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A Scalable Platform for Enabling the Forensic Investigation of Exploited IoT Devices and
their Generated Unsolicited Activities
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Abstract

The analysis of large-scale cyber attacks, which utilized millions of exploited Internet of Things (IoT) devices to perform malicious
activities, highlights the significant role of compromised IoT devices in enabling evasive and effective attacks at scale. Motivated by
the shortage of empirical data related to the deployment of IoT devices, and the lack of understanding about compromised devices
and their unsolicited activities, in this paper, we leverage a big data analytics framework (Apache Spark) to design and develop a
scalable system for automated detection of compromised IoT devices and characterization of their unsolicited activities. The system
utilizes IoT device information and passive network measurements obtained from a large network telescope, while implementing
an array of data-driven methodologies rooted in data mining and machine learning techniques, to provide a macroscopic view of
IoT-generated malicious activities. We evaluate the system with more than 4TB of passive network measurements and demonstrate
its effectiveness in the network forensic investigation of compromised devices and their activities, in near real-time. In addition,
we empirically analyze and elaborate on the capabilities of the developed system as a scalable infrastructure, which can support a
number of applications that enable IoT-centric forensics.

Keywords: Network telescope (darknet), compromised IoT devices, big data analytics, scanning campaigns, IoT botnet, network
forensics

1. Introduction

Internet of Things (IoT) devices are being used to facilitate
efficient data collection, monitoring, and information sharing.
Despite their benefits and wide spread adoption, the insecurity
of the IoT paradigm turns such devices into attractive targets
for adversaries. More importantly, recent large-scale attacks
unveiled an important role of compromised IoT devices as ef-
fective attack enablers, which can be utilized to generate unso-
licited activities within well-coordinated botnets (Antonakakis
et al., 2017; Cimpanu, 2018; Safaei Pour et al., 2019b). For in-
stance, the Mirai botnet utilized millions of compromised IoT
devices to execute one of the largest targeted Denial-of-Service
(DoS) attacks (Antonakakis et al., 2017). On the other hand,
while the Hajime botnet was not used to perform such attacks
yet, the in-depth analysis of the botnet reveals its sophisticated
design and extended capabilities, which makes it more power-
ful than previously detected botnets in terms of infiltrating IoT
devices at scale (Herwig et al., 2019).

In order to mitigate and prevent large-scale IoT-driven cyber
attacks, there is a need to possess an Internet-scale perspective
of the exploited IoT devices and their unsolicited activities over
a period of time. This however, is challenging due to the short-
age of empirical data on the deployment of IoT devices, and the
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lack of scalable cyber-threat intelligence reporting and analy-
sis capabilities that can trigger informed decisions for in-depth
forensic investigations in near real-time (Neshenko et al., 2019).
Furthermore, given that IoT-tailored malware heavily rely on
large-scale Internet reconnaissance activities to propagate by
exploiting vulnerable IoT devices at scale (Antonakakis et al.,
2017; Cimpanu, 2018), detecting and analyzing these scanning
activities can provide useful insights on the compromised IoT
devices and the characteristics of their underlying malicious op-
erations and infrastructure (e.g., IoT botnets).

In this paper, we address these challenges by developing a
system that facilitates effective, efficient, and cyber forensic
research in the context of IoT devices by providing an infras-
tructure for enabling a number of operations for detecting ex-
ploited IoT devices and fingerprinting their unsolicited activi-
ties. The automated system leverages a multi-stage, data-driven
methodology by utilizing passive network telescope data (dark-
net) along with IoT device information obtained from an online
IoT device search engine (Shodan (SHODAN, 2019)). Further-
more, the system leverages Apache Spark, a big data analytics
framework that supports distributed computing to achieve scal-
able and near-real time operations.

The system is evaluated using 4TB (120 hours) of IoT-
generated unsolicited traffic captured “in the wild,” to identify
27,849 exploited IoT devices that generated over 308M pack-
ets, among which, the majority were scanning packets (about
300M). Moreover, while the system supports various views for
macroscopic and fine-grained monitoring and analysis of the
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detected activities, it utilizes behavioral characteristics of IoT
devices in terms of aggregated flow features to support the im-
plementation of a number of network forensic applications such
as detecting and fingerprinting scanning campaigns, investigat-
ing campaign persistence and evolution, inferring IoT botnets,
and identifying IoT DDoS victims.

Along this line of thoughts, we frame the contributions of
this paper as follows:

• We implement a scalable system that enables network foren-
sic investigations through inferring compromised IoT de-
vices and characterizing their unsolicited activities. The sys-
tem, which utilizes IoT device information and passive net-
work traffic captured at a large network telescope, leverages
the capabilities of a big data analytics framework (Apache
Spark) to implement multi-level data-driven methodologies
rooted in data mining and unsupervised machine learning.

• We discuss the network forensic capabilities of the imple-
mented system to support several operations including but
not limited to: monitoring and fingerprinting unsolicited IoT-
generated activities, inferring compromised IoT devices and
characterizing the generated scanning campaigns, identify-
ing IoT devices that have fallen victims of DDoS attacks, in-
ferring IoT botnets, and performing temporal network foren-
sic analysis.

