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Inferring and Investigating IoT-Generated Scanning
Campaigns Targeting A Large Network Telescope
Sadegh Torabi, Elias Bou-Harb, Chadi Assi, ElMouatez Billah Karbab, Amine Boukhtouta,

and Mourad Debbabi

Abstract—The analysis of recent large-scale cyber attacks, which leveraged insecure Internet of Things (IoT) devices to perform
malicious activities on the Internet, highlighted the rise of IoT-tailored malware/botnets. These malware propagate by scanning the
Internet for vulnerable, exploitable IoT devices that could be utilized for further malicious activities. In this paper, we devise a multi-level
methodology to investigate Internet-scale reconnaissance activities generated by infected IoT devices. We leverage the Shodan IoT
search engine and over 6TB of passive network traffic from a large network telescope (darknet) to infer compromised IoT devices and
characterize the generated scanning campaigns. The results highlight a distinctive characteristic of IoT malware/botnets, represented
by the targeted ports/services over the analysis interval. Furthermore, while these ports/services are mainly associated with
well-known IoT malware/botnets (e.g., Mirai and Satori), we uncovered newly targeted ports, which indicate emerging IoT
malware/botnet. Finally, by comparing two instances of analyzed IoT-generated scanning campaigns, we highlight the persistence and
evolution of IoT malware/botnets (e.g., ADB.Miner and Fbot), which exploit existing, and in some cases, possibly new vulnerabilities.

Index Terms—Network telescope (darknet), compromised IoT devices, IoT malware/botnet, scanning campaigns, clustering analysis.

F

1 INTRODUCTION

INTERNET of Things (IoT) devices have been widely
adopted in various parts of our daily activities. These

Internet connected devices, which tend to have limited
functionalities and resources, are mainly used to facilitate
efficient data collection, monitoring, and information shar-
ing. Despite the benefits of using IoT devices and their wide
spread adoption, the increasing number of IoT-driven cyber-
attacks illustrate the rise of IoT-tailored malware, which aim
at exploiting vulnerable IoT devices that will be utilized
within coordinated botnets to perform further malicious
activities [1–3]. In fact, these IoT malware/botnets have
gained much popularity among adversaries due to the inse-
curity of the IoT paradigm and the wide range of existing
vulnerabilities. In addition, adversaries have been utilizing
compromised IoT devices as effective attack enablers, which
can be leveraged to evade detection while performing large-
scale malicious activities (e.g., Mirai [4]).

In order to mitigate and prevent large-scale IoT-driven
cyber attacks, there exists an utmost need to detect and
characterize emerging IoT malware/botnets, which tend to
spread over the Internet by searching for vulnerable IoT
devices that could be exploited for future use. This cannot be
done without possessing an Internet-scale perspective of IoT
devices and their unsolicited activities over a period of time,
which is indeed a challenging task as it requires addressing
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the following problems: (i) the lack of empirical data related
to the widespread deployment of IoT devices [5], and (ii)
the insufficient knowledge about compromised IoT devices
and their underlying malicious activities [6].

To this end, an effective approach to gain Internet-wide
cyber threat intelligence is to study passive measurements
gathered using designated sensors or traps that collect
traffic from the Internet [7, 8]. These sensors collect one-
way traffic targeted towards routable, yet unused Internet
Protocol (IP) addresses, which are known as darknets or
network telescopes [9]. Characteristically, traffic destined to
these inactive hosts is likely to represent suspicious and
unsolicited activities. Moreover, a large portion of traffic
captured at the darknet represents Internet reconnaissance
activities [10, 11]. Therefore, motivated by the fact that
IoT malware/botnets heavily rely on coordinated scanning
activities to propagate through the Internet [4, 12], in this
paper, we leverage macroscopic, empirical passive network
telescope data to execute a multi-level methodology for
inferring malware-infected IoT devices and investigating
their generated scanning activities. In addition, we leverage
data mining methods to unveil common scanning objec-
tives among compromised IoT devices, which reflect the
targeted ports/services. More importantly, we demonstrate
a meaningful approach for identifying scanning campaigns
by clustering correlated IoT devices based on their scanning
objectives and similarities in their scanning behaviors over
time.

We leverage over 6TB of passive darknet data with IoT
device information from Shodan, and obtain about 172M
TCP-SYN scanning packets generated by 8,444 compro-
mised IoT devices over 11 days. Our initial data analysis
revealed emerging IoT malware/botnets, illustrated by 18
clusters of correlated compromised IoT devices with similar
characteristics of the underlying scanning campaigns. The
majority of these IoT botnets (12 out of 18), were found to
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utilize IoT devices to target short lists of commonly used
ports/services, which are associated with known vulnera-
bilities (e.g., Telnet/23). Moreover, our results shed light on
an emerging IoT malware/botnets, represented by a large
scanning campaign towards a distinctive destination port
range (e.g., 19328–19622), which to the best of our knowl-
edge, are not associated with any known vulnerabilities.
In addition, by analyzing and comparing two instances of
IoT scanning traffic that were collected on well-separated
time periods (13 months), we highlight the persistence
of few well-known IoT malware/botnets, especially those
targeting Telnet and HTTP. Finally, we highlight the evolu-
tion of IoT-generated scanning campaigns towards target-
ing new, or previously uncommon vulnerabilities, which
indeed corroborate on the evolutionary nature of IoT mal-
ware/botnets.

In this context, we frame the contributions of this paper
as follows:
• We extend our previous work [13] by introducing a strat-

ified methodology, which utilizes passive darknet data
for investigating emerging IoT malware/botnets through
inferring compromised IoT devices and characterizing
their underlying scanning campaigns.

• We demonstrate a meaningful approach for uncovering
IoT-generated scanning campaigns, which is based on
frequent pattern analysis to identify common scanning
objectives (targeted ports) and unsupervised clustering of
correlated IoT devices with similar behavioral character-
istics over a period of time.

• We explore the persistence of IoT-generated scanning
campaigns by analyzing and comparing two instances of
collected data over a course of one year. We also corrob-
orate the evolutionary nature of IoT malware/botnets by
highlighting newly targeted destination ports, which tend
to include a larger set of possibly vulnerable destination
ports/services.

The remainder of the paper is organized as follows.
Section 2 reviews the recent literature on IoT threats and
vulnerabilities. Section 3 provides details on the adopted
methodology in terms of data collection and analysis. The
IoT-generated scanning campaign detection methodology
and characterization results are presented in Section 4.
Finally, the main outcomes of this work are discussed in
Section 6, followed by concluding remarks in Section 7.

2 RELATED WORK

IoT device vulnerabilities have been discussed in the litera-
ture from different perspectives. For instance, Cui et al. [14],
performed large-scale Internet scans of IoT devices and
provided quantitative evidence on the vulnerable devices.
They found over half a million publicly accessible embed-
ded devices configured with factory default root passwords.
Interestingly, this vulnerability was in fact one of the main
reasons behind the large-scale outbreak of the Mirai botnet
in late 2016 [4]. Considering the impact of vulnerability
analysis in identifying and addressing IoT threats, Sachi-
dananda et al. [15] deployed a testbed of IoT devices in
an experimental setting and demonstrated a preliminary
effort towards building a feasible and usable platform for
IoT vulnerability analysis and testing.

From a different perspective, Costin et al. [16] provided
an extensive assessment of IoT device firmware. Similarly,
FIRMADYNE was proposed by Chen et al. [17] to automat-
ically analyze Linux-based firmware images and identify
vulnerabilities. A noticeable number of IoT security research
work has been dedicated to synthesizing IoT context-aware
permission models. For instance, Yu et al. [5] proposed a
policy abstraction language that is capable of capturing rel-
evant environmental IoT contexts, security-relevant details,
and cross-device interactions, to vet IoT-specific network
activities. Along the same research direction, Jia et al. [18],
proposed ContextIoT, a system that is capable of supporting
complex IoT-relevant permission models through efficient
and usable program-flow and runtime taint analysis. Fer-
nandes et al. [19] proposed a similar program-flow track-
ing approach that used taint arithmetic to detect policy
violations and restrict traffic generated from exploited IoT
applications. In the context of protocol vulnerabilities, Ur
et al. [20] studied numerous types of home automation IoT
devices and unveiled various insights with regards to the
security and usability of the implemented access control
models. Ronen and Shamir [21] demonstrated information
leakage attacks by instrumenting a set of IoT smart lights.

