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The Neutron star Interior Composition Explorer (NICER) is currently observing the x-ray pulse profiles
emitted by hot spots on the surface of rotating neutron stars allowing for an inference of their radii with
unprecedented precision. A critical ingredient in the pulse profile model is an analytical formula for the
oblate shape of the star. These formulas require a fitting over a large ensemble of neutron star solutions,
which cover a wide set of equations of state, stellar compactnesses and rotational frequencies. However,
this procedure introduces a source of systematic error, as (i) the fits do not describe perfectly the surface of
all stars in the ensemble and (ii) neutron stars are described by a single equation of state, whose influence
on the surface shape is averaged out during the fitting procedure. Here we perform a first study of this
systematic error, finding evidence that it is subdominant relative to the statistical error in the radius
inference by NICER. We also find evidence that the formula currently used by NICER can be used in the
inference of the radii of rapidly rotating stars, outside of the formula’s domain of validity. Moreover, we
employ an accurate enthalpy-based method to locate the surface of numerical solutions of rapidly rotating
neutron stars and a new highly accurate formula to describe their surfaces. These results can be used in
applications that require an accurate description of oblate surfaces of rapidly rotating neutron stars.
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I. INTRODUCTION

One of the outstanding open problems in nuclear
astrophysics is the determination of the properties of cold,
nuclear matter above nuclear saturation density. The
physics of nuclear matter in this scenario is encapsulated
in the so-called (barotropic) equation of state: a relation
between the pressure and energy density of matter, assumed
to be described by a perfect fluid. In this context, neutron
stars provide a natural laboratory to explore the equation of
state. The precise inference of neutron star properties, such
as the masses M and (equatorial) radii Req, is expected to
reveal the equation of state [1,2]. While the former has been
measured with exquisite precision through measurements
of the orbital parameters in double pulsar system with radio
astronomy, the latter remains elusive, with current infer-
ences having large systematic errors [3–5].

The Neutron star Interior Composition Explorer
(NICER) is currently observing the x-ray emission from
hot spots on the surface of neutron stars [6–8]. This x-ray

flux is seen as a pulsation in a detector and its shape (i.e., the
profile) carries information about the surface properties of
the star and the spacetime surrounding it [9,10]. Combined,
this information allows for the simultaneous inference of
both themassM and the equatorial radiusReq at the 5%–10%
level. The mission’s promise was recently realized with the
announcement of the measurement of the mass and (equa-
torial) radius of the isolated millisecond pulsar the J0030þ
0451 [11,12], demonstrating the usefulness of time and
energy-resolved x-ray observations to infer neutron star
properties.Moreover, additional properties (such as the star’s
moment of inertia) can be inferred using quasi-equation-
of-state independent relations [13]. Further inferences
obtained from the observation of three other pulsars
PSRs J0437 − 4715, J1231 − 1411, and J2124 − 3358 are
expected to be released in the near future [14]. These
electromagnetic observations combined with gravitational-
wave inferences on the tidal deformability from neutron star
binaries will improve considerably our understanding of the
neutron star equations of state (see, e.g., [15–22]).
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In principle, the pulse profile can be calculated by
performing ray-tracing from the hot spot(s) to the observer
in numerically constructed neutron star spacetime models
[23,24]. In practice, the large multidimensional parameter
space of the problem makes it computationally prohibitive
to use ray-tracing for parameter inference using Bayesian
methods. This obstacle calls for a pulse profile model that is
computationally efficient to calculate, yet captures the
salient features of a full ray-tracing calculation. In the
canonical pulse profile model used in the literature, photons
are emitted from an oblate surface and assumed to
propagate in an ambient Schwarzschild background
[24,25]. Previous works [24,26] have shown that this
“Oblateþ Schwarzschild” (Oþ S) approximation pro-
vides all the necessary ingredients to capture, with good
precision, the results of ray-tracing in numerically gener-
ated neutron star spacetimes.1

The Oþ S model takes as an ingredient an analytical
formula to describe the rotation-induced oblateness of the
star [25]. The use of such “shape formulas” by-pass the
process of calculating numerically rapidly rotating neutron
star models [30], which is also computationally expensive
in itself. Such formulas have been suggested in the
literature [25,31] and they share the feature of being
obtained by fitting an analytically prescribed “shape
function” to a large ensemble of rotating neutron star
models, which covers a large sample of equations of state
and spin frequencies. This fitting process introduces a
systematic error when estimating e.g., the star’s radius
because (i) the fits do not describe perfectly the surface of
all stars in the ensemble and (ii) neutron stars are, in reality,
described by a single equation of state, whose influence on
the surface shape is averaged out during the fitting
procedure. As the shape of a star being observed is
determined by its rotation frequency and its underlying
equation of state, the radius inference is, in principle,
affected by the ensemble used to find the fit.
Having identified that this may be a source of systematic

error, it is natural to ask if it has an immediate impact on
NICER today, or in the future. Here we perform a first study
on this issue. We first numerically construct rotating
neutron star solutions, valid to all orders in rotation, and
compare their surface to the different fits used in the
literature. We then create a new fitting function that is better
suited at recovering the surface of rapidly rotating neutron
stars. With these fitting functions at hand, we then study
through a simplified Bayesian analysis whether the use of
fitting functions introduces systematic errors in the param-
eters extracted. We find evidence that this systematic error
is subdominant relative to the statistical error in the radius
inference by NICER. We also find evidence that the

formula currently used by NICER can be used in the
inference of the radii of rapidly rotating stars, outside of the
formula’s domain of validity.
In the remainder of this paper we present how we arrived

at these conclusions. In Sec. II we present the neutron star
models we use, how they are computed and present a
method to accurately locate their surfaces. We also review
how the fitting formulas for neutron star surfaces are
obtained and introduce a new formula that describes
accurately the surface of rapidly rotating neutron stars.
In Sec. III we analyze in detail the impact of the different
fitting formulas on the resulting pulse profile and their
impact on the inference of the equatorial radius. In Sec. IV
we summarize our conclusions and discuss possible exten-
sion of this work. Unless stated otherwise, we work in
geometric units with c ¼ 1 ¼ G.

II. THE SURFACE OF ROTATING
NEUTRON STARS

A. Rapidly rotating neutron stars

We start by calculating a large catalog of rapidly, rotating
neutron star solutions using the RNS (“rotating neutrons
stars”) code developed by Stergioulas and Friedmann [32].
The code obtains equilibrium neutron star solutions by
solving Einstein’s equations in the presence of a perfect
fluid using the Komatsu-Eriguchi-Hachisu scheme [33,34]
and improving upon the modifications introduced by Cook,
Shapiro and Teukolsky [35,36]. All these methods use the
line element of a stationary and axisymmetric spacetime,
which, in quasi-isotropic coordinates, is given by:

ds2 ¼ −eγþρdt2 þ e2αðdr2 þ r2dθ2Þ
þ r2eγ−ρsin2θðdϕ − ωdtÞ2; ð1Þ

where α, γ, ρ and ω are functions of the coordinates r and θ
only. Given a rotation law (we assume uniform rotation)
and an equation of state, the RNS code can obtain
equilibrium solutions once a central energy density εc
and a ratio rpol=req (between the polar and the equatorial
coordinate radii) have been specified.
Once a neutron star solution has been obtained, we can

determine the star’s coordinate surface rsðθÞ by the loci
where the pressure vanishes. Then, the (circumferential)
radius of the star is determined as a function of the cosine of
the colatitude θ as,

RðμÞ ¼ rseðγs−ρsÞ=2; ð2Þ

where we defined μ≡ cos θ, γs ≡ γðrsÞ and ρs ≡ ρðrsÞ.
Based on this definition of the surface, we also define for
later use the ratio r

r≡ Rpol=Req; ð3Þ

1An earlier subset of this model in which the star is spherical is
known as the “Schwarzschildþ Doppler” approximation [27].
(See also [28,29]).
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between polar radius [Rpol ≡ Rðμ ¼ 1Þ] and equatorial
radius [Req ≡ Rðμ ¼ 0Þ]. We further define the eccentricity
of the star as

e≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
; ðeccentricityÞ: ð4Þ

To remain agnostic regarding the underlying matter
description of neutron star interiors, we consider a set of
equations of state that covers a wide variety of predicted
neutron star masses and radii. The equations of state we
use, in increasing order of stiffness (i.e., largest maximum
mass supported) are: FPS [37,38], SLy4 [39], AU [40,41],
UU [40,41], APR [42] and L [43]. Most of these equations
of state are consistent with the recent gravitational wave
observations of a binary neutron star coalescence by the
LIGO Scientific Collaboration [44], with the exception of
FPS and L, which are not stiff enough and too stiff
respectively, but we include them here nonetheless for
completeness. For each equation of state, we calculate 198
equilibrium configurations parametrized by the central
energy density εc and evenly spaced in the polar-to-
equatorial coordinate radii ratio rpol=req, from slowly
rotating models up to the Kepler limit. In total, our catalog
consists of 1188 stars.
To illustrate the impact of rotation on the properties of

