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Abstract
Electromagnetic observations of the radiation emitted by an accretion disk
around a black hole, as well as gravitational wave observations of coalescing
binaries, can be used to probe strong-field gravity. We here compare the con-
straints that these two types of observations can impose on theory-agnostic,
parametric deviations from the Schwarzschildmetric. On the gravitationalwave
side, we begin by computing the leading-order deviation to the Hamiltonian of
a binary system in a quasi-circular orbit within the post-Newtonian approxi-
mation, given a parametric deformation of the Schwarzschild metrics of each
binary component. We then compute the leading-order deviation to the grav-
itational waves emitted by such a binary in the frequency domain, assuming
purely Einsteinian radiation-reaction. We compare this model to the LIGO-
Virgo collaboration gravitational wave detections and place constraints on the
metric deformation parameters, concludingwith an estimate of the constraining
power of aLIGO at design sensitivity. On the electromagnetic side, we first sim-
ulate observations with current and future x-ray instruments of an x-ray binary
with a parametrically-deformed Schwarzschild black hole, and we then esti-
mate constraints on the deformation parameters using these observations. We
find that current gravitationalwave observations have already placed constraints
on themetric deformation parameters than are slightly more stringent than what
can be achieved with current x-ray instruments. Moreover, future gravitational
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wave observations with aLIGO at design sensitivity by 2026 will be even more
stringent, becoming stronger than constraints achievable with future ATHENA
x-ray observations before it flies in 2034.

Keywords: black holes, modified theories of gravity, gravitation, gravitational
waves, x-rays

(Some figures may appear in colour only in the online journal)

1. Introduction

Until recently, nearly all of our knowledge about astronomical objects had been obtained
through the electromagnetic radiation they produce, or that is generated around them. How-
ever, we have recently entered the gravitational wave detection era, which has provided new
and interesting data that is shaping our current understanding of fundamental physics [1].
With this new type of observations and with the improvement of existing techniques, we are
already learning about theoretical physics in the extreme gravity regime, where the curvature
of spacetime is large and the gravitational field is strong and dynamical.

Although a plethora of precision tests in the Solar System, with binary pulsars, and with
cosmological observations have confirmed the predictions of Einstein’s theory of general rela-
tivity (GR), this theory is only now being thoroughly tested in the extreme gravity regime [2].
An ideal laboratory for testing strong-field gravity is astrophysical black holes (BHs). Bearing
in mind that at the moment there is no evidence that such astronomical bodies carry sufficient
net electric charge to affect the metric (in particular because of the extremeweakness of gravity
relative to electromagnetism [3, 4]), isolated BHs in GR are described by the Kerr metric, as
required by the so-called no hair theorems [5, 6]. Any observation suggesting otherwise would
be an indication of a violation of the axioms of these theorems, which include the possibility of
beyond-Einstein physics [7]. This program is commonly referred to as testing the Kerr hypoth-
esis, and it has been pursued over the past years using electromagnetic observations [8–12] and
gravitational waves [13–18].

Placing constraints on (or finding) modifications from GR with data is not an easy task.
This is both because deviations may be intrinsically small, and because all modified gravity
theories to date lead to the same spacetime behavior far away from the BH, making weak-field
tests ineffective. However, modifications to GR may not be so small in the strong-field regime,
for instance near the event horizon, where distinctive features may arise. One way to classify
and understand different systems in terms of their gravitational strength consists of computing
the characteristic curvatureR = M/L3 and the characteristic gravitational potentialΦ = M/L,
where M and L are the characteristic mass and size of the system, respectively. Following
references [1, 19, 20], figure 1 compares the regions in curvature-potential phase space that are
probed by gravitational-wave and x-ray observations, including also for reference the regions
probed by theMercury–Sun system throughperihelion precession observations [2], the Cassini
[21], satellites and the targets of the Event Horizon Telescope, i.e., Sgr A∗ and M87 [22]. The
strong-field gravity regime is located in the right corner of the phase space of figure 1, where
we have current data from different systems and precision tests can be carried out. Observe that
current gravitational wave observations with ground-based detectors are limited to this upper-
right corner of phase space, while electromagnetic observations have access to the entire right
side because the latter can include supermassive BHs.

2



Class. Quantum Grav. 37 (2020) 135008 A Cárdenas-Avendaño et al

Figure 1. Illustrative diagram of the curvature-potential phase space sampled by some
experiments that test GR. The vertical axis denotes the square root of the characteristic
curvature length scale R = M/L3, while the horizontal axis the characteristic gravita-
tional potential Φ = M/L. For the GW150914 and GW170817 events, we evaluated
R and Φ from 20 Hz to merger, taking L to be the orbital separation and M the total
mass. For the low-mass x-ray binary (LMXB), we used M ∼ 10M# and L ∼ 6M for
the location of the innermost-stable circular orbit of a Schwarzschild BH. Observe that
gravitational-wave and LMXB observations both have access to the strong-field regime,
in the upper-right corner of phase space, while only electromagnetic observations cur-
rently have access to large potentials but lower curvatures through the observation of
supermassive BHs.

Electromagnetic observations of the radiation emitted by x-ray binaries [23], as well as
gravitational wave observations of coalescing binaries [24] are complementary in the fol-
lowing sense [2, 19, 25]. Tests using the electromagnetic spectrum probe the non-dynamical
configuration of vacuum gravitational fields. These tests rely on observables that use photons
and plasma as test particle tracers of the spacetime geometry. On the other hand, gravitational
waves tests probe both the conservative and the dissipative sector of a theory, because they rely
both on the time-symmetric part of the gravitational fields through the Hamiltonian of the sys-
tem, and on the dissipative part of the radiation-reaction force built from the field perturbations.
It is therefore theoretically possible for electromagnetic observations to be more sensitive to
certain aspects of modifications to the conservative sector of a theory than gravitational wave
observations by avoiding confusion and correlations from the dissipative sector. Electromag-
netic observations, however, are affected by other astrophysical modeling uncertainties [26],
which deteriorate its constraints relative to the gravitational wave ones.