• We evaluate the effectiveness of the system by analyzing over
4TB IoT-generated traffic over 5 days and identifying more
than 27,000 IoT devices that generated about 300 million un-
solicited packets. More importantly, the results of our per-
formance evaluation affirm the scalability of the system with
respect to large amount of analyzed network traffic, while
generating results in near real-time.

The remainder of the paper is organized as follows. Section 2
reviews the recent literature on IoT threats and vulnerabilities.
Detailed information on the design and implementation of the
system is presented in Section 3. In Section 4, we present an ex-
perimental setup for evaluating the proposed system using real-
world IoT traffic, while presenting empirical and performance
analysis results. Finally, we conclude the paper by summariz-
ing the findings in Section 5.

2. Related Work

In this section, we discuss the literature on a number of
related topics to the IoT paradigm, including IoT device
categories, data collection, traffic monitoring, and analysis.

IoT Device and Protocol Vulnerabilities. IoT device vulner-
abilities have been discussed in the literature from different
angles. For instance, Cui and Stolfo (2010) provided quanti-
tative evidence on the vulnerable devices that are configured
with factory default root passwords. This vulnerability was in
fact one of the main reasons behind the large-scale outbreak
of the Mirai botnet in late 2016 (Antonakakis et al., 2017).
Considering the impact of vulnerability analysis in identifying

and addressing IoT malware/botnets, a number of studies
focused on developing tools and test beds for extensive assess-
ment of IoT devices and their firmware images (Sachidananda
et al., 2017; Costin et al., 2014; Chen et al., 2016). Apart
from executing device and firmware vulnerability analyses, a
number of IoT security research work has been dedicated to
securing IoT context-aware permission models and program-
flow operations (Yu et al., 2015; Jia et al., 2017; Fernandes
et al., 2016). IoT protocol vulnerabilities were also studied for
numerous types of home automation IoT devices and unveiled
various insights with regards to the security, privacy, and
usability of the implemented access control models (Ur et al.,
2013; Ronen and Shamir, 2016).

IoT Data Capturing Initiatives. A number of ongoing
projects have been implemented to perform active scanning of
the Internet in order to locate and profile Internet connected
devices on frequent basis. For instance, Censys was created by
security researchers at the University of Michigan as an online
tool for discovering devices, networks, and infrastructure on
the Internet while monitoring changes over time (Durumeric
et al., 2015). Shodan on the other hand (SHODAN, 2019),
performs IP banner analysis to provide a more specialized
online IoT device search engine that indexes different types
of IoT devices. In line with the same approach, Feng et al.
(2018) proposed a rule-based IoT device detection model
that addresses the limitations of conventional banner grab-
bing/analysis techniques (e.g., insufficient device information)
by utilizing device information from multiple online resources.

IoT Honeypots. Given the rareness of IoT-relevant empirical
data, passive network traffic analysis has been introduced as
an effective approach towards studying Internet-wide cyber
threats associated with IoT devices. For instance, IoTPOT,
was deployed by Pa et al. (2016) as a honeypot that emulates
Telnet services of various IoT devices running on different
CPU architectures. In alternative work, Guarnizo et al. (2017)
presented the Scalable High-Interaction Physical Honeypot
platform for IoT devices (SIPHON). The authors demonstrated
an approach for imitating various IoT devices on the Internet
to attract significant malicious traffic by leveraging worldwide
wormholes and a few physical devices. Luo et al. (2017) im-
plemented a machine learning approach to create an intelligent
honeypot that automatically learns the behavioral responses of
IoT devices through active scanning in order to mimic realistic
interactions with attackers. Vervier and Shen (2018) deployed
a honeypot that captured a wider range of emerging IoT threats
as compared to previous honeypots (e.g., IoTPOT). They used
6 months of collected data along with multiple sources of
cyber-intelligence to explore current IoT malware and their
emerging behavioral characteristics.

Passive Network Measurements. In addition to IoT-tailored
honeypots, passive network telescope or darknet data, which
represents one-way network traffic collected at unused IP ad-
dresses over the Internet, has been adopted to analyze cyber
activities and obtain cyber-intelligence (Labovitz et al., 2001).
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More importantly, with the rise of IoT-driven cyber attacks, pas-
sive network telescope data was leveraged to capture and ana-
lyze unsolicited IoT scanning activities. For instance, Fachkha
et al. (2017) presented a probabilistic model for sanitizing net-
work telescope data and inferring orchestrated probing cam-
paigns towards cyber-physical systems (CPS). Furthermore,
Antonakakis et al. (2017) used unique Mirai traffic signatures
to capture Mirai-related scans at the network telescope for fur-
ther analysis of the botnet. Torabi et al. (2018) proposed a data-
driven methodology to infer compromised IoT devices by lever-
aging IoT device information and darknet data through the ex-
ecution of correlation algorithms on IP header information. In
line with the same line of research, Safaei Pour et al. (2019a)
proposed a data dimensionality reduction technique to infer and
characterize Internet-scale IoT probing campaigns by analyzing
passive network measurements collected from the darknet. In
addition, Safaei Pour et al. (2019b) utilized several shallow and
deep learning models to sanitize telescope data and infer prob-
ing activities generated by compromised IoT devices based on
a number of flow features.