Passive network traffic analysis is introduced as an effec-
tive approach towards studying Internet-wide cyber threats.
For instance, passive DNS data, which consist of historic
replicas of DNS queries and responses, was utilized to detect
various threats associated with DNS abuse/misuse [22].
Furthermore, given the rareness of IoT-relevant empirical
data, several recent efforts were proposed to create honey-
pots for collecting, curating, and analyzing IoT data. The
first IoT-tailored honeypot, coined, IoTPOT, was designed
and deployed by Pa et al. [23]. IoTPOT emulates Telnet ser-
vices of various IoT devices running on different CPU archi-
tectures. In alternative work, Guarnizo et al. [24] presented
the Scalable High-Interaction Physical Honeypot platform
for IoT devices (SIPHON). The authors demonstrated how
by leveraging worldwide wormholes and a few physical
devices, they were able to mimic various IoT devices on
the Internet and to attract significant malicious traffic. Luo
et al. [25] implemented a machine learning approach to
create an intelligent honeypot that automatically learns the
behavioral responses of IoT devices through active scanning
in order to mimic realistic interactions with attackers. U-
Pot was introduced by Hakim et al. [26] as an interactive
open-source framework for emulating IoT devices that sup-
port Universal Plug and Play (UPnP) protocols/services.
In addition to the promising evaluation results in terms of
emulating real IoT devices, the usability of the framework
and its ability to automatically create honeypots from device
description documents is worth noting. In a recent work,
Vervier et al. [12] deployed a honeypot that captured a wider
range of emerging IoT threats as compared to previous
honeypots (e.g., IoTPOT). They used 6 months of collected
data along with multiple sources of cyber-intelligence to
explore current IoT malware and their emerging behavioral
characteristics.

In addition to IoT-tailored honeypots, passive network
telescope or darknet data, which represents one-way net-
work traffic collected at unused IP addresses, has been
adopted to analyze cyber activities and obtain cyber-
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intelligence [7, 8]. The idea of leveraging darknet to monitor
unused IP addresses for security purposes was first brought
to light in the early 1990’s by Bellovin for AT&T’s Bell
Lab’s Internet-connected computers [27, 28]. Since then, the
focus of network telescope studies has shifted several times,
closely following the volatile nature of new adversaries.
More importantly, with the rise of IoT-driven cyber attacks,
passive network telescope data was leveraged to capture
and analyze unsolicited IoT scanning activities. For instance,
Fachkha et al. [8] presented a probabilistic model for san-
itizing network telescope data and inferring orchestrated
probing campaigns towards Cyber-Physical Systems (CPS).
Furthermore, Antonakakis et al. [4] used unique Mirai traffic
signatures to capture Mirai-related scans at the network
telescope for further analysis of the botnet.

This paper complements previous contributions by ex-
tending network telescope research to address the problem
of detecting IoT threats, which propagate by identifying
and exploiting vulnerable targets through Internet-scale
scanning campaigns. To this end, the paper extends our
previous work [13] by following a stratified methodology,
which leverages data mining methods and unsupervised
learning approaches, to detect coordinated scanning cam-
paigns generated by compromised IoT devices. In fact, the
analysis of these IoT-generated scanning campaigns unveil
unique characteristics of the underlying threats/malware,
which can leverage the detection and mitigation of various
IoT threats. The paper also sheds light on the persistence of
IoT threats over time while exploring the emergence of new,
previously undocumented threats.

3 APPROACH

In this research, we aim at answering the following main
research question: How can we leverage passive network mea-
surements to identify exploited IoT devices and infer distinctive
characteristics of the underlying scanning campaigns induced by
IoT-tailored malware/botnets?

To answer the above question, we follow a multi-stage
approach (Figure 1), which consists of two main com-
ponents. First, we correlate IoT device information with
darknet traffic to identify exploited devices and their scan-
ning traffic (Section 3.3). Second, we identify IoT-generated
scanning campaigns and investigate their characteristics
by: (i) performing first-level clustering of compromised
IoT devices using frequent pattern analysis and association
rules mining to group devices that have similar objectives
in terms of targeted ports/services (Section 4.1.1), and (2)
implementing unsupervised learning techniques to perform
second-level clustering of the grouped devices by leveraging
a set of aggregated flow features (Section 4.2). Finally, while
the outcomes represent characteristics of the IoT-generated
scanning campaigns, we explore the persistence and evo-
lution of these campaigns over time by analyzing newly
collected IoT traffic and comparing results with our initial
findings (Section 5). Further details on the used methodol-
ogy is provided in the following sub-sections.

3.1 Data Collection
We follow a multifaceted data-driven approach, which in-
volves analyzing data collected from different sources:

Traffic indexing & 
preliminary analysis

Frequent scanning 
patterns analysis

Traffic formatting &  
preprocessing

Device clustering & 
campaign detection

Traffic aggregation & 
flowtuple generation

Scanning campaign 
characteristics

IoT traffic filtering

D
at

a 
C

o
lle

ct
io

n

Darknet

TCP/UDP/ICMP
packets

caida

D
ata A

n
alysis

Data Processing

② IoT Threat Intelligence
Compromised IoT Device
Detection & Traffic Filtering

①

Fig. 1. The overall approach for detecting and characterizing IoT threats.

IoT Device Information. We leverage a near real-time
IoT database provided by Shodan [29]. This service exe-
cutes large-scale active measurements to identify and index
Internet-facing IoT devices. To this end, we obtained infor-
mation related to 331,000 IoT devices from Shodan. These
IoT devices were deployed in more than 200 countries. In
this paper, we focus our analysis on a subset of all the
IoT devices, namely stand alone devices that are deployed
in the consumer realm. We obtained information related
to approximately 181,000 IoT devices, including routers
(46.9%), printers (29.1%), IP cameras (18.3%), and network
storage media (4.6%). The remaining consumer IoT devices
equate to only 1.1% of the total devices. These devices were
deployed across 202 countries, with the U.S. hosting over
47,000 (24%) IoT devices, representing the country with the
largest number of deployed IoT devices in our data. Both
the U.K. and Russia followed the U.S. by a significantly less
number of hosted devices (about 16,000), representing about
8% of all devices in each country.

Network Telescope Data (Darknet). Darknet data consists
of one-way traffic targeted towards routable, allocated yet
unused IP addresses (dark IP addresses). Since these IP
addresses are not bound to any services, any traffic target-
ing them is characteristically unsolicited [9, 30]. Typically,
darknet data consists of scanning and backscatter activities,
in addition to other less common traffic such as misconfig-
uration and reflection attacks [9, 30–32]. In this paper, we
initially explored 6 days of passive darknet traffic between
April 12-17, 2017, representing 143 hours of darknet data
(over 50 GB of hourly traffic). The darknet traffic is obtained
from the UCSD real-time network telescope maintained by
the Center for Applied Internet Data Analysis (CAIDA) [33].
It is one of largest available sources of passive darknet
traffic with about 16.7 million globally routed destination
IPv4 addresses that capture over a billion packets every
hour. We processed about 3TB of darknet data to obtain
more than 65M IoT-generated packets that were captured
at the darknet during the initial analysis interval (April
2017). In addition, we utilized the darknet to collect new IoT-
generated traffic over 5 days in May, 2018 (Section 5). Over-
all, more than 6TB of darknet data was processed during
both analysis intervals, resulting in capturing approximately
172M IoT-generated packets.
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3.2 Data Processing
The packets captured at the darknet are processed using
the Corsaro tool, which is a software suite for performing
large-scale analysis of trace data [34]. We used Corsaro
to obtain hourly “flowtuple” files, representing information
about incoming flows towards the darknet. Each flow il-
lustrates incoming packets from a source IP to a darknet
IP address during one minute time intervals, encompassing
the following flow information: source/destination IP ad-
dresses and used ports, protocol, Time To Live (TTL), TCP
flags, IP length, and total number of packets (per minute).
To infer compromised IoT devices, we executed a correlation
algorithm that leverages IP header information IoT device
information with darknet data to filter out IoT-generated
traffic. Finally, the acquired hourly traffic via filtering is
prepared in tabular format (flowtuple files) and fed into
the search and analysis engine (Figure 1), which is imple-
mented using the ELK Stack [35]. More specifically, we
used Logstash for importing data into Elasticsearch,
which is utilized for flow indexing and analysis. We also
used the Kibana visualization and navigation tool to run
queries and generate corresponding data sets that are used
for further analysis throughout the paper (Figure 1). In what
follows, we provide further information on our methodol-
ogy and obtained results.

3.3 Preliminary Analysis (Initial Data Set)
We identified 15,299 unsolicited IoT devices that were cor-
related with the darknet during the initial analysis pe-
riod (April 2017). The identified devices generated different
types of traffic towards the darknet [13], among which about
80% were TCP-SYN flows. While there are several ways for
scanning the Internet, in this paper, we focus our analysis
on TCP-SYN scans, as they represent the most prominent
method of scanning [10, 36]. It is also important to under-
stand that ICMP Echo requests, which are also commonly
used for network scans, are excluded from further analysis
due to their negligible magnitude in the overall data (0.23%).
In addition, the stateless UDP packets (about 8%), which
require further investigation of the packet payload to iden-
tify their nature (e.g., scanning vs. non-scanning), are also
excluded from further analysis throughout the paper.

