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Abstract. We investigate techniques for using deep neural
networks to produce surrogate models for short-term climate
forecasts. A convolutional neural network is trained on 97
years of monthly precipitation output from the 1pctCO2 run
(the CO, concentration increases by 1 % per year) simulated
by the second-generation Canadian Earth System Model
(CanESM2). The neural network clearly outperforms a per-
sistence forecast and does not show substantially degraded
performance even when the forecast length is extended to
120 months. The model is prone to underpredicting precipi-
tation in areas characterized by intense precipitation events.
Scheduled sampling (forcing the model to gradually use its
own past predictions rather than ground truth) is essential for
avoiding amplification of early forecasting errors. However,
the use of scheduled sampling also necessitates preforecast-
ing (generating forecasts prior to the first forecast date) to
obtain adequate performance for the first few prediction time
steps. We document the training procedures and hyperparam-
eter optimization process for researchers who wish to extend
the use of neural networks in developing surrogate models.

1 Introduction

Climate prediction is a cornerstone in numerous scientific
investigations and decision-making processes (e.g., Stocker
et al., 2013; Jay et al., 2018). In the long term (decades to
centuries), different possible climate outcomes pose very dif-
ferent hazards, risks, and societal challenges, such as build-

ing and maintaining infrastructure (e.g., Moss et al., 2017).
On decadal timescales, predictability of major modes of vari-
ability (like the El Nifio—Southern Oscillation) is an impor-
tant driver of extreme events, such as flooding and drought
(e.g., Yeh et al., 2018). On similar timescales, disappearing
Arctic sea ice has been implicated in changes in midlati-
tude winter storm patterns (Cohen et al., 2014). On shorter
timescales (weeks to months), also sometimes called the
subseasonal-to-seasonal (S2S) regime, climate forecasts can
be critical for agriculture, water resource management, flood-
ing and drought mitigation, and military force mobilization
(Robertson et al., 2015).

Improvements in climate predictability in some of these
regimes are slow to be realized. Decadal predictability stud-
ies have found that predictability skill is greatly influenced by
proper initialization of hindcasts to ensure that any modeled
changes due to internal variability are in phase with observa-
tions (Bellucci et al., 2015). This highlights the importance
of climate memory in predictive skill in that the response to
processes can be lagged and the responses themselves can
depend upon the model state. Yuan et al. (2019) found the
existence of processes with a relatively high portion of re-
sponse that can be explained by memory on all timescales,
from monthly through multidecadal lengths. As an example,
Guemas et al. (2013) found that properly initialized hind-
casts were able to predict the global warming slowdown of
the early 2000s (Fyfe et al., 2016) up to 5 years ahead.

The best technique for climate prediction is to run an Earth
system model (ESM), as these models capture the state of
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the art in our knowledge of climate dynamics. These mod-
els, however, are difficult and costly to run, and for many
researchers access to ESM output is limited to a handful of
runs deposited into public archives. Therefore, there has been
a great deal of interest in surrogate models that can produce
results similar to ESMs but are more accessible to the broader
research community due to ease of use and lower compu-
tational expense. These surrogates are advantageous for nu-
merous applications, such as exploring wide ranges of sce-
narios; such efforts are quite costly in ESMs.

Building surrogates of ESMs can take numerous forms.
The most basic is pattern scaling (Santer et al., 1990), in-
volving scaling a time-invariant pattern of change by global
mean temperature (e.g., Mitchell, 2003; Lynch et al., 2017).
Other methods include statistical emulation based on a set of
precomputed ESM runs (Castruccio et al., 2014), linear time-
invariant approaches (MacMartin and Kravitz, 2016), or di-
mension reduction via empirical orthogonal functions (e.g.,
Herger et al., 2015). While all of these methods have shown
some degree of success, they inherently neither incorporate
information about the internal model state (Goddard et al.,
2013) nor capture highly nonlinear behavior.

Various methods of incorporating state information into
surrogate models have been studied. Lean and Rind (2009)
explored using a linear combination of autoregressive pro-
cesses with different lag timescales in explaining global
mean temperature change. However, such reduced-order
modeling approaches, which explicitly capture certain phys-
ical processes, will invariably have limited structure; this
can result in inaccurate predictions when evaluating vari-
ables like precipitation, which have fine temporal and spatial
features, important nonlinear components in their responses
to forcing, and decidedly non-normal distributions of inten-
sity and frequency. Many studies have focused on initializing
the internal model state of Earth system models (or models
of similar complexity) to capture low frequency variability;
this has been found to add additional skill beyond external
forcing alone (Goddard et al., 2013). However, the required
computational time to create a decadal prediction ensemble
is rather expensive.

