing details

The current prototype of ModelExplorer was written in Perl 5 with additional scripts for analy-
sis and visualization written using Python 2.7. The software was used on a desktop PC running

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007884  July 2, 2020 7/21


https://doi.org/10.1371/journal.pcbi.1007884

PLOS COMPUTATIONAL BIOLOGY A systems-biology approach to molecular machines: Alternative transporter mechanisms

Symporter model flux

1.5 7
Kinetic pathwa"y'1 il Jion
W\ V\ﬂﬂ I Jsubstrate
1.0” s
9 ¢/
S o5}
o
| -
i)
3 0.0}
=
~
—-0.5¢
~1.975 8 —6 ~4 -2 0

Apuion (chemical potential difference of driving ion) [kpT]

Fig 3. Ideal symport in a non-ideal (mixed) model. The fluxes, /, of the driving ion and substrate of an example
symporter model are plotted over a range of ion chemical potential differences. Note the 1:1 stoichiometry of the
substrate to ion flux, indicating an ideal symporter with no leaks. The ion and substrate flux have been scaled by the
maximum ion flux for visual clarity. Inset: kinetic pathway of the same symporter model at an ion chemical potential
difference of —4kzT, as indicated by the vertical line.

https://doi.org/10.1371/journal.pcbi.1007884.9003

Windows 10 64-bit OS with an Intel i7-6700 CPU. Each simulation was run for 1e6 MC steps,
storing models every 500 MC steps to reduce the run-time and memory requirements. Each
run yielded 2000 models. For simulation parameters see S1 Table. All scripts and data for the
manuscript are available at: https://github.com/ZuckermanLab/ModelExplorer.

Results

We present results for a range of systems demonstrating the ability of the computational
approach to discover both expected and surprising mechanisms in single and competing-sub-
strate environments. For a simple cotransporter system without a decoy, the results include
validation of ideal symporter/antiporter mechanisms, selected network topologies, and sub-
strate/ion fluxes for a range of ion chemical potential differences. For cotransporters with an
additional decoy substrate, we analyze several features of four simulations: selected network
topologies, substrate/decoy/ion flux for varying ion chemical potential differences, network
heterogeneity via clustering, and possible alternative mechanisms.
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Ideal and mixed-mechanism cotransport with a single substrate

We first studied a transporter system with a single substrate driven by an ion gradient. To gen-
erate symport models, the substrate chemical potential difference (Apsubstrate) Was set to 2kgT
and the ion chemical potential difference (Ay;on) Was set to —4kpT; see (4). The fitness goal as
embodied in the Monte Carlo energy was set to:

E;ﬁrgpon =—J, substrate (8)
where Joupbstrate 1S the flux of the substrate into the cell (with units of s™* that are scaled out by
the Monte Carlo 8 parameter) as given by (7). This promotes intracellular substrate flow
against its own gradient but down the ion gradient. Note that negative Monte Carlo energies
are more fit by convention. The simulation of 1e6 MC steps yielded the four idealized sympor-
ter cycles of Fig 1, as well as combinations of the idealized symporter cycles (Fig 3 and see S1
Fig). All of these models exhibit a 1:1 ratio of substrate and ion flux into the cell—consistent
with the idealized predictions of an optimized symporter (Fig 1).

Antiporter behavior in the same state-space was explored by modifying the substrate chem-
ical potential difference (Apgupstrate) t0 —2kpT and setting the fitness goal to:

Ezll\/rlnciport = Jsubstrate (9)
where Jpstrate 18 the flux of the substrate (with units of s™* that are scaled out by the Monte
Carlo 3 parameter). Because MC favors lower energy, the use of (9) promotes extracellular
flow of the substrate opposite to the ion gradient and flow. The simulation of 1e6 MC steps
yielded antiporter models with a 1:1 ratio of substrate flux out of the cell to ion flux into
the cell (see S2 and S3 Figs)—consistent with theoretical expectations for an optimized
antiporter.

Discriminative models in the presence of a competing substrate

A primary motivation for this work was the challenge of generating models with particular
functions in complex state-spaces where a combinatorial number of possibilities preclude
guessing of mechanisms based on intuition. Specifically, motivated by hints that vSGLT exhib-
ited non-productive reversal events (substrate unbinding to the extracellular side) [43], we
wanted to investigate whether slippage events [13] might be able to enhance selectivity in the
presence of a “decoy” substrate.