Compromised IoT Devices. The analysis of recent large-
scale cyber attacks caused by the Mirai botnet and its later
variants [1, 4], demonstrated the role of malware-infected
IoT devices within coordinated botnets, which are used
for scanning the Internet for vulnerable hosts. Given that
a benign IoT device has no justifiable reason for scanning
the Internet, from here onwards, we label these unsolicited
devices as “compromised” or “exploited” IoT devices. Ac-
cordingly, we identified 6,797 compromised IoT devices that
generated about 54.6M TCP-SYN scanning packets towards
the darknet, as illustrated in Figure 2. In general, these
exploited devices scanned less than 200 unique destination
ports per hour, except at interval 119, where we noticed
an abrupt increase in the total number of scanned ports
(Figure 2). Further analysis at interval 119 showed that a
single compromised IP camera located in the Dominican
Republic was performing a typical vertical scan of over 7,400
ports on 55 destination addresses.
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Fig. 2. The distribution of all TCP-SYN scanning packets generated by
compromised IoT devices during the analysis interval (143 hours) [13].

TABLE 1
Top 15 scanned services/ports (CP=98.7%). “Src.” and “Dst.” IP counts

represent the number of IoT devices and scanned IP addresses.

Service/Port Packets IP count
(M) % Src. Dst. (M)

Telnet/23 29.88 54.71 640 12.75
HTTP/80 5.62 10.29 1,223 4.25
Unassigned/81 2.61 4.83 1,079 2.40
Kerberos/88 2.64 4.78 889 2.40
SSH/22 2.59 4.74 64 2.32
WSDAPI-S/5358 2.39 4.37 89 2.18
CWMP/7547 2.01 3.7 169 1.88
Alt. Telnet/2323 1.84 3.37 199 1.69
MS-SQL-S/1433 1.21 2.21 7 0.71
SMB/445 1.13 2.06 51 0.67
iRDMI/8000 0.66 1.21 875 0.65
HTTP/8080 0.66 1.20 1,053 0.61
EthernetIP/2222 0.28 0.52 53 0.28
RDP/3389 0.24 0.44 39 0.12
FTP/21 0.13 0.24 21 0.06

Scanned Ports and Services. The analysis of the number
of scanned destination ports indicates that the majority
of the compromised IoT devices (90.6%) tend to scan less
than 10 unique destination ports. In fact, about half of all
devices were found to scan no more than 2 ports, while on
the other hand, only about 5% of all IoT devices scanned
more than 20 ports. Indeed, this behavior reflects a unique
characteristic of the majority of the compromised consumer
IoT devices, which were utilized to scan a handful of known
ports/services, something that was different in comparison
to other IoT devices in the CPS [13]. In addition, the analysis
of the top 15 scanned destination ports, which contribute to-
wards 98.7% of all scanning packets, indicates that Telnet/23
was scanned by the highest number of packets (about
54.7%), as presented in Table 1. Despite that, we notice that
some ports such as 80, 81, 88, 8000, and 8080, which received
smaller number of scanning packets, were in fact targeted
by a relatively larger number of compromised devices, as
compared to Telnet. These differences in terms of the num-
ber of involved IoT devices in scanning certain ports, along
with the scanning rate and total targeted destinations, might
indicate distinctive characteristics of the malware-infected
IoT devices and their generated scanning activities, which
are investigated further throughout the paper.

3.4 Limitations
The generalizability of our findings might be hampered
by the nature of our data (IoT device information and
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darknet). Considering the limited empirical data on exist-
ing IoT devices, we used our resources to sample data
from Shodan by focusing on consumer IoT devices [29].
Nevertheless, while our sample (about 300,000 IoT devices)
is not representative of the overall population of the IoT
devices on the Internet, it serves well in supporting our
research objectives and generating insights that could be
used as a basis for future research towards understanding
the activities of malicious/compromised IoT devices. In
addition, the darknet represents one-way traffic captured
at a slice of the entire IPv4 Internet address space. Despite
that, the UCSD network telescope data used in this research
provides about 16.7 Million destination IP addresses (/8
address space), which is one of the largest available sources
of darknet data for research purposes [33].

Another limitation of the work is that the initial data
was collected in April 2017, and some of the compromised
IoT devices might have been already cleansed. Furthermore,
due to DHCP churn [37], the associated IP addresses to
those IoT devices might have changed over time. Neverthe-
less, a comparison of the new list of IoT device information
from Shodan with the initial IoT device information shows
that about 99% of the devices in our initial data were still
actively connected to the Internet (on May 2018). Finally, the
identification of the exact IoT device type is a challenging
task as some of these IoT devices are assigned with dynamic
IP addresses. Further, it is common to have IoT devices
operating behind a gateway or router (using port forward-
ing), and therefore, while the associated IP addresses might
depict an IoT device, they might be also representing the
public IP address of the gateway.

4 IOT-GENERATED SCANNING CAMPAIGNS

In this paper, we propose an approach for detecting
malware-infected IoT devices and characterizing the under-
lying IoT-generated scanning campaigns. The assumption
is that compromised IoT devices are likely to perform
similar malicious reconnaissance activities within orches-
trated scanning campaigns [4, 12, 36, 38]. Given our ini-
tial data set (April 2017), we follow a multi-stage cluster-
ing/classification approach to identify groups of IoT devices
that tend to behave in a similar manner. Our aim is twofold.
Firstly, to identify scanning objective(s) by finding unique
sets of scanned ports, thus contributing towards campaign
intent analysis. Secondly, given groups of compromised
IoT devices with common objectives, we perform subspace
clustering using a set of raw and aggregate flow features
to identify compromised IoT devices with similar objectives
and behavioral characteristics.

4.1 Scanning Objective(s)
We identify scanning objective(s) by exploring the targeted
destination port sets by compromised IoT devices. This
is considered as the first step towards inferring scanning
campaigns, as discussed in the next sub-section. Further-
more, given that IoT-tailored malware are likely to target
a small number of vulnerable ports/services, identifying
the scanning objectives is key to attributing the inferred
scanning campaigns to known IoT malware, as discussed
in Section 4.4. Scanning objectives are identified as follows:
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Fig. 3. The distribution of unique scanning objectives over the number
of scanned ports.

Let D = {d1, d2, . . . , dN} be a set of N identified
compromised IoT devices that sent TCP-SYN scanning
packets to the darknet during the analysis interval E. Let
P = {p|0 ≤ p ≤ 65535} be a set of all TCP ports. For every
compromised IoT device di ∈ D, we determine scanning
objective Si as a set of all scanned ports PSi ⊆ P . Note
that these port sets do not account for the order in which
the ports were scanned. Let S = {S1, S2, . . . , SN} be a
set of N identified scanning objectives for all compromised
IoT devices. Given that IoT devices infected by the same
malware are likely to produce similar scanning objectives,
we define Sunique = {S1, S2, . . . , Sk} as a set of all distinct
scanning objectives (Sunique ⊆ S).

We identified k = 2, 986 combinations of targeted des-
tination ports, representing unique scanning objectives. As
shown in Figure 3, the distribution of the unique scanning
objectives over the number of targeted ports indicates that
compromised IoT devices are likely to target a small number
of vulnerable ports/services, with about 88% of all scanning
objectives containing less than 21 destination ports. This is
an interesting characteristic of consumer IoT devices, espe-
cially when compared to other IoT devices, such as those
deployed in the CPS, which tend to target a larger number
of ports/services [13]. It is also important to understand that
each scanning objective may correspond to the behavior of
one or more compromised IoT devices. In fact, we found
that about 60% of all compromised IoT devices produced
227 scanning objectives that were common among two or
more devices. On the other hand, while each one of the 2,759
remaining IoT devices was associated to its unique scanning
objective, these scanned port sets were very similar, and
in many cases they represented subsets/supersets of other
scanning objectives. This provides yet another indication
that many IoT devices are in fact following similar scanning
behaviors in terms of the targeted ports/services through-
out the analysis interval.

4.1.1 Scanning Classes
We examined the identified scanning objectives Si to find
similarities in the behavior of compromised IoT devices. The
results reflect three classes of mutually exclusive scanning
behaviors, as described in the following sub-sections:

Range Scans. This class represents the behaviors of IoT
devices that targeted destination ports within distinctive
ranges. For instance, the analysis revealed about 4,536
(66.7%) compromised IoT devices that were mainly scan-
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ning ports within the following ranges: 19328–19622 and
36224–36582. Given the distinctive behavior in terms of
scanning these uncommon port ranges, it is highly likely
that the involved compromised IoT devices were in fact
driven by similar IoT malware/botnet. To the best of our
knowledge, these port ranges are not associated with known
IoT malware/botnets, and therefore, the behaviors of the
compromised IoT devices might indicate an emerging IoT
malware that targets new, or uncommon vulnerabilities.