neutron stars, we show in the left panel of Fig. 1 the mass-
(equatorial) radius relation for a family of solutions
obtained using the SLy4 equation of state and various

rotation rates. The solid line represents the nonrotating
family of solutions, obtained by integrating the TOV
(Tolman-Oppenheimer-Volkoff) equations [45,46] for a
range of central energy densities εc. The dashed lines
represent families of solutions with increasing rpol=req
ratios, which is equivalent to an increase of the rotational
frequency f. We see that the mass-(equatorial) radius
relations shifts toward larger radii (due to the “bulging”
out of the star’s equator) and larger masses (due to the
contribution of rotational energy to the star’s gravitational
mass and more support to baryons).
This behavior becomes more evident by tracking stars

with constant εc as we increase rpol=req. As an example, in
the left panel of Fig. 1 we mark with circles the solutions
with εc ¼ 9.4769 × 1014 g=cm3, which show the trend
described above. This particular sequence of stars covers
rotation frequencies f between approximately 400 and
1050 Hz, and will later serve as benchmark in our work.
A variety of their properties are summarized in Table I, and
their surfaces (obtained by a procedure described inSec. II B)
are shown in the right panel of Fig. 1.
In Fig. 2 we show our complete set of neutron star

solutions. It is convenient to show it not in the usual mass-
(equatorial) radius plane, but instead in a plane spanned by
the dimensionless parameters,

κ ≡ GM
Reqc2

; ðcompactnessÞ ð5aÞ

FIG. 1. Left: families of rotating neutron star solutions parametrized by their central energy density, using the SLy4 equation of state
and evenly spaced in polar-to-equatorial coordinate radius ratio rpol=req, from static configuration (solid, leftmost curve) to their Kepler
limit (dashed, rightmost curve). As the rotation frequency increases, the stars with fixed central energy density move toward larger
equatorial radii and masses. This is illustrated by the dots, which correspond to a fixed central energy density, with parameters presented
in Table I. Right: illustration of the deformation of a neutron star caused by rotation. The curves show the surface of the stars marked by a
black circle in the left panel. The axes correspond to ðR=RstaticÞð1 − μÞ1=2 and ðR=RstaticÞμ. The shaded region represents a static,
spherically symmetric star using the SLy4 equation of state and central total energy density εc=c2 ¼ 9.4769 × 1014 g=cm3, with a radius
of Rstatic ¼ 11.76 km and a mass ofM ¼ 1.35 M⊙. When the rotation frequency f increases, the star flattens at the poles, while bulging
out in the equator, as shown by the various lines. The ratio r between the polar Rð1Þ to the equatorial radius Rð0Þ decreases from unity
(for the static model) to 0.72 at f ¼ 1041.75 Hz.
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σ ≡Ω2R3
eq

GM
; ðdimensionless spin parameterÞ ð5bÞ

where Ω ¼ 2πf is the angular frequency and we momen-
tarily restored factors of c and G. In this parametrization,
the neutron star solutions fall on approximately equation-
of-state-independent curves, whose location depends on
rpol=req. If we loosely base our definition of a rapidly
rotating neutron star as one with σ ≳ 0.2, which is
approximately the value of σ for a canonical neutron star
1.4 M⊙ (described by equation of state SLy4) spinning at
f ≈ 716 Hz (the frequency of the fastest known pulsar to
date [47]) we see that the largest fraction of our catalog
consist of rapidly rotating stars. We include very rapidly
rotating stars in our work precisely because we want to
study how sensitive the fitting functions that NICER uses
are to their targets being slowly rotating. Currently, all

NICER targets are indeed (relatively) slowly rotating (with
rotational frequencies smaller than 300 Hz [14]), but in the
future, it may be the case that more rapidly rotating targets
are found.
What would a typical value of σ for a NICER target be?

To answer this question, we used the Markov-Chain
Monte Carlo samples obtained by the Illinois-Maryland
analysis of the millisecond pulsar PSR J0030þ 0451
[12,48], which has a known rotation frequency of
f ¼ 205.53 Hz [49,50]. We found that the best fit value
to be σ ¼ 0.02, indicating that PSR J0030þ 0451 is very
slowly rotating in the sense described above. In this regime,
neutron stars can be very well-described with the Hartle-
Thorne formalism [51–53]. In general, this formalism
cannot be used to describe rapidly rotating stars, which
thus forces us to rely on numerical codes such as RNS.

B. Locating the surface

Having obtained a numerical neutron star solution with
RNS, how do we locate its surface? To do this, we take
advantage of the first integral of the equation of hydrosta-
tionary equilibrium. The equation of hydrostationary equi-
librium for a uniformly rotating star with constant angular
velocity Ω is [54]

∇ap
ðεþ pÞ

¼ ∇a ln ut; ð6Þ

where ua ¼ utðta þΩϕaÞ is the 4-velocity of a fluid
element expressed in terms of the timelike and spacelike
Killing vectors ta and ϕa respectively, while

ut ¼ exp ½−ðρþ γÞ=2&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΩ − ωÞ2r2sin2 θ expð−2ρÞ

p ; ð7Þ

which follows from the normalization condition uaua¼−1
and the line element in Eq. (1).

TABLE I. The properties of the reference stellar models. The models, obtained using the equation of state SLy4,
correspond to a sequence of constant total central energy density εc ¼ 9.4769 × 1014 g=cm3 stars with increasing
rotational frequency. From left to right, the columns represent the gravitational mass M, the equatorial radius Req,
the polar-to-equatorial radius ratio r, the dimensionless angular momentum j≡ cJ=ðGM2Þ, the dimensionless
quadrupole moment q≡ −c4Q=ðG2j2M3Þ, the rotational frequency f and the compactness and spin parameter duo
κ, σ. The surfaces of models 1, 3, 5, and 7 are shown in the right panel of Fig. 1.

Model M (M⊙) Req (km) r j q f (Hz) σ κ

1 1.377 12.00 0.956 0.215 5.225 413.8 0.064 0.169
2 1.408 12.27 0.912 0.307 4.940 583.4 0.133 0.169
3 1.442 12.57 0.868 0.381 4.685 710.9 0.207 0.169
4 1.479 12.90 0.824 0.444 4.445 815.4 0.287 0.169
5 1.518 13.27 0.780 0.501 4.222 903.7 0.374 0.169
6 1.560 13.70 0.736 0.551 4.015 978.9 0.470 0.168
7 1.603 14.19 0.692 0.596 3.830 1041.7 0.575 0.167

FIG. 2. Neutron star models parametrized by σ and κ used in our
analytical fits to model the stellar surface. We used an equation of
state catalog that covers a wide range of stiffness. Models with
fixed r lie on approximately equation-of-independent-curves in
this plane.
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For a barotropic equation of state, that is, one where the
energy density ε and pressure p are related as ε ¼ εðpÞ, if
one defines the enthalpy per unit mass as

hðpÞ≡
Z

p

0

dp0

ðεþ pÞ
; ð8Þ

a first integral of Eq. (6) is

h − ln ut ¼ const ¼
"
ρþ γ
2

#

pol
; ð9Þ

where the right-hand side of the equation is evaluated at the
pole of the star rpol ¼ rðμ ¼ 1Þ. One can verify that at the
surface of the star on the pole, the enthalpy goes to zero and
it is zero along the entire surface of the star, while it is
positive in the interior and negative in the exterior of
the star.
The RNS code provides the value of the polar redshift,

zpol ¼ exp ½−ðρpol þ γpolÞ=2& − 1; ð10Þ

and the surface can then be found from the condition that
h ¼ 0 at r ¼ rs, where the constant in (9) is − lnð1þ zpolÞ.
Next, using Eq. (7), we solve the equation

utðr; μÞ − zpol − 1 ¼ 0; ð11Þ

searching, in a sequence of values of μ ∈ ½0; 1&, for the
values of r such that (11) is satisfied. This gives rs and then
we can find the circumferential radius using Eq. (2).
A Mathematica notebook implementing these steps can
be found in [55]. As an example we show in Fig. 3 the

contours of constant enthalpy per unit mass h for Model 1
in Table I. The surface is indicated with a solid line, which
corresponds to h ¼ 0, while the two dashed lines corre-
spond to h ¼ '0.01.

C. Analytical fits

Having obtained the data for the surface RðμÞ of each
star in our ensemble, we can now obtain analytical fits that
describe the surfaces of all stars. The procedure to generate
such a formula is simple and was first explored in [25]: we
first fit a proposed formula Rðμ; fangÞ (that depends on one
or more free constants an) for each star, parametrized by its
compactness κ and spin parameters σ (see Fig. 2). The
outcome of this procedure is a table fan; κ; σg. This data
can then be fitted to some analytical representation
anðκ; σÞ. These steps result in a formula Rðμ; fκ; σgÞ for
the surface.
We stress that this process introduces a smearing of the

particular way in which deformations away from sphericity
take place for neutron stars described by different equations
of state as the rotation frequency increases. For practical
applications, such as pulse profile modeling, but see also
for the cooling tail method [56,57], an ideal formula RðμÞ
would capture accurately the neutron star surfaces at a wide
range of spin frequencies, compactness and a wide set of
equations of state (i.e., it has to be quasi-equation-of-state
independent [25,31,58]).
In the remainder of this subsection, we review two

formulas used in the literature (Secs. II C 1 and II C 2) that
share these properties and also introduce a new formula
(Sec. II C 3).