To seek models capable of enhancing selectivity for one substrate over another (beyond that
generated by their differing affinities, importantly), a competing decoy substrate was added to
a transport state-space that included a driving ion gradient. The decoy substrate was set to
have a weaker affinity by AAG = 1ksT, but otherwise the substrates are treated identically. The
substrate and decoy chemical potential differences (Apsubstrates Aldecoy) Were both set to 2kgT,
and the ion chemical potential difference (Ay;on) was set to —4kpT. The fitness function
(Monte Carlo energy) was set to:

" ] +e€
E;Z?Petmve = —J batrate © | |sttrat|e |+ - (1 0)
ecoy

where, € = le~15 improves numerical stability, and Jsubstrate a1d Jaecoy are the fluxes of the sub-
strate and decoy, respectively (with units of s~ that are scaled out by the Monte Carlo 3
parameter) as defined in (7). The first factor of Eq 10 promotes the intracellular flux of the sub-
strate (negative sign used by convention), while the second factor promotes a high ratio of sub-
strate to decoy flux (i.e. enhanced selectivity). Note that while the models are optimized at an
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ion chemical potential difference of —4kpT, we are also able to find enhanced discrimination at
larger ion chemical potential difference (i.e. concentration) values.

Analysis of a single discriminative model

To highlight the power of the sampling strategy to discover non-trivial mechanisms, we exam-
ine the kinetic pathways of a model (Fig 4A) with enhanced selectivity. (Below this is referred
to as “Model B’—MC index 29000.1, see S2 Text). This model can be described as a combina-
tion of several pathways: two pathways which symport both the ion and substrate (Fig 4C),
and two ion leak pathways which only transport the ion (Fig 4B and 4D). Here we have defined
an ion leak as a “futile” cycle in the state-space leading solely to dissipation of the ion gradient.
We can intuitively understand the discrimination mechanism: the ion leak pathways (which
include the central horizontal arrow in Fig 4B and 4D) drive the substrate and decoy to unbind
in the outward facing conformation (on the left side of the diagrams). Due to the 1kzT

A B
Combined pathways (overall flux) lon leak pathway (substrate side)

Symport pathways lon leak pathway (decoy side)
w2 [ *
\[Aﬂ [ﬂ

Legend:
[ﬂ Outward facing conformation

v

@® Driving ion === Driving ion (un)binding

@ Substrate === Substrate (un)binding
Inward facing conformation @ Decoy substrate === Decoy (un)binding

Fig 4. Dissection of a single model exhibiting enhanced selectivity into component pathways. The full model is shown in (A) with
the net probability flows scaled by the largest edge flow, while panels (B)—(D) are various continuous cycles abstracted from the full
model. (B) An ion leak pathway in which the substrate and ion bind extracellularly, but only the ion is transported into the cell because
the substrate unbinds on the extracellular side. (C) A (split) cotransport pathway in which the substrate and ion both are transported
into the cell. (D) A second ion leak pathway, mirroring (B), in which the decoy and ion bind extracellularly, but only the ion is
transported into the cell. Overall, the substrate and decoy are both driven to unbind in the outward-facing conformation, shown on the
left, due to ion leak pathways. However, due to the difference in binding affinities between decoy and substrate, the substrate is more
likely to rebind and be transported into the intracellular region. The full process employs the ion leaks to enhance selectivity.

https://doi.org/10.1371/journal.pchi.1007884.g004
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difference in binding affinities, the substrate is more likely to rebind and be transported into
the intracellular region. In fact, under the conditions which lead to the flows shown in Fig 4A,
there is negligible decoy flow into the cell, which is why no flow arrow is shown connecting
the two decoy-and-ion bound states. The mechanism of this model directly echoes the driven
tRNA unbinding from the ribosome analyzed by Hopfield [23].

Selectivity can be examined over a range of driving ion chemical-potential differences,
Auion, by examining the substrate and decoy substrate fluxes (Fig 5). The discrimination ratio
of substrate to decoy, Jsubstrate/Jdecoy- 18 €ssentially perfect at the value used to perform the MC
sampling, namely Ay;,,, = —4kgT, where the decoy flux vanishes while the substrate flux
remains significant. Interestingly, in the range —4kpT < Ay;o, < —3kgT, substrate is pumped
into the cell, while the decoy flows out, down its gradient.