In this work we compare tests of GR in terms of constraints on parametric deformations
of the spacetime away from the Schwarzschild metric. We model spacetime deformations
through the parametrization introduced by Rezzolla & Zhidenko [27], which includes the
Schwarzschild metric when the deformation parameters vanish, while also allowing for a wide
range of BH solutions in specific modified gravity theories. The generation of gravitational
waves is modified if the spacetime in the neighborhood of the compact objects in a binary sys-
tem is described by such a Schwarzschild deformation. This is because the post-Newtonian
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Figure 2. Marginalized posterior of the bumpy parameter a1 using current (left panel)
and future (right panel) gravitational-wave and x-ray observations. Current observations
mean here the strongest events reported in the LIGO-Virgo Catalog GWTC-1 [28], and
simulated x-ray data with current instruments, NuSTAR and NICER, while future obser-
vations mean those achievable with aLIGO at design sensitivity (∼2026) and simulated
observations with ATHENA (∼2034). The short horizontal lines indicate the 90% cred-
ible interval around the indicated mean, while the long dashed horizontal line at zero
corresponds to theGR value. Gravitational wave constraints obtained from data collected
up to 2017, and reported in reference [28] in 2018, are slightly more stringent than what
is possible with very good x-ray constraints obtained from current instruments. The con-
straining power of both gravitational wave and electromagnetic observations increases
in the future, but the former already by ∼2026 will be more stringent than what can be
achieved with the latter in ∼2034.

Hamiltonian (or Lagrangian) is constructed from the metric itself, so if the spacetime is
modified near either of the compact objects, then the Hamiltonian is also modified. The latter
implies the equations of motion are modified, which then affect the evolution of the orbital
phase and ultimately of the gravitational waves emitted.

We quantitatively explore the above idea to compute the gravitational waves emitted dur-
ing the early inspiral of a binary system composed of parametrically deformed Schwarzschild
BHs. As stated above, we focus on the inspiral regime and thus work in the post-Newtonian
framework, in which the two-body problem can be mapped to an effective one body problem,
controlled by an effective Hamiltonian that is constructed from the parametrically deformed
Schwarzschild spacetime. From this parametrically deformed Hamiltonian, we then compute
the binding energy of the binary, and assuming the radiation-reaction force is prescribed as in
GR, we then calculate the rate of change of the orbital frequency, and from this the grav-
itational waves emitted in the frequency domain. We map the result to the parameterized
post-Einsteinian framework, and then use the events in the LIGO-Virgo Catalog GWTC-1 [28,
29], to place a constraint on the leading-order metric deformation.

With that at hand, we then redirect our attention to constraints on parametrically deformed
metrics with x-ray observations from low-mass x-ray binaries. For this purpose, we simulate
and fit observations using the relxill_nkmodel [30, 31]. This model employs the formalism
of the transfer function for geometrically thin and optically thick accretion disks [32] around
parametrically deformed black holes. The astrophysical parameters are chosen to represent a
typical x-ray binary that may be observed with current x-ray instruments, such as NuSTAR
and NICER, and also in the future with ATHENA. This simulated data is then fitted with
relxill_nk to get constraints on the Schwarzschild deformation parameter.

We find that the gravitational wave observations are already placing constraints on para-
metric deformations of the Schwarzschild spacetime that are slightly more stringent than
the constraints that can be placed with very good x-ray observations in the near future with
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current x-ray detectors. In the left panel of figure 2 we summarize these results, by show-
ing the marginalized posterior and the 90% confidence constraint on the leading-order metric
deformation or ‘bumpy’ parameter a1 for the combined gravitational wave observations of the
GWTC-1 catalog and a simulation with current x-ray instruments.

We also study the constraining power of future observations of these two techniques, by
extrapolating our results to the those we will be able to achieve with advanced LIGO (aLIGO)
at design sensitivity (∼2026) and with x-ray data from ATHENA (∼2034). In the right panel
in figure 2, we present again the marginalized posterior and the 90% confidence constraint on
the a1 bumpy parameter for these two future observations, which shows an improvement of
roughly an order of magnitude with either of them. As in the GWTC-1 case, observe that the
gravitational wave constraint with aLIGO (by∼2026) will be more stringent than what will be
achievable by ATHENA (by∼2034) at 90% confidence. Note also that by the time ATHENA
flies, gravitational wave constraints should become substantially more stringent than predicted
above because of new higher signal-to-noise ratio (SNR) events (expected as the instruments
are improved over the next 5 years), as well as due to stacking of several hundreds of sources.

The remainder of this paper presents the details that lead to the conclusions summarized
above and it is organized as follows. Section 2 establishes notation and presents the parametri-
cally deformedmetric used to characterize deviations to the Schwarzschild solution. Sections 3
and 4 present the impact of the deformation parameter on the GW profile and on the x-ray
spectrum respectively. In each case we present a brief description of the techniques used, the
general framework and the procedure followed to analyze the data. Section 5 provides some
final remarks. Unless otherwise stated, we use geometric units in which G = 1 = c.

2. Parametrically deformed black holes

In this section, we establish notation by briefly summarizing the parametric deformation of the
spacetime that we employ in this work, following reference [27], which we hereafter refer
to as RZ. The RZ metric is based on a stationary and spherically symmetric spacetime in
spherical polar coordinates (t, r, θ,φ), where the metric functions are continued fractions in
the radial coordinates. These functions are restricted by requiring that the spacetime contain a
BH, i.e., that the spacetime contain a surface r = r0, called the event horizon, where the expan-
sion of radially outgoing null geodesics is zero. Moreover, this metric includes two ‘bumpy’
parameters at leading order, ε and a1, which control deviations from the Schwarzschild metric.

