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The observation of the inspiral and merger of compact binaries by the LIGO-Virgo Collaboration has
allowed for new tests of Einstein’s theory in the extreme gravity regime, where gravitational interactions are
simultaneously strong, nonlinear, and dynamical. Theories beyond Einstein’s can also be constrained by
detecting the polarization modes of gravitational waves. In this paper, we show that dynamical Chern-
Simons and Einstein-dilaton-Gauss-Bonnet gravity cannot be differentiated from general relativity based
on the detection of polarization modes alone. To prove this result, we use the Newman-Penrose method and
an irreducible decomposition method to find that only the tensorial modes can be detected in both these
theories.
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I. INTRODUCTION

General relativity (GR) has passed a plethora of tests in
the Solar System [1] and in binary pulsars [2], thus making
Einstein’s theory one of the most well-verified models in
nature. However, these tests have only probed systems in
which either the gravitational field is weak, as in the Solar
System, or the field is strong but the system is weakly
dynamical, as in binary pulsars. Meanwhile, there are some
observational and theoretical anomalies that standard GR
does not provide a full answer to, such as the late-time
acceleration of the Universe, the anomalous galaxy rotation
curves [3], the matter-antimatter asymmetry of the
Universe, and the existence of singularities.
A resolution to these anomalies may reside in a modi-

fication to Einstein’s theory that passes all current tests, yet
yields deviations in other extreme regimes, such as where
the gravitational interaction is simultaneously strong, non-
linear, and highly dynamical. On the theoretical side, the
intrinsic incompatibility of GR with quantum mechanics
has prompted efforts at a variety of unified theories, from
string theory [4,5] to loop quantum gravity [6–8]. On the
phenomenological side, the observational anomalies
described above have led to a variety of extensions to
GR, such as tensor-vector-scalar theories or TeVeS [9–11],
modified gravity or MoG [12–14], and massive gravity [15]
and bigravity [16]. Whether any of these attempts at
modifying GR has anything to do with reality can only
be determined through further experiment and observation.
A class of theories that have been proposed to resolve

some of these anomalies, yet pass current constraints, are
those that correct the Einstein-Hilbert action through a
scalar field that is nonminimally coupled to squared

curvature. One subset of these theories, dynamical
Chern-Simons (dCS) gravity, was proposed as a possible
way to explain the matter-antimatter asymmetry of the
Universe by introducing additional parity-violating, gravi-
tational interactions [6,7]. Another subset, Einstein-dilaton-
Gauss-Bonnet (EdGB) gravity, was proposed to explain
late-time acceleration [17,18]. Both of these theories
can in principle escape current constraints because large
deviations from GR are activated only near spacetime
singularities [19–21].
With the observation of gravitational waves (GWs) by

the LIGO and Virgo Collaboration, it is now possible to
probe the highly dynamical and strongly curved, extreme
gravity regime [1,22–24]. The observations of GWs from
the mergers of binary compact objects, such as black holes
and neutron stars, have allowed us to place constraints on a
number of modified theories [25,26]. GWs are unique and
versatile probes to test extreme gravity, as they are weakly
interacting, and thus, travel unhindered from their sources
to our detectors. The addition of more ground-based and
space-based detectors in the near future will lead to
numerous observations that will yield the most stringent
tests for GR, as well as the most stringent constraints on
modified gravity.
In principle, GW observations can also be used to carry

out precision studies of their polarizations, particularly
allowing for constraints on nontensorial modes [27–29].
GR admits only two modes of polarization, i.e., the
þ (plus) and × (cross) polarization modes. A general
theory of gravity allows up to six polarization modes; in
addition to the two tensorial ones, the other four correspond
to two scalar modes (a longitudinal and a “breathing”
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mode) and two vector (transverse) modes. The response of
an interferometer depends strongly on the polarization
content of the impinging GW. Therefore, if enough
detectors receive a signal, one can in principle separate
all polarization modes from the data [27]. The presence of
only tensorial modes in GW signals could then both verify
GR and stringently constrain beyond-Einstein theories that
predict additional polarizations.
One can analytically obtain the polarization modes of a

GW in a particular theory by a number of methods. One
such method is the study of polarization modes of weak,
plane, and nearly null GWs using the Newman-Penrose
(NP) formalism [30]. This method can be employed along
with the E(2) classification to calculate NP scalars corre-
sponding to different polarization modes [31–33]. Another
method to discover the polarization content of GWs in a
given theory is through an irreducible decomposition
[34,35]. In this formalism, the metric is reduced into
irreducible components, namely a scalar component, two
vector component (a longitudinal and a transverse part),
and four tensor components (a trace, a longitudinal, a trace-
free, and a longitudinal-transverse and transverse-tracefree
part). Correspondingly, the field equations are reduced into
independent scalar, vector, and tensorial components,
which can be identified with radiative and nonradiative
degrees of freedom (d.o.f.).
In this paper, we study EdGB and dCS gravity and

calculate its polarization content explicitly. We employ
both the NP formalism and the irreducible decomposition
method and find that in both theories, GWs possess the two
tensorial modes, namely the þ and the × modes just as one
would observe for GWs in GR. Therefore, EdGB and dCS
gravity are examples of theories for which a polarization
test would be completely unconstraining.
The remainder of this paper deals with the details of the

results summarized above. Sections II A and II B provide a
basic introduction to dCS and EdGB gravity, respectively.
Sections III and III A introduce the NP formalism and the
E(2) classification, respectively, and we apply it to GR,
dCS, and EdGB gravity provided in Secs. IVA, IV B, and
IV C, respectively. Section V provides a very brief intro-
duction to the irreducible decomposition method, followed
by application and analysis for GR, dCS, and EdGB in
Secs. VA, V B, and V D, respectively. Section VI con-
cludes and points to future research.
Henceforth, we adopt the following conventions

throughout the paper unless otherwise mentioned: we work
in four dimensions with metric signature ð−;þ;þ;þÞ as
used in [36], Latin indices (a; b; c;…; j; k;…) in the
index list represent spatial indices, whereas Greek indices
(α; β;…) represent spacetime indices, round brackets
around indices represent symmetrization, ∂μ represents
a partial derivative, □ ¼ ∂μ∂μ, whereas ∇2 ¼ ∂j∂j, the
Einstein summation convention is employed, and we work
in geometric units in which G ¼ 1 ¼ c.