Machine learning methods offer the possibility of over-
coming these limitations without imposing an insurmount-
able computational burden. The field of machine learning
studies algorithms that learn patterns (e.g., regression or
classification) from data. The subfield of deep learning fo-
cuses on models, typically neural-network variants, that in-
volve multiple layers of nonlinear transformation of the in-
put to generate predictions. Although many of the core deep-
learning techniques were developed decades ago, work in
deep learning has recently exploded, achieving state-of-the-
art results on a wide range of prediction tasks. This progress
has been fueled by increases in both computing power and
available training data. While training deep-learning models
is computationally intensive, trained models can make accu-
rate predictions quickly (often in a fraction of a second).
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The use of deep learning in climate science is relatively
new. Most of the applications have used convolutional neu-
ral networks (see Sect. 3 for further definitions and details)
to detect and track features, including extreme events (trop-
ical cyclones, atmospheric rivers, and weather fronts; e.g.,
Liu et al., 2016; Pradhan et al., 2018; Deo et al., 2017;
Hong et al., 2017) or cloud types (Miller et al., 2018). Other
promising applications of deep learning are to build new
parameterizations of multiscale processes in models (Jiang
et al., 2018; Rasp et al., 2018) or to build surrogates of en-
tire model components (Lu and Ricciuto, 2019). More gener-
ally, McDermott and Wikle (2018) have explored using deep
neural networks in nonlinear dynamical spatio-temporal en-
vironmental models, of which climate models are an exam-
ple, and Ouyang and Lu (2018) applied echo state networks
to monthly rainfall prediction. These studies have clearly
demonstrated the power that deep learning can bring to cli-
mate science research and the new insights it can provide.
However, to the best of our knowledge, there have been few
attempts to assess the ability of deep learning to improve pre-
dictability, in particular the ability to incorporate short-term
memory. Several deep-learning architectures (described be-
low) are particularly well suited for this sort of application.

Here we explore techniques for using deep learning to pro-
duce accurate surrogate models for predicting the forced re-
sponse of precipitation in Earth system models. Key to this
approach is training the model on past precipitation data
(as described later, a sliding 5-year window), allowing it to
capture relevant information about the state space that may
be important for predictability in the presence of important
modes of variability. The surrogate models will be trained
on climate model output of precipitation under a scenario of
increasing CO, concentration and then used to project pre-
cipitation outcomes into a period beyond the training period.
That forecast will then be compared to the actual climate
model output for the same period to quantify performance.
Several model designs will be compared to evaluate the ef-
fectiveness of various deep-learning techniques in this ap-
plication. The performance of the deep-learning surrogates
will be compared to other methods of forecasting, such as
persistence and autoregressive processes (described later). A
key area of investigation will be the prediction horizon (how
far out is the predictive skill of the surrogate model better
than naive extrapolation methods) for the chosen window
size (how much past information is used to condition the sur-
rogate’s predictions).

2 Study description

The dataset used for this study was idealized precipitation
output from the second-generation Canadian Earth System
Model (CanESM2; Arora et al., 2011). The atmospheric
model has a horizontal resolution of approximately 2.8° with
35 vertical layers, extending up to 1hPa. The atmosphere
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is fully coupled to the land surface model CLASS (Arora
and Boer, 2011) and an ocean model with approximately 1°
horizontal resolution. The model output used corresponds to
the 1pctCO2 simulation, in which, starting from the prein-
dustrial era, the carbon dioxide concentration increases by
1 % per year for 140 years to approximately quadruple the
original concentration. This idealized simulation was cho-
sen to reduce potential complicating factors resulting from
precipitation responses to multiple forcings (carbon dioxide,
methane, sulfate aerosols, black-carbon aerosols, dust, etc.)
that might occur under more comprehensive scenarios, such
as the Representative Concentration Pathways (van Vuuren
et al., 2011). For this study, only monthly average precipita-
tion output was used; results for daily average precipitation
are the subject of future work.

We divided the model output into three time periods. The
training set consists of the period 1850-1947 and is used to
train the surrogate model. The development set (sometimes
called the validation set) consists of the period 1948—1968
and is used to evaluate the performance of the trained surro-
gate model to guide further tuning of the model’s hyperpa-
rameters (i.e., configurations external to the model that are
not estimated during training). The fest set consists of the
period 1969-1989 and is used only in computing the end re-
sults, which are reported below in Sect. 4.