The line element of the RZ solution is simple when only the lowest parameters uncon-
strained by current observational tests of GR are considered [27]:

ds2 = −N2 (x) dt2 +
dr2

N2 (x)
+ r2dΩ2, (1)

where dΩ2 ≡ dθ2 + sin2θ dφ2 is the line element on the two-sphere and x is a compactified
radial coordinate defined as

x ≡ 1− r0
r
, (2)

such that x = 0 corresponds to the location of the event horizon r = r0, while x = 1 corre-
sponds to spatial infinity. The metric functions N(x) is decomposed via

N2(x) = xA(x) (3)
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where

A(x) = 1− (1− x)
[
ε+ ε(1− x)− a1(1− x)2

]
. (4)

The line element shown above is therefore characterized in terms of the bumpy parameters
ε and a1, which control the magnitude of the non-Schwarzschild deformation, modifying
the BH structure near the horizon, and introducing modifications in the spacetime region
asymptotically far from the source.

Let us briefly consider the asymptotic behavior of the metric in these coordinates about the
horizon and about spatial infinity. Near the horizon, r ∼ r0 or x & 1, we have

gtt = −x (1− 2ε+ a1)+O(x2),

grr =
1

x (1− 2ε+ a1)
+O(x2).

(5)

This expansion shows that the metric is singular at the location of the event horizon, signaling
the presence of a coordinate singularity. Such a singularity renders RZmetric in this coordinate
system less than ideal for relativistic numerical simulations. Near spatial infinity, r0/r & 1 or
x ∼ 1, we have

gtt = −1+ (1+ ε)
r0
r
− (ε+ a1)

( r0
r

)3
+O(r−4),

grr = 1+ (1+ ε)
r0
r
+ (1+ ε)2

( r0
r

)2
+
(
1+ 2ε+ 3ε2 + ε3 + a1

) ( r0
r

)3
+O(r−2),

(6)

This shows that the observable, or sometimes called ‘gravitational’ mass is simply 2M =
(1+ ε)r0.

If one requires that the exterior gravitational field of all massive, stationary and spherically
symmetric bodies have the form of equation (1), then Solar System observations already place
constraints on some of these parameters. The tracking of the Cassini spacecraft requires that the
parameterized post-Newtonian parameter γ to be satisfy γ − 1 ! 10−5 [21]. The γ parameter
is related to the parameters of the above metric via 2γM = (1+ ε)r0, which then implies that
γ − 1 = (1+ ε)[r0/(2M)]− 1 ! 10−5. The simplest (though non-unique) way to enforce this
constraint is to fix the horizon radius at its Schwarzschild value r0 = 2M, and then require
that ε ! 10−5. In particular, x-ray tests of GR typically make this choice, setting r0 = 2M and
ε = 0, which is also the choice we will make henceforth. With these choices, the spacetime
metric is fully determined by the choice of mass M and bumpy parameter a1.

3. Gravitational wave constraints

In this section, we study the impact that a parametrically deformed spacetime has in the gen-
eration of gravitational waves by a binary system composed of non-Schwarzschild BHs, i.e.,
composed of objects whose spacetime near either of them approaches the RZ metric. We focus
on the early inspiral of the binary system, such that the problem can be studied within the post-
Newtonian (PN) framework [33], and we work to leading-order in this approximation when
considering deviations from GR.

The comparable-mass, two-body problem can be mapped in the PN approximation to an
ef f ective one body problem. In this effective problem, a test particle of mass equal to the
reduced mass of the real binary µ = m1m2/m, where m = m1 + m2 is the total mass and m1,2

are the component masses, is in geodesic motion around a BH with mass equal to the total
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mass of the real binary. In our case, the spacetime exterior to this BH is represented by the
parametrically-deformed metric discussed in the previous section. The conservative sector of
the orbital motion is then controlled by the effective Hamiltonian [34, 35], which can be con-
structed from the contraction of the RZ metric with the four-momenta of the test particle. The
effective problem can then be mapped back to the real, comparable-mass, two-body problem to
compute the GWs emitted by such a system, when the two BHs are parametrically deformed.

With this strategy in mind, we begin by considering (massive) test-particle motion in an RZ
background with total mass m and bumpy parameter a1. The independence of the metric on
the time t and angle φ about the rotation axis implies the existence of two conserved quanti-
ties, energy and (z-component of) angular momentum, respectively. For massive particles with
rest mass µ, the energy per unit reduced mass (specific energy) Ẽ and the specific angular
momentum L̃ can be expressed as

Ẽ = −ut and L̃ = uφ, (7)

where the four-velocities are given by ut ≡ dt/dτ and uφ ≡ dφ/dτ , and τ is an affine parameter
(proper time for massive particles). The equation of motion for r(τ ) can be obtained from the
normalization condition uαuα = −1 for the four-velocity, namely

ṙ = Veff = Ẽ2 − N2
(
1+

L̃2

r2

)
. (8)

The orbits of the spacetime in equation (1) are therefore completely characterized by the values
of two orbital parameters, which can be chosen to be Ẽ and L̃, as well as the mass parameter
M and the bumpy parameter a1, and initial conditions.