II. QUADRATIC GRAVITY THEORIES

A. Dynamical Chern-Simons gravity

This subsection provides a brief review of dCS gravity
and establishes some notation. We will be presenting a
minimal review here and direct the interested reader to the
recent review paper [7] for a more complete discussion. The
action is given by

S ¼ SEH þ SCS þ Sϑ þ Smat; ð1Þ

where the Einstein Hilbert term is

SEH ¼ κ
Z

ν
d4x

ffiffiffiffiffiffi−gp
R; ð2Þ

with κ ¼ ð16πÞ−1, R the Ricci scalar, and g the determinant
of the metric tensor gab. The CS term is

SCS ¼
α
4

Z

ν
d4x

ffiffiffiffiffiffi−gp
ϑ%RR; ð3Þ

where α is a coupling constant, %RR is the Pontryagin
density, defined via

%RR≡ %Rμ
ν
κδRν

μκδ; ð4Þ

with %Ra
b
cd the dual Riemann tensor defined as

%Rμ
ν
κδ≡ 1

2
ϵμναβRαβκδ; ð5Þ

ϑ is a pseudoscalar field, and ϵabcd is the Levi-Civita tensor.
The Pontryagin density can also be expressed as a total
divergence of a topological current that contains a combi-
nation of the product of Christoffel symbols and its
derivatives [21]. The action for the scalar field is

Sϑ ¼ −
β
2

Z

ν
d4x

ffiffiffiffiffiffi−gp ½gμνð∇μϑÞð∇νϑÞ þ 2VðϑÞ'; ð6Þ

where ∇μ is the covariant derivative operator compatible
with the metric, β is a constant that determines the
gravitational strength of the CS scalar field stress energy
distribution, while VðϑÞ is a potential for the scalar that we
set to zero. In addition to these terms, one must also include
a matter action that couples directly to the metric ten-
sor only.
The field equations for dCS gravity can be obtained by

varying the action with respect to the metric tensor and the
scalar field. These equations are

Gμν þ
α
κ
Cμν ¼

1

2κ
ðTmat

μν þ Tϑ
μνÞ; ð7Þ

β□ϑþ α
4
%RR ¼ 0; ð8Þ

WAGLE, SAFFER, and YUNES PHYS. REV. D 100, 124007 (2019)

124007-2



where□≡∇α∇α is the d’Alembertian operator, Tmat
μν is the

matter stress energy tensor, Tϑ
μν is the scalar field stress-

energy tensor, Gμν is the Einstein tensor, and Cab is the C
tensor, which contains derivatives of the scalar field and the
metric and is also trace-free in nature. The stress energy
tensor of the scalar field is given by

Tϑ
μν ¼ β

"
ð∇μϑÞð∇νϑÞ −

1

2
gμνð∇σϑÞð∇σϑÞ

#
: ð9Þ

The C tensor in Eq. (7) can be split into two separate parts,
Cμν ¼ Cμν

1 þ Cμν
2 , where

Cμν
1 ¼ ð∇σϑÞϵσδαðμ∇αRνÞδ;

Cμν
2 ¼ ð∇σ∇δϑÞ%RδðμνÞσ: ð10Þ

B. Einstein dilaton Gauss-Bonnet gravity

In this subsection, we provide a brief overview of EdGB
gravity. The action in this theory is given by

S ¼ SEH þ SEdGB þ Sϑ þ Smat; ð11Þ

where SEH and Sϑ are given by Eq. (2) and Eq. (6),
respectively. The matter action couples only to the metric.
The EdGB term is given by

SEdGB ¼
Z

d4x
ffiffiffiffiffiffi−gp

λϑG; ð12Þ

where λ is a coupling constant. The Gauss-Bonnet scalar G
can be written in terms of the Riemann tensor as

G ¼ 1

4
δμναβρσγδR

ρσ
μνR

γδ
αβ; ð13Þ

with δμναβρσγδ the generalized Kronecker delta. The field
equations in EdGB gravity take the form

Gμν þ 2λδγδκϵαβρσR
ρσ

κϵð∇α∇γϑÞδβðμgνÞδ

¼ ∇μϑ∇νϑ −
1

2
gμνð∇ρϑ∇ρϑÞ; ð14Þ

□ϑþ λG ¼ 0: ð15Þ

These equations are obtained by varying the action in
Eq. (11) with respect to the metric gμν and the scalar field ϑ,
respectively.
A note of caution regarding notation is now due. It is

customary to represent the field that couples to squared
curvature with the symbol ϑ in both dCS gravity and EdGB
gravity. However, these fields are not the same. In dCS
gravity, ϑ is a pseudoscalar field, while in EdGB gravity, ϑ
is a scalar field. We will never consider a theory where both

the dCS and EdGB corrections to the action are included
simultaneously, so it should be straightforward to see what
ϑ represents in any subsequent section of the paper by
context.

III. NEWMAN PENROSE FORMALISM

The study of GWs using tetrad and spinor calculus
gained prominence in the 1960s. Ezra Newman and Roger
Penrose came up with a formalism that combines these
calculus techniques to derive a very compact and useful set
of equations that are equivalent to the Einstein equations.
This set of equations consists of a linear combination of
equations for the Riemann tensor in terms of Ricci rotation
coefficients or spinor affine connections [30]. The different
possible components of the Riemann tensor or the Weyl
tensor in a null tetrad or a null basis were then associated
with certain quantities, called NP coefficients or NP scalars.
These coefficients provided physicists with a new tool to
understand GWs, especially since they relate directly to
GW polarization. Later, in [37,38], several authors inves-
tigated a formalism to transform from Cartesian coordi-
nates to null tetrads. In this section, we present a brief
introduction to the NP formalism and the E(2) classifica-
tion. We refer the interested reader to [39] and [37,38] for a
more in-depth discussion.

A. E(2) classification

The most general GW that a theory may predict can be
composed of six polarization modes in total, which are
characterized by the six “electric” components of the
Riemann tensor R0i0j, which govern the driving forces in
a detector [37]. Indeed, the geodesic deviation equation
states that the acceleration of a test particle with spatial
coordinates xj with respect to the origin is

ai ¼ −R0i0jxj; ð16Þ

where R0i0j are the electric components of the Riemann
tensor, due to, e.g., impinging GWs or other external
gravitational influences. One can therefore characterize a
GW just in terms of the Riemann tensor it produces.
A weak, plane, nearly null GW in any metric theory can

be defined to be a weak, propagating vacuum gravitational
field characterized by a linearized Riemann tensor that
depends only on the retarded time ũ, i.e.,

Rαβγδ ¼ RαβγδðũÞ; ð17Þ

with the wave vector normal to the surfaces of constant u,

l̃μ ¼ −ũ;μ: ð18Þ

This wave vector is almost null with respect to a certain
local Lorentz metric,
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ημνl̃μl̃ν ¼ ϵ; jϵj ≪ 1; ð19Þ

where ϵ is related to the difference in speed as measured in
a local Lorentz frame at rest in the universe rest frame,
between light and the propagating GW.
Let us now be more formal and begin by introducing a

null tetrad as a basis instead of a locally Lorentz ortho-
normal basis ðt; xjÞ. For a null plane wave propagating in
the þz direction, we define retarded time as u ¼ t − z,
while if the wave is traveling in the −z direction, then the
advanced time is v ¼ tþ z. We then define a (completely)
null basis ðlμ; nμ; mμ; m̄μÞ with

lμ ¼ −u;μ; nμ ¼ −
1

2
v;μ; ð20Þ

and in the ðt; xjÞ basis, our null tetrad vectors can be
expressed as

lμ ¼ ð1; 0; 0; 1Þ;

nμ ¼ 1

2
ð1; 0; 0;−1Þ;

