Adaptive Test Pattern Reordering for Diagnosis using
k-Nearest Neighbors

Chenlei Fang, Qicheng Huang and R. D. (Shawn) Blanton
Advanced Chip Testing Laboratory (www.ece.cmu.edu/~actl/)
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213
{chenleif, gichengh, rblanton}@andrew.cmu.edu

Abstract—Logic diagnosis is a software-based methodology to
identify the behavior and location of defects in failing integrated
circuits, which is an essential step in yield learning. However,
accurate diagnosis requires a sufficient amount of failing data,
which is in contradiction to the requirement of reducing test
time and cost. In this work, a dynamic test pattern reordering
method is proposed to ‘“recommend” which test patterns should
be applied for a given failing chip, with the goal of maximizing
failing data while minimizing test time. Unlike prior work that
uses population statistics from already tested chips, this method
uses a machine learning technique, namely k-Nearest Neighbors.
Experiments using three industrial chips demonstrate the efficacy
of the proposed methodology; specifically, the recommended
test pattern order led to a 35% reduction, on average, while
maximizing the amount of failure data collected.

I. INTRODUCTION

Diagnosis of failing integrated circuits (IC) is a key step
during yield ramping and high-volume manufacturing. It is
a software-based process which takes place after an IC fails
testing, with the goal of identifying possible locations and/or
behavior of defects within a failing chip. The inputs for diag-
nosis of a scan-based failure includes (i) design descriptions
(logical netlist and often a layout), (ii) test patterns, and
(iii) tester responses (also referred to as the fail log). The
result of diagnosis provides useful information for further
analysis. For example, diagnosis reports likely defect locations
for physical failure analysis (PFA) which is a process for
understanding the exact cause of the failure. Volume diagnosis
techniques, which is the statistical analysis of diagnosis results
from a large population of chip fails, is useful understanding
defect distribution, defect systematics, etc. [1-4]. In industry,
diagnosis is one of many fabrication monitors used during
yield ramping and high-volume manufacturing.

The quality of a diagnosis is generally measured in terms of
its resolution and accuracy. Resolution refers to the number of
possible defect locations, and a diagnosis is deemed accurate if
the failing location is among the sites reported. Two different
approaches exist for performing diagnosis: cause-effect and
effect-cause. Cause-effect method simulates all possible faults
(typically single stuck-at faults), stores the faulty outputs as
a fault dictionary, and compares the outputs to circuit under
test (CUT) responses. Effect-cause, on the other hand, starts
from “back-coning” from the erromeous outputs and identifies
the candidate faulty locations, as shown in Fig. 1. Most state-
of-the-art diagnosis tools adopt a combination of these two

Tlaol

» TZ’ 02

Fig. 1. An example of back-coning a CUT with two failing patterns; 77 with
output O failing, and 7> with output O, failing.

approaches [5]. That is, the tool first uses effect-cause to find
a rather small portion of the CUT, then simulates faults in the
portion in a cause-effect manner.

In general, the more tester-response collected, a more pre-
cise diagnosis can be obtained. For example, as shown in Fig.
1, suppose we have a chip failing for pattern 7} at output
01, and T, at output O,. If only the tester response for
pattern 77 is at hand, then the entire back-cone of O; will
be possible candidates for the effect-cause step. Even if fault
simulation is executed for all these locations to rule out some
candidates, many candidates will still remain, resulting in poor
resolution. However, if the responses from pattern 7, is also
included for diagnosis, the possible candidate area can shrink
to the overlap of the two back-cones, leading to a potentially
better resolution (assuming only one defect exists). The need
to collect sufficient fail data is not only stated in the user
manual of commercially-available tools!, and is often verified
in practice. For example, for a randomly-selected set of 69
chips that are diagnosed to have single defect, we truncate
each corresponding fail log to observe the impact of reduced
fail data. The first trial uses data from 30 failing patterns, while
the second uses data from five failing patterns. Comparing the
diagnosis outcomes from the two trials reveals that resolution
is degraded for more than 50% of the chips.