A circular orbit is one that satisfies the followings conditions

Veff = 0 =
dVeff

dr
. (9)

Expanding the effective potential to leading order about small deformations away from Kerr
(i.e., in a1 & 1),

Veff = VGR
eff + VRZ

eff +O(a21), (10)

we find that

VGR
eff = Ẽ2 +

(
L̃2 + r2

)
(2m− r)

r3
(11)

and

VRZ
eff =

8
r6

[
a1m3 (L̃2 + r2

)
(r − 2m)

]
. (12)

The energy and angular momentum for circular orbits [36] can then be found through the
conditions ṙ = 0 and dVeff/dr = 0, which to leading order in small deformations away from
Kerr leads to

Ẽ = ẼGR + δẼ +O(a21), (13)

L̃ = L̃GR + δL̃+O(a21), (14)

7
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where

ẼGR =

√
4m2 − 4mr + r2

r(r − 3m)
L̃GR =

√
mr2

r − 3m
. (15)

and

δẼ =
2m3

r5/2(r − 3m)3/2
(2m− r) a1, (16)

δL̃ = − 6m5/2

r2(−3m+ r)3/2
(2m− r)2a1. (17)

A modified Kepler law can be derived from these expressions by expanding ω = L̃/r2 in the
far field limit

ω2 =
m
r3

[
1+

3m
r

+
9m2

r2
− 12m2

r2
a1 +O

(
a21,

m3

r3

)]
. (18)

With the above test-particle considerations in mind, let us now map the effective one body
problem back to the real two-body problem. The conservative dynamics of the real two-body
problem is described by the total energy ET, which, for the circular case, can be written in
terms of the effective energy Eeff = gtt(1+ L̃2/r2)1/2 [37] via [34]

ET = m+ Eb = m[1+ 2η (Eeff − 1)]1/2, (19)

where we have explicitly separated the rest-mass energy m from the binding energy Eb, and
where we have introduced the symmetric mass ratio η = µ/m. Expanding to leading order
about the GR deformation and to leading order in PN theory, we then find

Eb = EGR
b − ηm2

2r

[
4a1

(m
r

)2
+O

(
a21,

m3

r3

)]
, (20)

where EGR
b is the binding energy in GR.

The above expression can now be rewritten in terms of the real orbital frequency F of the
binary system. This is achieved by noting that the angular frequencies of the real and effective
problems are the same, and thus ω = 2πF. With this in mind, we then have that

Eb (F)
µ

= EGR
b (F)− 4a1(2πmF)2 +O

[
a21, (2πmF)

8/3
]
, (21)

where again we work to leading PN order in the GR deformation.
Equations (20) and (21) represent the total energy of the real, comparable-mass, two-body

system, with a GR deformation. This modification is proportional to a1 and it enters at 2PN
order, i.e., it is of O(v4) smaller than the leading PN order term in EGR

b . In contrast, the 2PN
terms in the GR sector (i.e., the terms in EGR

b that are of O(v4) smaller than the leading PN
order term in this quantity) are not only proportional to the total mass and the symmetric mass
ratio, but also to the spin of the bodies. We therefore expect a partial degeneracy between spin
terms and the bumpy parameter a1. In passing, note here that going to higher PN order in the
calculation of the GR deformation would not break this partial degeneracy; terms proportional
to spin in the GR deformation will first enter at 1.5PN order higher than the leading PN order
at which a1 enters, which is 2PN, implying spin-contributions to the a1 deformation will enter
at 3.5PN order.

8



Class. Quantum Grav. 37 (2020) 135008 A Cárdenas-Avendaño et al

The orbital phase for a binary in a circular orbit is given by

φ (F) =
∫ F (dE

dω

)(
Ė
)−1

ω dω, (22)

where Ė is the rate of change of the binding energy of the system due to gravitational wave
emission (and emission of any other propagating degree of freedom that may be present in the
theory under consideration). From the above expression, it is clear that the gravitational wave
phase depends both on the conservative (time-symmetric) dynamics represented here in the
binding energy, as well as on the dissipative (time-asymmetric) dynamics, represented here in
the energy loss rate.

In this work we wish to compare gravitational wave constraints to x-ray constraints, and
the latter are only sensitive to the conservative dynamics of geodesic motion around BHs. As
noted above, however, GWs are sensitive to both the conservative and the dissipative sectors,
so we have to make an assumption on the dissipative sector. In general, one expects that addi-
tional (propagating) degrees of freedom, such as dynamical scalar or vector fields in a modified
theory, will introduce additional sources of energy and angular momentum loss. In principle,
there are three different classes one can identify depending on the PN order at which modifi-
cations to the dissipative sector first enter relative to modifications to the conservative sector:
(i) dissipative corrections enter first at a lower PN order than conservative modifications, (ii)
they enter first at the same PN order, or (iii) dissipative modifications enter first at a higher PN
order than conservative modifications.

We will here focus on deviations that belong to the third and the second class, as they will
lead to more conservative constraints. If a theory falls in the first class, for example introducing
dissipative corrections at −1PN, 0PN, or 1PN order, then constraints on such GR deviations
will be more stringent than what we calculate here. This is because GW observations are better
at constraining lower (or negative) PN order effects, as shown theoretically in reference [38]
and then with data in reference [28]. If a theory falls in the second class, the constraints we find
here will not change by more than a factor of order unity, unless the dissipative modification
were to exactly (or nearly exactly) cancel the conservative modification; we are not aware
of any theory of gravity whatsoever where such perfect cancellation takes place. Finally, if
a theory falls in the third class, then the constraints one would be able to place on such a
theory will be approximately the same as those obtained without including the higher PN order
corrections, as shown in appendix B of reference [1].

Given these arguments, we here focus only on modifications to the conservative sector, and
assume the dissipative sector is notmodified fromGR. Therefore, to compute the GR deviation
to leading PN order we only need to use the quadrupole formula to leading PN order to model
the change of the binding energy via Ė0PN

GR = −(32/5)η2m2r4ω6. The evolution of the orbital
phase is then

φ(F) = φGR(F)−
25
4η

(2πmF)−1/3a1 +O
[
a21, (2πmF)

0] , (23)

where φGR(F) is the evolution of the orbital phase in GR, which to leading PN order is
φ0PN
GR (F) = −1/(32η)(2πmF)−5/3.
The correction to the Fourier phase of the GW can now be computed in the stationary phase

approximation [39], i.e., assuming that its rate of change is much more rapid than the rate of
change of the GW amplitude. The Fourier phase can be written as ΨGW( f ) = 2φ(t0)− 2πf t0,
where t0 is the stationary time defined through the stationary phase condition F(t0) = f /2,
with f the Fourier frequency. Therefore, to leading PN order and to leading order in bumpy

9
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deformations, we find

ΨGW( f ) = ΨGR
GW( f )−

75
8
u−1/3η−4/5a1 +O

[
a21, u

0] , (24)

where ΨGR
GW( f ) is the Fourier GW phase in GR, which to leading PN order is ΨGR,0PN

GW ( f ) =
−3/(128u5/3), and where u ≡ πM f with the chirp mass M ≡ η3/5m.