mμ ¼ 1ffiffiffi
2

p ð0; 1; i; 0Þ; ð21Þ

with m̄μ the complex conjugate of mμ. These form a null
tetrad as each of the individual vectors are orthogonal with
respect to themselves, i.e.,

lμlμ ¼ 0 ¼ nμnμ;

mμmμ ¼ 0 ¼ m̄μm̄μ: ð22Þ

Also, these null vectors obey the orthonormality conditions

−lμnμ ¼ mμm̄μ ¼ 1: ð23Þ

The Minkowski metric in such a null tetrad can be
expressed as

ημν ¼ −2lðμnνÞ þ 2mðμm̄νÞ; ð24Þ

which in matrix form is simply

ημν ¼ ημν ¼

2

6664

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

3

7775: ð25Þ

Using such a null tetrad, Newman and Penrose found a
set of coefficients (NP coefficients) that describe the
radiative modes of the gravitational field [30]. These
coefficients depend on the Weyl tensor, the traceless
Ricci tensor, and the Ricci scalar. Correspondingly, these
coefficients can also be expressed in terms of the Riemann

tensor. Using the geodesic deviation equation and the fact
that the Riemann tensor for a GW as defined above just
depends on retarded time, it can be shown that the only
nonvanishing components of the Riemann tensor are of the
form Rnpnq with p; q ∈ ðl; m; m̄Þ in the chosen null tetrad.
We have here introduced the contracted tetrad notation,
where, for example,

Rnlnl ¼ Rμναβnμlνnαlβ: ð26Þ

In general, a tensor in the null basis can be expressed in the
Cartesian basis as

Aapb… ¼ Aαβγ(((aαpβbγ…; ð27Þ

where ða; b; c;…; oÞ can be any of ðl; n;m; m̄Þ, while
ðp; q; r;…; wÞ can only be one of ðl; m; m̄Þ, while the
Greek indices run over ðt; x; y; zÞ.
We can also define null vector fields such that l ¼ lμeμ,

n ¼ nμeμ, m ¼ mμeμ, and similar for m̄. Since these form
a complete set of basis vectors, we can expand the GW
vector l̃μ in terms of them. However, since we are working
with a nearly null GW, the expansion of l̃μ depends on the
velocity of the observer’s local frame relative to the global
rest frame. Choosing a preferred observer whose frame is at
rest with respect to the global rest frame, we have

l̃μ ¼ lμð1þ ϵlÞ þ ϵnnμ þ ϵmmμ þ ϵm̄m̄μ: ð28Þ

This chosen observer is free to orient her spatial basis such
that GWs and her null wave are parallel, and she can choose
a frequency such that it is equal to that of GW. These
conditions reduce Eq. (28) to the form,

l̃μ ¼ lμ − ϵn

$
1

2
lμ − nμ

%
: ð29Þ

There are clearly no components of l̃μ along m or m̄μ.
Putting all of this information together, the independent

nonvanishing coefficients for a nearly null, plane GW in the
preferred tetrad have the form

Ψ2 ¼ −
1

6
Rnlnl; Ψ3 ¼ −

1

2
Rnlnm̄;

Ψ4 ¼ −Rnm̄nm̄; Φ22 ¼ −Rnmnm̄; ð30Þ

where Ψ3 and Ψ4 are complex scalars. One can further
show that each of these scalars represents a different
polarization mode, each of which affects the way matter
responds to an impinging GW differently, as shown in
Fig. 1.
Let us now consider the functional form NP scalars take

for GWs. A GW can be represented in metric form via the
decomposition
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gμν ¼ ημν þ pμν; ð31Þ

where pμν is the GW metric perturbation. The Riemann
tensor for such a linearized metric takes the form

Rμναβ ¼
1

2
ðpμβ;αν − pμα;βν þ pνα;βν − pνβ;αμÞ; ð32Þ

but the Riemann tensor, and thus the GW metric perturba-
tion, must be a function of the retarded time u. Therefore, in
the null basis, Eq. (32) can be expressed as

Rabcd ¼
1

2
ðl̃cl̃bp̈ad − l̃dl̃bp̈ac þ l̃dl̃ap̈bc − l̃cl̃ap̈bdÞ; ð33Þ

where ða; b; c; dÞ can again be any of ðl; n;m; m̄Þ. With
this at hand, Eq. (30) can be rewritten in terms of the

corresponding Ricci tensor components or even in terms of
the metric perturbation as

Ψ2 ¼ −
1

6
Rnl ¼

1

12
p̈ll; Ψ3 ¼ −

1

2
Rnm̄ ¼ 1

4
p̈lm̄;

Ψ4 ¼
1

2
p̈m̄ m̄; Φ22 ¼ −

1

2
Rnn ¼

1

2
p̈mm̄: ð34Þ

Based on this, we can now organize gravity theories into
different classes. For an exactly null wave, these classes are
as follows:

(i) Class II6: Ψ2 ≠ 0. All other NP scalars are observer
dependent.

(ii) Class III5: Ψ2 ¼ 0, Ψ3 ≠ 0. All other NP scalars are
observer dependent.

(iii) Class N3: Ψ2 ≡Ψ3 ¼ 0;Ψ4 ≠ 0;Φ22 ≠ 0.
(iv) Class N2: Ψ2 ≡Ψ3 ≡Φ22 ¼ 0;Ψ4 ≠ 0.
(v) Class O1: Ψ2 ≡Ψ3 ≡ Ψ4 ¼ 0;Φ22 ≠ 0.
(vi) Class O0: Ψ2 ≡Ψ3 ≡Φ22 ≡ Ψ4 ¼ 0.

The GWs of GR are therefore of class N2, while those of
scalar-tensor theories, which contain a breathing mode in
addition to the two tensorial modes, are of class N3. More
details about E(2) classification can be found in [39].

IV. GW POLARIZATION THROUGH
THE NP FORMALISM

In this section, we present a calculation using the
techniques presented in the previous subsection. We begin
by presenting a brief calculation to obtain the polarization
modes in GR followed by application of the NP formalism
to obtain the polarization modes in dCS and EdGB.

A. Polarization modes in GR

Before we start with quadratic theories of gravity such as
dCS and EdGB, let us first try to calculate the polarization
modes using NP scalars in GR as a pedagogical warm-up.
We begin by considering the field equation for GR in trace-
reversed form,

Rμν ¼ 8π

$
Tμν −

1

2
gμνT

%
: ð35Þ

The right-hand side of this equation is zero since we
assume GWs are propagating in vacuum, and thus Rμν ¼ 0.
Therefore, in the chosen null tetrad, we have

Rnn ¼ 0; Rnl ¼ 0; Rnm̄ ¼ 0; ð36Þ

and thus, Ψ2 ¼ 0 ¼ Ψ3 ¼ Φ22. The only unconstrained NP
scalar is Ψ4. From this, we conclude that GWs in GR are
purely tensorial; i.e., only theþ and ×modes exist, and the
theory is of class N2 as already anticipated.