3 Deep learning methodologies for improving
predictability

Deep learning is a subfield of machine learning that has
achieved widespread success in the past decade in numerous
science and technology tasks, including speech recognition
(Hinton et al., 2012; Chan et al., 2016), image classification
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;
He et al., 2016), and drug design (Gawehn et al., 2016). Its
success is often attributed to a few key characteristics. First,
rather than operating on predetermined (by humans) features,
deep learning is typically applied to raw inputs (e.g., pix-
els), and all of the processing of those inputs is handled in
several steps (layers) of nonlinear transformation; the addi-
tion of these layers increases the depth of the network. This
allows the model to learn to extract discriminative, nonlin-
ear features for the task at hand. Second, all stages of the
deep-learning models, including the training objectives (de-
fined by a loss function), are designed to ensure differentia-
bility with respect to model parameters, allowing models to
be trained efficiently with stochastic gradient descent tech-
niques. With enough training data and computational power,
deep-learning models can learn complex, highly nonlinear
input—output mappings, such as those found in Earth system
models.

www.atmos-chem-phys.net/20/2303/2020/
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3.1 Architectures

In this work we consider convolutional neural networks
(CNNs; LeCun et al., 1998) to model the spatial precipita-
tion patterns over time. CNNs are able to process data with a
known grid-like topology and have been demonstrated as ef-
fective models for understanding image content (Krizhevsky
et al., 2012; Karpathy et al., 2014; He et al., 2016). Unlike
standard fully connected neural networks, CNNs employ a
convolution operation in place of a general matrix multipli-
cation in at least one of their layers. In a convolutional layer,
an m xn X p input tensor is convolved with asetof ki x j x p
kernels to output k feature maps that serve as inputs for the
next layer. In this setting, m and n correspond to the width
and height of the input, and p corresponds to the depth (i.e.,
number of channels). Similarly, i and j correspond to the
width and height of the kernel, and p corresponds to the
depth, which is equal to that of the input tensor. In practice
we choose a kernel wherei < mand j < n (e.g.,i = j = 3).
By using a small kernel, we limit the number of parameters
required by the model while maintaining the ability to de-
tect small, meaningful features in a large and complex input
space. This both reduces memory requirements of the model
and improves statistical efficiency (Krizhevsky et al., 2012;
Goodfellow et al., 2016). The learning capacity of the model
can also be adjusted by varying the width (i.e., number of
kernels) and the depth (i.e., number of layers) of the network.

The spatial structure of each time step of the precipita-
tion field bears a resemblance to the structure of image data,
making CNNs a promising candidate model. However, to
produce accurate forecasts, the model must also incorporate
temporal evolution of the precipitation field. To address long-
term and short-term trends we implement a sliding-window
approach where our input tensor is built using precipitation
outcomes from the most recent K time steps as input chan-
nels. Our model predicts the global precipitation outcome at
next time step. Then this procedure is iterated, using output
from the previous model forecast as input into the next one,
allowing for arbitrarily long prediction horizons.

We consider adding depth to our network because many
studies in image classification have achieved leading results
using very deep models (Simonyan and Zisserman, 2014;
Szegedy et al., 2015; He et al., 2015). Many of the fields
of interest in climate science are effectively images, making
image classification an appropriate analogue for our aims. In
deep residual networks (He et al., 2016), rather than train
each i layer to directly produce a new hidden representa-
tion h(;) given the hidden representation s (;_1) it was pro-
vided, we instead train the layer to produce a residual map
f(,‘) = h(,’) — /’l(,'_l), which is then summed with the h(i—l) to
give the output for the layer. This way, each layer explicitly
refines the previous one. The residual modeling approach is
motivated by the idea that it is easier to optimize residual
mapping than to optimize the original, unreferenced map-
ping. Architecturally, outputting f;) + h(;—1) at each layer is
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accomplished by introducing shortcut connections (e.g., He
et al., 2016) that skip one or more layers in the network. In
our CNN, a shortcut connection spans every few consecutive
layers. This identity mapping is then summed with the resid-
ual mapping f(;) produced by the series of stacked layers en-
compassed by the shortcut connection. While developing our
model, we also explored using plain CNNs (without short-
cut connections). The best-performing model is described in
the following section. All of the neural-network architectures
considered in this study are summarized in Table 1.