Let us map the above GW deformation in the frequency-domain to the parameterized post-
Einsteinian (ppE) framework [38]. In the latter, the leading-order modification to the Fourier
phase can be written as

ΨGW = ΨGR
GW + βub (25)

where (β, b) are ppE parameters. Comparing equations (25) with (24), we find that

b = −1
3
; β = −75η−4/5

8
a1. (26)

As already discussed below equation (21), the GR deformation, here characterized by β, is
proportional to a1 and also to η. In particular, note that β is independent of the spins of the
bodies, since spin corrections will enter at 1.5PN order higher than the leading PN order effect
computed here.

The power of the ppE framework is that we can now map constraints from any given GW
observation to constraints on particular modifications to GR. To do so, one must first map the
ppE parameterization above into the ppE incarnation used by the LIGO collaboration. Follow-
ing the choices made in the current state of the LIGO software library [40], at b = −1/3 (a
2PN correction) the ppE parameter β is related to the PN deformation parameter δφ4 via

β =
3

128
φ4δφ4η

−4/5, (27)

where φ4 is defined to be φ4 =
(
15 293 365/508 032+ 27 145/504 η + 3085/72 η2

)
[41].

With the above analysis finished, the procedure to place constraints on the bumpy param-
eter a1 from gravitational wave observations is straightforward. First, one must analyze the
gravitational wave data collected by the LIGO and Virgo collaboration to find constraints on
the parameter δφ4; this step is routinely done by the LIGO collaboration itself, with its results
made publicly available for example in reference [28]. Then, one must map the δφ4 poste-
rior to a posterior on β and from that to a posterior on a1, or one can equivalently combine
equations (26) and (27) to find that

a1 = − 1
400

φ4δφ4. (28)

We will constrain the a1 deformation parameter using the events reported in the LIGO-Virgo
Catalog GWTC-1 [28, 29] that were found in both modeled searches PyCBC [42] and Gst-
LAL [43] with a significance of false-alarm rate (FAR) < (1000yr)−1, which will lead to
conservative constraints. The events in the catalog that satisfy these conditions are GW150914,
GW151226, GW170104, GW170608 and GW170814. These events were analyzed with an
IMRPhenomPv2 [44, 45] model, modified with GR deviations that only represent fractional
corrections in the non-spinning portion of each PN phase coefficient, i.e., with a shift in the
PN coefficients φno−spin

i + φspin
i → φno−spin

i (1+ δφi)+ φspin
i where the superscript represent

whether the phase contributions contain spin terms or not. Thus, the modifications reported
in reference [28] are only to leading-order and without PN corrections proportional to the spin
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Figure 3. Marginalized posteriors on the deformation parameter a1 for the most sig-
nificant binary black-hole events of GWTC-1, and after combining all of these events.
The horizontal lines indicate the 90% credible interval around the indicated mean. The
dashed horizontal line at zero corresponds to the GR value.

Table 1. Medians and the 90% credible intervals on the deformation parameter a1 for
the most significant binary black-hole events of GWTC-1.

Event a1

GW150914 −0.21+0.18
−0.19

GW151226 0.01+0.17
−0.16

GW170104 0.42+0.42
−0.42

GW170608 −0.02+0.11
−0.11

GW170814 −0.05+0.19
−0.19

in the non-GR sector, just as the modification considered here. For a given observation,we infer
the marginalized posterior distribution of a1 as follows. Given the Markov chain Monte Carlo
(MCMC) chains provided by reference [28], we compute a1 at every location of the parameter
space that the chains visited, by evaluating equation (28) at the chain’s values of δφ4 and η.

Figure 3 shows the posterior on a1 obtained from equation (28) using the δφ4 and η loca-
tions in parameter space visited by the MCMC chains, with table 1 showing the values of the
medians and the 90% credible intervals, for each event. In all cases considered, the posteriors
are consistent with the GR value within statistical fluctuations. The likely lightest mass binary
BH event, GW170608, gives the strongest constraint because it has a significantly larger SNR
in the inspiral regime and it provides many more cycles in the frequency band [28].

The bumpy parameters may or may not depend on the parameters of the system. In general,
the bumpy parameters will depend on the coupling constants of the modified theory consid-
ered, and these are the same for all systems. However, if these constants are dimensionful, the
bumpy parameters will also depend on themass or radius of the objects involved to form a ratio
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that is dimensionless, as is the case in Einstein-dilaton–Gauss–Bonnet gravity [46–48] and in
dynamical Chern–Simons gravity [49, 50]. Even if the coupling constants are dimensionless,
the bumpy parameters may still depend on dimensionless combinations of the masses, such as
the symmetric mass ratio or the dimensionless mass difference. Whether and how the bumpy
parameters depend on the system parameters or not will therefore be strongly theory depen-
dent. If the bumpy parameters are independent of the system parameters, we can then enhance
our constraints by stacking multiple events. Otherwise, the most stringent constraint can only
come from the loudest events. We will now explore both of these cases separately below.

Let us start with the case where a1 is assumed to be independent of system parameters, at
least for all BH spacetimes. Given N observations, one can then combine the posteriors on a1
through simple multiplication, following e.g., reference [51]. Given that the GWTC-1 catalog
presents a finite number of samples from the posterior distributions relevant to each detection,
we have fitted each normalized histogram with a Gaussian distribution. This Gaussian fit is
an appropriate approximation to the posterior distribution for each observation, which we can
then multiply together in order to get the combined posterior.