1. The Morsink et al. formula

In [25], Morsink et al. introduced a formula based on the
assumption that the surface is related with the equatorial
radius Req as

RMðμÞ ¼ Req

$
1þ

X2

n¼0

a2nðσ; κÞP2nðμÞ
%
; ð12Þ

where Plð·Þ are Legendre polynomials, μ ¼ cos θ and a2n
are coefficients that depend on both σ and κ as

a2n ≡ cð1;0Þσ þ cð1;1Þσκ þ cð2;0Þσ2; ð13Þ

where cði;jÞ is the coefficient multiplying the product σiκj.
This notation will be used throughout this work.
The argument μ for the Legendre polynomials is chosen

to enforce the Z2-symmetry of the star’s surface across the
equator and the even-order Legendre polynomials are used
to force that RMðμÞ ¼ RMð−μÞ across the spin axis. Up to
n ¼ 1, this formula corresponds to the first order rotation-
induced deformations in Hartle’s perturbative expansion
[51], while the n ¼ 2 term captures higher-order spin

FIG. 3. Contours of constant enthalpy per unit mass (h) for
Model 1 of Table I. We depict contours of constant h ¼ '0.01
near the surface. The contour inside the stellar surface has h > 0
and the contour outside has h < 0. The surface RsðμÞ of the star at
h ¼ 0 is indicated by the solid line. The axes correspond to
ðR=RstaticÞð1 − μ2Þ1=2 and ðR=RstaticÞμ, where Rstatic ¼ 11.76 km,
as in the right panel of Fig. 1.
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deformations of the star.2 In the nonrotating limit (σ ¼ 0),
we have a2 ¼ a4 ¼ 0 and therefore RM ¼ Req for all μ.
One caveat of Eq. (12) is that it does not satisfy the
consistency condition RMð0Þ ¼ Req. However, the mis-
match between RMð1Þ and Req is less than 1% [25].
The coefficients cði;jÞ in Eq. (13) are summarized in

Table II. For self-consistency in our analysis, we recalcu-
lated the values of these coefficients using our neutron star
ensemble, which differs from that used in [25] in size,
rotation frequencies sampled and equations of state used.
The values quoted between parenthesis in Table II corre-
spond to the values found in [25]. We see that in general our
values are in good agreement.

2. The AlGendy and Morsink formula

An alternative to Eq. (12) that satisfies the constraint
Rð0Þ ¼ Req was proposed by AlGendy and Morsink [31]
and is currently in use in the pulse profile modeling by
NICER [26]. Their formula is

RAðμÞ ¼ Req½1 − ð1 − rÞμ2&≡ Req½1þ a2ðκ; σÞμ2&; ð14Þ

where the coefficient a2 is given by

a2 ¼ cð1;0Þσ þ cð1;1Þσκ; ð15Þ

and represents the multiplicative factor ð1 − rÞ, which
contains both the equatorial Req and polar Rpol radii of
the star [cf. Eq. (3)]. Due to the same symmetry require-
ments as in the Morsink et al. fit, even powers of μ ¼ cos θ
are used. In the nonrotating limit (σ ¼ 0), a2 ¼ 0 and
therefore RA ¼ Req for all μ.
The values of cð1;0Þ and cð1;1Þ are quoted in Table II. As

we did previously for the Morsink et al. formula, we

recalculated the fitting coefficients using our own neutron
star ensemble. We find larger differences between our
values and those quoted in [31]. We credit these differences
due to the fact that Ref. [31] only considered slowly
rotating stars (σ ≤ 0.1) whereas our catalog consists of
mostly rapidly rotating stars (σ ≥ 0.25), as we have
discussed before.

3. The elliptical formula

In addition to the models previously described, we also
introduce a new expression. Our choice is inspired by the
elliptical isodensity approximation [63] and is given by:

REðμÞ ¼ Req

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

1 − e2 gðμÞ

s

; ð16Þ

where

gðμÞ ¼ 1þ a2ðκ; σÞμ2 þ a4ðκ; σÞμ4

− ½1þ a2ðκ; σÞ þ a4ðκ; σÞ&μ6: ð17Þ

and the term multiplying μ6 was chosen such that,

REð1Þ
REð0Þ

¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
; ð18Þ

thereby enforcing the interpretation of e as the star’s
eccentricity [64]. As in the previous fitting formulas, even
powers of μ are used to enforce REðμÞ ¼ REð−μÞ. At a
qualitative level our formula differs from Eqs. (12) and (14)
in that we are including relativistic and spin corrections to
an otherwise ellipsoidal star, whereas the other two fits are
including relativistic and spin corrections to an otherwise
spherical star. Using an ellipsoidal star as the unperturbed
configuration is motivated by the fact that in Newtonian
gravity rotating stars are not spheres, but rather they are
ellipsoids of revolution.
We obtained two fits using our elliptic formula. The first,

which we name the “slow elliptical” fit, uses only stars

TABLE II. Values of the coefficients cði;jÞ for Morsink et al. and AlGendy and Morsink fits. The values quoted in
parenthesis correspond to the original values found in [25,31], obtained using a neutron star ensemble different from
ours. We attribute the larger differences in the AlGendy and Morsink fitting coefficients between our values and the
ones quoted in [31] to the fact those were obtained using a ensemble of mostly slowly rotating stars with spin
parameter σ ≤ 0.1, whereas we do include rapidly rotating models with σ as large as 0.8 (see Fig. 1).

Surface model Coefficient

cð1;0Þ cð1;1Þ cð2;0Þ
Morsink et al. [25]
a0 ð−0.18Þ − 0.193 ðþ0.23Þ þ 0.092 ð−0.05Þ − 0.015
a2 ð−0.39Þ − 0.391 ðþ0.29Þ þ 0.088 ðþ0.13Þ þ 0.149
a4 ðþ0.04Þ þ 0.031 ð−0.15Þ − 0.064 ðþ0.07Þ þ 0.086
AlGendy and Morsink [31]
a2 ð−0.788Þ − 0.533 ðþ1.030Þ þ 0.203 ( ( (

2In principle, one could work within the Hartle-Thorne
formalism beyond second-order in spin to study the surface
semianalytically. See [59] for the extension to third-order in spin
and [60] for the fourth-order in spin calculation. For pulse profile
calculations in Hartle-Thorne spacetimes see [61,62].
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with σ ≤ 0.25. The second, which we name the “fast
elliptical” fit, uses only stars with σ ≥ 0.2. The reasons are
twofold. First, on the observational side, the fastest known
millisecond pulsar has a frequency of 716 Hz [47], which is
approximately 2.5 times the rotation frequency of the
fastest spinning NICER’s target [14], PSR J1231–1411
which has a rotation frequency of 271.7 Hz [65]. Second,
on the practical side, the majority of the stars in our catalog
have σ > 0.25, which corresponds approximately to mini-
mum rotation frequencies in the 700–800 Hz range.
Therefore, any fit obtained using the full catalog will be
skewed toward the values of coefficients cði;jÞ correspond-
ing to rapidly rotating stars. These two observations
suggest separating our fits in the slow and fast fits,
including a “buffer σ-region” where they overlap.
The coefficients e, a2 and a4 are determined by

y ¼ cðyÞð0;0Þ þ cðyÞð1=2;0Þσ
1=2 þ cðyÞð1;0Þσ þ cðyÞð0;1Þκ

þ cðyÞð1;1Þσκ þ cðyÞð2;0Þσ
2 þ cðyÞð0;2Þκ

2; ð19Þ

with y any of e or a2n. In the slow-elliptical fit we set

cðeÞð0;0Þ ¼ cðeÞð1;0Þ ¼ cðeÞð2;0Þ ¼ 0; ð20aÞ

cða2nÞð1=2;0Þ ¼ cða2nÞð1;0Þ ¼ cða2nÞð2;0Þ ¼ 0; ð20bÞ

since to impose the nonrotating limit we must set all σ-free
coefficients to zero. The peculiar fractional-order coeffi-
cient cð1=2;0Þ is introduced to capture better the behavior of
the eccentricity e in the σ ≪ 1 limit. As for the fast-
elliptical fit, we do not need to impose these restrictions on
the σ-free coefficients, but we do set

cðyÞð1=2;0Þ ¼ 0; for y ¼ fe; a2ng; ð21Þ

since its introduction was motivated by e in the small-σ
limit. The coefficients cði;jÞ for both flavors of the elliptic fit
are summarized in Table III.