3.2 Implementation

Our residual network implementation follows the work in
He et al. (2016). We construct a 18-layer residual network
with shortcut connections encompassing every two consec-
utive convolutional layers (see Fig. 1). Each convolutional
layer uses a 3 x 3 kernel with a stride of 1, and zero padding
is applied to preserve the spatial dimensionality of the in-
put throughout the network. Directly after the convolution
we apply batch normalization following practices in loffe
and Szegedy (2015) and then the rectified linear unit (ReLU)
(Nair and Hinton, 2010) as the nonlinear activation function.
Every four layers we double the number of kernels to in-
crease the learning capacity of our model. When this occurs
we zero pad our identity mapping in the shortcut connection
to match dimensions.

The total number of parameters in the 18-layer deep neu-
ral network is 34 578, relatively small compared to the size
of each input: 60-128-64 = 491 520. The length of the train-
ing set is 1116 time steps. For a fixed set of hyperparameters,
training each model takes 1-3 h (depending upon the number
of training epochs) on a single NVIDIA 980 Ti GPU (graph-
ics processing unit). The computational cost is effectively all
in the training; predictions take a matter of seconds, even on
CPU (central processing unit) architectures. For comparison,
a S-year simulation in an ESM can take roughly 1d even on
hundreds of CPUs.

We chose to initialize our network parameters by draw-
ing from a Gaussian distribution as suggested in He et al.
(2015). We use stochastic gradient descent to optimize our
loss function L(#), which is defined as the mean squared
area-weighted difference, calculated as
2

L) = 2 Y [(B0) - Bex:0) - Aw] (M

where x iterates over the Z distinct spatial positions, B(x) is
the ground truth outcome, E‘(x; 0) is the CNN reconstruction
(CNN with parameters ), and A(x) is the cosine of latitude
(for area weighting).

Our plain CNN baselines follow a similar structure as the
18-layer residual network, but all shortcut connections are
removed (see Fig. 1). By evaluating the performance of the

18-layer plain network, we investigate the benefits of us-
ing shortcut connections. We also experiment with a 5-layer
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18-layer residual 18-layer plain 5-layer plain
Input Input Input
(a) (b) (c)
[ 3x3conv.64 | [ 3x3conv.64 | 3x3conv, 64
3 x3conv, 64 3x3conv, 64
Y
3 x3 conv, 64 3x3conv, 64
3x3conv, 64 3 x3conv, 64
A
3x3conv, 128 [(3x3conv, 128 ]
3x3conv, 128
3x3cony, 128
3x3cony, 128
A
3x 3 conv, 256 3 x 3 conv, 256
3x 3 conv, 256
3x3 conv, 256
3 x 3 conv, 256
A A
3x3cony, 512 [3x3conv,512 ]
3x3cony, 512
Y
3x3cony, 512
3x3cony, 512
Y Y A
3x3cony, 1 3x3conv, 1 3x3conv, 1
[ 3x3conv1 | 3x3cony, 1
T
\4 4
Output Output Output

Figure 1. Deep architectures for precipitation forecasting: (a) 18-
layer residual network, (b) 18-layer plain network (no shortcut con-
nections), and (c) S-layer plain network (no shortcut connections).

plain network to understand how depth affects the perfor-
mance and trainability of our models. Finally, we train the
18-layer residual network without scheduled sampling (de-
scribed below) to determine if this training approach actually
improves forecasting ability.

3.3 Training
The distribution of our training data (aggregated over the en-
tire m - n - p space) was heavy-tailed and positively skewed

(Fisher kurtosis ~ 11.3; Fischer—Pearson coefficient of skew-
ness &~ 2.72). Performance of deep architectures tends to im-
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Table 1. Description of all of the neural-network architectures used in this study, including the number of layers, whether the network is a
residual or plain network (plain networks do not have shortcut connections), whether scheduled sampling was used, whether preforecasting
was used, and the figures of the paper in which each network is used. In addition, these results are compared with persistence forecasting and
an autoregressive model. Table A1 provides information about the hyperparameters used for each configuration, and Table A2 describes the

hyperparameter space used in model training.

Name No. layers  Residual?  Sched. samp.?  Preforecasting?  Figures
18-layer residual 18 Residual Yes Yes 1,2,3,4,5,6
18-layer residual (no scheduled sampling) 18 Residual  No Yes 4,5

18-layer residual (no preforecasting) 18  Residual Yes No 6

18-layer plain 18  Plain Yes Yes 1,4,5
5-layer plain 5 Plain Yes Yes 1,4,5

prove when training with Gaussian-like input features (Ben-
gio, 2012), so we apply a log transformation on our dataset
to reduce skewness. In addition, we scale our input values
between —1 and 1, bringing the mean over the training set
closer to 0. Scaling has been shown to balance out the rate
at which parameters connected to the inputs nodes learn, and
having a mean closer to zero tends to speed up learning by re-
ducing the bias to update parameters in a particular direction
(LeCun et al., 2012).