Figure 3 presents this combined marginalized posterior, whose mean and 90% confidence
region is

aGWTC−1
1 = −0.038+0.075

−0.076 . (29)

The constraints found abovewill becomemore stringent as the statistical uncertainties decrease
in the next few years thanks to improvements in detector sensitivity. These improvements lead
to some events with very high SNR, and many events with similar SNRs as the events in the
GWTC-1 catalog. To conclude this section then, we will estimate the constraining power of
future GW observations taking aLIGO at design sensitivity as a benchmark. Let us then assume
that by ∼2026 aLIGO at design sensitivity will detect events similar to those in the GWTC-1
catalog studied here. The constraint on deformation parameters with such future events scales
as

σfut = σobs

(
Nobs

Nfut

)1/2(ρobs
ρfut

)
, (30)

where σ is the standard deviation of the marginalized posterior (assumed to be Gaussian), N is
the number of events detected and ρ is the quadratic mean (or root mean square) of the SNR
for all N events. The subscripts ‘obs’ and ‘fut’ denote the derived values found with a current
observation and the ones in a future analysis.

The above relation can be rewritten in a more convenient way by noting that the number of
events detected can be expressed as N = RDTV, where RD is the mean intrinsic astrophysical
rate of mergers per year per cubic Gpc, T is the number of years of data collected and V is
the volume to which the instrument can observe events at a given (threshold) SNR. Using this
relation, the standard deviation of the marginalized posterior of future observations scales as

σfut = σobs

(
Tobs
Tfut

)1/2(Robs

Rfut

)3/2(ρobs
ρfut

)
, (31)

where R is the range to which the instrument can see at a given (threshold) SNR. Note that
the mean astrophysical rate RD has canceled because this is quantity does not depend on the
detector used to make observations, but rather on the astrophysics in play during black hole
formation and growth.

In order to estimate this quantities we will use the planned sensitivity evolution and observ-
ing runs of the aLIGO, AdV and KAGRA detectors over the coming years [52]. Advanced
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Figure 4. Simulated x-ray reflection spectrum. The relativistic reflection spectrum is
shown in dotted blue lines, while the non-relativistic spectrum is shown in solid green,
and the total spectrum in solid red.

Table 2. List of model parameters which remain fixed throughout the analysis. The
radius of the inner most stable circular orbit is denoted by rISCO.

Model Description Value

tbabs
NH [1022] Column density 0.4

relxill_nk
a Spin 0.0
rin Inner radius rISCO
rout Outer radius 400M
z Redshift 0

xillver
log ξ Ionization 0
Rf Reflection fraction −1
z Redshift 0

LIGO recently finished its second observing run (O2), and started the first half of its third run
(O3a) on April 1 2019, which is scheduled to end on September 30 2019 (TO3a ∼ 4months, as
the duty cycle led to double coincidence only for ∼80% of the time) with an expected range
of RO3a ∼ 1200Mpc, i.e., an improvement of 1.3 relative to the range in O2 (RO2 = 910Mpc).
These improvement implies that the expected number of events during O3a is

〈NO3a〉 = NO2

(
RO3a

RO2

)3 TO3a
TO2

≈ 8, (32)

where NO2 = 3 for us (because of the 5 events in the GWTC-1 catalog with a (FAR) <
(1000yr)−1, only 3 were observed in O2), and TO2 ∼ 4 months of data (O2 lasted for 9 months,
but the duty cycle was about 45% for the LIGO network during O2 [29]). The observed events
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during O3a with very high probability that both components have mass greater than 5M# and
a FAR < (1000yr)−1 was NO3a = 8, which shows the estimate above is accurate.

With this in hand, we can now estimate the strength of projected future combined con-
straints on bumpy parameters. The three events in O2 led to σO2 = 0.0582 and ρO2 = 14.8. At
design sensitivity the range will increase by roughly a factor of about 2.75, relative to O2 [52].
Putting these numbers together, we estimate that aLIGO at design sensitivity should observe
approximately 〈NO5〉 ∼ 374 events by 2026 (i.e., assuming two years of data collected dur-
ing O5 at least double coincidence) that are similar to the three events observed in the O2
run. Although most of these 〈NO5〉 detections will be found with SNRs close to the detection
threshold, assumed here to be ρth = 12 [52], there will exist a tail of higher SNR events. These
are the events that may offer the best constraints on both intrinsic and extrinsic parameters of
their sources, as it can be seen in figure 3. Following reference [53] we estimate that for 50%
of the 〈NO5〉 events, the loudest one should have an SNR louder than 66. This is the conserva-
tive value we assume for the quadratic mean of the SNR of O5, i.e., ρO5 = 66. In terms of the
constraint quoted above at 90% confidence, we then obtain

afut1 = 0.0+0.004
−0.004 , (33)

after two years of data collected, where we have chosen to fix the mean at zero here. The right
panel in figure 2 shows the projection of the marginalized posterior on the bumpy parameter
a1 with aLIGO by 2026. The improvement shown above is conservative for a large number
of reasons: (i) by the time O5 takes place, aLIGO will have collected of order 100 events like
those considered here during O3 and O4, (ii) some events during O3, O4 and especially O5
will be at a significantly higher single-detector SNR than those considered here, (iii) O5 will
take place with a network of detectors that includes KAGRA and LIGO-India neither of which
were included in our conservative estimates.