Despite the benefit brought by additional fail data, collecting
more data is not always feasible. For example, collecting more
tester data increases cost due to increased tester time, and may
even increase tester cost if more memory is needed to store
fail data.

There are two categories of prior work that attempt to
mitigate the trade-off between test costs and diagnosis quality.

I'The user manual for Tessent, a diagnosis tool from Mentor Graphics, states
the following “Include failures from at least 30 failing scan test patterns to
achieve good logic diagnosis resolution. Mentor Graphics recommends 100
failing scan test patterns for optimal results.” [6].

One category focuses on adaptive testing to reduce test cost.
For example, [7] suggests reordering the test patterns such that
the patterns are sorted based on their capability to detect fails
on chips already tested. The most effective patterns are applied
first so that bad chips are discovered quickly. The authors
of [8] describe a wafer-level pattern sampling approach to
identify and apply a subset of the tests on a subset of the wafers
for reducing test cost. These works all focus on “detecting”
failing parts, but are not diagnosis-oriented. This work, and
others like it, all aim to minimize test time, and thus are not
focused on ensuring sufficient fail data for diagnosis.

The other category of prior work improves diagnosis qual-
ity by manipulating the test patterns applied, or adaptively
changing the fail-data collection process. The work in [9, 10]
assume that the test patterns cannot be changed, but the fail
data to be recorded can be chosen to optimize diagnosis
outcomes. This approach is intended for situations where ATE
memory is limited. The work in [11] trains a machine learning
(ML) model to decide when enough fail data is collected for
an accurate diagnosis. The approaches described in [12,13]
statically reorder test patterns for distinguishing faults within
the window of fail-data collection.

In this paper, an adaptive test pattern reordering algorithm
is described, which collects sufficient fail data to ensure good
diagnosis outcomes with fewer applied test patterns. The
approach used here is based on the personalized movie/book
recommending systems that are widely adopted. Here, fail-
ing test patterns of already-tested chips that are similar to
the current CUT are recommended for application. It is
more likely that the current chip will also fail for these
recommended test patterns. The k-Nearest Neighbors (kNN)
algorithm is implemented to accomplish this task. Unlike
prior work, the approach described here does not require
extensive computation for fault simulation and model training.
In addition, it directly accounts for the characteristics of the
relevant defects because it utilizes historical data from the
same design/fabrication environment for making test-pattern
recommendations.

The rest of this paper is organized as follows. Section II
describes the formulation of the problem and details of the
pattern reordering methodology. Section III demonstrates the
efficacy of our method in reordering the test patterns for two
types of industrial chips. Finally, Section IV concludes the
paper and provides directions for future work.

II. METHODOLOGY

A pattern reordering flow is developed in this work to
achieve the goal of collecting sufficient fail data with reduced
test cost. As described in Section I, this problem is similar to
the recommendation systems, which can be built using kNN.
First, an overview of common recommendation systems is
given, followed by a discussion on altering recommendation
for adaptive testing in Section II-A. The pattern reordering
algorithm using kNN is described in detail in II-B. Finally,
important implementation details, including the distance met-
rics and online learning, are described in II-C.

1. Full test set

oo

Training chips

___f‘;f‘?PEX___.

Failing patterns

2. Small test set

=

Fig. 2. Pattern reordering based on chip similarity.

A. Overview

Movie/book/product recommending systems are widely
used in daily life. These systems usually build a ‘“user-
item” model that is based on the following assumption:
the preference of one individual can be predicted based on
preferences of other similar individuals. Once a user creates
an account, and indicates several preferences, the system will
automatically recommend items that are popular with similar
users.

In our application, the goal is to dynamically rearrange
a fixed set of test patterns to produce an optimal diagnosis
outcome on a per chip basis. That is, each chip, we want
to apply the patterns that the chip is more likely to fail
before other patterns that are more likely to pass. A common
property found in semiconductor fabrication is exploited to
achieve the goal: defects occurring for a given design and
fabrication process will not be completely random, but instead
also include so-called systematic defects that are similar in
location and behavior. This property implies that chips with
similar defects will fail for similar test patterns. In this way,
the chips and test patterns act as the “users” and “items”, re-
spectively, in a recommending system. The similarity between
these techniques motivates the use of recommending system
approaches for test reordering.