FIG. 1. The impact of the six polarization modes [(a) plus
mode, (b) cross mode, (c) breathing mode, (d) longitudinal mode,
(e) vector-x mode, and (f) vector-y mode] of weak, plane, nearly
null GW, permitted in a general, four-dimensional theory of
gravity, on a ring of test particles. The red, blue, and green colors
correspond to the tensor, scalar, and vector modes, respectively.
The circled dots in (a), (b), and (c) indicate the wave propagating
out of the page. All modes (a)–(f) are propagating in the þz
direction. The solid line shows the displacement that each mode
induces on a ring of test particles in the x-y plane, while the
dashed line indicates the displacement after half a period.
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B. Polarization modes in dCS gravity

Let us now focus on the polarization modes of GWs in
dCS gravity using NP formalism and the E(2) classification
formalism discussed in Sec. III A. The essence of this
calculation lies in expressing Eq. (7) such that we isolate
the Ricci tensor on the left-hand side, which we can achieve
by reversing the trace. Doing so, Eq. (7) becomes

Rμν ¼
1

2κ

"
TM
μν −

1

2
gμνTM

#
þ 1

2κ
½βð∇μϑÞð∇νϑÞ'

−
α
κ
½ð∇σϑÞϵσδαðμ∇αRνÞδ þ ð∇σ∇δϑÞ%Rδ

ðμνÞ
σ'; ð37Þ

where the first term is a combination of the matter stress
energy tensor and its trace, both of which we set to zero
henceforth, since again we focus only on GWs propagating
in vacuum. The second term is the trace-reversed form of
the stress energy tensor of the scalar field in Eq. (9), and the
last term is simply the C tensor in Eq. (10) because this
quantity is naturally trace-free.
Now that we have the first field equation in the form we

require, let us analyze the scalar field evolution in Eq. (8).
The right-hand side of Eq. (8) is the Pontryagin density, but
when considering GWs, we must work in the far field limit,
where this density vanishes. Thus, we have a second
equation of the form,

□ϑ ¼ 0: ð38Þ

The above equation simply tells us that the scalar field ϑ is a
free wave, which we can represent as

ϑ ¼ Aeiqμxμ ; ð39Þ

where A is its amplitude and qμ is its 4-wave number (or
familiarly, ðω; kx; ky; kzÞ in Cartesian coordinates).
Moreover, since the wave operator is that of Minkowski
in the far zone, we must have that the scalar wave is null:

qμqμ ¼ 0: ð40Þ

With this at hand, and using Eq. (39) in Eq. (37), the field
equations become

Rμν ¼
β
2κ

½−A2qμqνe2iq·x'

−
α
κ
½ðAiqσeiq·xÞϵσδαðμ∂αRνÞδ − ðAqσqδeiq·xÞ%Rδ

ðμνÞ
σ';

ð41Þ

where q · x ≔ qμxμ. The different polarization modes con-
tained in Eq. (34) can be obtained by considering the
individual, independent components of Eq. (41), which we
analyze individually below.

1. Analysis of Ψ2

From Eq. (34), we know that

Ψ2 ¼ −
1

6
Rnl

¼ −
β
12κ

½−A2qnqle2iq·x'

þ α
6κ

½ðAiqσeiq·xÞϵσδαðn∂αRlÞδ − ðAqσqδeiq·xÞ%Rδ
ðnlÞ

σ':

ð42Þ

Recall that we are considering a weak, plane, nearly null
GW, and so the Riemann tensor is only a function of the
retarded time [as stated in Eq. (17)]. Combining this with
Eqs. (8), (38), and (39), we can conclude that the wave
vector qμ will only have a nonvanishing component along
the retarded time, or equivalently along lμ in terms of the
null tetrad under consideration. Thus, the only nonvanish-
ing component is ql or qn by means of Eq. (25). This then
implies that the first term in Eq. (42) does not contribute
at all.
Let us now consider the second term of Eq. (42). The

Levi-Civita tensor in the second term is nonvanishing only
when the superscript indices α and δ are equal to m or m̄.
This is because one of the superscript indices of the Levi-
Civita tensor is either n or l (due to the symmetrizer), while
the σ superscript index must contract onto qσ, which is
nonvanishing only in the nμ direction. Since the metric
perturbation is a function of retarded time only, the Ricci
tensor must also be a function of retarded time, which
means we can write

∂αRνδ ¼ l̃α _Rνδ; ð43Þ

and this is the only nonvanishing derivative of the Ricci
tensor. By definition of l̃μ, we have that l̃μ ¼ lμ for a
perfectly null GW, whereas for a nearly null GW, we have
Eq. (29). However, the second term of Eq. (42) needs the α
index to be either m or m̄, which means that upon
contraction with the l̃α generated from the partial derivative
one finds either l̃m or l̃m̄, both of which are zero. Therefore,
the second term of Eq. (29) also vanishes. Applying a
similar treatment to the third term in Eq. (42), one can
easily show that it also vanishes.
With all of this at hand, we then have that Rnl ¼ 0 and

thus

Ψ2 ¼ 0 ð44Þ

in dCS gravity. The physical implication of this math-
ematical result is that GWs in dCS gravity have no
longitudinal modes.

WAGLE, SAFFER, and YUNES PHYS. REV. D 100, 124007 (2019)

124007-6



2. Analysis of Ψ3

Let us now follow a similar approach to study Ψ3.
Equation (41) says that

Ψ3 ¼−
β
4κ

½−A2qnqm̄e2iq·x'

þ α
2κ

½ðAiqσeiq·xÞϵσδαðn∂αRm̄Þδ− ðAqσqδeiq·xÞ%Rδ
ðnm̄Þ

σ':

ð45Þ

The first term in the above equation vanishes since qm ¼ 0.
Following the same arguments as those used forΨ2 one can
also show that the second and the third terms of Eq. (45)
vanish, using Eqs. (27) and (33) and the orthogonality
conditions in Eq. (22).
Combining these results with Eq. (34), we then find

Ψ3 ¼ 0: ð46Þ

The physical interpretation of this mathematical result is
that GWs in dCS gravity have no vector modes.

3. Analysis of Φ22

Let us now study the breathing mode. Equation (41) says
that

Φ22¼−
β
4κ

½−A2qnqne2iq·x'

þ α
2κ

½ðAiqσeiq·xÞϵσδαðn∂αRnÞδ− ðAqσqδeiq·xÞ%Rδ
ðnnÞ

σ':

ð47Þ

As before, the second term in the above equation vanishes
by arguments similar to those presented in Sec. IV B 1,
whereas the third term vanishes by the definition of the
wave 4-vector, the dual Riemann tensor, and the Levi-
Civita tensor. However, the first term does not vanish by the
characteristics of the GW established previously.
The above arguments imply that, in general, Φ22, and

thus the breathing mode of GWs in dCS gravity is not
vanishing. However, GWs are always defined in terms of
the 1=r part of the radiative field. Since qn falls off as
Oðr−1Þ, it is then clear thatΦ22 falls of asOðr−2Þ. In the far
field, then, we have that

Φ22 → 0 as r → ∞ ð48Þ

and the breathing mode of GWs in dCS gravity vanishes.