To further investigate the mechanism of enhanced selectivity, we compared the original
model B (Fig 5A) to the same model with the ion leak removed (Fig 5B, note absence of central
horizontal flow). The leak-free model—generated by increasing the ion-only-bound confor-
mational transition barrier energy by 100kzT—has symmetric pathways for both substrate and
toxin transport (Fig 5B inset). Removing the leak dramatically decreases discrimination, as
shown in Fig 5C, especially near the ion chemical potential difference Ay, = —4kpT at which
MC sampling was performed. In particular, the leak-free model exhibits a decrease in selectiv-
ity, approaching the expected equilibrium-like value of e**“ ~ 2.7 with AAG = 1 (see Fig 5B
and S4 Fig) [23]. This suggests that the ion leak is the prime mechanism driving enhanced
selectivity for this model.

Meta-analysis of discriminative models

Our model-sampling approach yields numerous models. We examined them on a “systems
basis” using a filtering and clustering procedure.

To start, we filtered for the highest-performing models found during four separate runs of
le6 MC steps (see S2 Text). Specifically, models were filtered based on the ion-to-substrate
flux ratio being greater than 0.1, and the substrate-to-decoy ratio being greater than 10e"“
(ten times the expected discrimination ratio at equilibrium) [23], where AAG = 1 is the differ-
ence in binding affinities between the substrate and decoy substrate. These filtering constraints
ensured that the analysis only contained models with a sufficient stoichiometry of sodium ions
to the substrate, as well as a minimum baseline for enhanced selectivity.

Filtering for performance resulted in 1783 of the aggregate 8000 models exhibiting
enhanced selectivity, and we probed these via clustering based on a similarity metric. Cluster-
ing revealed four different mechanistic model classes (clusters) with differing kinetic pathways
leading to enhanced selectivity (Fig 6). Procedurally, for each model in the filtered set, the
flows on all edges were scaled by the Euclidean norm of edge flows in that model. The normal-
ized edge flows define a flow vector used to calculate Euclidean distances and perform com-
plete-linkage clustering [42] based on a distance threshold of 0.65, which we found empirically
to reveal qualitatively different pathways.

All model clusters, which importantly were filtered for enhanced selectivity of substrate
over decoy, contain an ion leak. As discussed previously (see Fig 4), the models shown in Fig 7
contain “futile” ion-leak cycles, which consist of all the paths that include the central arrow
connecting the ion-only-bound outward-facing to inward-facing conformations. In many, but
not all models (see models in clusters A, B, D), this ion leak is coupled to substrate and decoy
unbinding in the outward-facing state. In other words, the molecules bound to the OF state of
the transporter are effectively ejected back to the extracellular space in a process that expends
free energy from the ion gradient.
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Fig 5. Enhanced discrimination driven by an ion leak. (A) For the model of Fig 4, the substrate, ion, and decoy flux
are shown for a varying chemical potential difference of the driving ion. Note the negligible decoy flux relative to the
substrate flux near —4kgT. Inset is the kinetic pathway diagram of the model at a specific chemical potential difference
(—4k3T, vertical line) of the ion. (B) The same discriminative model as in (A), but with the energy barrier between the
ion-only bound states in the inward and outward conformations raised by 100kgT, effectively shutting off the ion leak.
Both the substrate and decoy fluxes increase. Inset is the kinetic pathway diagram of the model with the leak removed,
resulting in two symmetrical pathways for substrate and decoy transport. (C) Comparing the ratio of substrate to
decoy flux (selectivity) for the same model with and without an ion leak. With the ion leak, the selectivity approaches
infinity due to the negligible decoy flux. In contrast, removing the ion limits the selectivity to the expected equilibrium-
like value of ¢*=", Note that the sign change of the selectivity is due to the change in substrate and decoy flux
direction.

https://doi.org/10.1371/journal.pcbi.1007884.9005
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To further confirm the role of the futile ion cycle in promoting selectivity, the ion leak was
removed for each of the representative cluster models (Fig 7A-7D). This was done by raising
the corresponding energy barriers as described previously for model B. The resulting leak-free
models again exhibited a decrease in selectivity to the expected equilibrium value (¢**¢ with
AAG = 1), indicating that the ion leak is indeed the driving mechanism for enhanced selectivity
in our models as in Hopfield-like kinetic proofreading [23]. We note that in our formulation,
the difference in binding affinities is effectively a kinetic parameter that adjusts the reaction
rate, as seen from (2). Our results are thus consistent with recent theoretical arguments which
suggest that only kinetic parameters adjust the ratio of stationary fluxes [26].