Let us now consider the case where a1 depends not just on the coupling constants of the
theory, but also on the source properties. In this case, the previous stacking procedure cannot
be performed, and instead the most stringent constraint will come from the loudest event. By
observing one single event like one of the ones already observed, but with higher SNR, the
expression in equation (30) reduces to

σfut = σobs

(
ρobs
ρfut

)
. (34)

Out of the 〈NO5〉 events estimated above for aLIGO by 2026, following again reference
[53], 0.3% of the cases (corresponding to one event out of the 374), should have an SNR
louder than 622, assuming a threshold SNR of ρth = 12. By taking the likely lightest mass
binary BH event, GW170608, which gave the strongest constraint with σGW170608 = 0.069 and
ρGW170608 = 14.1, we then find

afut1 = 0.0+0.003
−0.003 , (35)

This estimate is slightly more stringent that the one obtained by combining multiple obser-
vations, i.e., equation (33). We find that independently of the type of modification that a1
encodes (independent or not of the source parameters), the observations with aLIGO would
provide more stringent constraints by 2026 than what we will be able to achieve with future
x-ray detectors, such as ATHENA, ∼10 years after O5 has been completed, as we will see in
the next section.
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Figure 5. χ2 residuals for best-fit models of each simulation in table 3, labeled accord-
ingly. In the top panel, the four NICER simulations (in gray, green, magenta and orange,
respectively) and one NuSTAR simulation (in black) are overlaid. The bottom panel
shows the case of the ATHENA simulation. The data has been re-binned during plotting
for clarity. Observe that there are no unaccounted residuals in the fitted data, confirming
that the fits shown in table 3 are indeed good.

4. X-ray reflection spectroscopy constraints

An important technique to test GR with astrophysical BHs is x-ray reflection spectroscopy. Let
us begin by summarizing this technique (for more details, please refer to, for instance, refer-
ences [30, 31, 54]). X-ray reflection spectroscopy is based on the so-called disk-coronamodel,
where a BH (or any other compact object) is surroundedby an accretion disk (typically assumed
to be geometrically thin and optically thick) and a corona. Radiation received from the system
is comprised of a thermal component (emitted directly from the disk), a power-law component
(thermal radiation emitted from the disk and scattered by the corona), and a reflected compo-
nent (scattered radiation from the corona reflected from the disk). The thermal component is
usually at low energies (0.1–1 keV for solar mass BHs, lower still for supermassive BHs) and
featureless, compared to the reflected component. For testing GR, the component that has been
most studied is the reflected radiation because the fluorescent emission lines are expected to be
broadened and skewed when observed far from the source due to a combination of relativistic
effects occurring in the strong gravity region. In the pasts few years, an xspec model, called
relxill_nk, has been developed to test GR with reflected radiation [30, 31].

We are here interested in studying how well x-ray reflection spectroscopy can be used to
test GR. Such a study is not new (see for instance, references [55–58]), but we will repeat it
using the same metric parameterization as that used for gravitational waves in the previous
section to carry out a fair comparison. The general idea is that we will assume that a certain
x-ray instrument has detected a reflected radiation signal and found it consistent with GR.
We will then generate a model that includes a parametric deviation in the spacetime and ask
how well we can constrain this deformation, given statistical noise. This means that when
our deformation parameter in the model is set to zero, then the model matches the simulated
data exactly. Clearly, this will not happen in reality because our astrophysical models will not
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Figure 6. Constraints on the deformation parameter a1 for the cases presented in table 3
from simulated observations with combined observations of NuSTAR and NICER, and
with ATHENA, respectively, and assuming very good observations of a low mass x-
ray binary. The horizontal dashed lines represent 90% and 99% confidence levels from
the x-ray simulations. Observe that the projected constraints with current instruments
are slightly worse than those already placed with GWs. The projected constraints with
ATHENA in∼2034 become one order of magnitude better than those we can place with
NICER in the near future, although this improvement is not enough to beat constraints
with aLIGO at design sensitivity that can be obtained by ∼2026 (see figure 2).

be exact representations of the data generated by Nature. Therefore, our procedure here will
ignore any systematic errors in modeling, leading to optimistic measures of how well GR can
be tested with x-ray observations.

We focus specifically on the active instruments NuSTAR and NICER, and the proposed
instrumentATHENA.NuSTAR is a high-energy x-ray telescope in orbit aroundEarth, operating
in the energy band of 3–79 keV, and launched in 2012.NICER is a NASAmission, designed as
a payload for the International Space Station, and deployed in 2017. We use NICER’s science
module X-ray Timing Instrument (XTI), operating in the energy band 0.2–12 keV, to simulate
the response curve of our synthetic data. ATHENA is a future instrument that is currently under
development by ESA with a planned launch in 2034. ATHENA will provide unprecedented
capabilities in terms of angular resolution, effective area, spectral resolution and grasp. We
here use ATHENA’s planned instrument x-ray integral field unit (X-IFU), which will operate
in the band 0.2–12 keV, to simulate our synthetic data.

We prepare our x-ray simulations in the following way. In order to mimic a current obser-
vation, we simulate simultaneous observations with NuSTAR (with an exposure of 100 ks) and
NICER (a set of four observations, each of 5 ks exposure). These exposure times and simul-
taneous observations are typical for the respective instruments (see, for instance, references
[59–62]). To mimic a f uture observation with ATHENA, we simulate a 100 ks observation,
which is also expected to be a typical amount of data for that instrument [63].

The simulated data (in GR) and themodel (outside of GR) are both generated in xspec using

tbabs∗(relxill_nk+ xillver).
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Table 3. Parameters used in the simulated data of the simulations and their best fit val-
ues for different observations. Uncertainties are reported at a 90% confidence level and
rounded off to second decimal place or denoted by ∆, when they were too small. Tied
parameters are marked by a ‡.