Despite the promising work done towards inferring and char-
acterizing compromised IoT devices and their unsolicited ac-
tivities, this paper complements previous contributions by ex-
tending network telescope research to address the problems of
detecting compromised IoT devices and characterizing their un-
derlying unsolicited activities. In addition, considering the lack
of scalable tools/systems for monitoring and investigating un-
solicited IoT-generated activities in the wild, in this paper, we
implement a near real-time threat detection system by utiliz-
ing passive network measurements while providing an infras-
tructure for investigating and fingerprinting activities generated
by compromised IoT devices in near real-time. More impor-
tantly, the system enables the development of several applica-
tions for executing IoT-centric research and generating threat
intelligence with respect to unsolicited IoT behaviors.

3. Design and Implementation

In this section, we present the design and implementation of
our proposed system, which consists of four main components,
a shown in Figure 1.

3.1. IoT Data Collection Module

The aim of this module is to obtain IoT device information
and process it for further use in the system. A common ap-
proach for detecting IoT devices is to perform active scanning
of the Internet address space and subsequent banner analysis.
Indeed, we leverage Shodan (SHODAN, 2019), which is one of
the largest online IoT device search engines that utilizes a simi-
lar approach to infer information on different types of Internet-
connected hosts, including IoT devices. Shodan provides an
API for searching and accessing information related to con-
nected devices. In this paper, we focus on information such
as device IP address, type, operator, and location information,
to name a few.

Data collection & 
processing

IoT device information

Traffic processing & 
flowtuple generation

Correlation with IoT 
device information

Filtering IoT-generated 
traffic (flowtuples)

Darknet data parsing & 
pre-processing

Data import & 
aggregation

Dynamic device profiling

Campaign detection & 
labeling

Backscatter traffic 
analysis (DDoS victims)

IoT malware/botnet 
data collection

IoT threat attribution

IoT Data Collection 
Module

Darknet Data 
Collection Module

IoT Traffic Analysis 
Module

IoT Threat Repository

Figure 1: Overall architecture of the implemented system.

3.2. Darknet Data Collection Module
The system utilizes the UCSD real-time network telescope

(darknet), which is one of largest available sources of pas-
sive traffic with about 16.7 million IPv4 addresses that re-
ceive over a billion packets per hour (CAIDA, 2019). Dark-
net traffic represents one-way packets captured at unused, yet
routable IP addresses that belong to the darknet operators.
Given that traffic received at the darknet is likely to be un-
solicited, the module aims at correlating the obtained IoT de-
vice information (i.e., device IP address) with darknet traffic to
identify suspicious IoT-generated activities. Furthermore, de-
pending on the implementation of the darknet, these packets
undergo several pre-processing and filtering operations to elim-
inate noise (e.g., unnecessary traffic/information) and classify
traffic categories (e.g., Internet scanning and backscatter pack-
ets). The system processes the obtained IoT-generated traffic
as flowtuples, which illustrate incoming packets from a source
IP to a darknet IP address during one minute time intervals.
A flowtuple consists of the following nine information fields:
source/destination IP addresses, source/destination ports, used
protocol, time to live (TTL), TCP flags, IP length, and total
number of packets sent from a source IP to a destination IP ad-
dress (per minute).

3.3. IoT Traffic Analysis Module
The IoT traffic analysis module, which utilizes Apache

Spark, consists of the following main components:

3.3.1. Darknet Data Parsing and Pre-Processing
The IoT-generated flowtuples obtained from the darknet are

pre-processed using the darknet traffic parser to identify dif-
ferent types of traffic according to the protocol and used flags.
We identify backscatter traffic (Blenn et al., 2017), which rep-
resent reply packets (e.g., SYNACK) generated by IoT devices
as a result of denial of service (DoS) attacks using spoofed IP
addresses that belong to the darknet address space. Indeed,
the analysis of backscatter packets can reveal information on
benign IoT devices that were victims of DoS attacks. More-
over, we identify scanning traffic, which represents a signifi-
cant portion of the darknet traffic. Given that benign IoT de-
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vices have no justifiable reason to continuously send scanning
packets towards the darknet, we label these devices as compro-
mised or exploited. The scanning traffic contains mainly TCP-
SYN scanning packets, followed by a relatively smaller num-
ber of ICMP Echo requests (Ping). We also identify UDP traf-
fic, which is less commonly used for scanning the Internet due
to the stateless nature of the packets (Moore et al., 2003; Du-
rumeric et al., 2014). Finally, the parsed/processed data (flow-
tuples) will be fed into the aggregation module for further anal-
ysis.