A flow diagram for pattern reordering is shown in Fig. 2. In
the first step, a set of failing chips that have been fully tested
are required for the training set. Next, a CUT has a small set of
test applied to obtain the data for making a recommendation
of the next test pattern. Specifically, the pattern reordering
algorithm will use the data to recommend test patterns based
on similar failing chips found within the training set. The
failing patterns of these similar chips are applied to the CUT.
The details of the reordering algorithm are discussed in next
subsection.

B. Pattern Reordering

Recommending systems typically measure similarity using
the well-known kNN algorithm. kNN makes no assumptions
on the underlying data distribution, and does not require a
training process typical of other machine learning algorithms,
because there is no model to build. kNN is based merely on
comparing the feature similarity between existing and new data
instances.

In this work, a failing test pattern signature (i.e., the number
of failing outputs for each test pattern) is adopted as the feature

o Lo |- | o |omm
T, % 1
T X X X 3
X 1
. 0
T, % 1

Fig. 3. Tllustration of fail-log signatures, where X stands for a failure at the
corresponding output and test pattern.

Training chip 1 I

Training chip 2

[fefofafsfof/[[]

G]

Pattern signature for
comparison
3]

2l

F oot = 2 failures observed

Training chip 3 |

Training:chipM | 6 [

CUT

Fig. 4. A pattern reordering example using kNN.

for similarity comparison. Fig. 3 shows how to construct a
pattern signature for one chip, where the table illustrates a
typical fail log. T ~ T,, represent the n patterns applied, and
the failing outputs are recorded and marked with an “X”. The
number of failing outputs for each test pattern is counted and
recorded as the pattern signature.

An example of the kNN based pattern reordering algorithm
using a pattern signature is depicted in Fig. 4. We assume
M failing chips have already been tested with the full test
set T with N patterns. The corresponding pattern signatures
derived from the N failing chips serve as training data as a
matrix of size M X N. When a new chip is being tested, for
similarity comparison, the new CUT is tested with a limited
number of patterns from 7T until Fioject failing patterns are
observed. In this example, Feoleet = 2, and n = 5 patterns
are applied so far. The number of failing patterns required
for comparison Fopect 1S selected arbitrarily, but the number
of patterns applied n can differ for each CUT. The pattern
signature vector with length n << N is used as the feature
vector for computation of similarity. In the kNN algorithm,
the k training chips whose pattern signatures from patterns
1 to n are closest to the CUT are identified. For simplicity,
k = 1 is used in this example, and training chip 2 is the
nearest neighbor (yellow) to the CUT, that is, their signatures
are very similar. (The distance metric is discussed in the next
subsection.) Once the k nearest signatures are identified, the
additional failing patterns for these k signatures are derived,
by calculating the largest of the pattern signatures from entries
n+1 to N. The most frequent failing patterns (shaded in blue)
are applied to the CUT. Once a sufficient number of failing

patterns are observed, testing is terminated.

C. Implementation

When implementing the kNN algorithm, the definition of
“similarity” is very critical. Because 1-D feature vectors are
used, there are several approaches available to calculate the
similarity measure. The most commonly used approach is
cosine similarity, which is defined as:

EiAiBi

A-B
AlllBl ~ ’ (1
IAIIBI [y2 A2 /_zisg

where A and B are the two feature vectors to be compared.
A second approach uses hamming distance. Given that the
goal is to observe more failing patterns, what is more important
is whether each pattern fails or not, while the number of failing
outputs for each pattern is less significant. This observation
motivates the use of a binarized pattern signature, where
hamming distance is used to measure similarity. The hamming
distance between two signatures A and B is defined as:
A'=1(A >0)
B’ =1(B > 0) 2)
my = A"~ B'| = 5|A] - B]],
where 1(-) is the indicator function, which equals to 1 when
the condition is satisfied.

np =

A third possible measure involves combining Eq. (1) and
Eq. (2), that is, calculating the cosine similarity of two
binarized signatures:

A’ =1(A > 0)

B’ =1(B > 0) 3)
AP

"= A

Cross validation can be used to choose the best similarity
measure. In experiments, it is observed that the different
measures lead to slightly different performances.