D. Comparison between the different formulas

In the previous section, we introduced three formulas
that describe the surface of neutron stars for a wide range of
spin and compactness parameters. How do they compare
when confronted against the properties of individual
neutron star models computed as accurately as possible?
Neutron stars are generally believed to be described by a
single equation of state. Therefore, using fits which
integrate out the surface variability of neutron stars due
to different equations of state could introduce a source of
systematic error in any neutron star parameter estimation
where the fits are used.
As a first step to analyze this source of systematic error,

in this section we compare the three formulas (using our
own fitting coefficients) against neutron star models com-
puted numerically with the equation of state SLy4 [39]. We
use our own fitting coefficients for all three formulas to
avoid a systematic error introduced by comparing different
fits obtained from different neutron-star catalogs. Recall
that the catalogs used here and in Refs. [25,31] are all
different. We chose the equation of state SLy4 because it
yields neutron stars with masses greater than 1.9 M⊙ as
required by the observations of the massive pulsars J1614 −
2230 [66–68], J0348þ 0432 [69] and J0740þ 6620 [70],
and yet it is relatively soft as required by tidal deformability
estimates from the GW170817 event [44,71,72].
Let us first describe the neutron star models we will use

as benchmarks in this section and in the remainder of this
work. We use a sequence of stars parametrized by their
central energy density εc (¼ 9.4769 × 1014 g=cm3), which
for the SLy4 equation of state results results in a “canoni-
cal” neutron star with a mass of approximately 1.4 M⊙ in
the nonrotating limit. The properties of these “benchmark
stars” are summarized in Table I and they are indicated by
markers in the mass-(equatorial) radius plane in Fig. 1. We
will use the term “benchmark” to any property or observ-
able calculated using one of these stars. For instance, we
will refer to their surfaces as “benchmark surfaces” and to
the pulse profile emitted from their surface as “benchmark
pulse profiles.”

TABLE III. Values of the coefficients cði;jÞ for the slow and fast variations of the elliptical fit. The former only uses
stars for which the spin parameter is σ ≤ 0.25, while the latter only those for which σ ≥ 0.2.

Surface model Coefficient

cðyÞð0;0Þ cðyÞð1=2;0Þ cðyÞð1;0Þ cðyÞð0;1Þ cðyÞð1;1Þ cðyÞð2;0Þ cðyÞð0;2Þ
Slow-elliptical fit
y ¼ e ( ( ( þ1.089 þ0.168 ( ( ( −0.685 −0.802 ( ( (
y ¼ a2 −1.013 ( ( ( −0.312 ( ( ( þ0.930 −1.596 ( ( (
y ¼ a4 þ0.016 ( ( ( þ0.301 ( ( ( −1.261 þ2.728 ( ( (
Fast-elliptical fit
y ¼ e þ0.251 ( ( ( þ0.935 þ0.709 þ0.030 −0.472 −2.427
y ¼ a2 −1.265 ( ( ( þ0.220 þ2.651 þ1.010 −1.815 −7.657
y ¼ a4 þ0.556 ( ( ( −1.465 −4.260 −2.327 þ4.921 þ12.98
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To describe the shape of these stars as accurately as
possible we fit separately both R ¼ RðμÞ and

d log RðμÞ
dθ

¼ −ð1 − μ2Þ1=2 1

RðμÞ
dRðμÞ
dμ

; ð22Þ

the latter being a measurement of the deviation from
sphericity of the star’s surface and subject to the constraints

½d log RðμÞ=dθ&μ¼0 ¼ ½d log RðμÞ=dθ&μ¼1 ¼ 0: ð23Þ

TABLE IV. Values of the coefficients ai in the fitting formula Eq. (24a) and bi, ci in Eq. (24b) for our set of reference stellar models,
whose properties are summarized in Table I.

Model 10−2 · a2 10−2 · a4 10−2 · a6 10−2 · a8 10−2 · a10 10−2 · b1 10−2 · b3 10 · c0 10 · c2 10 · c4

1 −4.174 0.3647 −0.0495 0.01175 −0.0034 −5.213 −5.623 6.244 7.575 0.811
2 −9.132 1.832 −0.531 0.1603 −0.0310 −10.42 −10.67 5.702 7.656 1.464
3 −15.15 5.349 −2.644 1.173 −0.276 −18.16 −12.09 5.992 7.373 1.403
4 −22.68 12.73 −9.303 5.279 −1.422 −19.50 −17.04 4.295 7.769 1.895
5 −32.44 27.49 −27.20 18.32 −5.423 −17.76 −23.03 2.724 7.710 2.603
6 −45.69 56.56 −70.98 54.16 −17.17 −16.07 −30.44 1.731 7.760 3.507
7 −64.72 114.0 −172.8 145.0 −48.43 −13.76 −38.70 1.013 7.644 4.591

FIG. 4. Surfaces (top) and surficial logarithmic derivative (bottom) of rotating neutron stars. The left-panels correspond to a star with
rotation frequency of f ¼ 413.8 Hz, whereas the right-panels to a star with rotation frequency of f ¼ 1045.7 Hz, which correspond to
the benchmark stars labeled 1 and 7 in Table I. The top-panels show RðμÞ normalized by the equatorial radius Req, while the bottom
panels show d logRðμÞ=dθ without normalization. The different curves correspond to the surface as determined by the RNS code (solid
line), as predicted using the Morsink et al. fit (dashed line), the AlGendy and Morsink fit (dash-dotted line) and the elliptical fit (dotted
lines), with the slow-elliptical fit on the left and the fast-elliptical fit on the right. The bottom panels show the residuals between each of
the fits and the benchmark surfaces.
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For these two quantities we used the following fitting
formulas

RBðμÞ ¼ Req

"
1þ

X5

k¼1

a2kμ2k
#
; ð24aÞ

d logRBðμÞ
dθ

¼ −ð1 − μ2Þ1=2
P

2
k¼0 b2kþ1μ2kþ1

P
3
k¼0 c2kμ2k

: ð24bÞ

Equation (24a) is a higher-order AlGendy and Morsink
fit, with the higher powers of μ introduced to describe the
greater deformations away from spherical symmetry that
happen at high rotation frequencies and to simultaneously
retain the property that RBð0Þ ¼ Req. Equation (24b) is
chosen such as to represent the logarithmic derivative of
Eq. (24a) and, by construction, it satisfies the constraints
of Eq. (23).
We used these formula to fit our numerical data and the

resulting fitting coefficients ai, bi and ci are summarized in
Table IV. To obtain the fits for Eq. (24b), we first calculated
numerically the logarithmic-derivative using a sixth-order
finite difference formula. A detailed study of the numerical
derivatives and the goodness of the fits is presented in
Appendix.
In the top panel of Fig. 4 we show the residuals Rfit − RB,

as functions of the colatitude θ, between the three fitting
formulas and the benchmark stars for the slowest and
fastest rotating stars in Table I. We see that for the slowest
rotating model (left-panel) the Morsink et al. and the (slow)
elliptic fit behave very similarly and they are both closer to
the benchmark surface in comparison to the AlGendy and
Morsink formula. Nonetheless, the residuals are small,
below 0.1 km, indicating that all three formulas agree well
with the benchmark surface. The situation changes when
we consider the fastest rotating model (right-panel). We see
that the (fast) elliptical fit outperforms both the Morsink
et al. and the AlGendy and Morsink fits. For the latter two
formulas the largest value of the residual increases approx-
imately fivefold, however, staying bound to be less than
0.5 km. In the bottom panel of Fig. 4 we carry out the same
analysis but for the logarithmic-derivative of the surface,
reaching similar conclusions.