3.3.2. Data Import and Aggregation
The system utilizes Apache Spark’s DataFrame API to im-

port processed darknet flowtuples into distributed collections
of data organized into named columns (DataFrame) (Spark,
2019). Given the imported flowtuples, the data aggregation
module is implemented by utilizing a set of methods to group
IoT generated traffic per source IP address, while aggregat-
ing IoT-generated traffic over specified discrete time interval(s)
to obtain different views of the compromised IoT devices and
their behaviors over various analysis periods. For instance, a
macroscopic view of the data is presented through summariz-
ing IoT-generated traffic over the analysis intervals (i.e., gen-
erated packets, number of compromised IoT devices, etc.). In
addition, IoT traffic is combined to identify aggregated flow fea-
tures per IoT device with different levels of interval granularity
(e.g., per minute or per hour), which is utilized to infer temporal
characteristics of IoT devices. This feature can be handy when
analyzing scanning campaigns and their evolution over time, as
described in Section 4.2.3.

3.3.3. Dynamic Device Profiling
The systems utilizes the data aggregation outcomes to create

a dynamic profile for every active IoT device over accumulative
analysis intervals. These profiles contain a list of IoT device in-
formation including but not limited to: source IP, targeted des-
tination ports and IP addresses, aggregated flow features, traffic
statistics and summaries, and device info (e.g., type location,
ISP). The device profiles are dynamically updated after pro-
cessing every input file over the accumulative time intervals.
However, in order to maintain scalability and avoid accumu-
lating unnecessary data, the system maintains a last seen flag to
clean out IoT devices after a number of inactive intervals. These
device profiles, which consist of device-specific measurements
and information, are stored in JSON files in order to be used for
further analysis when necessary.

Traffic aggregation and device profiling can result in several
outcomes. In terms of backscatter traffic, the aggregated traf-
fic reveals the intensity and duration of inferred DoS attacks to-
wards the IoT devices. On the other hand, given that adversaries
leverage controlled botnets to perform Internet-scale probing
activities to identify hosts that run certain vulnerable services,
the outcome of the module is used to profile IoT devices based
on their scanning objectives (targeted ports) and overall scan-
ning behaviors (aggregate flow features) over a period of time.

3.3.4. Campaign Detection and Labeling
Given that compromised IoT devices are utilized to scan cer-

tain vulnerable services/ports, the system groups the identified
devices into correlated scanning campaigns according to their
scanning objectives. Furthermore, given that orchestrated scan-
ning campaigns performed by botnets tend to generate simi-
lar behavioral characteristics over a period of time, the system
implements subsequent clustering using unsupervised learning
techniques to identify IoT botnets. These botnets are then la-
beled for use in further investigations. It is also important to
note that data aggregation and campaign detection/labeling pro-
cesses are performed continuously over specified time intervals,
and therefore, the inferred campaigns and botnet labels are up-
dated periodically to account for any changes in the involved
IoT devices and their behavioral characteristics. This is an im-
portant feature of our implemented system as it enables detect-
ing temporal changes in the behaviors of the compromised IoT
devices acting within a coordinated botnet.

3.4. IoT Threat Repository

The system maintains a local threat repository, which is
built by compiling various publicly available information about
recently discovered IoT malware/botnets such as malicious
devices’ IP addresses, targeted vulnerabilities, exploited ser-
vices/ports, targeted device types, and botnet/malware family,
to name a few. These information will be utilized by the system
to create partial labels for the identified IoT devices and their
malicious activities (e.g., scanning campaigns). In addition, the
system will automatically update the created threat repository
with information related to new, previously undetected mali-
cious IoT behaviors and/or exploitations using feedback loops
to adapt with the evolving nature of IoT threats.

4. Experimental Results and Evaluation

The system is built by deploying Apache Spark using PyS-
park in a standalone mode on a single node, with Debian Oper-
ation System (Ubuntu 18.04 version), 8 CPU cores (Intel®
Xeon(R) CPU E3-1240 v5 @ 3.50GHz), 64GB memory,
and 5TB storage space. In what follows, we describe details
of the data collection, analysis results, and performance evalu-
ation results.

4.1. Data Collection and Sampling

In this study, we obtain information about more than 400,000
IoT devices from Shodan (SHODAN, 2019). The collected
data belongs to different types of IoT devices deployed in
the consumer realm such as routers, IP cameras, printers, and
DVRs, to name a few. Furthermore, we processed more than
4TB of passive darknet data, which represents traffic gener-
ated by millions of IoT and non-IoT hosts towards the dark-
net. We correlate the collected IoT device IP addresses from
Shodan with the processed darknet traffic to obtain traffic gen-
erated by 27,940 unsolicited devices towards the darknet. Note
that while the implemented system is generic and can be fed
with hourly traffic from the darknet at any time frame, for the
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Figure 2: Macroscopic views of the various IoT-generated packets towards the darknet over 24 hours of analysis interval (1,440 minutes).

sake of experimentation, we analyzed a large sample of dark-
net traffic representing 120 hours (5 days) of traffic that was
captured in November, 2018. We obtained about 324.6M IoT-
generated packets (308M flows), with a mean of about 2.7M
packets per hour. These packets represent mainly TCP-SYN
traffic (87.7%), followed by UDP (10.9%), ICMP Echo requests
(0.5%), and backscatter (0.3%) traffic. Other packets such as
misconfiguration, account for about 0.6% of the IoT-generated
traffic.