Our model makes fixed-window forecasts: it requires K
previous (ground truth or predicted) precipitation outcomes
to generate a forecast for the subsequent time step. During
training, since ground truth is available for all time steps, one
typically feeds in ground truth data for all K input time steps.
After training, when used in the inference mode on new data
without ground truth, some or all of the K inputs will need to
be previous model predictions. Without care, this mismatch
can lead to poor extrapolation: the model is not used to con-
suming its own predictions as input, and any mistakes made
in early forecasts will be amplified in later forecasts. Sched-
uled sampling (Bengio et al., 2015) alleviates this issue by
gradually forcing the model to use its own outputs at training
time (despite the availability of ground truth). This is real-
ized by a sampling mechanism that randomly chooses to use
the ground truth outcome with a probability €, or the model-
generated outcome with probability 1 — e, when constructing
its input. In other words, if € = 1 the model always uses the
ground truth outcome from the previous time step, and when
€ =0 the model is trained in the same setting as inference
(prediction). As we continue to train the model we gradually
decrease € from 1 to 0 according to a linear decay function.
Practically speaking, this has the effect of explicitly degrad-
ing our initial states at training time; we discuss the implica-
tions for our results below. To improve the forecasting abil-
ity of our models, we employed scheduled sampling during
training. Scheduled sampling requires a predetermined num-
ber of epochs (to decay properly). For our results that do not
use scheduled sampling, we use early stopping (Yao et al.,
2007) as a regularization technique.

Each model has its own set of hyperparameters with the
exception of window size, as modifying window size would

www.atmos-chem-phys.net/20/2303/2020/

result in each model being conditioned on different num-
bers of priors, making them difficult to compare fairly. The
most significant hyperparameters in our models are the learn-
ing rate, input depth, and number of training epochs. For
each model, we tuned these hyperparameters using a random
search (Bergstra and Bengio, 2012) for 60 iterations each.
Our best residual network used a learning rate of ~ 0.07,
has a window size of 60, and was trained for 90 epochs
with scheduled sampling. (See Appendix A for a discussion
of window size.) We trained our baseline CNNs using the
same window size and similar ranges for the learning rate
and number of training epochs in an attempt to generate com-
parable models. Each model was trained on a single GPU.

4 Predictability and performance

We evaluate the forecasting ability of our models using the
CanESM?2 output over the period 1969-1989 as ground truth.
We also compare the performance of our best models to two
naive methods of forecasting. The lowest bar, persistence
forecasting, extrapolates the most recent precipitation out-
come (i.e., the last outcome in the development set), assum-
ing that the climatology remains unchanged over time. In
perhaps a closer comparison, we also use a first-order au-
toregressive model in each grid box, abbreviated AR(1), in
which the most recent precipitation outcome depends upon
a linear combination of the previous value and a stochastic
(white noise) term:

B(x;0,i)=c+¢B(x;6,i — 1) +e, )

where B(x;6,i) is the surrogate prediction at time i, ¢ is a
constant, € represents white noise, and ¢ is a parameter that is
tuned or trained such that the model has accurate predictions
over the development set.

To quantify our generalization error, we compute the root-
mean square over the area-weighted difference B — B for six
different spatial regions — polar, midlatitude, and tropics over
both land and ocean. This is calculated as

S [(B(x;0) = B(x)) - A(x) - Mi(x)]?
2 [AG) - M ()] ’

RMSE =

3)
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Actual model output

<
0.0

25 5.0 7.5 10.0 125 15.0 175 20.0

Figure 2. Precipitation outcomes (mm d=1) for the period 1969—
1989. Top shows the average output of the CanESM2 over that pe-
riod. Bottom shows the average output of a 252-month forecast over
the same time period using the 18-layer residual network with a
window size of 60. Both models show qualitatively similar features.

where x iterates over the spatial positions, l§(x; ) is the sur-
rogate prediction, B(x) is the ground truth outcome, A(x) is
the cosine of latitude weights, and My (x) is the region mask
(fork € {1,2,...,6}).