Moreover, only a handful of known services are regis-
tered within the identified port ranges [39]. For instance,
TCP ports 19410–19412 are associated with HP services,
while the Java Control Panel (JCP) Client is registered on
port 19541. Interestingly, ports 19539–19540 are associated
with Silex wireless and USB drive adapters [40], which
enable wireless connection and network sharing capabilities
on many devices such as printers, scanners, and disk drives,
to name a few. These adapters use the “SX-Virtual Link”
software developed by Silex Technologies to add sharing ca-
pabilities on different operating systems (e.g., Windows and
Linux), in addition to other embedded devices (e.g., wireless
routers). While we do not have conclusive evidence on the
actual targets of the scanning campaigns as they targeted
different ports within the specified ranges, these findings
may shed light on possible intentions of the emerging IoT
malware and its targeted devices/vulnerabilities.

Furthermore, about 5% of the IoT devices within
this class were also scanning other known ports, with
about half of them scanning one or more of the follow-
ing ports: HTTP/80/8080, Unassigned/81, Kerberos/88,
iRDMI/8000, and HTTPS/443. In addition, a small number
of devices (16) scanned Telnet/23 along with other known
services such as Alternative Telnet/2323, SSH/22, WSDAPI-
S/5358, CWMP/7547, and EthernetIP/2222. It is worthy
to note that these ports are associated with known IoT
malware/botnet (e.g., Mirai [4] and Hajime botnets [41]).
Nevertheless, having these ports scanned along with the
specified port ranges in this scanning class gives us a clear
indication of an evolving IoT malware/botnet, which is tar-
geting new vulnerabilities. However, proving this requires
further investigation, which is beyond the scope of this
paper and will be considered in future work.

Strobe Scans. The analysis of recently discovered IoT mal-
ware/botnets showed that compromised IoT devices were
utilized to scan a relatively small number of vulnerable
ports/services. We classify these scanning behaviors as
strobe scans. In line with that, about 31.5% (2,144) of the
compromised devices within our initial data were perform-
ing strobe scans, targeting less than 7 ports. In general, these
devices targeted 40 different ports/services, among which,
HTTP/80 was scanned by the largest number of exploited
devices (54.5%). In addition, as illustrated in Figure 4, al-
most all of the top scanned ports are associated with known
services that run on IoT devices to enable common oper-
ations such as information sharing (e.g., HTTP/80/8080),
remote login (e.g., Telnet/23/2323), and communication
(e.g., SSH/22), to name a few. It is also clearly observed that
a significantly larger number of compromised devices were
scanning the first six destinations ports (80–23), as compared
to the remaining destination ports.
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Fig. 4. Top 17 scanned destination ports by the highest number of IoT
devices within strobe scans.

In addition, the analysis highlights 89 unique scanning
objectives within the identified strobe scans (Sstrobe). A
summary of the most frequent scanning objectives within
Sstrobe is presented in Table 2 . It is worth noting that the
first scanning objective was common among a large number
of IoT devices (38.3%), followed by a relatively less number
of IoT devices that targeted the remaining port sets. At this
stage, the analysis of the frequent scanning objectives high-
lights specific intentions of the compromised IoT devices
and their targeted ports/services, which represent unique
characteristics of the underlying IoT malware/botnets. Fur-
thermore, it is clearly observed that some of the scanned
ports were likely to be scanned together as they appeared in
several scanning objectives (e.g., HTTP ports 80 and 8080).
To explore the correlations between the identified scanned
ports (Sstrobe), we perform association rules mining [42]. Let
X and Y be two scanned port sets that belong to Si ∈ Sstrobe.
An association rule X→Y describes the probability of port
set Y being scanned given that port set X was probed. The
Support of a rule is the count of the patterns in Sstrobe that
contain X∪Y. The Confidence of a rule is the support of the
rule divided by the number of patterns that contain only X.

As shown in Table 3, we provide a sample of the as-
sociation rules related to the frequent scanning objectives
(Sstrobe) identified in Table 2. As described through rules 1
to 5 in Table 3, there is a high correlation (Conf. > 99%)
between scanned ports within S1 (ports 80 81 88 8000 8080).
Furthermore, association rules 6 and 7 show a strong corre-
lations between both ports 7547 and 2323, and port 23 (Ta-
ble 3). This means that if either ports 7547 or 2323 is probed,
there is a high chance that port 23 is also going to be probed.
Nevertheless, the opposite rules (e.g., 23→7547) were not
significant (Conf. < 85%), which means that having port
23 scanned does not necessarily require scanning ports 7547
and/or 2323. The remaining association rules presented in
Table 3 corroborate the high correlation among scanned
ports within the scanning objectives presented in Table 2.
Therefore, we may conclude that these frequent scanning
objectives Sstrobe, which represent the targeted destination
ports/services by compromised IoT devices over a period of
time, could reflect unique characteristics of the underlying
scanning campaigns. We will elaborate on this in Section 4.2.

Wide Scans. In contrary to the range and strobe scanning
classes, the remaining identified scanning activities were
targeting a variable number of destination ports and IP ad-
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TABLE 2
Top 20 frequent scanning objectives within Sstrobe generated by about

94% of all devices in strobe scans class.

Si # Devices % Scanned Ports
1 821 38.3 80 81 88 8000 8080
2 187 8.7 23
3 160 7.5 81
4 152 7.1 23 7547
5 139 6.5 23 2323
6 110 5.1 80 443 8080
7 82 3.8 80 443
8 80 3.7 23 5358
9 74 3.5 80
10 43 2.0 445
11 40 1.9 22 23 2222 2323
12 32 1.5 3389
13 23 1.1 80 8080
14 21 1.0 80 81 8080
15 14 0.7 21
16 13 0.6 25
17 12 0.6 443
18 8 0.4 0
19 7 0.3 81 88 8000 8080
20 7 0.3 8080

TABLE 3
Association rules related to the scanned ports identified in Table 2.

ID Rule Support Conf. (%)
1 81 88 8000 8080→ 80 829 99.2
2 80 88 8000 8080→ 81 829 99.9
3 80 81 8000 8080→ 88 829 99.5
4 80 81 88 8080→ 8000 829 99.5
5 80 81 88 8000→ 8080 829 99.3
6 7547→ 23 161 98.8
7 2323→ 23 193 99.5
8 443 8080→ 80 113 98.3
9 443→ 80 198 93.0
10 5358→ 23 83 96.5
11 23 2222 2323→ 22 44 100.0
12 22 2222 2323→ 23 44 97.8
13 22 23 2323→ 2222 44 100.0
14 22 23 2222→ 2323 44 97.8
15 8080→ 80 997 98.1
16 80→ 8080 997 85.4
17 81 8080→ 80 859 99.0
18 80 8080→ 81 859 86.2
19 80 81→ 8080 859 98.7
20 88 8000 8080→ 81 836 99.9
21 81 8000 8080→ 88 836 99.5
22 81 88 8080→ 8000 836 99.4
23 81 88 8000→ 8080 836 98.8

dresses. We classify these scans as wide scans, as they tend
to target a large number of randomly scanned destination
ports over the analysis interval. Furthermore, the scanned
ports span over all existing ports, including reserved well-
known ports that are assigned to widely used services (0–
1023), other less commonly used registered ports (1024–
49151), and dynamic ports (49152–65535).

We identified 117 IoT devices that implemented different
strategies to perform wide scans. It is clearly observed that
utilizing exploited IoT devices to perform wide scans is
not very likely, as illustrated by the significant difference in
the number of involved IoT devices when comparing wide
scans with other scanning classes. Despite that, we detected
an IP camera from the Dominican Republic that scanned
more than 7,000 ports during a short period of time (interval

119-Figure 2). These typical port scanning behaviors (e.g.,
vanilla or sweep scans) might be easily detected by existing
defensive measures as they tend to target a large set of
ports and IP addresses. On the other hand, adversaries
try to evade detection by implementing a combination of
scanning techniques in a randomized and stealthy manner.
For instance, a printer located in Taiwan scanned 1,122 ports
on 1,132 destination IP addresses throughout the analysis
intervals. In fact, almost all exploited devices within this
class (except the IP camera from the Dominican Repub-
lic) were performing scans with a relatively small average
scanning rate (about 88 packets per hour). This however,
might reflect the behaviors of the majority of compromised
IoT devices that were performing wide scans, as they were
active (undetected) for a relatively long period of time.