4. Analysis of Ψ4

Combining Eqs. (30), (34), and (41), it can be seen that
there are no constraints possible on the Ψ4 mode. Thus, in
dCS gravity,Ψ4, or theþ and × polarization modes, cannot
be constrained with the use of the field equations.

From the above analysis, we can see that Ψ4 and Φ22 are
the nonvanishing NP scalars in general with Φ22 having a
Oðr−2Þ dependence. Therefore, one might be able to
conclude that dCS is a Class N3 theory behaving as a
Class N2 theory in the far field limit. However, this is not
entirely true. The reason lies in the definitions of
Eq. (34). GWs in general are defined as the 1=r part of
the radiative field far away from the source. This means that
we only need to take into consideration the terms of
Eq. (41) that are nonvanishing and scale as Oðr−1Þ. We
can therefore conclude that the nonvanishing part of Rnn or
Φ22 is not the term that actively contributes to the GW.With
all these arguments, we can conclude that for a weak, plane,
nearly null GW, an observer can only detect the þ and ×
polarization modes, just as one would observe in GR.
Under the E(2) classification, dCS therefore always
behaves as a Class N2 theory.
At this junction, it is convenient to compare the above

result to that of scalar-tensor theories. In such theories, the
field equations are quite similar to those in Eq. (37), except
for three observations. First, there is no nonminimal
coupling between the scalar field and quadratic curvature
invariants, so the third term on the right-hand side of
Eq. (37) is absent. Second, the second term on the right-
hand side of this equation is multiplied by ϑ−2, but since the
field is typically assumed to have some cosmological
boundary value, this term is still quadratic in the amplitude
of the scalar field perturbation. Third, the field equations of
scalar-tensor theories have an extra term on the right-hand
side of Eq. (37) that is proportional to ϑ−1∂μνϑ, which is
linear in the amplitude of the scalar field perturbation. This
term arises because the scalar-tensor action has a scalar
field multiplying the Ricci scalar, which then leads to
nonvanishing contributions when varying the action with
respect to the metric tensor and integrating by parts. It is
this term in the action of scalar-tensor theories that
generates a nonvanishing Φ22 NP scalar, and thus a non-
vanishing breathing mode. In dCS, however, this extra term
is not present because the Ricci scalar is not multiplied by
ϑ, with the field only coupling to the metric through
squared curvature invariants, thus explaining why dCS
gravity does not possess a breathing mode.

C. Polarization modes in EdGB gravity

Let us finally consider the polarization modes of GWs in
EdGB gravity. We will not provide here as many details as
in the dCS gravity case, as the procedure is fairly similar in
essence. Instead, we refer the interested reader to the
Appendix.
The evolution equation for the scalar field is identical to

that in dCS gravity. This is because the geometry of the
source of our GWs does not affect the observer, so once
more, one finds a wave equation in flat spacetime for the
scalar field, whose solution is of the form of Eq. (39). The
evolution of the GW metric perturbation is controlled by
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the trace-reversed form of field equations in Eq. (14). Such
a trace-reversed form is

Rμν ¼
"
TM
μν −

1

2
gμνTM

#
þ ½ð∂μϑÞð∂νϑÞ'

− 2λδγδκϵαβρσR
ρσ

κϵð∂α∂γϑÞδβðμgνÞδ; ð49Þ

which clearly takes a form quite similar to Eq. (8). Again,
since we are working in vacuum, the first term of the above
equation is zero. The second term is the same as that in dCS
gravity, and thus, it is formally nonvanishing only for the
breathing mode, but then again it vanishes in the far field
limit. The third term also vanishes for a plane, null GW
propagating along the null direction associated with
retarded time. This can be shown through Eqs. (25),
(39), and (33), along with the orthogonality conditions
in Eq. (22). Just as in the case for dCS, the Ψ4 mode
remains unconstrained.
These arguments lead us to the conclusion that GWs

emitted in EdGB gravity can only possess GW polarization
modes associated with Ψ4 and Φ22. However, as discussed
earlier, Φ22 does not contribute to the GW perturbation,
because GWs are defined as the 1=r part of the radiative
perturbation. Therefore, the only true nonvanishing NP
scalar isΨ4. This means that, just as for GR, only theþ and
× polarization modes are nonvanishing, thereby making
EdGB a class N2 theory under the E(2) classification.

V. IRREDUCIBLE DECOMPOSITION

In this section, we present a brief overview of an
alternate way of identifying the polarization modes by
decomposing the metric into irreducible components. Such
a decomposition allows us to clearly identify the d.o.f.
present in any theory. As far as we know, this treatment for
a linearized theory was first suggested in [34].
The metric perturbation transforms as a tensor field

under Lorentz transformations in Minkowski spacetime.
Such a transformation includes boosts and rotations.
Ignoring the boosts and just focusing on pure rotations,
p00 transforms as a scalar, p0j transforms as a 3-vector, and
pjk transforms as a 3-tensor, where pμν is the metric
perturbation as defined in Eq. (31). In the Cartesian basis,
one can think of the (0,0) component of the metric
perturbation as the ðt; tÞ component, while the subscripts
ðj; kÞ ∈ ðx; y; zÞ. These quantities can be decomposed
further into their irreducible pieces. Thus, p0j decomposes
into a longitudinal and a transverse piece, whereas pjk

decomposes into a trace, a longitudinal and trace-free piece,
a longitudinal and transverse piece, and a transverse and
trace-free piece. Thus, such a decomposition portrays all
possible d.o.f. contained in the metric perturbation pμν.
Following [35], one can express these components of the

metric perturbation as

p00 ¼ 2U;

p0j ¼ −4Uj − ∂jA;

pjk ¼ 2δjkV þ
$
∂jk −

1

3
δjk∇2

%
Bþ ð∂jBk þ ∂kBjÞ þ hTTjk ;

ð50Þ

where U, V, A, B are scalars, Uj and Bj are 3-vectors, and
hTTjk is a transverse-traceless 3-tensor. These quantities
satisfy the conditions

∂jUj ¼ 0;

∂jBj ¼ 0;

∂kh
jk
TT ¼ 0 ¼ δjkh

jk
TT; ð51Þ

which imply that Uj and Bj are transverse 3-vectors.
All these individual pieces of the metric perturbation are

also gauge invariant. Thus, without loss of generality, we
can choose the Coulomb gauge, in which

A ¼ B ¼ Bj ¼ 0; ð52Þ

such that the components of metric perturbation become

p00 ¼ 2U;

p0j ¼ −4Uj;

pjk ¼ 2δjkV þ hTTjk : ð53Þ

From these components, we can also construct gauge-
invariant potentials, which are given by

Φ ¼ U; Φj ¼ Uj; Ψ ¼ V; ð54Þ

and which are clearly essentially equivalent to the gravi-
tational potentials in the Coulomb gauge, making this
gauge meaningful and convenient. The gauge invariant
potentials represent the d.o.f. of the gravitational field. The
two scalar potentials, Φ and Ψ, the 3-vector potential Φj
with its two independent components, and the 3-tensor
potential hTTjk with its two independent components, re-
present the six independent d.o.f. required to describe all
possible GW polarizations in a generic theory of gravity
(see also Fig. 1).