Choosing the value of k is also very important. A small
value for k is susceptible to random noise, while a large k is
less capable of capturing complex defect behavior. If the value
k is chosen to be the number of training chips, it simply means
the most frequent failing patterns will be recommended for
each CUT. Such a strategy is not adaptive, and is later shown
to be ineffective when compared to adaptive methods. The best
value for k can also be found via cross validation.

Another strategy deployed to enhance performance is online
learning. At the beginning of the flow in Fig. 2, only a small
set of chips, e.g., 20% of the total chips are fully tested
to serve as the training data. This training data may not be
sufficient, as a majority of the chips remain unseen. A better
strategy is to continuously update the training set as chips are
tested. Unlike other ML methods, kNN easily adapts to online
learning, because it does not have an explicit training stage.

In light of the aforementioned discussion, the pattern re-
ordering procedure with online learning is describe in Algo-
rithm 1:

Algorithm 1 Online Learning for Pattern Reordering

Initialization: Xy,;, = fail-log signatures for a set of fully-test
chips

while for each CUT do

1. Test CUT until F.opect failing patterns occur

2. Identify k nearest signatures Xi,..., Xx with length n
from Xipain

3. Sort n+1, ..., N failing patterns of the k signatures from
most to the least frequent

4. Apply the ordered patterns until the limit

5. Construct signature Xcyr

6. Xirain < Xrain U Xcur

end

III. EXPERIMENTS

In this section, experiment details based on three industrial
chips are discussed to demonstrate the efficacy of adaptive test
reordering for diagnosis.

A. Setup

Because diagnosis is an essential step for process develop-
ment and high-volume manufacturing, two types of industrial
chips are used in the experiments. Chip 1 is a high-volume
design manufactured in a 90nm process. Chip 2 is a logic test
chip used in development of a 28nm fabrication process. Chip
3 is another test chip manufactured in a 14nm technology.
Their characteristics are listed in Table I. Industrial partners
executed circuit tests on manufactured chips, and fail logs from
these three chips are used for the forthcoming experiments.

B. Comparison Measures

To demonstrate the efficacy of the developed method, the
test patterns needed of the adaptive approach is compared with
the default test pattern order. The experiment setting is the
same as discussed in Section II-B, that is, M chips are fully
tested, and their pattern signatures are extracted as training
samples. For a new CUT, F.oect patterns are collected for
kNN comparison. In the following experiments, the initial
train/test split ratio is 20/80, that is, 20% of total chips are
used as training samples. Because online training is adopted,
the number of training samples increase as more chips are
tested. The number of failing patterns assumed for an accurate
diagnosis, Fgpj, is varied in the experiments.

Assume Mey chips are tested with two orders: the re-
arranged order suggested by the adaptive method, and the
default order. For chip i, define N{e"rder to be the number
of patterns applied until Fopj — Feolleee more failing patterns
are observed using the reordered patterns (so that Fop; failing

TABLE I
CHARACTERISTICS OF TWO INDUSTRIAL CHIPS.

Chip Identifier Chip 1 Chip 2 Chip 3
Chip type High volume chip | Test chip | Test chip
Technology 90nm 28nm 14nm
No. of standard cells 9.3 M 44 M 42 M
No. of scan chains 103 12 12
Test set size 1,000 500 824
No. of fail logs 9,301 4,235 570

Test patterns for chip i .
Fo=5 - . Changed order
e "’,’\]
... _-:'(:\\ Mmunirr =4
;:,,“m = 2/ i“"u ... Default order
Nidcl' =6

Fig. 5. An example shows the definitions of Fobj, Feollects NV i‘kf and N l.re‘"d”
for test pattern comparison.