4.1.2 Involved IoT Devices
The analysis of the involved IoT devices per scanning class
illustrates that range and strobe scans contribute to the
largest number of compromised IoT devices, with about
66.7% and 31.6% of all devices, respectively. More impor-
tantly, the distribution of the IoT device types per scanning
classes highlights a noticeable difference between range and
strobe scans, with range scans to contain a significantly
larger number of routers and printers, while strobe scans
containing a relatively larger number of IP cameras, as
illustrated in Figure 5. From a different perspective, while
Russia hosted the largest number of overall compromised
IoT devices (2,169 devices), it also contributed to the largest
number of devices that performed range (46%) and wide
scans (29%), respectively. As illustrated in Figure 6, it is
also clearly observed that the majority (96.4%) of the devices
hosted in Russia belong to range scanning class. Similarly,
the majority of devices located in China (93.3%), S. Korea
(85.4%), and the Philippines (84.4%), were performing range
scans, while the behaviors of most of the devices hosted
in Thailand (80.3%) and Singapore (75.7%) were classified
as strobe scans. Indeed, the distribution of IoT devices
per scanning classes, device types, and hosting countries
(Figures 5–6), reveals differentiating characteristics of the
underlying scanning activities generated by compromised
IoT devices. Nevertheless, while it is difficult to find the ex-
act reason for such dominant scanning behaviors in different
contexts, the analysis shed light on important characteristics
of the underlying IoT malware in terms of the targeted
vulnerable device types (or services), and the countries in
which these devices are deployed the most. Confirming
this assumption requires further investigations, which is
considered for future work.

4.2 Campaign Detection

To detect scanning campaigns, which represent the behav-
iors of well-coordinated botnets operating “in the wild,”
we leverage our knowledge on compromised IoT devices
with similar scanning objectives and classes, and utilize
their behavioral characteristics to perform clustering fol-
lowing an unsupervised learning approach. We leverage
the Density Based Spatial Clustering of Application with
Noise (DBSCAN) [43]. This algorithm is widely adopted as
it does not require a priori knowledge about the number of
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clusters, while it can detect arbitrary shaped clusters and
outliers [44]. Given a set of points in a specified space,
DBSCAN groups neighboring points if they form a cluster
with a minimum number of points MinPts that are reachable
within a predefined radius ε. DBSCAN can be used with
any distance function, however, in this paper, we adopt the
Euclidean distance for further analysis using R statistical anal-
ysis tools. It is worth noting that using DBSCAN requires
adjusting the initial values of ε and MinPts, which is not a
straight forward task as it requires extra measures to select
the appropriate values in different settings. In what follows,
we provide further information on the feature selection
process and the results.

4.2.1 Flow Features
Features selection and extraction is a complicated part of
unsupervised learning approaches, which has no unique
prescribed solution. Let Fd = {fd1, fd2, ..., fdN} be a set
of aggregate flows corresponding to N compromised IoT
devices in the analysis time interval E. Each aggregate
flow fdi ∈ Fd is described by a set of β flow attributes
or features. It is important to understand that when using
unsupervised classification approaches, we can not apply
standard feature extraction methods to validate the optimal
number of required features. Therefore, we leveraged the
literature to obtain a set of widely used traffic features (e.g.,
packet rate) [45, 46], along with raw and aggregate flow
features from our data analysis. Our analysis resulted in
selecting β = 10 features that are summarized in Table 4.
These features are extracted from the raw flow information
and aggregated throughout the analysis period, which rep-
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TABLE 4
The selected flow features for analysis using DBSCAN (β = 10).

β Selected Features
1 number of active intervals (hours)
2 per hour packet rate
3 ratio of TCP-SYN packets to non-backscatter packets
4 per destination address packet rate
5 per source port packet rate
6 average number of used source ports per hour
7 average length of the IP packet (from IP header)
8 number of TCP-SYN packets
9 number of scanned destinations
10 number of scanned destination ports

resents 143 hourly intervals (6 days). Note that the list of
features is not conclusive and we can always add or remove
features to improve the clustering results (if necessary).

4.2.2 Procedure
We use DBSCAN for inferring scanning campaigns within
the identified scanning classes (range, strobe, and wide).
To reduce noise and enhance the overall results, we filter
out IoT devices that sent less than 10 packets to the dark-
net during the analysis period. The extracted features are
then normalized and prepared to be used in DBSCAN by
applying unitization with zero minimum (xnorm. = (x −
min)/range). Moreover, we set MinPts = 3 as we assume
that a campaign consists of three or more IoT devices that
scan the Internet for certain vulnerabilities. To identify the
values of ε, we perform the Kth-Nearest Neighbor (K-NN)
distance analysis with K = MinPts. Given a sample of
N points, we calculate the distances between every point
and its K nearest neighbors. The resulting NxK calculated
distances are then sorted in ascending order to illustrate the
K-NN distance plot (Figure 7), with the Y-axis to represent
the calculated distance values for all NxK data points (X-
axis). Note that choosing a very small ε will cause a big
portion of the sample to be unreachable via other points,
and thus not clustered. On the other hand, choosing a very
large εwill result in grouping the majority of the sample into
a single cluster. Therefore, to ensure covering the majority
of the data points in the clustering analysis, a reasonable
value for ε is selected at the point where we observe the
beginning of a sharp increase in the values of the calculated
K-NN distances, as depicted by the provided example in
Figure 7.

We set ε to be 0.15, 0.2, and 0.3 for range, strobe,
and wide scans, respectively. Given the selected values of
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MinPts and ε, we perform DBSCAN clustering analysis on
devices within each scanning class and report results in the
following sub-sections.

4.2.3 Cluster Evaluation
In contrary to supervised learning approaches, cluster eval-
uation or validation methods are not well developed for
unsupervised learning approaches. There are a number of
common approaches that are traditionally used to evalu-
ate/validate the clustering results. Nevertheless, clustering
evaluation is highly application dependent and thus, sub-
jective. In this paper, we use “Internal Measures” such as
cluster cohesion and separation to evaluate our clustering
results. Cluster cohesion measures how closely related are
objects in a cluster. It is represented by the average within
distances among objects of clusters. Cluster separation, on
the other hand, measures how distinct or well separated a
cluster is from other clusters, and is presented as the average
between distance among different clusters.

We analyzed the intrinsic characteristics of the clustering
and summarized the evaluation results in Table 5 (Cluster
Evaluation). Considering that the results are normalized
(0.0–1.0), we want the average within distance to be as small
as possible, while having a larger average between distance
is always preferable. As summarized in Table 5, the resulting
average within distances for all evaluated scanning classes
is reasonable, with values equal to about 0.38, 0.46, and 0.36
for the three classes, respectively. In addition, the average
between distances show that the resulting clusters are well
distanced from each other in all classes, with an average of
about 0.86 (range), 0.88 (strobe), and 0.89 (wide). Overall,
while it is difficult to have perfect clustering, the evaluation
of the resulting clusters in terms of cohesion and separation
is reasonable. In what follows, we present detailed results
in terms of the identified clusters and the underlying IoT-
generated scanning campaigns.

4.2.4 Clustering Results
As summarized in Table 5, we identified 18 clusters of ex-
ploited IoT devices that participated in scanning campaigns.
These clusters, which represent groups of correlated IoT
devices with similar scanning objectives and behaviors, are
illustrated in Figures 8 (a)–(c). Note that the clustering is
performed based on 10 feature (dimensions), among which
features 3 and 4 (Table 4) were selected to illustrate the
clusters. Therefore, although the clusters are mutually ex-
clusive, they might look overlapping in the 2-dimensional
Figures 8 (a)–(c). In addition, outliers, which were not
grouped with any of the existing clusters, are represented
as isolated black dots in Figures 8 (a)–(c). In what follows,
we discuss the the characteristics of the identified scanning
campaigns with respect to each scanning class.

Range Scans. The majority of the exploited IoT devices
(about 96.8%) within the range scanning class were corre-
lated under cluster #1, as depicted by the largest cluster
in Figure 8a. These flow similarities confirm our initial
classification according to common scanning objectives (Sec-
tion 4.1), which highlight the correlation among compro-
mised IoT devices that target similar port ranges (range
scans). Moreover, considering that these port ranges are

not associated with commonly used services or targeted
vulnerabilities, they may in fact reflect a unique charac-
teristic of the underlying IoT malware/botnet. In addition,
we noticed differences in the distribution of device types
when comparing cluster #1 (Figure 9a), with clusters #2
(3 IP cameras) and #3 (about 70% IP cameras and 30%
routers), respectively. Furthermore, the scanning behaviors
were also found to be slightly different when comparing the
clusters, with devices within clusters #2 and #3 to be mainly
scanning objectives of known destination ports along with
the identified port ranges (19328–19622). In fact, 13 out of
the 21 devices within clusters #2 and #3 were scanning ports
80, 81, 88, 8000, and 8000, representing the first frequent
scanning objective (S1) from Table 2, while the remaining
were scanning a combination of Telnet/23 and other ports.
This however, gives us yet another clue about the character-
istics of the underlying IoT malware/botnet, which behave
differently, as reflected by the common scanning objectives
within the campaigns. Another interesting characteristics
that may differentiate between the identified clusters is the
average ratio of TCP-SYN to non-backscatter packets, with a
value of about 0.59 for cluster #1, and about 0.96 for clusters
#2 and #3. This indicates that on average, devices within
cluster #1 were involved in sending a noticeably higher ratio
of non-backscatter packets, such as ICMP-REQ and/or UDP
packets, as compared to clusters #2 and #3.