A. Irreducible decomposition in GR

We can now apply the treatment mentioned above to
reduce the field equation of GR into independent irreduc-
ible pieces. For a GW, the linearized Einstein tensor
depends on the metric perturbation via
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Gαβ ¼ −
1

2
ð□pαβ þ ∂αβp − ∂αμpμ

β − ∂βμpμ
αÞ

þ 1

2
ηαβð□p − ∂μνpμνÞ; ð55Þ

where p ¼ ηαβpαβ is the flat spacetime trace. Using
Eqs. (53)–(55), we can express the individual components
of the Einstein tensor as

G00 ¼ −2∇2Ψ;
G0j ¼ −2∂tjΨþ 2∇2Φj;

Gjk ¼ −δjk∇2ðΦ −ΨÞ − 2δjk∂ttΨþ ∂jkðΦ −ΨÞ

þ 2ð∂tjΦk þ ∂tkΦjÞ −
1

2
□hTTjk : ð56Þ

The Einstein tensor is now fully decomposed into its
irreducible pieces. Now, the right-hand side of the field
equation, Eq. (35) involves a stress energy tensor.
Let us now focus on the right-hand side of the Einstein

equations. The stress energy tensor can be decomposed into
its own irreducible pieces as

T00 ¼ ρ;

T0j ¼ ðsj þ ∂jsÞ;

Tjk ¼ τδjk þ ∂jkσ −
1

3
δjk∇2σ þ 2∂ðjσkÞ þ σjk; ð57Þ

where ρ is the mass density of the matter distribution
measured by an observer at rest, ðsj þ ∂jsÞ or T0j is the
momentum density, and Tjk is the stress tensor. These
quantities satisfy the conditions

∂jsj ¼ 0; ∂jσj ¼ 0; ∂kσjk ¼ 0 ¼ δjkσjk; ð58Þ

which imply that sj and σjk are transverse.
Energy-momentum conservation in linearized theory

reveals that not all of the ten fields in Eq. (57) are
independent. Using that ∂βTαβ ¼ 0, one finds that

∇2s ¼ −∂tρ;

∇2σj ¼ −∂tsj;

∇2σ ¼ −
3

2
ð∂tsþ τÞ: ð59Þ

This implies that only ρ, sj, τ, and σjk are independent,
while the other four fields can be determined in terms of
them through the equations above. Combining these
expressions with the linearized Einstein equations
implies that

∇2Ψ ¼ −4πρ;

∇2ðΦ −ΨÞ ¼ −12πð∂tsþ τÞ;
∇2Φj ¼ −4πsj;
□hTTjk ¼ −16πσjk: ð60Þ

The first three equations above are (elliptic) Poisson
equations, and therefore, the solutions at a particular time
depend only on the matter configuration at that particular
time. In this sense, the 4 d.o.f. contained in ðΨ;Φ;ΦjÞ are
constrained by the field equations and do not represent
radiative modes. On the other hand, the last equation is a
(hyperbolic) wave equation in flat spacetime, which means
that hTTjk clearly represents a radiative mode, corresponding
to the two polarization modes ðhþ; h×Þ of GR. Such a
gauge invariant formulation of GWs thus separates the
radiative modes from the nonradiative ones.

B. Irreducible decomposition in dCS gravity

Let us now focus on dCS gravity and compare the results
of an irreducible decomposition to those obtained from the
NP method in Sec. IV B.
Consider the field equations in dCS gravity in Eq. (7). The

left-hand side of this equation is completely geometric in
nature, whereas the right-hand side depends on the matter-
energy and scalar field content of the system under consid-
eration.We can again decompose ourmetric perturbation into
scalar, vector, and tensor parts, as in Eq. (53), which allows us
to decompose the geometric part of Eq. (7). The right-hand
side of the field equations consists of two independent parts—
matter stress-energy tensor and a scalar field stress-energy
tensor—both of which we can again decompose into irre-
ducible pieces using Eqs. (57), (9), and (53). Since Eq. (8)
behaves as awave equation in the far zone, the scalar field can
be expressed by means of Eq. (39) as before.
By following the steps mentioned above, we obtain the

decomposed field equations for dCS gravity

∇2Ψþ α
κ
ϵαγδηnαnβqγϑð∂ηδ

βΨÞ

¼ β
8κ

qμqμϑ2 þ
β
4κ

nαnβqαqβϑ2 −
ρ
4κ

; ð61Þ

2∇2Φj −
4α
κ
ϵjβγδqαqβϑ∂αδΦγ þ 2α

κ
ϵjβδηnβnαqγqδϑ∂α

ηΦγ

−
2α
κ
ϵβγδηnβnαqγϑ∂η

α
ðδjΦjjÞ −

α
κ
ϵjγδηnαnβqγϑ∂η

αβΦδ

− 2α
κ
ϵβγδηnαnβqαqγϑ∂j

ηΦδ ¼ β
2κ

nαqαqjϑ2 −
sj
2κ

; ð62Þ

δjk∇2ðΦ − ΨÞ − α
2κ

ϵðkjαβγqαϑ∂γβ
jjÞðΦ −ΨÞ

¼ −
3

4κ
δjkð∂tsþ τÞ þ β

2κ
qjqkϑ2; ð63Þ
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□hTTjk þ 4α
κ

"
ϵðkjβγδqαqβϑ∂αδhTTjjÞγ þ

1

2
ϵðkjαβδqαϑ∂δ□hTTjjÞβ

− ϵðkjβγδqαqβϑ∂ jjÞδhTTαγ

#
¼ −

σjk
κ

; ð64Þ

where we have used the notation ∂αβ ¼ ∂α∂β and
∂αβγ ¼ ∂α∂β∂γ , and where nα is the normal 4-vector
pointing along the direction of propagation. These equa-
tions are analogous to Eq. (60), with certain modifications
that depend on the scalar field, so let us analyze them term
by term.
Before doing so, however, it is useful to remember a few

facts we discovered in the NP method section. For the GWs
under consideration, we have already established that the
Riemann tensor, and therefore the metric perturbation, are
functions of retarded time u only. Therefore, ∂upαβ ≠ 0,
where ∂u is the partial derivative with respect to retarded
time. When written in terms of null coordinates, by virtue
of the chain rule, only the partial derivative of the metric
perturbation with respect to the lμ tetrad is nonvanishing.
Another important fact is that qα ¼ ðql; 0; 0; 0Þ.
Using these facts, one can use tensor manipulations to

show that a number of terms in Eqs. (61)–(64) vanish
identically. The reader familiar with these kinds of manip-
ulations should skip to below Eq. (71).