In addition to the root-mean-square error (RMSE), we
also compute the anomaly correlation coefficient (ACC), a
commonly used metric for quantifying differences in spa-
tial fields in forecasting (Joliffe and Stephenson, 2003). The
ACC is defined as (JMA, 2019)

S i = P —a)
X = PP i — 2

where n is the number of samples, f; is the difference be-
tween forecast and reference, and a; is the difference be-
tween some verifying value and the reference. We use the
average precipitation over the period 19381968 as our ref-
erence (the 30 years preceding the test set period). f and a
indicate area-weighted averages over the number of samples.
ACC can take values in [—1, 1], where an ACC of 1 indicates
that the anomalies of the forecast match the anomalies of the

ACC = 4
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Precipitation difference

Percent error

-100.0 -66.7 -33.3 0.0 333 66.7 100.0

Figure 3. Comparison of the average precipitation outputs (mm
d_l) of the CanESM2 (B) and the 18-layer residual network (é)
using a window size of 60 over the years 1969-1989. Top shows
B — B. Bottom shows the percent error between B and B. The
residual network tends to underpredict near the Equator, midlati-
tude storm tracks, and areas associated with monsoon precipitation.

verifying value, and an ACC of —1 indicates a reversal of the
variation pattern. Figure 5 shows ACC values for the differ-
ent models considered in this study. The message is similar
to that of Fig. 4, with the 18-layer residual network show-
ing the greatest skill (ACC exceeding 0.5 in all six regions),
the other neural networks showing little skill, and the per-
sistence forecast showing variable skill, depending upon the
forecast length. Although it is difficult to make exact quanti-
tative comparisons, the 18-layer residual network has higher
values of ACC than the Community Earth System Model
Decadal Prediction Large Ensemble (CESM-DPLE) in all six
regions (Yeager et al., 2018). Performance is similar over the
Sahel, indicating some ability of the residual network to cap-
ture relevant precipitation dynamics.

Figure 2 shows the average precipitation for a 252-month
forecast over the period 1969-1989 in the 18-layer residual
network (CNN with lowest forecasting error) and the average
precipitation over the same period in the CanESM2 under a
1pctCO2 simulation. Both models show qualitatively simi-
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Figure 5. Anomaly correlation coefficient for decadal precipitation forecasts for six regions of interest. Both the plain and residual CNNs
used a window size of 60. Vertical bars denote the standard error over all possible starting dates in the test set. As in Fig. 4, the deep residual
network with scheduled sampling outperforms all models in all regions, consistently exhibiting a positive correlation with the ground truth
outcomes.
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lar features, indicating that the residual network was capable
of reproducing Earth system model outputs reasonably well.
Figure 3 shows the area-weighted difference B — B as well
as the area-weighted percent error given by

(B(x) — B(x)) - A(x)
pct_err = . (®)]
B(x) - A(x)

The residual model is prone to underpredict near the Equa-
tor, in the midlatitude storm tracks, and in areas associated
with monsoon precipitation. All of these regions experience
intense precipitation events (storms), which constitute the
right tail of the precipitation distribution. The mean-square
error loss function is less robust to outliers (Friedman et al.,
2001, chap. 10), which are far more common in these re-
gions than others, potentially explaining why the residual
network tends to be biased low in these regions. On aver-
age, our model achieves reasonably low error on the test set,
with a mean precipitation difference of —0.237 mmd~! and
mean percent error of —13.22 %.

Figure 4 shows the forecasting performance of each model
on a decadal timescale. The 18-layer residual network out-
performs all models in all regions and exhibits relatively con-
sistent error over time. The AR(1) model generally performs
second best in all cases except some seasons in the tropics
when persistence tends to perform better. Our plain CNNs
have less consistent error over time and performed worse
than our residual networks overall. These networks proved
more difficult to optimize and would often learn to predict
similar values at each pixel regardless of spatial location. The
5-layer network showed lower generalization error than the
18-layer network, which was expected behavior, as plain net-
works become more difficult to train with increased depth
(He et al., 2016). This challenge is well addressed in our 18-
layer residual network, however, as it achieves good accuracy
with significant depth.

To assess the benefits of scheduled sampling, we evalu-
ated the performance of an identical residual network ar-
chitecture trained without scheduled sampling (see “18-layer
residual (no scheduled sampling)” in Fig. 4). For this model
we observe the RMSE quickly increasing during the first
few forecasts, indicating that it is not accustomed to making
forecasts conditioned on past predictions. Surprisingly, this
model also had significantly higher RMSE for the 1-month
forecast, which is entirely conditioned on ground truth out-
comes. We would expect a model trained without scheduled
sampling to perform well in this case, as the input contains no
model-generated data. However, as there are sufficient differ-
ences in the training setting (i.e., the use of early stopping),
it is likely that these models converged to disparate minima.
We hypothesize that additional hyperparameter tuning could
decrease the RMSE for 1-month forecasts in these models.