Strobe Scans. As summarized in Table 5, the analysis re-
sulted in identifying 12 clusters within the strobe scanning
class, with clusters #7, #2, and #3 having the largest pop-
ulations, respectively. The initial analysis of the identified
clusters in Figure 8b, showed that the clustering results
are highly dependent on the number of scanned destina-
tion ports within the scanning objectives (feature 10). For
instance, cluster #1 consists of IoT devices that scanned
6 destination ports, while devices in cluster #2 scanned 5
ports. Moreover, almost all clusters consist of devices that
scanned equal number of ports, except for cluster #7, which
contained devices with variable number of scanned ports
(1–3 ports). Therefore, although the number of scanned
ports specified in the scanning objective might not be a
characterizing factor by itself, it can reflect an abstract view
of the scanning behavior in terms of the total number of
targeted ports/services, which is an important characteristic
of the IoT-generated scanning campaigns.

In addition, the investigation of the targeted
ports/services highlighted similar scanning objectives
among a considerable number of the exploited devices
within most of the identified clusters. For instance, the
vast majority (99.3%) of devices within cluster #2 were
only scanning ports 80, 81, 88, 8000, and 8080, represented
by S1 in Table 2. Furthermore, about 66% of IoT devices
within cluster #3 scanned S11 (ports 22, 23, 2222, and 2323),
while about 33% of the devices scanned combinations of
ports that are subsets of S1 (e.g., ports 80, 81, 8000, and
8080). On the other hand, devices within cluster #7, which
represents the largest cluster within the strobe scanning
class, generated over 30 different scanning objectives,
among which, about 56% were associated with Telnet (e.g.,
ports 23 and 7547). These results indicate that despite the
reasonable grouping of correlated IoT devices based on their
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TABLE 5
Summary of the clustering results and evaluation (MinPts=3 and β = 10 features).

Clustering Results Cluster Evaluation
Class Device ε Cluster Cluster Size Outliers Within Distance Between Distance
Range 2,688 0.15 3 2604, 3, 18 63 0.379 0.859
Strobe 1,836 0.2 12 3, 822, 58, 4, 4, 4, 865, 11, 11, 4, 3, 17 30 0.457 0.879
Wide 71 0.3 3 13, 46, 6 6 0.363 0.889
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Fig. 9. The distribution of IoT device type in the largest clusters within (a) range, (b) strobe, and (c) wide scanning classes.

aggregate flow features, the clustering algorithm will not be
always sufficient to detect distinctive scanning campaigns
within strobe scanning class. Therefore, to overcome this
limitation and group IoT devices into meaningful scanning
campaigns, it is necessary to consider a combination of the
clustering and common scanning objectives.

Wide Scans. The analysis of IoT devices within the wide
scanning class, which involved a significantly fewer number
of compromised devices (71), resulted in three correlated
clusters (Table 5). These clusters of IoT devices, which
were grouped based on similarities in their aggregate flow
features, are illustrated in Figure 9c. It is worthy to note that
the nature of the underlying scanning campaigns in terms
of variable length of the scanning objectives, along with
the randomness in the targeted destination ports, makes
it extremely difficult to associate these IoT devices with
unique IoT malware/botnet. Nevertheless, by analyzing the
aggregate features with respect to the IoT devices within
each cluster, we found a significant difference in the ratio
of TCP-SYN packets to non-backscatter packets, with an
average value of about 0.98, 0.60, and 0.20, for the three
clusters respectively. In addition, while cluster #2, which
represents the largest group of exploited IoT devices within
the wide scanning class (about 65%), consist of a relatively

larger number of routers and IP cameras, cluster #1 con-
tained slightly more infected printers (50%), as illustrated in
Figure 9c. These results corroborate that exploited devices
from the same type are likely to generate similar scanning
behaviors and therefore, forming clusters of correlated de-
vices that operate within different scanning campaigns.

4.3 Results Summary
The analysis of the identified scanning campaigns gen-
erated by compromised IoT devices provides insights on
the behavioral characteristics of the underlying IoT mal-
ware. For instance, the analysis revealed common scanning
objectives that represent possibly vulnerable destination
ports/services. Furthermore, the analysis highlighted be-
havioral similarities in terms of the aggregated flow fea-
tures. Together, these similarities were effectively used to
uncover groups of IoT devices that were likely to be infected
by similar IoT malware, as reflected from their scanning
activities on the darknet.

Moreover, the analysis revealed that the ratio of the
generated TCP-SYN scanning packets to non-backscatter
packets (e.g., ICMP-REQ and UDP) is in fact a differentiat-
ing feature when characterizing the behaviors of exploited
IoT devices within different scanning classes/campaigns.
For instance, a Kruskal-Wallis rank sum test with pair-wise
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comparison tests (Bonferroni adjustment pbonf. = 0.0167),
showed statistically significant differences (p < 0.0001) of
means in the ratio of TCP-SYN to non-backscatter packets
when comparing strobe scanning class with other classes, re-
spectively. Indeed, devices within the strobe scanning class
were mainly sending TCP-SYN packets (average ratio of
about 0.99), and therefore, highlight a unique characteristic
that can distinguish them from other devices.

From a different perspective, the prevalence of certain
IoT device types within the identified scanning campaigns
determine a feature of the underlying IoT malware/botnet,
which is tailored to exploit certain vulnerable devices. For
instance, clusters #2 and #3 within the strobe scanning class
consist of mainly IP cameras. Nevertheless, it is interesting
to see that devices withing these clusters targeted different
destination ports, with the majority of devices within cluster
#2 and #3 to target S1 and S11 (Table 2), respectively. While
we do not have concrete information on the actual mal-
ware/botnet that is generating these scanning campaigns,
these behaviors can in fact illustrate the emergence and
evolution of IoT-tailored malware, which tend to target
multiple vulnerabilities on the targeted devices.

A main characteristic that differentiates between scan-
ning campaigns is the scanning objective, which reveals
the targeted ports that relate to existing vulnerabilities.
More importantly, while these targeted ports are usually
associated with known malware/botnets, the identification
of scanning campaigns that target uncommon ports (e.g.,
range scanning class), which are not associated with known
vulnerabilities can be utilized to predict and mitigate emerg-
ing IoT malware.

4.4 IoT Malware Attribution

To validate our approach in terms of detecting scanning
campaigns based on common scanning objectives, we col-
lected more than 9,000 real IoT malware executables and
performed multiple experiments to extract real IoT malware
traffic. Our objective herein is to corroborate findings from
analyzing the darknet and attribute the identified scanning
campaigns to known IoT malware/botnets. In what follows,
we elaborate on the data collection methodology, experi-
mental setup, and results.

4.4.1 Data Collection

We leveraged the data collected by an IoT-based honey-
pot (IoTPOT [23]) to acquire about 8,000 samples of IoT-
specific malware. We also extracted about 1,000 samples of
IoT-related Mirai and Bashlite malware executables from
a generic online malware repository (VirusShare.com). It
is important to realize that we performed a number of
pre-processing steps to filter out corrupted malware sam-
ples from our experiments. Furthermore, due to our sand-
box environment limitations, we had to discard malware
samples that did not work on the used instruction set
architectures (e.g., malware samples for SH4). Finally, given
that malware family names might not be conclusive, we
leveraged VirusTotal to obtain reliable malware family
names/information, while excluding samples with unreli-
able/insufficient information.

Virtual Sandbox

Multiple CPU Architectures (QEMU)

Debian 
ARM

OpenWRT 
MIPS

. . .
OpenWRT 

Sparc

Virtual Switch

Physical Testbed

Captured Traffic

IoT Malware
Binaries

Malware Traffic 
Analysis

Fig. 10. The created environment for analyzing IoT malware.

TABLE 6
Analyzed IoT malware samples and their targeted ports.

IoT Malware MD5 Targeted
Ports

Malware
Family

807a15c2c87c7bb21d7660251e0db6f8 81 Mirai-Satori
05a8435816bb768761fdc893e79dc988 23 2323 Mirai-A
0540e803f1788f75369f434ace742346 445 Lightaidra
215e366b75e8998e214dcc2094f7c95d 443 Tsunami
67609e719aca8bfce3ac8c2500cfdacf 80 81 8080 Gafgyt-A
62a907378286e3fa431279dc2df948a4 23 80 8080 Mirai-G

d14d3483aac0032f37a9b3c42722e51a 5555 Mirai-B/
ADB.Miner

4cf9d9961da97c204b303bbfe874a035 2000 Bashlite

4.4.2 Experimental Setup

Given the collected IoT malware samples, we developed
two experimental environments for executing and analyz-
ing the malware binaries, as illustrated in Figure 10. First,
considering the fact that IoT malware are found to target
almost all existing CPU architectures, we setup a multi-
architecture environment that emulates the most common
CPU architectures using a virtual sandboxing environment
on Qemu systems [47]. Second, we created an experimental
testbed to mimic the behaviors of IoT devices connected to a
wireless access point using three Raspberry Pi3 (Model
B+) boards with Rasbian OS [48]. It is worth noting that
the created testbed, which supports the execution of ARM-
based malware only, was utilized to validate the actual be-
haviors of the IoT malware by testing for employed sandbox
detection/evasion techniques. In fact, our analysis showed
almost identical traffic generated by the tested malware on
both environments (virtual and physical), which indicates
the absence of employed evasion techniques. Finally, we
utilized the created testing environments to execute IoT
malware samples for thirty minutes each while capturing
the exchanged traffic at the gateway using TShark.