4.2. Results (Applications)

In what follows, we present experimental results with respect
to leveraging the developed system to analyze data and enable
a number of network forensic applications and investigations.

4.2.1. Monitoring Unsolicited Activities: A Macroscopic View
The system outputs multiple high-level macroscopic views of

IoT-generated traffic over the analysis intervals. For instance,
Figures 2(a–c) provide an Internet-scale perspective of the IoT
devices and their online behaviors over a 24-hour analysis inter-
val. These views are useful for enabling early threat detection
through monitoring the overall IoT activities on the Internet,
while highlighting trends and temporal changes in the overall
activities of IoT devices in near real-time. For instance, we
found a strong correlation between the number of IoT-generated
packets and the targeted destination IP addresses in the darknet
(Figure 2a), which reflects typical Internet reconnaissance ac-
tivities. In fact, over 97% of the IoT-generated traffic at the
majority of the observed time intervals were TCP-SYN packets
(Figure 2b), which are commonly used for scanning the Inter-
net.

Moreover, by looking at the abrupt increases in the total num-
ber of IoT-generated packets (e.g., minutes 19, 76, and 1273
in Figure 2a) and comparing them to the detailed distribution
of the packets as illustrated in Figure 2b, we note that TCP-
SYN packets contributed towards the majority of packets at
minute 1273, while other packets such as UDP, ICMP-REQ,
and backscatter, contributed towards the majority of packets at
minutes 19 and 76. The system can also be used to find the
number of active IoT devices that generate packets towards the
darknet, which could be useful for estimating the magnitude

Table 1: Compromised IoT devices and their generated scanning traffic type(s).

Scanning Traffic Devices Packets
Count (%) Count (M) (%)

UDP 14,314 51.40 33.21 10.32
TCP-SYN 3,770 13.54 167.88 52.19
ICMP-REQ 23 0.08 0.71 0.22
TCP-SYN/UDP 9,728 34.93 118.38 36.80
UDP/ICMP-REQ 40 0.14 1.83 0.57
TCP-SYN/ICMP-REQ 36 0.13 0.97 0.30
All types 31 0.11 1.05 0.32

of IoT exploitations over time. Finally, by looking at the sud-
den increase in the number of targeted destination ports (e.g.,
minutes 308, 356, and 366), we detect traces of intensive port
scanning activities related to the behaviors of compromised IoT
devices (Figure 2c).

4.2.2. Detecting Compromised IoT Devices
We leveraged the proposed system presented in Section 3 to

identify 27,849 compromised IoT devices that were sending
scanning packets (TCP-SYN, UDP, and ICMP-REQ) towards
the darknet during the 5 days analysis interval. As summa-
rized in Table 1, slightly over half of these devices (51.4%)
were sending only UDP packets (32.21M packets). Further-
more, while a relatively smaller number of devices (13.54%)
were generating only TCP-SYN packets, they account for sig-
nificantly more scanning traffic, with about 167.8M TCP-SYN
packets (52.19% of total scans). In addition, about 35% of all
devices generated both UDP and TCP-SYN scanning packets,
with a total of about 118.4M scanning packets, representing
about 36.8% all scanning packets. On the other hand, only 68
IoT devices were generating ICMP-REQ packets (about 0.2%
of the scanning traffic).

Given the identified IoT devices, we utilize our system along
with device information collected from Shodan to shed light on
a number of properties associated with the exploited IoT de-
vices such as device type, model, and location (hosting coun-
tries). These properties can be used to infer large-scale ex-
ploitations affecting vulnerable devices over the Internet. In-
deed, the distribution of the compromised IoT devices per de-
vice type (Figure 3) shows about 33.7% of the devices to be
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Figure 3: Compromised IoT device types.

Table 2: Compromised IoT device models (scanning).

Device Model Count %
MikroTik router 8,035 28.9
SonicWALL firewall 4,654 16.7
Linksys wireless-G WAP 1,944 7.0
DD-WRT supported routers 1,380 5.0
TP-LINK WR740N WAP 1,238 4.4
Cisco router 923 3.3
Talk Talk YouView box 751 2.7
TP-LINK WR841N WAP 681 2.4
Avtech AVN801 network camera 671 2.4
ZyXEL ZyWALL 618 2.2

routers, followed by WAP (24.4%), Firewalls (22.7%), and We-
bcams (10.5%), respectively. In addition, as summarized in
Table 2, about 29% of the exploited devices were MikroTik
routers, followed by a relatively smaller number of SonicWALL
firewalls (16.7%), and Linksys WAPs (7%). Moreover, these
devices were hosted across 192 countries (Figure 4), with the
largest number of devices to be found in Russia (3,650), the
U.S. (3,454), Ukraine (1,417), and China (1,288), respectively.
The distribution of compromised IoT devices per device type,
model, and country can reveal information about the overall
threat landscape that targets vulnerable IoT devices.