Importantly, for the model using scheduled sampling, the
skill of the forecast does not change appreciably with lead
time, whereas one might expect the model to have some

Atmos. Chem. Phys., 20, 2303-2317, 2020

T. Weber et al.: Surrogate Earth system models

initial-value predictability (e.g., Branstator et al., 2012) and
thus more skillful predictability in the near term. In early
forecasts, the input tensors primarily consist of ground truth
precipitation outcomes. A model trained using scheduled
sampling performs worse in this setting because it is accus-
tomed to seeing inputs that contain model-generated data —
that is, the initial states are explicitly degraded. This was a
choice in terms of the problem we attempted to solve (reduc-
ing initial-value predictability in favor of longer forecasts),
and scheduled sampling may not be an appropriate choice for
other applications. To address this poor early forecast skill,
we explored preforecasting — generating forecasts preceding
the first forecast date to prime the model for inference (pre-
diction). By taking this approach we ensure that the input
tensor for the first forecast will contain at least some portion
of model-generated data. To employ preforecasting, the num-
ber of preceding outcomes generated must be in the range
[1,...,window_size] and should be chosen relative to the
sampling decay function used during training. We suggest
generating window_size/2 preforecasts for a model trained
using a linear decay function. We take this approach in Fig. 6
and find that it adequately reduces the RMSE for early fore-
casts while still maintaining low error for longer forecasts.

5 Discussion and conclusions

This study explored the application of deep-learning tech-
niques to create surrogate models for precipitation fields
in Earth system models under CO; forcing. From our ex-
periments we found that a CNN architecture was effective
for modeling spatio-temporal precipitation patterns. We also
observed increased accuracy with deeper networks, which
could be adequately trained using a residual learning ap-
proach. Finally, we found that scheduled sampling (sup-
plemented with preforecasting) significantly improved long-
term forecasting ability, improving upon the commonly used
autoregressive model (although we admit that we could have
more thoroughly explored the span of different linear meth-
ods, such as higher-order AR or ARIMA models).

It might be expected that the forecast model skill asymp-
totically approaches persistence as the predictions move far-
ther from the initial state. We argue three reasons for why our
neural network continues to have good skill and low error:

1. Scheduled sampling helps the model extrapolate from
its own predictions, reducing errors in later forecasts.

2. Because the model is trained on numerous time peri-
ods in the 1pctCO2 experiment, it learns some inherent
properties of precipitation response to CO; forcing.

3. We condition each prediction on 5 years worth of data,

so it is likely easier for our model to retain signals com-
ing from the initial conditions.
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Appendix A provides a comparison between using window
sizes of 6 and 60 months, with the former showing steadily
decreasing predictive skill due to its inability to learn the
forced response. This is another point of verification for a
conclusion well known in the decadal predictability commu-
nity: although the initial state is important for decadal pre-
dictions, in forced runs, a great deal of skill is due to the
underlying climate signals (Boer et al., 2019).

Based on these results we can identify several ways to en-
hance our current surrogate models, as well as a few promis-
ing deep-learning architectures applicable to this work, with
the overall goal of understanding which deep-learning tech-
niques may work well for creating surrogates of climate
models.

Bengio et al. (2015) proposed three scheduled sampling
decay functions: linear, exponential, and inverse sigmoid.
Determining the optimal decay schedule for our problem
could have significant effects on model predictability. Weight
initialization has also been proven to affect model conver-
gence and gradient propagation (He et al., 2015; Glorot and
Bengio, 2010); therefore this must be investigated further.
Window size was a fixed hyperparameter during tuning, but
we cannot rule out its potential impact on forecasting (see
Appendix A). Tuning these existing hyperparameters would
be the first step in improving results.

Incorporating additional features, such as data from Earth
system models with different forcings, global mean temper-
ature, and daily average precipitation, would provide more
relevant information and likely improve predictability. These
could be incorporated by modifying our input tensor to
include these as additional channels. Such augmentations

www.atmos-chem-phys.net/20/2303/2020/

would be an important step toward designing practical, ef-
fective surrogate models in the future.