III. IMPLICATIONS OF THE FITTING FORMULAS
ON THE PULSE PROFILES

In the previous section we introduced the various fitting
expressions for the surface of rotating neutron stars and
studied how well they reproduce a set of benchmark
surfaces. How does the mismatch between fit and bench-
mark surfaces appear in the pulse profile generated by hot
spots on the star’s surface? In this section we address this
question in two fronts. First, given that the surface depends
on the colatitude θ, it is clear that the mismodeling of pulse
profiles will depend both on where on the surface the hot

spot is located (θsÞ and on the line of sight of the observer
(ιo), where both angles measured relative to the rotation
axis of the star. Therefore, it is natural to examine for which
combinations ðθs; ιoÞ the mismatch is smallest/largest.
Second, we want to explore how the different formulas
perform when trying to extract the equatorial radius Req

from a synthetic injection. Of course, both questions are
intertwined as, for instance, a combination ðθs; ιoÞ for
which the flux mismatch is large will, likely, result in a
large systematic error in the inference of Req. For the
reasons explained in Sec. II D, we continue to use the
surface formulas with our own set of fitting coefficients.
To answer these questions we need to construct (as

accurately as possible) reference pulse profiles to compare
against. Ideally, these “benchmark pulse profiles” should be
calculated doing ray-tracing on a numerically constructed
rotating neutron star spacetime. For simplicity, we restrict
ourselves to the Oþ S model, with the star’s oblateness
modeled by the high-order fitting expressions introduced in
Sec. II D.
As already mentioned, the Oþ S model is currently used

by NICER and its validity has extensively been examined by
comparison against ray-tracing in numerically obtained
spacetimes of rotating neutron stars. These studies have
shown that theOþ Smodel can accurately describe thex-ray
emission of the neutron star surfaces for a typical NICER
target. Our own implementation of the Oþ S model follows
closely the presentation in Refs. [25,26,73]. The code was
validated against theAlberta code described in [26]which, in
turn, has been validated against several other codes used in
the NICER collaboration.
In all calculations in this work, we assume for simplicity a

pointlike hot spot with angular radius Δθs ¼ 0.01°. We
further assume that this hot spot radiates isotropically
according to a blackbody spectrum with kBT 0

0 ¼ 0.35 keV
(measured by an observer comoving with the hot spot). We
place the observer at a distance d ¼ 200 pc from the source
and we assume that this observer collects photons arriving
withE ¼ 1 keV.We also fix the initial phase of the observed
flux (i.e., its zero value) to when the hot spot is closest to the
observer. This is a representative value within the soft x-ray
band in which NICER operates. These quantities are sum-
marized in Table V.

TABLE V. Pulse profile parameters. The table summarizes the
parameters that enter the pulse profile calculation which we keep
fixed throughout this work. We assume the existence of single,
pointlike hot spot on the star’s surface to isolate the effects of the
different neutron star surface models on the resulting x-ray flux.

Parameter Value

Hot spot angular radius (Δθs) 0.01 deg
Hot spot temperature at comoving frame (kBT 0

0) 0.35 keV
Observed photon energy (E) 1 keV
Distance (d) 200 pc
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These simplifications allow us to isolate the influence of
the different surface models on the pulse profiles. However,
our results must be considered conservative since other
effects, such as the influence of frame dragging and higher-
spacetime multipole moments on the photon motion, are
not taken into account in the Oþ S approximation. Our
analysis, while indicative of what can happen in a more
complete analysis, cannot substitute a full parameter
estimation in the framework of Bayesian inference (see,
e.g., [11,12,74–76]), a task which we leave for future study.
In Fig. 5 we show some examples of the difference in the

pulse profile (in units of photons cm−2 s−1 keV−1) when we
fix all parameters used to produce it and only vary the
fitting formula used to model the star’s surface. We quantify
this difference by subtracting the benchmark pulse profile
(i.e., the one obtained using the “exact” surface formula)
from the pulse profile obtained using each fitting formula
and then dividing by the mean value of the former. We
consider the slowest and fastest stars in our benchmark

catalog and two hot spot-observer orientations. The first,
labeled “low inclination” has ðθs; ιoÞ ¼ ð45°; 20°Þ, while the
second, labeled “high inclination” has ðθs; ιoÞ ¼ ð80°; 85°Þ.
These two configurations are summarized in Table VI. The
figure shows that for the slowest rotating model, all fitting
formulas agree with the benchmark pulse profiles with
differences of at most ∼1%. For the fastest rotating model,
a larger differences appear and can be as large as ∼30%.

FIG. 5. Illustrative pulse profiles. We compare the pulse profiles, in units of photons cm−2 s−1 keV−1, obtained using the three different
fitting formulas against those obtained by the slowest and fastest rotating benchmark stars (models 1 and 7 in Table I). Top row: the low-
inclination hot spot/observer orientation with the pulse profiles in the top panel and the difference between each surface model and the
benchmark pulse profiles divided by the mean of the latter in the bottom panel. Bottom row: similar to the top row but for the high-
inclination hot spot-observer orientation.

TABLE VI. Summary of the hotspot/observer arrangements
used in the estimation of Req and the values of the statistical error
δReq used when calculating the likelihood. The two arrangements
are located Fig. 6 by the markers○ (low inclination) and□ (high
inclination). The statistical errors are based on [74,75].

Case θs (deg) ιo (deg) δReq (km)

Low inclination 45 20 0.20
High inclination 80 85 0.05
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Except at these phase values, all formulas agree with the
benchmark pulse profile in the high-inclination case.
However, for the low-inclination case, we see that the new
fast elliptical fit does agree remarkably well with the
benchmark pulse profile.

A. Dependence on the hot spot and observer’s
orientation

Let us examine the error introducedby the fitting formulas,
relative to the benchmark pulse profiles, when we vary the
hot spot (θs) and observer location (ιo). The reason for this
study is the following: there is no reason for the error to be the
same for all pairs ðθs; ιoÞ. Indeed, as shown inFig. 4, a surface
fit canmatch exactly the benchmarkmodels locally, although
not well globally. If the hotspot is located at one of these
special values of colatitude, the resulting pulse profilewill be
the same. The location of these “coincident colatitudes”
depends on the frequencyf of the star. For instance, returning
to Fig. 4, we see that for the AlGendy and Morsink fit this
happens at θ=90° ¼ 1 when f ¼ 413.8 Hz, but at θ=90° ≈
0.32 and1whenf ¼ 1045.7 Hz.Anextreme examplewhere
this situation happens for all rotation frequencies is when
both θs and ιo are on the equator (90°). In this case, as long as
Rfit ¼ Req the pulse profiles will be identical. This happens
for theAlGendy andMorsink and elliptical fits, and to a good
approximation for the Morsink et al. formula.
We quantify the mismatch between pulse profiles pre-

dicted by the different surface formulas over the course of a
single revolution of the star using two measures. First, we
define the mean residual

R≡ 1

Nbins

XNbins

i¼1

jFB
i − Ffit

i j; ð25Þ

where FB
i (Ffit

i ) is the flux calculated using the benchmark
surface (the fitting formulas) at the i-th phase bins and
Nbins ¼ 16 is total number of phase bins used. Second, we
define the “normalized” residual

M≡ 1

Nbins

PNbins
i¼1 jFB

i − Ffit
i j

hFBi
; ð26Þ

where hFBi is the mean value of the benchmark pulse
profile,

hFBi≡ 1

Nbins

XNbins

i¼1

FB
i : ð27Þ

In Fig. 6, we show M as a function of (θs; ιo) in the
domain D ¼ ½0; 90°& × ½0; 90°&, for four sample benchmark
stars with rotation frequencies 413.8, 710.9, 903.7 and
1041.7 Hz. These correspond to the stars labeled 1, 3, 4,
and 7 in Table I. These four stars define the columns in
Fig. 6, while the four fitting formulas define the rows.

We use the same color map scale along each column. This
figure reveals a number of interesting facts, namely:

(i) As expected, the normalized residual is minimal at
θs ¼ ιo ¼ 90°. In fact, it remains small for any ιo, as
long as θs ≈ 90°, for all formulas.

(ii) The Morsink et al., AlGendy and Morsink and
(slow) elliptical formulas all have small normalized
residuals for all combinations of θs and ιo relative to
the benchmark flux at 413.6 Hz (leftmost column).
Since this value is already larger than the fastest
spinning neutron star in NICER’s target list, we can
expect that these three formulas would imply similar
best fit parameter estimates if used to analyze
NICER data. Perhaps unsurprisingly, the fast-ellip-
tical fit (which was obtained using only σ ≥ 0.25
stars) has regions in the ðθs; ιoÞwhere the normalized
residual becomes larger (M ≥ 0.3). Yet, these re-
gions are confined to θs ≤ 25°.

(iii) For faster rotating stars (the three rightmost col-
umns), we see that the Morsink et al. , AlGendy and
Morsink and slow elliptical formulas start to fail to
reproduce the benchmark flux, as can be seen by the
increase in size of the region in which M≳ 0.3.
There are regions however, where the normalized
residual still remains small. In contrast, the fast
elliptical formula outperforms all the three formulas
when applied to rapidly rotating stars, as we should
expect, by construction.

In Fig. 7 we show the dimensionless integrated values of
M, defined as

M̄≡
Z

D
M dðθs=90°Þ dðιo=90°Þ; ð28Þ

(and likewise for R̄) as a function of the rotation frequency
f for the seven benchmark stars. The figure shows that
these two error measures behave similarly. For the Morsink
et al., AlGendy and Morsink and slow-elliptical fits, both
R̄ and M̄ increase monotonically as a function of f. On the
other hand, for the fast-elliptical fit both R̄ and M̄ decrease
with f to values smaller than the other three curves, yet
showing a small oscillatory behavior past 700 Hz, probably
associated with numerical error.