patterns are collected in total), and Nf‘"’f is the number of
patterns applied with the default order to observe the same
number of failing patterns. We assume test terminates when
the limit Fop; is satisfied, so N9 and N represent test cost
for the CUT with the two orders, respectively. An illustration
of these variables is given in Fig. 5. Test pattern reduction is
calculated using the three following measures:

« Win percentage of the reordered patterns:

. E?;Illest:ﬂ- (N{eordcr < N;ief)
Win% =
Mtest

where reorder “wins” if the approach collects Fop; failing
patterns with fewer applied patterns than the default or-
dering. Eq. (4) counts how often the adaptively reordered
patterns is beneficial for test pattern reduction.
o The reduction in the number of patterns applied by
reordering is given by:
Reduction count = 2?;1‘1“‘ Nfef - N{eorder. (5)

x 100%, (4

Unlike win%, this measure determines the magnitude of
test cost savings via pattern count, which is reasonable
because cost is proportional to the number of applied test
patterns.

« The average percentage of patterns reduced per chip due
to reordering is given by:

def _ N{eordcr

Reduction% = (ZMlest i

. T)/th x 100%.

(6)

C. Test Pattern Reduction

Various experiments are employed to determine the most
effective similarity measure, and the value for the hyper-
parameter k. The similarity metrics are analyzed by perform-
ing cross validation [14] on Chip 1 by randomly splitting
the training/testing set five times. For each split, the pattern
reordering algorithm is applied to the testing set, and the av-
erage performance of these executions is used to represent the
performance of each similarity measure. The other parameters
are chosen as follows: Fopj = 50, Feglieer = 10, and k = 20. The
results for the three similarity measures are shown in Table II.
It can be observed that, among the three metrics, the binarized
cosine similarity performs the best. A possible explanation is
that, other than how many outputs fail for each pattern, it
matters most whether a pattern fails or not, so binarizing the
pattern signature makes sense here. Unlike hamming distance,
cosine similarity is the inner product divided by the product of
norms, which incorporates number of failing patterns for each

TABLE II
TEST PATTERN REDUCTION USING DIFFERENT SIMILARITY MEASURES.

cosine hamming binarized cosine
Win % 92.5% 91.6% 96.5%
Reduction count | 400,540 368,849 442,073
Reduction % 29.4% 30.9% 35.2%
TABLE III
TEST PATTERN REDUCTION FOR DIFFERENT VALUES OF k.
k=10 k=20 k=50 k=100 k=200
Win% 937% 96.5% 9713% 97.5% 97.3%
Reduction Count | 406,000 442,073 449,591 444,496 432,858
Reduction % 321% 352% 357% 353% 34.6%

chip. As a result, the binarized cosine similarity is adopted for
the following experiments.

Similarly, the choice of k£ for kNN can also be obtained
using cross validation. Using the same procedure for choosing
the similarity measure, cross validation experiments on Chip 1
are performed for values of k in the range 10 < k£ < 200. The
experiment results in Table III reveal that test pattern reduction
first increases with a larger k, then decreases, and reaches the
optimum when k& is around 50. Although win% at k = 100 is
slightly higher than that at k = 50, the other two performance
measures achieve their largest value when k = 50. Therefore,
k = 50 is selected for the follow-on experiments.

For the chosen similarity measure and hyper-parameter k,
the efficiency of dynamic pattern reordering for Chip 1 is
shown in Fig. 6. Experiments are executed using varying
values for Fopj and Feopect- The advantage of dynamic pattern
reordering is more obvious when Fop; is larger, because there
exists more space for improvement. When Fup > 25, the
probability that the reordered pattern “wins” exceeds 90%. The
level of pattern reduction count is also significant. The greatest
reduction count is > 500K patterns. Finally, the third measure,
reduction%, is as high as 35% compared to the default order.

The same experiments are executed on Chip 2 as well, with
results shown in Fig. 7. Because Chip 2 is a test chip and the
manufacturing process is not mature, more random defects, as
well as complex defect mechanisms are likely to affect Chip
2. As a result, the similarity of failing chips is expected to be
reduced. With that said, test pattern reduction is still observed
for most values of Fopj and Feolieer. Win% > 65%, and the
applied test patterns are reduced by ~7,000.