Model class analysis

It is instructive to examine all the model classes further to understand their differences. Models
corresponding to clusters A and B (Fig 7A and 7B) share a similar network structure where the
substrate (or decoy) tends to bind before the ion, followed by the unbinding of both substrate
and decoy, which favors the stronger-binding substrate for transport. A and B differ slightly in
that models in cluster A contain an ion-only binding transition in the outward conformation
and have a single unbinding pathway for the substrate and ion in the inward-facing conforma-
tion (i.e. one symporting pathway). The models in cluster B have two unbinding pathways for
the substrate and ion in the inward-facing conformation (i.e. two symporting pathways, see
Fig 4C).

The model class of cluster C (Fig 7) embodies a much less intuitive mechanism. First, the
model is fully connected: each allowed state transition has a non-zero flow. Unlike the other
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Fig 7. Kinetic pathways of the four model classes (A-D) found from clustering analysis (Fig 6). Each of these models exhibits a high
level of selectivity due to an ion leak, as discussed in the text. Note that the net flow values shown along edges are scaled by the maximum
flow edge of the individual model.

https://doi.org/10.1371/journal.pcbi.1007884.9007

three model classes, class C does not exhibit a net flow of substrate unbinding in the outward-
facing conformation. Model C also contains parallel futile cycles with no net transport for
either the substrate and decoy in which the ion dissipates its gradient. In the inward-facing
conformation, both the substrate and decoy are driven by the ion leak to bind and then unbind
again, resulting in more substrate than decoy flux due to their different binding affinities.
Models in cluster D (Fig 4) contain unbinding steps for both the substrate and decoy in
both OF and IF conformations, driven by an ion leak. On the OF side, ion driving appears to
force all the decoy to unbind, since there are no horizontal transitions from outward-facing on
the left to the corresponding inward-facing states on the right, whereas a fraction of the native
substrate remains bound (stronger affinity by AAG = 1k T) during the OF-to-IF conforma-
tional transition; more precisely, there is an equal and opposite flow of conformational transi-
tions for the decoy-bound states, while the substrate exhibits a net productive flow into the cell.
The ion leak also drives the substrate and decoy to bind and unbind in the inward facing con-
formation, but these processes ‘cancel out’ and do not lead to net flux of the decoy substrate.
For all four models, at low ion chemical potential differences (similar to the magnitude of
the substrate/decoy chemical potential difference), there is a regime where the ion and sub-
strate are transported into the cell, and the decoy is transported out of the cell (see Fig 5A and
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S5 Fig). This suggests an alternative mode of transport in which the cell ‘detoxifies’ by export-
ing the decoy substrate.

We can also probe the costs and restrictions on enhanced selectivity. Although our Monte
Carlo sampling optimized substrate-to-decoy selectivity at a particular set of chemical-potential
differences, the enhanced selectivity generally occurs over a range of thermodynamic driving
forces (S9 Fig). However, some models exhibit high selectivity at a low cost (i.e., low stoichio-
metric ratio of ion to substrate flux), without any added constraints on the flux ratios. Analysis
of the representative models suggests that uniformly high discrimination over a range of ther-
modynamic conditions occurs with a correspondingly uniformly high cost (see S8 Fig), although
this is not necessarily a representative sample. This issue will be of interest in future work.

Discussion

Opverall we have seen that Monte Carlo sampling of model space can find diverse, testable
models that provide insight into complicated cotransport systems. Unlike prior related work
for ion channels [31-33], we have not sought to fit or optimize a single model to a set of experi-
mental data. Rather, we have taken a systems approach in asking for sets of models capable of
performing a given function and applied this to discover multiple transporter models with a dis-
criminatory capability not previously envisioned in the literature, to our knowledge. Our main
point is not that proofreading surely occurs in transport, but rather that an automated
approach is required to consider mechanistic possibilities in a systematic way.

First, the model-sampling approach systematically identified ideal and mixture pathways
for both simple symporters and antiporters, validating the approach. Subsequent study of a
more complex state space including the very realistic possible binding of a “decoy” substrate
indicates the possibility of cotransporters that exhibit enhanced selectivity similar to Hopfield’s
and Ninio’s kinetic proofreading models [23, 24]. The enhnanced-selectivity models all exhibit
an ion leak which, when removed, prevents the enhanced discrimination. This apparently
unreported mechanism for secondary active transporters can enhance selectivity to a remark-
able degree in a limited range of conditions. Clustering analysis of all models sampled shows a
fairly diverse group of model classes that exhibit enhanced selectivity using different kinetic
pathways.