B. Systematics errors on the equatorial
radius inference

In this sectionwe study how the different formulas used to
describe surface of rotating neutron stars affect the parameter
estimation of the star’s equatorial radius. We continue to use
the simplifying assumptions of Sec. III and the parameters
summarized in Table V. We further fix the orientation angles
(θs, ιo) according to the two cases listed in Table VI. Finally,
the star parameters M, Req and f are fixed to:

(i) M¼1.4M⊙, Req¼13km and f¼205Hz as to mimic
the parameters inferred from PSR J0030þ0451 [12].
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FIG. 6. The normalized residualM [defined in Eq. (26)] as function of (θs, ιo). The results forR [defined in Eq. (25)] are qualitatively
the same. We use the same scale for all panels in each column. The columns correspond to which benchmark star we compared each
fitting formula against. We see that as the rotation frequency f increases the Morsink et al. (top row) and AlGendy and Morsink (middle
row) in general deteriorate relative to our benchmark fluxes, calculated using the formulas of Sec. II D. On the other hand, the elliptic fit
remains relatively accurate for the whole frequency range considered by us. This conclusion can be quantified by calculating the
integrals ofM andR, whose results are shown in Fig. 7. The markers denote the two combinations of hot spot colatitude (θs) and line of
sight to the observer (ιo) angles used in our parameter estimation study in Sec. III B 2.
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We use the AlGendy and Morsink formula to
describe the star’s surface. (Section III B 2.)

(ii) fM;Req; fg are those of the benchmark stars of
Table I. We use the benchmark surface models of
Sec. II D.

In both cases, we use the same methodology to perform a
(restricted) likelihood analysis study as used in [77].

1. Statistical methods

We call the signal measured during an observation the
synthetic injected signal, or (for brevity) the injection
Finjðϑ)Þ. The pulse profile that we use to extract and
characterize this observed pulse profile is referred to as the
model FmodðϑÞ. Here, ϑ) (ϑ) represent the injection
(model) parameters used to calculate the pulse profile.
Both pulse profiles are calculated using the Oþ S

approximation once all parameters

ϑ ¼ fM;Req; f; θs; ιo;Δθs; d; kBT 0
0g; ð29Þ

have been specified. As done in the previous section, we
work with a reduced model parameter space obtained by
fixing

ϑfix ¼ fM; f; θs; ιo;Δθs; d; kBT 0
0g; ð30Þ

to the injected values, leaving as the single variable
parameter the equatorial radius Req.
We calculate the best-fit parameter value by minimizing

the reduced chi-squared χ2red between the injection and the
model pulse profiles, sampling over the model’s variable
parameter Req. The reduced chi-squared is defined as

χ2red ≡
1

N

XN

i¼1

$
Fmodðϕi;ϑfix; ReqÞ − Finjðϕi;ϑfix; R)

eqÞ
σðϕiÞ

%
2

;

ð31Þ

where R)
eq is the equatorial radius of the star used to

calculate the injection pulse profile. The summation in (31)
is over theN time stamps during the course of one observed
revolution of the star. We normalize the phase (dividing by
2π) for a revolution such that ϕi ∈ ½0; 1& and use N ¼ 16
time stamps. The standard deviation of the distribution (σ)
is modeled as σðϕiÞ ¼ σReq

ðϕiÞ, where σReq
is the standard

deviations on the (injection) equatorial radius. We calculate
the standard deviation σReq

as [78,79].

σReq
¼ 1

2
jFinjðϕi;ϑfix; R)

eq þ δReqÞ

−Finjðϕi;ϑfix; R)
eq − δReqÞj; ð32Þ

where we assume the values for the statistical error δReq

listed in Table VI. To obtain the standard deviation, we
need to calculate the pulse profile emitted by a star with
radii R)

eq ' δReq. In this calculation, we cannot use the
“exact” fits (because they are valid only for the benchmark
stars), nor the fitting formulas we are using to calculate
the model pulse profile Fmod (because it could bias
the resulting likelihood). To overcome this problem, we
obtained a high-order AlGendy and Morsink fit, similar to
Eq. (14) but adding terms a2iμ2i up to i ¼ 5 and using only
stars described by the SLy4 equation of state.
Once the reduced chi-squared is obtained, we assume

that the likelihood is Gaussian

LðReqÞ ¼ exp ð−χ2red=2Þ; ð33Þ

which we combine with the prior πðReqÞ, to obtain the
posterior

PðReqÞ ∝ LðReqÞ · πðReqÞ: ð34Þ

We use a flat prior in the range κ ∈ ½0.125; 0.3125& for the
compactness [12]. We also set an upper bound on the spin
parameter, σ ≤ 1, a condition that is only violated by stars
rotating near their mass-shedding frequency. These two
conditions combined with the fixed mass M and rotational
frequency f of the star (used to produce the injection pulse
profile) fix a range of values for Req. We take our prior on
Req to be uniform in the range Req ∈ ½10; Rmax

eq & km, where
the upper bound is set by the lower and upper limits on κ
and σ respectively.
In Fig. 8 we illustrate this discussion. The solid lines

delimit the allowed region in the (M, Req)-plane by the
compactness prior alone. Part of this region is carved out by
imposing an upper limit on σ which, for four sample values

FIG. 7. The integrated values of R̄ (top panel) and M̄ (bottom
panel) in the domain shown in Fig. 6 as functions of the rotation
frequency f of the benchmark stars. The legend is shared between
both panels. Overall, all three formulas perform well for slowly
rotating stars. As the rotation frequency f increases, the errors for
the Morsink et al. (solid lines) and AlGendy and Morsink (dashed
lines) fits increase, whereas for the elliptic fit (dash-dotted line)
the errors show less variability.
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of f, are shown by the dashed lines. We see that for the
slowest rotating star in Table I (for which 1.377 M⊙ and
f ¼ 413.8 Hz) the value of Rmax

eq is set by the lower prior
on the compactness (κ ¼ 0.125). On the other extreme,
for the fastest rotating star (for which 1.603 M⊙ and
f ¼ 1041.7 Hz), the value of Rmax

eq is set by the upper
bound on the spin parameter (σ ¼ 1 with f ≈ 1041 Hz).
The prior ranges on Req for these two examples are
illustrated by the dot-dashed lines labeled “1” and “7”,
respectively.
To obtain the posterior distribution PðReqÞ, we evaluate

Eq. (34) on a fine grid covering Req ∈ ½10; Rmax
eq & km. Next,

we sort the pair fReq;i; PðReq;iÞg in an descending order of
posterior. The first entry determines the best fit inferred
value of the equatorial radius. We are also interested in the
1σ credible intervals of the resulting posterior distributions.
To calculate them, we add all PðReq;iÞ-values until the
cumulative sum reaches 68% of the total

PN
i PðReq;iÞ.

The smallest and largest values of Req;i in this interval yield
the credible interval.

2. Systematics due to fitting formulas

In this section, we calculate our injection flux using the
AlGendy and Morsink model for the star surface, assuming
M) ¼ 1.4 M⊙, R)

eq ¼ 13 km and f) ¼ 205 Hz. These
values were chosen to mimic a source similar to PSR
J0030þ 0451 as inferred by the Illinois-Maryland analysis
[12]. We are interested in whether the other formulas
(Morsink et al. and elliptical) can recover the injected
equatorial radius.
In Fig. 9 we show the resulting posterior distributions on

Req obtained from this exercise, which we did for the two
hot spot-observer orientations of Table VI. The posteriors
clearly show that the best fit values of Req for both Morsink
et al. (solid lines) and the two flavors of the elliptical
formulas (dot-dashed and dashed lines) agree well with the
injection R)

eq (vertical dotted line).
These results are hardly surprising given our discussion

in Sec. III A but serve (albeit through a restrictive like-
lihood analysis) to show that all three formulas work
equally well in describing the pulse profile emitted by
neutron stars targeted by NICER, i.e., millisecond pulsars
with rotation frequencies below a few hundred hertz [14].

3. Systematics due to equation of state averaging

We now turn our attention to the systematic errors that
may be introduced by the fact that the surface formulas
represent an average of the shape of an ensemble of neutron
stars, described by different equations of state and spanning
various frequencies, while the target is described by a
single equation of state. To do this, we use the stars from
Table I to calculate the injection pulse profiles with their
surfaces modeled using the formulas described in Sec. II D.
Next, we perform the same likelihood analysis described in
Sec. III B 1, using in our model each of the surface
formulas, and then, we analyze the resulting posterior

FIG. 9. Posterior probability distributions of the equatorial
radius. Left panel: for the low-inclination (θs ¼ 45°, ιo ¼ 20°)
orientation. Right panel: for the high-inclination (θs ¼ 85°,
ιo ¼ 80°) orientation. Pulse profile models using both the
Morsink et al. (solid lines) and the elliptic fits (dashed and
dot-dashed lines) recover the injected radius R)

eq ¼ 13 km
(vertical dotted line).FIG. 8. Lines of constant compactness (κ) and spin parameter