4.2.3. Inferring and Monitoring Scanning Campaigns
Our analysis showed that the majority of IoT-generated traf-

fic towards the darknet consists of scanning packets (99.1%),
among which about 88.5% were TCP-SYN scans, followed by
UDP (11%), and ICMP Echo requests (0.5%). To identify scan-
ning campaigns, we explored orchestrated scanning activities
generated by compromised IoT devices that targeted similar
destination ports/services, which represent unique scanning ob-
jectives (S i). Prior to analyzing the scanning objectives, we
filtered IoT devices that generated scanning packets less than a
pre-determined threshold q. As shown in Figure 5, about 85%
of IoT devices were found to scan less than 18 destination ports.
Therefore, given the fact that the majority of IoT devices tend
to scan a small number of destination ports over the analysis
interval, we set the threshold q = 20 packets. We leveraged our
system to analyze the targeted ports and identified S

′

= 9, 523
unique scanned destination port sets (scanning objectives) that
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Figure 4: Countries with the largest number of compromised devices.
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Figure 5: The commutative distribution of the total number of scanned destina-
tion ports by the exploited IoT devices.

were targeted by 14,731 compromised IoT devices.
As shown in the top 10 most common scanning objectives

(Table 3), 932 devices (6.3%) were targeting UDP ports 28183,
32124, and 37547, while 835 devices targeted TCP port 445.
Moreover, the majority of scanning packets (> 99.5%) sent
to ports 28183, 32124, and 37547, were UDP packets, while
on the other hand, the remaining ports were almost entirely
scanned by TCP packets (e.g., 23, 80, and 5555). From a dif-
ferent perspective, while S 1 was scanned by the largest number
of IoT devices, scanning objectives associated with Telnet (e.g.,
S 7, S 3, and S 4) were scanned by a significantly larger number
of packets. This is justified by the fact that Telnet is the most
targeted service, especially in the context of compromised IoT
devices.

The identified scanning campaigns highlight an important
characteristics of the underlying compromised IoT devices,
which targeted TCP/UDP ports that might be associated with
known vulnerable services. In fact, the identified scanning ob-
jectives, which consist of a handful of common TCP services
such as Telnet (23/2323), HTTP(80/8080), and HTTPS (443),
are reported to be associated with known IoT malware/botnets
(e.g., Mirai). We also observed other targeted ports that
are associated with emerging IoT malware/botnets (e.g., port
5555/ADB.Miner (360Netlab, 2018) and port 445/MS-DS and
SMB (Seaman, 2018)). Similarly, the remaining TCP ports
in Table 3 are all associated with an array of known exploits
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Table 3: Top 10 identified scanning objectives (S
′
).

S i TCP/UDP Ports Devices (%) Packets (M)
1 28183, 32124, 37547 932 (6.33) 0.300
2 445 835 (5.67) 7.687
3 23, 80, 8080 735 (4.99) 11.200
4 23, 80, 8080, 37547 403 (2.74) 15.809
5 28183, 32124 209 (1.42) 0.007
6 37547 182 (1.24) 0.015
7 23, 2323 180 (1.22) 16.849
8 80, 8080 118 (0.80) 1.122
9 80 100 (0.68) 1.607

10 80, 443, 8080 89 (0.60) 0.019

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0# 
o

f 
C

o
m

p
ro

m
is

ed
 Io

T 
D

ev
ic

es

Analysis Interval (20x6 hours of aggregated data)

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

Figure 6: Cumulative number of exploited IoT devices within the top 10 scan-
ning campaigns targeting S 1–S 10.

that have been associated with orchestrated scanning activities
generated by IoT botnets (Safaei Pour et al., 2019b). On the
other hand, a considerable number of IoT devices generated
scanning campaigns towards UDP ports (28183, 32124, and
37547), which to the best of our knowledge, are not associ-
ated/registered with known services. This however, implies sus-
picious activities that require further investigation to determine
the underlying services and associated exploits (if any).

4.2.4. Temporal Analysis and Campaign Evolution
An important feature of the developed system is to provide

the ability to monitor compromised IoT devices and their un-
solicited activities over a long period of time. This feature can
be used to support operational cyber security research through
the identification and inferences of behavioral patterns, while
enabling the analysis of temporal changes with respect to the
detected scanning campaigns and their evolution over time. For
instance, we leveraged the developed system to analyze cam-
paign evolution by finding the cumulative number of compro-
mised IoT devices within the campaigns targeting the top 10
scanning objectives over the analysis interval, as illustrated in
Figure 6. While these findings highlight the evolving nature
of the campaigns, we also notice variable rates in terms of the
number of newly detected IoT devices within the campaigns.
For instance, the campaign targeting S 5, reached a steady stage
early during the analysis, while the evolution of other cam-
paigns (e.g., S 3) indicates an increasing device discovery trend.
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Figure 7: Examples of scanning campaign evolution over the analysis interval
(20x6 hours of aggregated data). The campaigns target ports specified in (a)
S 1, (b) S 3, and (c) S 4.