4.4.3 Results

As summarized in Table 6, the experimental analysis re-
sulted in identifying a number of IoT malware variants,
which generated scanning campaigns towards ports similar
to those identified in our initial darknet data (Tables 2). For
instance, the Mirai-Satori was targeting port 81, which

VirusShare.com


IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, MONTH 2019 12

matches one of the common scanning objectives in our ini-
tial data set (S3 from Table 2). In addition, the Mirai-A was
found to be targeting ports identified within S5 (Table 2),
which corresponds to the behavior of 139 compromised
IoT devices in our initial data. Furthermore, while the
targeted ports by some of the analyzed IoT malware such
as Lightaidra and Mirai-G were less prevalent among
the identified scanning objectives in our initial data set, we
identified a relatively larger number of exploited devices
that scanned these ports when analyzing a recent sample
of darknet data, as described next in Section 5. This might
be justified by the evolving nature of IoT malware, which
are tailored to target new combinations of ports that are
associated with emerging vulnerabilities.

It is important to understand that our experimental re-
sults are bound to the limited number of analyzed malware
samples, which do not represent the activities of all existing
IoT malware families. Nevertheless, our results can indeed
validate our methodology in terms of identifying malware-
infected IoT devices and attributing their generated scan-
ning campaigns to the overall behaviors of known malware
families. More importantly, given the fact that IoT mal-
ware are rapidly evolving towards targeting new discovered
vulnerabilities, our approach can be leveraged to infer the
behaviors of emerging IoT malware through the detection
of scanning campaigns that target new/uncommon ports.
Finally, it is important to realize that despite the identified
behavioral similarities among real IoT malware and the
exploited devices involved in scanning the darknet, finding
the exact malware variant/family that infected these devices
requires further in-depth investigation and fingerprinting,
which is considered for future work.

5 CAMPAIGN PERSISTENCE AND EVOLUTION

In order to investigate the persistence and evolution of IoT-
generated scanning campaigns, we compared our findings
from analyzing the initial data that was collected during
April 2017, with newly collected data from the darknet. We
followed the steps described in Section 3 to process over
3TB of newly collected IoT traffic from the darknet between
May 21–25, 2018 (108 hours). The new data represents about
107M packets generated by 2,902 IoT devices towards the
darknet, among which, about 99% (over 106M packets) were
TCP-SYN packets. These TCP-SYN packets were generated
by 1,647 compromised IoT devices, with an average of about
390 IoT devices that were generating approximately 988,000
TCP-SYN packets towards the darknet per hour (Figure 11).
In what follows, we compare the IoT-generated scanning
campaigns from the two collected data sets and investigate
scanning activities, campaign persistence, and evolution.

5.1 Scanning Activities

The analysis of the newly collected data resulted in iden-
tifying a significantly less number of compromised IoT
devices (1,647), as compared to the 6,797 devices that were
discovered in our initial data collection. Nevertheless, these
fewer IoT devices were found to be more active in scanning
the darknet, sending significantly more TCP-SYN packets
(106M packets) towards the darknet over a relatively shorter
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Fig. 11. The distribution of all TCP-SYN scanning packets generated by
compromised IoT devices during the new analysis intervals (108 hours).

period of time (Figure 11), as compared to the 54.6M TCP-
SYN packets that were generated by the IoT devices in our
initial data (Figures 2). In fact, a Mann-Whitney U Test
confirms that the number of generated scanning packets
by compromised IoT devices was significantly greater (p <
0.0001) for the newly identified devices (median = 993, 931
packets) than for the devices identified in the initial data
(median = 371, 486 packets).

Moreover, the compromised IoT devices in the new data
set scanned an average of 245 unique destination ports
per hour, with Telnet/23 to be scanned by the highest
number of TCP-SYN packets, followed by HTTP ports 80
and 8080 (Table 7). It is important to note that these ports
have been continuously targeted by different variants of
IoT malware/botnets (e.g., Mirai). Moreover, while these
ports were scanned by less than 33% of all IoT devices,
port 445, which is associated to the Server Message Block
(SMB) protocol, was scanned by a relatively larger number
of IoT device (44.5%), among which the majority (705 out of
the 773) did not scan any other ports. Further investigation
shows that the SMB protocol has been vulnerable to the
EternalBlue exploit, which was leveraged by WannaCry
ransomware to perform large-scale attacks towards comput-
ers running Windows OS in May 2017 (one month after our
initial data collection). Interestingly, our findings indicate
that compromised IoT devices have been used to perform
reconnaissance activities to identify different types of vul-
nerable hosts, including non-IoT devices. Furthermore, we
observe a considerable increase in the number of IoT de-
vices that scanned port 445 in the new data set (Table 7),
as compared to the initial data (Table 1). While the real
reason behind the increased scanning activities towards
port 445 is not known to us, we believe that our findings
may provide an early indication of large-scale malware
outbreaks, which target the vulnerable SMB protocol on port
445. Indeed, our findings have been corroborated by other
reports, which highlight the growing number of scanning
activities and malware-driven attacks towards port 445 in
recent years [49].

The comparison of the total number of compromised
devices hosted in different countries across the two analyzed
data sets indicates a significant drop in the number of
exploited devices hosted in Russia, followed by relatively
smaller drops in the number of devices hosted in the U.S.
and Thailand (Figures 6 and 12). In addition, while routers
contributed to the largest portion of the IoT devices in
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each class (new data–May 2018).

TABLE 7
Top 18 scanned services/ports (CP=99%).

# Service/Port Packets IoT Devices
(M) % Src. IP %

1 Telnet/23 14.32 13.42 465 28.2
2 HTTP/80 8.14 7.64 556 33.8
3 HTTP/8080 8.06 7.56 508 30.8
4 Unassigned/81 6.14 5.76 126 7.7
5 Kerberos/88 5.96 5.59 119 7.2
6 iRDMI/8000 5.91 5.55 120 7.3
7 Alt. Telnet/2323 5.90 5.54 118 7.2
8 XFER/82 5.90 5.53 104 6.3
9 MIT-ML-DEV/85 5.90 5.53 102 6.2
10 SUNPROXYADMIN/8081 5.90 5.53 110 6.7
11 DDI-TCP-1/8888 5.90 5.53 104 6.3
12 MIT-ML-DEV/83 5.90 5.53 103 6.3
13 RADAN-HTTP/8088 5.90 5.53 108 6.6
14 VCOM-TUNNEL/8001 5.90 5.53 105 6.4
15 CTF/84 5.90 5.53 103 6.3
16 SMB/445 2.86 2.68 773 44.5
17 RDP/3389 0.66 0.62 20 1.2
18 SSH/22 0.45 0.42 15 0.9

our initial data (about 65%), IP cameras represented the
largest population in the new data (about 50%). These
changes can be justified by the significant decrease in the
proportion of IoT devices within the range scanning class,
which consist of mainly routers that were largely hosted in
Russia. However, while the real reason behind the temporal
change is unknown to us, we can only assume that these
scanning campaigns have faded as a result of remediation
and patching processes that took place after detecting the
malware-infected devices and their malicious activities.

On the other hand, there is a noticeable increase in the
total number of wide scanners hosted in Russia, as com-
pared to other countries. Moreover, the number of devices
that performed strobe scans almost doubled in Indonesia
to reach slightly over 400 devices in the new data set. These
temporal changes may in fact raise attention towards a num-
ber of points such as the weak security measures and/or
remediation efforts put by consumers in those countries.
Also, it may reflect the emergence of specific IoT malware
variants, which target/exploit vulnerable devices that are
widely deployed in those countries.

5.2 Persistence
The analysis of new IoT-generated data revealed scanning
classes similar to those identified in Section 4.1.1. For in-
stance, we found 44 IoT devices that were scanning the
exact port ranges as specified in the range scans (e.g., 19328–
19622), among which 19 devices were also common in
both data sets. The persistence of such scanning activities
after one year of initial observation might be justified in
different ways: first, there are adversaries that are still
interested in scanning possibly vulnerable hosts on these
port ranges. Second, these compromised IoT devices were
able to successfully evade detection and perform unsolicited
scanning activities over a long period of time. Third, these
exploited IoT devices were not updated/patched to receive
the necessary remediation.