C. Detailed manipulation of Eqs. (61)–(64)
We will analyze each term in Eqs. (61)–(64) separately.

Let us begin the analysis with Eq. (61). Without loss of
generality, we can use a coordinate system of the form
ðu; v; x; yÞ where u is retarded time and v is advanced time,
as defined in previous sections. The normal 4-vector is then
of the form nα ¼ ð1; 0; 0; 0Þ, as it points along the direction
of propagation. Therefore, Eq. (61) takes the form

∇2Ψþ α
κ
ϵuuδηnunuquϑð∂ηδ

uΨÞ

¼ β
8κ

qμqμϑ2 þ
β
4κ

nunuququϑ2 −
ρ
4κ

: ð65Þ

The second term on the left-hand side vanishes by
definition of the Levi-Civita tensor, while the first term
on the right-hand side vanishes because wave 4-vector is
null, and the second term on the right-hand side vanishes
because qu ¼ 0 [recall that qu ≠ 0, but qu ¼ ηuuqu and
ηuu ¼ 0, similar to what we have in Eq. (25)]. Therefore,
Eq. (61) is of the form

∇2Ψ ¼ −
ρ
4κ

: ð66Þ

We will now continue to use a similar approach for
Eq. (62). It is important to realize that Φj is transverse,
which means it only has nonvanishing x and y components
in the Cartesian basis or in our ðu; v; x; yÞ coordinate

system. Let us begin by setting j ¼ x in Eq. (62) (similar
arguments would hold under the transformation x ↔ y), so
that using the definitions of nα and qα, Eq. (62) reduces to

2∇2Φj−
4α
κ
ϵxuyvququϑ∂uvΦyþ2α

κ
ϵjuuηnunuququϑ∂u

ηΦu

−
2α
κ
ϵuuδηnunuquϑ∂η

u
ðδjΦjjÞ−

α
κ
ϵxuyvnunuquϑ∂vuuΦy

−
2α
κ
ϵuuδηðnuquÞnuquϑ∂j

ηΦδ ¼ β
2κ

nuquqjϑ2−
sj
2κ

: ð67Þ

SinceΦj is just a function of retarded time, it is clear that
the second term and the fifth term on the left-hand side of
Eq. (67) vanish. The third, fourth, and sixth terms on the
left-hand side are zero by the properties of the Levi-Civita
tensor, while the first term on the right-hand side is zero
because nμ points along qμ and the latter is null by the
equation of motion of the scalar field. We can thus see that
Eq. (62) is of the form

∇2Φj ¼ −
sj
4κ

: ð68Þ

Equation (63) can be rewritten as

δjk∇2ðΦ −ΨÞ − α
2κ

ϵðkjuβγquϑ∂γβ
jjÞðΦ −ΨÞ

¼ −
3

4κ
δjkð∂tsþ τÞ þ β

2κ
qjqkϑ2; ð69Þ

where here ðj; kÞ ∈ ðx; yÞ. Since Ψ and Φ are functions of
retarded time u only, the second term on the left-hand side
vanishes, since Ψ;x ¼ 0 ¼ Ψ;y and Φ;x ¼ 0 ¼ Φ;y. The
second term on the right-hand side also vanishes because
the wave 4-vector qμ points in the direction of propagation
(along u). Therefore, with the above analysis, Eq. (63) can
be expressed as

∇2ðΦ −ΨÞ ¼ −
3

4κ
ð∂tsþ τÞ: ð70Þ

Let us finally look at Eq. (64). The field hTTαβ is the
transverse-traceless part of the metric perturbation in our
irreducible decomposition. The transverse nature of this
term means that α and β must be either x or y for a GW
propagating along the u direction. This implies that only
the ðx; xÞ, ðx; yÞ, and ðy; yÞ components of hTTαβ can be
nonvanishing. This, in turn, implies that the fourth term on
the left-hand side of Eq. (64) vanishes because hTTαβ is
contracted onto the wave vector qα which points in the u
direction. Similarly, the second and the third terms of
Eq. (64) can be shown to vanish using the arguments above
and the dependence of hTT on retarded time. Therefore, we
are left with
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□hTTjk ¼ −
σjk
κ

: ð71Þ

We have now shown in excruciating detail that the
complicated Eqs. (61)–(64) reduce to Eqs. (66), (68), (70),
and (71). The latter are exactly the same as Eq. (60) of GR.
Equations (66), (68), and (70) are (elliptic) Poisson equations,
and therefore, at a particular time, the solutions depend on the
matter configuration only, and the 4 d.o.f. described byΨ,Φ,
and Φj do not represent radiative modes. Equation (71), on
the other hand, is a hyperbolic equation, and it must thus

represent a radiative mode corresponding to tensorial polari-
zation modes þ and ×. These are the same GW modes that
survive in GR, which confirms the results of Sec. IVB.

D. Irreducible decomposition in EdGB

In this subsection, we present a brief calculation to obtain
the polarization modes for EdGB gravity by decomposition
of the metric into irreducible pieces. This subsection is very
similar in essence to Sec. V B. The decomposed equations
of motion in EdGB gravity take the form

2∇2Ψþ 8λqβqαϑð∂β∂αΨÞ þ 32λnαnβqαqγϑð∂γ∂βΨÞ − 16λnαnβqαqβϑð∇2ΨÞ ¼ −ρþ nαnβqαqβϑ2; ð72Þ

2∇2Φj − 16λnαnβqγqjϑ∂αβΦγ − 16λqαqβϑ∂αβΦj − 16λnαnβqαqγϑ∂γβΦj

þ 16λqαqβϑ∂jβΦα þ 16λnαnβqαqγϑ∂jβΦγ − 16λnαnβqαqγϑ∂γβΦj þ 16λnαnβqαqjϑ∇2Φβ

þ 16λnαnβqαqβϑ∇2Φj ¼ −sj þ nαqαqj; ð73Þ

δjk∇2ðΦ − ΨÞ ¼ −
3

4
δjkð∂tsþ τÞ þ qjqkϑ2; ð74Þ

1

2
□hTTjk þ 8λqαqðkjϑ□hTTjjÞα − 2λqαqβϑ∂ðjjβhTTjkÞα − 4λδjkqαqβϑ□hTTαβ ¼ −σjk: ð75Þ

Using the definitions of qα and nα, along with the fact
that the metric perturbation is only a function of retarded
time, and noting that Φα (hTTαβ ) are transverse and thus they
only possess nonvanishing x and y [ðx; xÞ, ðx; yÞ, and
ðy; yÞ] components, the above equations can be shown to
reduce to the form

2∇2Ψþ 8λququϑð∂u∂uΨÞ ¼ −ρ; ð76Þ

2∇2Φj − 16λququϑ∂uuΦj ¼ −sj; ð77Þ

δjk∇2ðΦ −ΨÞ ¼ −
3

4
δjkð∂tsþ τÞ; ð78Þ

1

2
□hTTjk ¼ −σjk; ð79Þ

after some tensor manipulations. However, recall that when
we solved the wave equation for the scalar field [Eq. (38)],
we worked in the far field limit and kept only the leading
1=r term in the solution. Therefore, in the far field limit, the
second terms on the left-hand sides of Eqs. (76) and (77)
are subdominant because they fall off a factor of 1=r faster
than the first terms on the left-hand sides of Eqs. (76)
and (77).
As in the dCS gravity case, Eqs. (76)–(79) of EdGB

gravity are the same as those in GR [see Eq. (60)], after
discarding subdominant terms. Equations (76)–(78) are
elliptic, and thus, their solutions only depend on the matter

configuration at a particular time instant, implying that Ψ,
Φ, and Φj are not radiative d.o.f. On the other hand,
Eq. (79) is hyperbolic, and thus, it describes a radiative
d.o.f. We can therefore conclude that, as GR, GWs in
EdGB only possess two modes of polarization, namely the
þ and × modes. This result is also in agreement with those
obtained in Sec. IV C.