The increasing trend is likely to be justified by: (i) the spread
of an infection, which exploits further devices over time, and/or
(ii) the fact that adversaries may distribute a scanning campaign
over controlled IoT botnets, which tend to be active in disperse
time intervals while performing partial scanning tasks as part of
the bigger campaign.

To investigate the latter, we looked at a sample of scanning
campaigns and explored the campaign evolution in terms of the
number of scanned ports by the involved IoT devices during
each interval. As illustrated in Figure 7a, while the number
of exploited IoT devices that scanned all 3 destination ports
within S 1 increased gradually by time, a considerable number
of them were scanning a subset of the destination ports from S 1
throughout the analysis intervals. Similarly, the majority of de-
vices targeting S 4 were scanning 3–4 ports after each analysis
interval (Figure 7b). This indicates that the devices within these
two scanning campaigns did not target all specified destination
ports at every time interval. Instead, they distributed the task by
scanning subsets of the final scanning objective over time, re-
sulting in an evolving scanning campaign that targeted a fixed
set of destination ports over a longer period of time.

In contrary, as shown in Figure 7c, almost all devices within
the identified scanning campaign were targeting the entire des-
tination ports within S 3 at every interval. This however, re-
flects the used scanning strategy, which resulted in targeting all
three ports during every interval (6 aggregated hours). After
all, our implemented data-driven methodology, which is based
on identifying scanning campaigns by finding unique scanning
objectives over aggregated time periods, was indeed success-
ful in uncovering the campaign intentions, even when the tasks
were distributed among multiple devices and/or over several in-
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Table 4: Aggregated flow features for device di within interval I.

fi Selected Features
1–3 Ui,m: number of scanning packets from each type (m)

4 S P =
∑

m Ui,m: combined scanning packets
5–7 αi,m: discrete prob. dist. representing the fraction of

each scanning packet to scans
8 N

′

: number of active intervals (minutes)
9 AR = bi−ai

N′i
: activity rate

10 S R = S P

N′i
: scan rate

11 TT L: average TTL value
12 Psize: average packet size
13 S rcPorts: number of source ports
14 DstIPs: number of destination IP addresses
15 DstR = S P

DstIPs
: per destination packet rate

16 DstPorts: number of scanned destination ports

Table 5: Clustering results for the top 5 scanning campaigns.

S i ε #Devices #Clusters Clusters’ Size (#Outliers)
1 0.1 932 7 753, 45, 53, 9, 6, 3, 3 (60)
2 0.15 835 7 677, 57, 5, 13, 7, 3, 5 (68)
3 0.15 735 8 659, 3, 3, 3, 3, 3, 3, 3 (55)
4 0.15 403 7 301, 34, 15, 6, 5, 3, 3 (36)
5 0.15 209 2 179, 5 (25)

tervals.

4.2.5. Inferring IoT Botnets
It is important to realize that the identified scanning cam-

paigns in Section 4.2.3 may reflect the behaviors of compro-
mised IoT devices as a part of co-opted botnets, which are uti-
lized to scan a set of predefined ports for vulnerabilities. The
assumption is that different exploited IoT devices will produce
similar scanning behaviors when infected by the same mal-
ware. Moreover, given that IoT malware target specific vul-
nerable devices, it is likely that these devices share device and
firmware-specific features (e.g., TTL values). Therefore, to cor-
relate these devices, the system is utilized to extract aggregated
flow features, which represent the overall behaviors of the IoT
devices over time. The system also leverages these features to-
wards subsequent clustering of IoT devices within the scanning
campaigns to infer groups of correlated IoT devices with simi-
lar behavioral characteristics (i.e., IoT botnets).

We leveraged the system to extract 16 features (Table 4),
which consist of raw flow information from the IoT-generated
packets, along with features related to the aggregated traffic
over time. Note that the extracted features can always be mod-
ified to add or remove features, if necessary. The system lever-
ages these features in a number of ways to cluster/classify com-
promised IoT devices into correlated groups. For instance, we
leveraged the system to perform sub-space clustering within
the identified scanning campaigns to detect IoT devices that
produced similar flow features over the entire analysis period.
The system utilizes the density-based spatial clustering of ap-

plications with noise (DBSCAN) (Ester et al., 1996), which is
widely adopted due to the fact that it does not require a pri-
ori knowledge about the number of clusters, while it can detect
arbitrary shaped clusters and outliers by grouping sufficiently
dense regions into clusters in a spatial database (Shah et al.,
2012).

The clustering analysis results for the campaigns targeting
the top 5 scanning objectives (Table 5) highlight 7 clusters
within S 1, with cluster #1 to have the largest number of mem-
bers (753 out of 932). Similarly, while the analysis revealed
variable number of clusters within the remaining groups (S 2–
S 5), with each group to contain a main cluster with the largest
number of IoT devices. This is not surprising as the majority
of devices within the identified groups had similar types and
models. Furthermore, given that an IoT malware might in fact
target specific types/models of IoT devices, the clustering re-
sults will indeed shed light on similarities among the exploited
devices based on their correlated behavioral characteristics and
aggregated flow features.