Every kinetic model that is generated is also thermodynamically consistent with both equi-
librium and non-equlibrium constraints. Since all biochemical reactions are governed by the
laws of thermodynamics, this consistency is an important part of accurately modeling the
mechanisms of molecular machines. The energy-based formulation of reaction rates a,
including non-equilibrium effects where appropriate, combined with an automated state-
space construction distinguishes our method from similar approaches. We believe the steady-
state conditions studied here provide the best simple model for many cellular conditions
which may change very slowly—over timescales of minutes, hours, or days—but undoubtedly
transient effects are important for some physiological conditions such as release from starva-
tion conditions. Also many experiments study transient phenomena by construction [7, 8, 10,
11] and so it will be valuable to use our models accordingly in future work.

Although our approach was not developed for the study of evolutionary molecular biology,
the method “discovers” working models starting from unproductive models akin to earlier
work [29-33]. The changes to rate constants observed in some trajectories may be related to
structurally feasible changes. In the future, a more sophisticated approach could attempt to
build in additional structural constraints to develop candidate feasible pathways for trans-
porter evolution. We note that the present study already included constraints on the similarity
of substrate and decoy, as well as their mutually exclusive binding.
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In addition, by utilizing additional ‘base states’ (i.e. Ni, No, Nb, see S1 Text) our method
may be extended to include an arbitrary number of additional binding sites for a given species.
This will generate a larger state-space to search for models with a range of possible substrate/
solute binding sites and pathways. This capability is particularly useful to study systems which
may exhibit variable (or unknown) substrate/solute stoichiometries [10] and is a direction for
active work.

All the enhanced-selectivity models sampled in this study, by construction, were of the
‘Hopfield type’ [23] where substrate discrimination results from the interplay of an external
driving force (due to the ion gradient) and a difference in binding affinity between the two
substrates. No additional differences between the substrate and decoy were permitted: specifi-
cally, all barrier energies were constrained to be identical for both species. Note that by Eqs (1)
and (2), our barrier energies E> are absolute energy levels and not the conventional “barrier
heights,” which are energy differences Eg“ — E,. Thus, in our Hopfield-like model with equal

EEJ‘“ values for substrate (S) and decoy (W), the effective barrier heights differ between S and W

because the stabilities (affinities) E; differ. In other words, the kinetic parameters are coupled
to the affinity/stability parameters, although formulations can be constructed in which they
are independent [26].

Hopfield-type proofreading differs from what might be called “internal proofreading”
where additional discrimination results from differing barrier heights [25]. Biological proof-
reading can be expected to mix both mechanisms to some degree [26], but we chose to focus
on Hopfield proofreading because an arbitrary degree of discrimination can result from differ-
ing barriers—for example, if the decoy species has a negligible on-rate for the transporter. Our
approach differs somewhat from Hopfield’s and Nino’s [23, 24] in that no irreversible steps
enter our models. The full reversibility appears to be a necessary ingredient in the ideal dis-
crimination (unbounded ratio of substrate to decoy flux) that occurs in some models for spe-
cific concentrations.

As emphasized decades ago by Hill [44], in complex networks such as those explored here,
it is the network as a whole rather than key steps which define the mechanism. The current
networks are simple enough that we can point to intuitive processes coupling ion leaks to
unbinding, but the mechanism is defined by the overall process. Undoubtedly, in more realis-
tic networks including a fuller set of conformational states, it will become more difficult to
describe an intuitive mechanism. Nevertheless, the principles uncovered in the simple systems
can provide useful guidance for conceptualizing complex systems.

Conclusion

Motivated by evidence for the alternative behavior of molecular machines, we have developed
a thermodynamically consistent approach to systematically explore a range of mechanisms,
generating multiple experimentally testable kinetic models based on a predetermined fitness
function. Prior work has focused on developing individual sets of optimal parameters [31-33]
and not on generating model sets, which we believe is essential for developing precise mecha-
nistic hypotheses. The approach was designed for complex state spaces which can be automati-
cally generated, and which would be difficult to analyze by intuition alone. To our knowledge,
the platform is the first to enable model sampling building in both equilibrium and non-equi-
librium thermodynamic rules. This ‘systems biology” approach to analyzing mechanisms of
molecular machines was applied to a cotransporter state-space with and without a decoy sub-
strate. After validating the method against ‘textbook’ symporter/antiporter models, we gener-
ated a variety of mechanisms that enhance selectivity—including Hopfield-like proofreading
networks, which could have important biological implications and biotechnology applications.
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The mechanisms discovered using an automated approach would be difficult to design on an
ad hoc basis starting from a limited set of experimental structures.