In addition to the default order, a simple approach to pattern
reordering is to apply the most frequently failing patterns first,
as suggested in [7]. In this experiment, we also compare the
test pattern reduction measures for dynamic pattern reordering
and the static reordering method of [7]. The most frequent
failing reordering is described in Algorithm 2.

TABLE IV
TEST PATTERN REDUCTION OF CHIP 3.
Feollect 5 5 9 9
Fobj 15 45 45 65
Win % 48.6% 48.0% 455% 43.6%
Reduction Count 262 168 164 -579
Reduction % -1.8% 0.01% -0.04% -1.0%

Algorithm 2 Pattern Reordering using Frequency

Initialization: Xy, = fail-log signatures for a set of fully-test
chips
while for each CUT do
1. Sort the failing patterns of Xi, from the most frequent
to the least frequent
2. Apply the ordered patterns until the limit
3. Construct signature Xcuyr

4. Xirain < Xirain U Xcut
end

The test pattern reduction measures for the two reordering
approaches are plotted in Fig. 6 and Fig. 7, where the red curve
(labeled as “Most frequent”) corresponds to the approach of
[7]. Fig. 6 and Fig. 7 reveal that dynamic pattern reordering
performs significantly better than the most frequent failing
approach for all three test-cost reduction measures. This out-
come demonstrates the advantage of customizing the pattern
reordering over simply applying the most-frequently failing
patterns first.

Despite the good performance on Chip 1 and 2, the pattern
reordering method does not perform very well on Chip 3. The
metrics calculated with several Fop; and Feopece are listed in
Table. IV (randomly repeated five times). The win% is around
50%, the reduction count and reduction% are near zero, and
sometimes even negative. A reason for this outcome is that
Chip 3 is a test chip manufactured in a new technology where
defect density is extremely high, likely resulting in failures
caused by the presence of multiple defects. This explanation
is evidenced by the large number of failing patterns observed
for each failing chip. On average, each chip fails for 287
patterns, more than 1/3 of total (824) test set. In contrast,
the number of failing patterns, on average, is 124 out of
1,000, and 56 out of 500 for Chips 1 and 2, respectively. A
high failing rate suggests that a sufficient number of failing
patterns can be easily collected with the default pattern order,
which means the benefit of dynamic pattern reordering is
negligible. Although the results suggest that dynamic pattern
reordering does not provide additional benefits, the number
of test patterns does not increase, thus demonstrating the
robustness of this approach.

IV. CONCLUSION

In this work, an adaptive test pattern reordering method is
described for reducing test cost while preserving diagnosis
quality. The framework borrows the idea from the widely used
recommendation systems to “recommend” patterns to each
individual chip under test. Dynamic pattern reordering is based
on the kNN algorithm, using pattern signatures from chop
fail logs for similarity comparison. Experiments conducted

95 e 00
< .
901 = 400 R
¥ P
s 85 £ Pt ad
= £ 300 ety
£ . s v 2
= 801 Fegreet =35 £ 200
759 Feoeet =7 5
; T Feoeet =9 é* 100
1)[/ —— Most frequent
20 30 40 50 60 20 30
Fobj
(a)

PO 4 R T SR e
TR T S TEe e
T 30 g
- el
N 25 {;
g
z
" Feotieet =5 k] 15 " Feomeet=5
Fegneet =7 % 10 Feoneet=7
= Feolieet =9 5 T Feoneer=9
—+— Most frequent 0 —+— Most frequent
40 50 60 20 30 40 50 60
Fnbj Fobj
(b) (c)

Figure 6. Test reduction results for Chip 1 for varying values of Fyp;: (a) win%, (b) reduction count, and (c) reduction%.