VI. DISCUSSIONS

We have here used two distinct methods to calculate and
verify the polarization content of weak, plane, nearly null
GWs in two different quadratic theories of gravity, namely
dCS and EdGB gravity. The methods consisted of the
Newman-Penrose formalism coupled to the E(2) classifi-
cation, as well as an irreducible decomposition. We have
found out that in both theories, the nonvanishing polar-
izations are the two tensorial modes of GR (the þ and ×
GW modes).
This work, of course, is not the first to calculate the

nonvanishing polarization modes in dCS and EdGB grav-
ity. In the early 2000s, Jackiw and Pi [40] calculated the
polarization modes for nondynamical Chern-Simons
theory. This theory, however, is quite distinct from dCS
gravity, because the scalar in the former was prescribed
a priori and not allowed to vary dynamically, rendering the
theory overconstrained in certain scenarios [41,42]. The
polarization modes in dCS gravity were studied later in
[41], considering a pp-wave spacetime and finding the
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same results obtained in our paper. The work of [41],
however, was limited to a pp-wave spacetime and only
considered the evolution of the breathing mode, without
studying the possibility of vector modes. Finally and more
recently, the authors of [43] showed that as one approaches
future null infinity Iþ, the trace of the metric perturbation
obeys a wave equation, and thus, one can use the TT gauge
to model GW polarizations in the far zone, implying that
only the þ and × GW modes survive at Iþ. The work of
[43], however, did not study why or how the other potential
polarization modes are suppressed in dCS gravity.
The results presented here confirm and extend the results

of earlier papers on dCS gravity, arriving at the same
conclusions by exploring the why and the how in more
detail through two techniques that had not been explored
before. Moreover, we applied the same techniques to EdGB
gravity, arriving again at the same results as in dCS gravity,
though it seems this is the first time these results appear in
the literature. Our work therefore shows, in a pedagogical
way, how to calculate the evolution equation for different
polarization modes in modified theories of gravity.
Our results also have important implications for gravi-

tational wave tests of GR. In the near future, the detection
of GWs through multiple interferometers, or through space-
based instruments, hold the key to measure the polarization
content of GWs. If future observations can show that only
the twoþ and×modes are present in nature, this could be a
death blow to many modified theories. We here show
clearly that this is not the case in general. In dCS and EdGB
gravity, as well as probably in other theories of gravity, the
polarization content of GWs remains the same as in GR,
and thus, polarization tests of GR with GWs are uninform-
ative. The best avenue to constrain these theories, therefore,
continues to be the dynamical late inspiral and merger
phase of coalescing binaries [44].
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APPENDIX: DETAILED CALCULATION OF THE
POLARIZATION MODES IN EDGB GRAVITY

USING THE NP METHOD

Let us begin by considering the scalar field evolution
controlled by Eq. (15). Since the Gauss-Bonnet invariant G,
defined by Eq. (13), decays fast in the far zone, the
interaction term vanishes. One is then left with a free wave
equation in flat spacetime, whose solution is simply

ϑ ¼ Beiqμxμ ; ðA1Þ

with B an amplitude and qμ the 4-wave vector, which is also
null, i.e., qμqμ ¼ 0.
Let us now consider the trace-reversed form of the field

equations given in Eq. (49). Using Eq. (A1) in Eq. (49), we
have

Rμν ¼ −B2qμqνe2iq·x

þ 2λBδγδκϵαβρσR
ρσ

κϵqαqγeiq·xδβðμηνÞδ: ðA2Þ

Since we are working with vacuum, the first term in the
equation above vanishes. With this at hand, we can now
compute the different NP scalars.

1. Analysis for Ψ2

Equation (A2) implies that

Ψ2 ¼ −
1

6
Rnl

¼ 1

6
B2qnqle2iq·x −

1

3
λBδγδκϵαβρσR

ρσ
κϵqαqγeiq·xδβðnηlÞδ:

ðA3Þ
For a weak, plane, nearly null GW, the Riemann tensor is
only dependent on retarded time. Thus, Eq. (15) along with
Eq. (A1) implies that the only nonvanishing component is
along retarded time, i.e., either ql [or qn when using the
metric in Eq. (25)] are the only nonvanishing components.
Using this, the first term of Eq. (A3) vanishes, and one is
left with

Ψ2 ¼ −
1

3
λBδγδκϵαβρσR

ρσ
κϵqαqγeiq·xδβðnηlÞδ: ðA4Þ

Using Eq. (25) and the nonvanishing components of the
wave 4-vector, we see that Eq. (A4) vanishes due to the
symmetries of the generalized Kronecker delta. The con-
clusion then is that Rnl ¼ 0, and thus, Ψ2 ¼ 0.

2. Analysis for Ψ3

Equation (34) implies that

Ψ3 ¼ −
1

2
Rnm̄

¼ 1

2
B2qnqm̄e2iq·x − λBδγδκϵαβρσR

ρσ
κϵqαqγeiq·xδβðnηm̄Þδ:

ðA5Þ

The first term in the above equation vanishes again, since
qn is the only nonzero component of the 4-wave vector for
the GW under consideration. Using Eq. (25), Eq. (A5) can
be written as

Ψ3 ¼
1

2
λBδnmκϵ

lnρσ R
ρσ

κϵqlqneiq·x

−
1

2
λBδnlκϵlm̄ρσR

ρσ
κϵqlqneiq·x: ðA6Þ
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The properties of the generalized Kronecker delta restrict the
values that the indicesρ, κ, ϵ, and σ can take.We can therefore
use Eq. (33) to rewrite the Riemann tensor in Eq. (A6). Since
the metric or the metric perturbation is only a function of
retarded time, we find that the right-hand side of Eq. (A6) is
zero identically. Therefore, with Eq. (34), we have that

Ψ3 ¼ 0: ðA7Þ

3. Analysis for Φ22

Equation (A2) implies that

Φ22 ¼ −
1

2
Rnn

¼ 1

2
B2qnqne2iq·x

− λBδγδκϵαβρσR
ρσ

κϵqαqγeiq·xδβðnηnÞδ: ðA8Þ

The second term in the above equation vanishes by
the same argument presented in the paragraph below
Eq. (A6). The first term does not vanish, but it scales as
Oðr−2Þ in the far zone. Therefore, we have that far from the
source

Φ22 ¼ 0: ðA9Þ

4. Analysis of Ψ4

Using the same line of reasoning, there are no constraints
one can place on Ψ4 using the field equations for
EdGB gravity. This in turn means that, just as in dCS
gravity, Ψ4 remains unconstrained or nonvanishing in
EdGB gravity. Therefore, the transverse-traceless tensorial
modes, i.e., the þ and × GW polarizations, are non-
vanishing in EdGB gravity for a weak, plane, nearly
null GW.
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