Furthermore, the majority of the compromised IoT de-
vices in the new data set (1,421 out of 1,647) were per-
forming strobe scans that are mainly targeting known ser-
vices such as Telnet/23/2323, HTTP/80/8080, RDP/3389,
SMB/445, and HTTPS/443. The scanned ports also include
other less common/known services (i.e., ports 81–85, 8001,
8081, 8088, and 8888), which are thought to be used as alter-
native ports for HTTP by a number of online applications.
More importantly, 8 out of the top 10 identified scanning
objectives in the new data set (Table 8), which account for
about 90% of all devices within strobe scanning class, also
appeared among the top scanning objectives identified in
the initial data set (Table 2). The similarities in terms of the
identified scanning objectives and targeted ports demon-
strate the persistence of IoT-generated campaigns over time,
which tend to target a short list of vulnerable services using
strobe scans.

In addition to range and strobe scanning classes, we
identified 152 devices that performed wide scans, which
consist of mainly routers (63%), followed by printers
(19.7%), and IP cameras (15%). Furthermore, Russia hosted
the largest number of these devices (about 46%), with sig-
nificantly fewer number of devices distributed among other
countries (Figure 12). Despite the fact that wide scans are
less prevalent among compromised IoT devices in our data,
the slight increase in the number of involved devices in
the new data as compared to our initial data indicates the
persistence of such campaigns. Confirming this however,
requires further investigations that is beyond the scope of
this paper and might be considered for future work.

5.3 Evolution
The analysis of the scanning objectives and classes within
the newly analyzed data revealed 30 IoT devices (20 IP cam-
eras and 10 routers) that were targeting a new range of desti-
nation ports (2–10000). These devices, which contributed to
the high peaks in terms of the number of scanned destina-
tion ports throughout the analysis intervals (Figure 11), were
performing distributed scans by targeting ports within the
identified ranges on many destination addresses, resulting
in a maximum rate of 5 packets per destination. Given the
distinct scanned port ranges, we classify them as yet another
variation of range scans, which reflect the behaviors of new
or evolving IoT malware/botnets. It is also interesting to
see that almost all of the devices scanned Telnet/23 and
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TABLE 8
Frequent scanning objectives within strobe scanning class (CP=89.4%)

Si Frequency % scanning objective (ports)
1 705 49.6 445
2 228 16.0 23 80 8080

3 96 6.8 23 80 81 82 83 84 85 88 2323
8000 8001 8080 8081 8088 8888

4 79 5.6 80 443 8080
5 46 3.2 23
6 29 2.0 80 443
7 28 2.0 80 8080
8 26 1.8 80
9 19 1.3 3389
10 15 1.1 23 2323

HTTP/80/8080 ports, which is another sign of underlying
correlation among these devices (i.e., scanning campaign).

Moreover, despite the similarities in the majority of the
identified scanning objectives within the strobe scans when
comparing both data sets (Tables 2 and 8), we observed
the emergence of new scanning objectives that were in fact
associated with recently discovered vulnerabilities. For in-
stance, 12 compromised IoT devices were actively scanning
port 5555, which is associated with ADB.Miner [3], the first
Android worm to utilize port scanning code borrowed from
Mirai. Similarly, we found traces of scans towards port
3333, which is associated with Fbot [50], a Satori variant
that exploited various hosts on the Internet through their
management port that runs the Claymore Miner software.
Moreover, our results indicate possible traces of the Hajime
botnet [41], which searches for vulnerable routers by scan-
ning a list of ports including but not limited to 80–82, 8080,
and 8081. Interestingly, while these ports appear in one of
most frequent scanning objectives (S3 from Table 8), they
were also associated with other scanned ports (e.g., 8088
and 8888), which might reflect the behaviors of emerging
IoT malware/botnets. In addition, we also noticed scans
towards port 81, which is associated with a malware variant
that extends Satori to exploit Goahead IP cameras [51].
Other newly scanned ports that were also related to a range
of vulnerable services include: ports 83–85, 2000 (Cisco
SSCP enabled phones [52] and Bashlite), 3389 (Mirai on
RDP [53]), 8600, and 9000. It is important to understand
that given the distinctive characteristics of the IoT devices
in terms of the scanned ports, it is not anomalous to consider
those devices to be correlated. In other words, they might be
exploited by similar IoT malware, and therefore, involved in
scanning campaigns as a part of a bigger botnet.

6 DISCUSSION

The rising number of IoT-driven cyber attacks in recent
years have shed light on the activities of exploited IoT de-
vices and the underlying IoT-tailored malware/botnets [4,
12]. Nevertheless, obtaining empirical IoT-related data for
the purpose of generating cyber-threat intelligence has been
shown to be a challenging task [23, 25]. In this paper, we
extend our previous work [13] to provide a methodological
approach for detecting and characterizing IoT-generating
scanning campaigns, which reflect the unsolicited activities
of exploited devices and the underlying malware/botnet.

In general, while adversaries implement various tech-
niques for hiding traces of their malicious activities, they
tend to utilize limited resources (compromised IoT devices)
to perform distributed, Internet-wide scanning of vulnera-
ble ports [54]. Despite that, our multi-stage investigation of
compromised IoT devices and their scanning activities on
the network telescope reveal their overall scanning objec-
tives and behavioral characteristics over an aggregated pe-
riod of time, which is used further to identify correlated de-
vices participate in scanning campaigns. In addition, the in-
depth analysis of the detected campaigns unveiled interest-
ing characteristics of the underlying IoT malware/botnets.
For instance, while the IoT-generated scanning campaigns
were mainly targeting a short list of known and/or emerg-
ing vulnerabilities, a considerable portion of them were in
fact targeting new, possibly unknown vulnerabilities over
a range of uncommon ports (e.g., 19328–19622). These find-
ings however, can motivate the security research community
towards further investigation of new vulnerabilities (if any),
while taking preemptive measures to protect existing assets
against the newly identified exploitations.

Moreover, with support of data collected in the wild,
our findings expose cyber-threat intelligence that contribute
to the information infrastructure in the realm of IoT. These
findings, which come in-line with the rapidly emerging
IoT threat landscape [12], highlight the insecurity of cur-
rent IoT devices, while providing empirical evidence that
demonstrates the persistence of such threats, even long after
being widely recognized by the security community [4].
Our findings also demonstrate the evolution of IoT-tailored
malware/botnets, which reflect upon the growing efforts
of adversaries towards exploiting more sophisticated vul-
nerabilities. For instance, we identified traces of recently
discovered IoT malware such as ADB.Miner [3] and
Fbot [50], to name a few, which represent the evolution
of IoT exploitations towards well-crafted malware variants
that target vulnerable devices on new/uncommon ports.

An important contribution of this paper is to present
an approach for characterizing the behaviors of emerging
IoT malware/botnets through the analysis of the detected
scanning campaigns by leveraging publicly available data
resources. Moreover, while we demonstrate the feasibility of
our approach using data that was collected in the wild, our
approach involves semi-automated processes that hampers
the efficiency of the work. Indeed, we plan to address this
limitation by developing a system that lays the foundation
for future IoT-related cyber security research using passive
network data and by leveraging the capabilities of big
data analytics frameworks towards automating the data
collection/analysis processes, while providing a powerful
and scalable infrastructure for processing/analyzing data
in near real-time. Finally, while our work contributes to-
wards understanding the current state of the compromised
IoT devices and the underlying malware-initiated scanning
activities, we raise awareness towards exploring and deliv-
ering holistic counter measures for securing IoT devices and
protecting future operations, especially, with the anticipated
role of IoT devices as a fundamental driver of future gener-
ation of wireless networks (e.g., 5G networks) [55].
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7 CONCLUSION

We introduced a practical approach for detecting and char-
acterizing IoT-generated scanning campaigns. More specif-
ically, by leveraging IoT device information and over 6TB
of passive network traffic collected at a large-scale network
telescope, we identified over 8,000 compromised IoT devices
that were involved in a number of distinct scanning cam-
paigns on the Internet. In fact, the multi-stage investigation
of the devices and their generated scanning campaigns
shed light on behavioral characteristics of the underlying
IoT malware/botnets. Moreover, while our results corrobo-
rate findings with respect to known IoT malware/botnets,
they extend our knowledge towards discovering emerging
malware/botnets, which tend to target new vulnerabilities.
In addition, we provide insights on the persistence and
evolution of IoT-generated scanning campaigns over time.
After all, while our findings shed light on the current state
of exploited IoT devices, we also lay the foundation for
future work towards building scalable, Internet-wide IoT
threat detection systems that can help in building a better
understanding of the threats landscape while developing
proper countermeasures to limit their impact on future
operations.
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