Supporting information

S1 Text. Detailed methods. Details regarding the string-based creation of states, state defini-
tions, equivalent states/transitions, tempering procedures, and flux calculations.
(PDF)

S2 Text. Model clustering method. Details on the clustering procedure, parameters, and the
chosen representative models.
(PDF)

S1 Table. Simulation parameter values. Table containing the parameter values used for each
of the simulations in this study.
(PDF)

S1 Fig. Symporter model pathway (without decoy substrate). Pathway of a symporter model
found at MC step = 1800. This model exhibits a combination of all four ideal symporter path-
ways which result in the intracellular transport of one substrate per ion. Note that the flows are
scaled by the largest flow edge.

(TIF)

$2 Fig. Antiporter model pathway (without decoy substrate). Pathway of an antiporter
model found during the antiporter simulation run at MC step = 845000. This model exhibits a
combination of two ideal antiporter pathways which result in the extracellular transport of one
substrate per ion. Note that the flows are scaled by the largest flow edge.

(TIF)

S3 Fig. Antiporter flux diagram (without decoy substrate). Flux of an antiporter model
found during the antiporter simulation run at MC step = 845000, analyzed over a range of ion
chemical potential differences. This model exhibits a 1:1 ratio of ion influx to substrate efflux
over a wide range of ion chemical potential differences. Note that the fluxes are scaled by the
largest flux value.

(TIF)

$4 Fig. Symporter model pathway with ion leak removed (and decoy substrate present).
Pathway of the model with enhanced selectivity representing cluster B, with the futile ion cycle
removed. The energy barrier between the ion-only bound states in the inward and outward
conformations was raised by 100 kT, effectively shutting off the ion leak. Note the two sym-
metrical pathways for substrate and decoy transport. The net flows have been scaled by the
maximum flow edge.

(TIF)

S5 Fig. Flux diagrams of the representative models for each cluster. Flux of the representa-
tive model for each cluster, scaled by the maximum flux, over a range of ion chemical potential
differences. Each model has a narrow regime where the toxin flows down its gradient out of
the cell, while the substrate is driven into the cell by the ion. Near the optimized conditions for
the simulation, Ay, = —4kgT, these models have negligible decoy flux, resulting in an
unbounded substrate to decoy discrimination ratio.

(TIF)

S6 Fig. Trajectory in model space. Trajectory in the model space of four different 1e6 Monte
Carlo (MC) step simulations at different sampling settings. Simulations were run for
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transporters in a ‘competitive’ environment with a decoy using the MC energy function:

Vsubstrate | +€ :
. Fpibste where Jiupstrate and Jgecoy are the fluxes of the substrate and decoy respectively,

and € = le-15. Lower MC energy values denote models that are more fit, by convention. As
shown in the figures, the tempering schedule aids in avoiding low energy basins. Note that
each point on the trajectory is a kinetic model.

(TIF)

S7 Fig. Trajectory in cluster space. Trajectory in the cluster space of four different 1e6 MC
step simulations. Simulations were run for transporters in a ‘competitive’ environment with a
decoy. Models were filtered based on a cost (ion to substrate flux ratio) below 10, and selectiv-
ity (substrate to decoy ratio) above 10¢*=", Clusters were determined using hierarchical clus-
tering with complete-linkage and the Euclidean distance between the scaled flows of each
model. The threshold of 0.65 was determined empirically to produce qualitatively different
kinetic pathways. These graphs indicate that each run only finds a few model classes during
the simulation—implying the need for improved sampling methods. Note that in run 4, mod-
els meeting the selection criteria (i.e. cost and selectivity) were not found until approximately
1.5e5 MC steps.

(TIF)

S8 Fig. Cost of the representative models. The cost of the representative model for each clus-
ter, over a range of ion chemical potential differences. All of these models exhibit a cost above
the ideal 1:1 stoichiometric ratio for a wide range of chemical potential differences. The extra
ions transported relative to the substrate suggest a futile ion transport cycle—i.e. an ion leak.
Note that the cost was not included as a constraint in the energy function.

(TIF)

S9 Fig. Selectivity of the representative models. The stoichiometric ratio of the substrate to
ion flux (selectivity), over a range of ion chemical potential differences. All the models demon-
strate enhanced selectivity over a range of chemical potential differences, and unbounded
selectivity at the optimized condition (at Ay, = -4kgT). Models A and D exhibit enhanced dis-
AAG=1y o
shown as a reference. Note that this stoichiometric ratio was used as a primary constraint in
our energy function.

(TIF)

crimination over a wide range of conditions. The expected equilibrium value (e
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