....... =X X,
,/'/x . 8 s 1N “®" Feoteet =5
68 2 _gemmm . o L 8T 10 N
o e S pies *._ igETT T el . N Feoneet=7
e x 71 ST] el ®. e =
66 % el E e " Feoear=5 § 8 RN RN < Feoneer=9
§ 64 ,/// § 6 v 2 Feoteet =7 £ 6 ‘\\\ %.—._ —— Most frequent
= 7 — = g N Eimes, IR x
Zqlé s " Fupe=5 Es " oo™ - Tt
! - b} —+— Most frequent x 41
60 1/ Feoneet =7 2 4]
% Feoteet =9 &' 24
58 —+— Most frequent 34
20 30 40 50 60 20 30 40 50 60 20 30 40 50 60
Fﬂbj Fnbj Fohj
(a) (b) (©

Figure 7. Test reduction results for Chip 2 for varying values of Fop;: (a) win%, (b) reduction count, and (c) reduction%.

on several fabricated chips have demonstrated that dynamic
pattern reordering can collect sufficient failing patterns for
high-quality diagnosis with significantly fewer test patterns
compared to the default order or the frequency-based method
of prior work [7]. For our experiments, it is assumed that the
reordering algorithm is conducted online, which means the
CUT does not have to be taken off the tester for offline com-
putation. This assumption is reasonable because modern testers
have the computation capability to perform ML inference, so
the algorithm described in this paper is able to be conducted on
the tester with proper settings. Therefore, the test patterns can
be reordered dynamically on the tester, which means applying
the algorithm does not introduce extra test cost.

V. ACKNOWLEDGEMENT

The authors would like to thank their industrial collaborators
for providing the diagnosis and failing data that enabled the
silicon experiments in Section III.

REFERENCES

[1] J. E. Nelson et al., “Extracting Defect Density and Size Distributions
from Product ICs,” Design & Test of Computers, vol. 23, no. 5, pp.
390-400, 2006.

[2] R. D. Blanton et al., “Yield Learning through Physically Aware Diag-
nosis of IC-Failure Populations,” Design & Test of Computers, vol. 29,
no. 1, pp. 36-47, 2012.

[3]

[4]

[5]

[6]
[7]

[8

[9]

[t}

(10]

(11]
(12]

[13]

[14]

B. Benware et al., “Determining a Failure Root Cause Distribution from
a Population of Layout-aware Scan Diagnosis Results,” Design & Test
of Computers, vol. 29, no. 1, pp. 8-18, 2012.

R. D. Blanton et al, “DFM Evaluation Using IC Diagnosis Data,”
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 3, pp. 463-474, 2017.

M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital systems
testing and testable design. Computer science press New York, 1990,
vol. 2.

Tessent Diagnosis User’s Manual. Mentor Graphics, 2019.

R. Madge et al., “In Search of the Optimum Test Set-Adaptive Test
Methods for Maximum Defect Coverage and Lowest Test Cost,” Inter-
national Test Conference, pp. 203-212, 2004.

M. Grady et al., “Adaptive Testing-Cost Reduction through Test Pattern
Sampling,” International Test Conference, pp. 1-8, 2013.

S. Tanwir et al., “Information-theoretic and statistical methods of failure
log selection for improved diagnosis,” International Test Conference, pp.
1-10, 2015.

S. Tanwir, M. Hsiao, and L. Lingappan, “A Test Pattern Quality Metric
for Diagnosis of Multiple Stuck-at and Transition faults,” Great Lakes
Symposium on VLSI, pp. 455-458, 2017.

H. Wang et al., “Test-Data Volume Optimization for Diagnosis,” Design
Automation Conference, pp. 567-572, 2012.

C. Xue and R. Blanton, “Test-Set Reordering for Improving Diagnos-
ability,” VLSI Test Symposium, pp. 1-6, 2017.

G. Chen et al., “A Test Pattern Ordering Algorithm for Diagnosis with
Truncated Fail Data,” Design Automation Conference, pp. 399-404,
2006.

M. Stone, “Cross-validatory Choice and Assessment of Statistical Pre-
dictions,” Journal of the Royal Statistical Society: Series B (Method-
ological), vol. 36, no. 2, pp. 111-133, 1974.