(σ) in the mass-equatorial-radius plane. The two solid lines
correspond to the edges of the prior range on the compactness.
The four dashed lines mark curves of constant σ ¼ 1 for some
sample rotational frequency values: f ¼ 800, 900, 1000 and
1041 Hz. For stars with M ≲ 1.4 M⊙, the lower end of the prior
(κ ¼ 0.125), fixes the largest allowed value of the equatorial
radius Rmax

eq . For stars with larger masses, the upper limit σ ≤ 1,
reduces Rmax

eq if the rotation frequency f is sufficiently high. Both
scenarios are illustrated by the dot-dashed lines labeled 1 and 7,
which make reference to the labels used in Table I. For the line
labeled 1, the mass is 1.377 M⊙ and f ¼ 413.8 Hz and thus Rmax

eq

is set by lower end of the prior in the compactness. Conversely,
for the line labeled 7, the mass is 1.603 M⊙ and f ¼ 1041.7 Hz
and thus Rmax

eq is set by the σ ¼ 1 (f ¼ 1041.7 Hz) curve. The
values of Req and M of the benchmark stars 1 and 7 are marked
with stars.
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distributions. These steps are repeated for both hot spot-
observer orientations listed in Table VI.
Figure 10 summarizes our findings and constitutes the

main results of this paper. The figure shows the fractional
error between the best fit value of the equatorial radius (as
inferred by a given surface formula) and the injected value
of the equatorial radius as a function of the rotation
frequency. Different markers correspond to the different
fitting formulas. In the top panel (corresponding to the low-
inclination orientation) we see that all formulas recover
well the injected equatorial radius R)

eq at small frequencies,

with the fast elliptical formula working surprisingly well in
this situation. As we increase the rotation frequency f, we
see that the AlGendy andMorsink and slow elliptic formula
increasingly underestimate R)

eq, in the worst scenario by 7%
and 6% percent respectively. A similar behavior is seen for
the fast elliptical fit, which tends to overestimate R)

eq

instead, but by a similar percentage. In contrast, the
Morsink et al. fit inference remains robust over the whole
f range, misinferring the equatorial radius by ∼3% at most
(for the fastest spinning star). In the bottom panel (corre-
sponding to the high-inclination orientation), we see that all
formulas recover accurately R)

eq regardless of the spin
frequency of the star, with errors staying below 2%.
What are the implications of these results to real data

analysis with NICER? Bearing in mind the oversimplifi-
cations we have used in our data analysis study, our results
indicate that the systematic error introduced by the averag-
ing procedure in obtaining the fitting formulas used to
model the pulse profile emission of neutron stars is
subdominant relative to the statistical error, which in our
case is modeled by the value of δReq, that is, below 20% for
the low-inclination orientation and 5% for the high-
inclination orientation. In Table VII we show the median
and the '1σ interval for the inferred equatorial radii using
the various fitting formulas.
An interesting result of our calculation is that the AlGendy

andMorsink formula, despite its simple form, is sufficient to
infer the injected radii R)

eq with percent fractional difference
smaller than 6%, even for the fastest rotating star. Is this
becausewe used rapidly rotating models when obtaining our
own version of the AlGendy andMorsink fit? To answer this
question, we repeated our analysis, but using the same
coefficients cði;jÞ fromRef. [31] (quoted between parenthesis
in Table II). As we mentioned before, the original AlGendy
and Morsink fit used only slowly rotating stars with spin
parameter σ < 0.1. The outcome of this result is surprising:
the percent fractional difference remains a few percent, even
in the extreme case of the fastest rotating star. Quantitatively,

FIG. 10. Fractional difference between injected R)
eq and in-

ferred best fit equatorial radii Req as a function of the rotation
frequency f for the different fitting formulas. For the low-
inclination orientation the error stays below 10%, with the “fast”
elliptic fit recovering the injected Req at high frequencies. For the
high-inclination orientation all formulas recover the injected Req

with less than 2% precision independently of f. In both cases
panels, all fractional errors are smaller than the statistical errors
we have assumed (0.2 for the low inclination and 0.05 for the
high inclination scenarios).

TABLE VII. Inferred equatorial radii Req for each fitting formula. The first three columns correspond to the benchmark star label, its
equatorial radius and its rotation frequency, respectively. The remaining columns are the median and the '1σ credible intervals as
inferred by using the different fitting formulas in the pulse profile model. For the inferred Req entries, the results between parenthesis
correspond to the low-orientation case, while the others to the high-inclination case.

Model R)
eq (km) f (Hz) RM

eq (km) RA
eq (km) REs

eq (km) REf
eq (km)

1 12.00 413.8 (11.74þ1.73
−1.48 ) 11.98

þ0.50
−0.49 (11.72þ1.72

−1.46 ) 11.99
þ0.50
−0.49 (11.74þ1.73

−1.47 ) 11.99
þ0.50
−0.49 (11.82þ1.73

−1.47 ) 12.01
þ0.51
−0.50

2 12.27 583.4 (12.07þ1.58
−1.39 ) 12.36

þ0.36
−0.40 (12.00þ1.55

−1.34 ) 12.48
þ0.38
−0.38 (12.07þ1.58

−1.39 ) 12.39
þ0.37
−0.39 (12.13þ1.57

−1.38 ) 12.15
þ0.35
−0.40

3 12.57 710.9 (12.42þ1.43
−1.31 ) 12.56

þ0.49
−0.48 (12.29þ1.37

−1.22 ) 12.58
þ0.50
−0.48 (12.41þ1.43

−1.29 ) 12.57
þ0.48
−0.49 (12.48þ1.42

−1.32 ) 12.56
þ0.72
−0.49

4 12.90 815.4 (12.79þ1.28
−1.25 ) 12.86

þ0.45
−0.47 (12.55þ1.17

−1.08 ) 12.83
þ0.47
−0.48 (12.73þ1.25

−1.16 ) 12.87
þ0.45
−0.46 (12.92þ1.30

−1.37 ) 12.89
þ0.44
−0.45

5 13.27 903.7 (13.20þ1.13
−1.22 ) 12.27

þ0.52
−0.53 (12.80þ0.98

−0.92 ) 13.23
þ0.51
−0.51 (13.00þ1.05

−0.97 ) 13.25
þ0.51
−0.51 (13.54þ1.30

−1.66 ) 13.26
þ0.52
−0.50

6 13.70 978.9 (13.64þ1.02
−1.24 ) 13.73

þ0.50
−0.53 (13.01þ0.79

−0.76 ) 13.63
þ0.49
−0.52 (13.21þ0.83

−0.76 ) 13.65
þ0.48
−0.50 (14.31þ1.46

−1.77 ) 13.72
þ0.44
−0.48

7 14.19 1041.7 (14.09þ0.94
−1.22 ) 14.45

þ0.37
−0.62 (13.20þ0.60

−0.59 ) 14.20
þ0.37
−0.55 (13.36þ0.61

−0.55 ) 14.15
þ0.30
−0.51 (14.89þ1.47

−1.24 ) 14.38
þ0.21
−0.45
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in the low inclination orientation the percent fractional
difference increase in magnitude from 5.8% to 7.6% for
the fastest rotating star. In the high inclination orientation,
this value decreases from 0.5% to 0.1%. (See Table VIII,
which also includes the results of the same exercise, but using
the Morsink et al. fit [25].) The conclusion is then clear: we
have found evidence that the original AlGendy andMorsink
formula [31] has a domain of applicability wider than
originally expected.

IV. CONCLUSIONS

We studied the systematic error introduced by the use of
analytical formulas to describe the surface of rapidly rotating
neutron stars. These formulas are constructed by fitting
certain analytical expressions to an ensemble of neutron star
models described by a variety of equations of state and
covering a wide range of compactness and spin parameter
values. Neutron stars, however, are believed to be described
by a single equation of state, and therefore, the fitting
procedure used to obtain these surface formulas introduces
a source of systematic error in the parameter estimation of
neutron star properties, which could have implications to
x-ray pulse profile observations with NICER.
To study the impact of this systematic error, we performed

a restricted likelihood analysis using synthetic pulse profile
data. We found that the systematic error described above is
smaller than the statistical error indicating, albeit in a
simplified analysis, that the radius parameter estimation
by NICER [11,12] is not affected by it. It would be
interesting to repeat the analysis carried here in a complete
set-up following, for instance, the theoretical studies in [74–
76], using as the injection pulse profile (i.e., synthetic signal)
one calculated using the “exact” formulas obtained here.
More specifically, it would be interesting to investigate the
cumulative effect of this systematic errorwhen one considers
multiple finite-sized hot spots [80,81] and how it depends on
their location on the star’s surface. As seen in Fig. 6 this error
has a nontrivial behavior in the case of a single, pointlike hot

spot. It would be important to analyze it in more realistic hot
spot geometries ideally reproducing the hot spot configu-
rations as inferred by NICER for PSR J0030þ 0451
[11,12]. We think it is unlikely that this systematic error
will matter for the slowly spinning neutron stars targeted by
NICER, but we hope our work motivates further studies,
which should also include the level of realism of a full
statistical analysis as done in [11,12].
Another interesting question to explore is how our

ignorance on the equation of state affects the resulting
fitting formulas. In our analysis, we used for our synthetic
data the pulse profile emitted from the surface of a neutron
star whose equation of state was also used to obtained the
fitting formulas. In practice, it is unlikely that this situation
will happen and it would then be important to investigate
the variability (and the implications to radii inferences) of
using different equation of state catalogs which could differ
from the one used here to produce the surface fits.
Finally, it would also be important to repeat this analysis in

the context of future large-area x-ray timing facilities [82],
such as the enhanced X-ray Timing and Polarimetry (eXTP)
[83] and the Spectroscopic Time-Resolving Observatory for
Broadband Energy X-rays (STROBE-X) [84,85] missions.
These future missions are expected to provide more precise
parameter estimation of the radii of neutron stars relative to
NICER’s current capabilities. As the statistical error is
decreased, all sources of systematic errors will become more
important, and the one discussed here may be of relevance.
As by-products of our study we also presented a method

to accurately locate the surface of rotating neutron star
solutions obtained with RNS. An implementation of the
method is publicly available in [55]. Moreover, we have
also introduced a new analytical formula to describe the
surface of rapidly rotating neutron stars. This formula,
based on the ellipsoidal isodensity approximation [63],
better captures the surface of rapidly rotating neutron stars
relative to other formulas known in the literature. The
application range of this new formula is not limited by the