Two architectural features that we may consider adding are
dropout and replay learning. Srivastava et al. (2014) showed
that adding dropout with convolutional layers may lead to a
performance increase and prevent overfitting. Replay learn-
ing is widely used in deep reinforcement learning and was
shown to be successful in challenging domains (Zhang and
Sutton, 2017). We believe that we can apply a similar con-
cept to our architecture, where we train our network on ran-
dom past input—output pairs so it can “remember” what it
learned previously. This technique could aid in alleviating
any bias from more recent training data and therefore boost
performance.

Convolutional long short-term memory networks
(LSTMs) have had great success in video prediction (Finn
et al., 2016) and even precipitation nowcasting (Shi et al.,
2015). They offer an alternate strategy for modeling both the
spatial and temporal aspects present in our dataset: whereas
our model treats the time dimension as channels, and acts
upon a fixed length input window, convolutional LSTMs use
recurrent connections to consume the input one time step
at a time with no fixed length restriction on the input. This
increases the effective depth between information contained
in the distant past and the prediction, which may prove
beneficial or harmful for our task; we leave it to future work
to evaluate their suitability. One could also draw inspiration
from the spatial downsampling, upsampling, and specific
skip connectivity techniques often used work in semantic
segmentation (e.g., U-Nets, introduced for biomedical image
segmentation; Ronneberger et al., 2015).
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Generative adversarial networks (GANSs; Goodfellow
et al., 2014) have proven to offer impressive generative mod-
eling of grid-structured data. GANs are commonly used
with image data for tasks such as super-resolution, image-
to-image translation, image generation, and representation
learning. The effectiveness of GANS to generate realistic data
and ability to be conditioned on other variables (Goodfellow,
2016) make them quite appealing for spatio-temporal fore-
casting.
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The results presented here show significant potential for
deep learning to improve climate predictability. Applications
of this work extend beyond providing a CNN forecasting li-
brary, as there are several enhancements that could yield a
more practical alternative to traditional Earth system mod-
els. The ability to emulate alternate climate scenarios, for ex-
ample, is desirable. Regardless, using an approach that can
incorporate the internal model state appears to have promise
in increasing prediction accuracy.
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Appendix A: Effects of window size

We briefly explored the effects of different window sizes
on predictability for the 18-layer residual network (with-
out scheduled sampling). Figure Al shows a comparison
between a window size of 6 months versus the 60-month
window that we used in our best-performing model. With a
smaller window size, the forecast model is unable to learn
enough of the forced response to improve predictive skill, so
the forecast’s model skill approaches that of persistence.
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Figure Al. Comparing the RMSE for decadal precipitation forecasts in the 18-layer residual network with a 6-month window (top) and a
60-month window (bottom). Both networks were trained using scheduled sampling, and preforecasting was not employed when generating
predictions.
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Table Al. Hyperparameters for each network architecture used in this study (see Table 1). For each architecture, we tuned the learning
rate, standard deviation used for weight initialization (sampling from a truncated normal distribution), and number of training epochs (unless
training without scheduled sampling, in which case we used early stopping with a patience threshold of 10). For each architecture, the optimal
hyperparameter configuration was selected after 60 iterations of random search.

Architecture Decay Window  Learning Standard deviation ~ Epochs
function size rate  (for Xavier initialization)
18-layer residual Linear 60 0.069 0.016 90
18-layer residual (no scheduled sampling) N/A 60 0.095 0.021 82 (early stopping)
18-layer plain Linear 60 0.013 0.01 100
S-layer plain Linear 60 0.049 0.01 125

Table A2. Hyperparameter space used for training the models described in Table 1. For more information on how the hyperparameter space
is defined, see https://github.com/hyperopt/hyperopt/wiki/FMin#21-parameter-expressions (last access: February 2020).

Hyperparameter Min Max Step Sampled from Comment

Epochs 75 150 5 Quantized uniform

Learning rate 0.001  0.01 n/a  Uniform

Standard deviation  0.001 0.1 n/a  Uniform

Window size 6 120 n/a  Choice Only varied during initial experiments; fixed at 60 for the study

n/a means not applicable.

Atmos. Chem. Phys., 20, 2303-2317, 2020
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Code and data availability. All models were developed in Python
using the machine learning framework TensorFlow, developed by
Google. Training and inference scripts are available at: https:
//github.com/hutchresearch/deep_climate_emulator (Weber et al.,
2020). Code used to generate the figures in this paper is available
upon request. All climate model output used in this study is avail-
able through the Earth System Grid Federation.
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