Parameter Description Simulated Current Future

q Coronal emissivity index 3 3.01+0.02
−0.02 3+∆

−∆

i‡ (deg) Inclination 45 44.89+0.14
−0.14 45+0.01

−0.01
Γ‡ Incident radiation index 2 2+∆

−∆ 2+∆
−∆

log ξ Ionization 3.1 3.1+∆
−∆ 3.1+∆

−∆

AFe Iron abundance 3 3.01+0.01
−0.01 3+∆

−∆

E‡
cut Energy cutoff 300 297.43+5.71

−4.15 297.59+1.60
−1.36

Rf Reflection fraction 1 1+0.01
−0.01 1+∆

−∆

a1 Deformation parameter 0 −0.07+0.080
−0.082 0.00+0.007

−0.007
N [10−3] Norm 35 34.97+0.03

−0.01 34.90+0.07
−0.06

xillver
AFe Iron abundance 1 0.9+0.11

−0.08 1.06+0.04
−0.05

N [10−3] Norm 8 8.97+0.56
−0.75 7.78+0.14

−0.12

χ2/dof 6169.57/6325 28 504.32/28 556

Here, tbabs is a galactic absorption model, relxill_nk is our x-ray reflection model and xil-
lver is a model to account for non-relativistic reflection far from the inner regions of the disk,
with an example of a simulated spectrum shown in figure 4. The metric in equation (1) has
been implemented in the relxill_nk framework [58], including spin and several deforma-
tion parameters, although here we choose to work with zero spin and only with one non-zero
deformation parameter, a1. Note that in reference [58] a1 is denoted by δ1. The simulations are
generated in xspec using fakeit. The fakeit command creates a spectrum by multiplying the
model with the response curve of the instrument and adding a background to it. The simulated
data is analyzed using xspec, during which the model parameters are either f rozen (fixed dur-
ing the analysis), tied (tied to another parameter), or f ree (fitted during the analysis). Frozen
parameters are listed in table 2, while tied (marked by a ‡) and free parameters are listed in
table 3. The values chosen for simulating the data are presented in the third column of table 3.

The simulated data is analyzed as follows. Starting with default parameter values, the data
is iteratively fitted until the reduced χ2 is close to 1 (shown in table 3), and there are no
unexplained residuals (shown in figure 5). Table 3 also lists parameter uncertainties at 90%
confidence for the different simulated observations. As it can be seen, most of the parameters
are recovered well, and their simulated values lie within the range of uncertainty. Our primary
goal here, however, is to study projected constraints on a1 with current and future instruments.
Figure 6 shows the marginalized posterior distribution for the bumpy parameter, constructed
assuming a Gaussian distribution from the obtained∆χ2, where

∆χ2 = χ2(a1)− χ2
bestfit, (36)

with χ2(a1) calculated at a given value of a1 and marginalized over all other free parameters.
This figure is produced with the same data as that used in figure 2, although we choose here
to present it again to allow for an easier comparison between current and future constraints
capabilities with x-ray observations. Figure 6 shows that projected constraints with ATHENA
are about one order of magnitude more stringent than projected constraints with NuSTAR and
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NICER. Note that, as shown in figure 2, ATHENA constraints are slightly weaker than the very
conservative projection of what aLIGO at design sensitivity will be able to achieve by around
2026.

5. Conclusions

Testing GRwith electromagnetic and gravitational observations have been of interest to a large
swath of the physics community over the past few years. These two type of tests, however,
have typically been assumed to be disconnected from each other, with one set of observations
testing one aspect of gravity theory, and the other set, a different and disconnected aspect.
We point out here that this is incorrect, as indeed both sets of observations probe the conser-
vative (time-symmetric) sector of gravitational theories around BHs. Given this, we then do
a direct comparison between tests with gravitational wave observations and tests with x-ray
observations.

We find that combined constraints with LIGO/Virgo data during O1 and O2 are slightly
better than what could be achieved with current x-ray instruments, even when one ignores
systematic errors in the later. Systematic uncertainties in the x-ray measurements, which were
not included in our analysis, would only make x-ray constraints on GR even weaker. As aLIGO
becomes more sensitive, reaching design sensitivity by ∼2025, the constraints with aLIGO
become even more stringent, independently of the nature of the modification. In particular, by
∼2026–2027, aLIGO will obtain constraints that would be already more stringent than what
future x-ray instruments deployed∼2034, such as ATHENA, will be able to achieve.

Even though ground-based detectors of gravitational waves place more stringent constraints
on GR than electromagnetic observations, the latter technically have access to a larger region
of the curvature-potential phase space. Indeed, ground-based gravitational wave detectors are
confined to tests in the highest curvatures and potentials possible in Nature.Moreover, the anal-
ysis of GW and EM data suffers from different statistical and systematic uncertainties that can
make certain effects hard to measure in one and not in the other. For example, EM observations
are particularly good at measuring the spin of BHs, while GW observations can only measure
a certain projection of the spin angular momentum, and at present, this combination cannot be
estimated very accurately. In this sense, EM and GW observations are complementary, in spite
of the quantitative difference in the strength of constraints.

The study of tests of GR with electromagnetic observations carried out here did not include
the spin parameter, but we expect that its inclusionwill not change the conclusions of our paper.
In GR, the spin introduces new features in the spacetime, such as frame-dragging and shifts
in the location of the event horizon or the innermost stable circular orbit, which then lead to
observable consequences in the electromagnetic spectrum.When other astrophysical processes
that lead to similar effects in the spectrum are properlymodeled, then the spin becomes the only
parameter that can introduce these new features, allowing one to estimate the spin accurately
from data. A GR deformation to a spinning black hole metric, however, does not typically
introduce new observable features in the spectrum that are non-degenerate with other model
parameters, such as the spin, the mass or the accretion rate. Therefore, the inclusion of spin
will not change the conclusions of our paper.

Another future avenue of study is the search for new ways to test GR with EM and GW
observations. The usefulness of the approach to test GR employed in this paper, through
parametrically deformed metric, is somewhat limited. In order to faithfully represent known
modified gravity solutions, many parameters in the deformed metric need to be non-zero, but
EM tests in whichmany parameters are allowed to vary simultaneously become degenerate and
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uninformative. Furthermore, while some of these parameters will depend on the coupling con-
stants of the particular modified theory, the majority of the parameters will be pure numbers
and not necessarily small. The problem is that which parameters depend on these constants
depends on the number of constants in the theory, and thus on the particular model considered.
Therefore, it is clear that a new method that is more tightly connected to the symmetries (or
anomalies) that are being tested or searched for would be highly desirable.
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