TABLE VIII. Inferred equatorial radii Req using the formulas of Morsink et al. [25] and AlGendy and Morsink
[31], and the fitting coefficients obtained originally in these works. The table is analogous to Table VII. Overall, the
relative difference (≡2 · ja − bj=jaþ bj) between the median values of Req using our and the original fitting
coefficients is below 3%. Among both formulas, the largest fractional difference between best-fit Req and the
injected R)

eq values happens for the AlGendy and Morsink formula (7.6%, Model 7).

Model R)
eq (km) f (Hz) RM

eq as in [25] (km) RA
eq as in [31] (km)

1 12.00 413.8 (11.72þ1.72
−1.47 ) 11.96

þ0.49
−0.48 (11.74þ1.73

−1.47 ) 11.99
þ0.50
−0.49

2 12.27 583.4 (12.02þ1.56
−1.37 ) 12.44

þ0.38
−0.39 (12.04þ1.56

−1.37 ) 12.38
þ0.37
−0.39

3 12.57 710.9 (12.34þ1.40
−1.30 ) 12.55

þ0.50
−0.48 (12.35þ1.39

−1.25 ) 12.57
þ0.48
−0.49

4 12.90 815.4 (12.67þ1.25
−1.21 ) 12.82

þ0.47
−0.49 (12.65þ1.21

−1.13 ) 12.86
þ0.45
−0.47

5 13.27 903.7 (13.02þ1.10
−1.15 ) 12.24

þ0.53
−0.54 (12.94þ1.04

−0.98 ) 13.24
þ0.52
−0.50

6 13.70 978.9 (13.38þ0.96
−1.11 ) 13.72

þ0.52
−0.57 (13.20þ0.84

−0.84 ) 13.66
þ0.50
−0.51

7 14.19 1041.7 (13.73þ0.84
−1.06 ) 14.45

þ0.47
−0.64 (13.42þ0.66

−0.66 ) 14.26
þ0.36
−0.56
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problems studied here, and it could also be used to model
the effect of stellar oblateness on parameter estimation
using the cooling tail method [57] or in the wave propa-
gation on thin oceans on neutron star surfaces [86].
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APPENDIX: “EXACT” SURFACES: NUMERICAL
DERIVATIVES, ERROR ESTIMATES, AND FITS

In this Appendix we show the details behind the fits for
the star surface R and its logarithmic-derivative d logR=dθ
used to model the shape of our benchmark stars.
First, to assess the numerical error associated with the

surface data Rwe computed neutron star solutions with two
different resolutions using the RNS code.
The RNS code solves for the neutron star model’s

interior and exterior on a grid with the radial coordinate
r compactified and equally spaced in the interval s ∈ ½0; 1&,
using the definition s≡ r=ðrþ reqÞ, and the angular
coordinate μ ¼ cos θ also equally spaced in the interval
μ ∈ ½0; 1&. This way, the code assigns half of the grid to the
interior of the star (the equatorial location of the surface is
always at s ¼ 1=2) and the other half to the vacuum
exterior. The radial resolution near the surface, if we
assume that we have chosen S grid points, will be

Δrjreq ∼ req

"
4

2þ S

#
; ðA1Þ

which for a star with req approximately 10 km and grid
sizes of S ¼ 301 and S ¼ 1201 points is around 0.13 and
0.033 km respectively. The usual choice for the angular grid
is to be half of the radial one. Therefore in our calculations
we have used both a low resolution grid of size 301 × 151
points and a high resolution grid of size 1201 × 601 points.
Once a neutron star solution is obtained, with either

resolution, the star’s surface is obtained by the loci of the
circumferential radius where the enthalpy per unit mass
becomes equal to zero [see Eq. (2)].

FIG. 11. Surface and logarithmic-derivative of the three sample benchmark star models (with spin frequencies f ¼ 413.8, 815.4, and
1041.7 Hz) as functions of the colatitude θ. In all panels, the markers correspond to the numerical data, whereas the lines to the fitting
formulas (24). Left-top panel: the star’s surface normalized relative to its equatorial radius as a function of μ ¼ cos θ. Right-top panel:
the star’s logarithmic-derivative relative to θ also as a function of μ. Bottom panels: the fractional differences log10j1 − yfit=ydataj
between fit (yfit) and numerical data (ydata).
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To obtain an estimate on the numerical error on R for our
high-resolution solution (ϵhigh), we calculate the maximum
fractional difference between the high-resolution and low-
resolution solutions (evaluated at the same grid points μi),
namely

ϵhigh ¼ max j1 − RlowðμiÞ=RhighðμiÞj: ðA2Þ

We find that ϵhigh is of the order of 10−5 for all stars in
Table I. We used the high-resolution data to obtain all fits.
Let us now consider the logarithmic-derivative of R,

defined in Eq. (22)

d logRðμÞ
dθ

¼ −ð1 − μ2Þ1=2 1

RðμÞ
dRðμÞ
dμ

:

We calculate the derivative numerically using our high-
resolution surface data and using a six-order central finite
difference formula,

dR
dμ

¼ ½Rðμþ 3ΔμÞ − 9Rðμþ 2ΔμÞ þ 45Rðμþ ΔμÞ

−45Rðμ − ΔμÞ þ 9Rðμ − 2ΔμÞ − Rðμ − 3ΔμÞ&
· ð60ΔμÞ−1 þOðΔμ6Þ; ðA3Þ

where Δμ (the μ-grid size) is approximately 1.67 × 10−3.

We quantify the error on the numerical derivative by
doing the calculation at two different resolutions Δμ and
2Δμ. Using Eq. (A2), we find that the error using the finer
grid varies between approximately 5 × 10−4 for the fastest
rotating star and 7 × 10−3 for the slowest rotating star.
In Fig. 11 we show the surface (left panel) and its

logarithmic-derivative (right panel) as functions of μ ¼
cosθ for three sample benchmark stars. We find that our fits
(curves) agree with the numerical data (markers) within less
then 1% fractional differences for all three cases.
In Fig. 12 we show the logarithmic derivative of the

stellar surface as function of μ for the slowest (left panel)
and the fastest (right panel) spinning benchmark star. In
both panels the markers show the logarithmic derivative
obtained by applying Eq. (A3) to the high-resolution
numerical data.
The curves correspond to two approaches to model this

data. More specifically, the solid curves correspond to fits
obtained by directly applying Eq. (24b) to fit the data, while
the dashed curves correspond to first fitting RðμÞ using
Eq. (24a) and then taking the logarithmic derivative.
We see that both approaches agree very well for

the f ¼ 413.8 Hz spinning star. However, for the
f ¼ 1045.7Hz spinning star, the former approach performs
better overall, except at a few points. As a consequence, we
used a separate fit based on Eq. (24b) to model the surficial
numerical derivatives.

FIG. 12. The logarithmic-derivative of the surface data. In the top panels the markers show the logarithmic derivative calculated using
a sixth-order central finite difference scheme [Eq. (A3)]. The dashed lines show the fits directly applied to this data using Eq. (24b) and
the solid lines show the predicted logarithmic-derivative obtained by first applying Eq. (24a) to RðμÞ and then taking the logarithmic-
derivative. The fractional differences log10j1 − yfit=ydataj between fit (yfit) and numerical data (ydata) are shown in the bottom panels. The
left panels corresponds to a star with spin frequency f ¼ 413.8 Hz, whereas the right panels corresponds to a star with spin frequency
f ¼ 1045.7 Hz. For the slowest spinning case (left figure), both approaches agree well with the numerical data. However, for the fastest
spinning case (right figure) the fractional difference are, except at a few points, slightly larger when using Eq. (24a). This fact justifies
the use of a separate fit based on Eq. (24b) to model the surficial numerical derivatives.
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