4.2.6. Identifying DDoS Victims
Another aspect of monitoring IoT-generated traffic is to iden-

tify devices that send backscatter packets towards the darknet.
These devices are likely to be victims of DDoS attacks using
spoofed IP addresses (Blenn et al., 2017). As summarized in
Figure 9, the analysis of backscatter traffic identified 437 IoT
devices, among which, the majority were routers (68%). Fur-
thermore, slightly over half of these routers were MikroTik
routers, followed by a significantly smaller number of devices
from other models. This might be justified by the fact that a
considerable number of the routers within the identified DDoS
victims were in fact MikroTik routers (59%), as summarized in
Table 6. Moreover, the distribution of DDoS victims over the
hosting countries, as illustrated in Figure 8, shows that Iran was
hosting the largest number of targeted devices in our data, with
the majority of these devices to be MikroTik routers (102 out
of 106). Considering the fact that our data contained signifi-
cantly less number of IoT device that were located in Iran, this
finding highlights a period of targeted DDoS attacks towards an
increasing number of devices located in Iran, as perceived from
the darknet.

Overall, the IoT devices (DDoS victims) generated differ-
ent amount of backscatter packets towards the darknet, with
the top 40 victim devices to account for about 93% of all
generated backscatter packets. As illustrated in Figure 10,
these DDoS victims are found at the high spikes, with device
#120 (Radware firewall located in China) to be responsible for
generating the largest number of backscatter packets (246K).
On the other hand, other DDoS victims, such as device #265
(MikroTik router from Iran), generated relatively fewer num-
ber of backscatter packets (<65K). In addition to backscatter
packets, about 68% (298/437) of these IoT devices were also
generating scanning packets during the analysis intervals. We
suspect that these devices were targeted by DDoS attacks while
already being involved in scanning activities due to existing ex-
ploitations. However, confirming this phenomena is considered
for future work.
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Figure 8: Top 15 countries with the highest number of DDoS victims.
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Figure 9: Targeted device types (DDoS victims).

4.3. Performance Evaluation

To evaluate the performance and scalability of the system us-
ing real life data, we sampled 24 hours of IoT-generated traffic
from the collected darknet data, representing a total of 63.5M
flows (mean = 2.65M and σ = 4.3M) generated by 13,603 IoT
devices (mean = 4061.6 and σ = 183.9). The performance of
the system is measured during darknet data parsing, data aggre-
gation, and device profiling processes, as described throughout
Sections 3.3.1–3.3.3. In what follows, we provide further infor-
mation on the performance analysis in terms of execution time
and CPU/Memory usage.

4.3.1. Execution Time
The overall execution times required to perform darknet

data parsing and IoT data aggregation (Figure 11a) shows that
hourly darknet data files were parsed in less than 40 seconds
each, with an average of about 27.6 seconds to prepare format-
ted flowtuple files (min = 20.4s, max = 38.9s, and σ = 4.5s).
Moreover, we observe a strong positive correlation (r ≈ 1) be-
tween the required execution time and the number of processed
flowtuples in every file, as illustrated by the Least-Squared re-
gression lines in Figure 11b. The regression analysis indicates
high accuracy of the model in predicting over 99% of the vari-
ance observed in the analyzed data (R2 = 0.999). This indeed
can be used to predict the execution time for parsing a given
data file by knowing the number of flowtuples.

Table 6: DDoS Victims’ device models.

Device Model Count %
MikroTik router 258 59.0
SonicWALL firewall 33 7.4
Cisco router 19 4.3
Radware load balancer and ADC 16 3.6
Avtech AVN801 camera 15 3.4
Huawei VRP 14 3.2
WatchGuard firewall 12 2.7
Linksys wireless-G WAP 9 2.0
D-Link DCS webcam 8 1.8
Haproxy load balancer 6 1.4
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Figure 10: Backscatter packets generated by DDoS victims.

Meanwhile, aggregating the parsed flowtuple files required
relatively more time (Figure 11a), with an average of 46.7s per
file (min = 22.5s, max = 97.7s, and σ = 18.35s). Interestingly,
while we also observe a strong positive correlation between the
execution time and the number of flowtuples per aggregated
file (r = 0.90), the regression analysis indicates that the lin-
ear model can describe about 82.5% of the variance in the data
(R2 = 0.825). In other words, the required execution time for
the aggregation processes cannot be accurately predicted by the
number of flowtuples only as it depends on other factors such as
the number of identified IoT devices and their associated flow-
tuples per analysis interval. These factors can indeed invoke
a series of Spark operations (e.g., groupBy() and agg()) on
subsets of data with variable length, resulting in further pro-
cessing and execution overhead, respectively.

In addition, we analyze the execution time required for cre-
ating the dynamic device profiles at the end of every hourly
analysis interval (recall Section 3.3.3). Device profiles are ex-
pected to grow in terms of the number of records (IoT devices)
over an accumulative period of time as they depend on merging
the aggregated IoT device information at any interval with pre-
viously obtained device profiles. This result in increasing the
required execution time by a range between 1–59 minutes for
intervals 1 to 24, as shown in Figure 12, respectively. In fact, the
correlation analysis indicate a strong positive correlation that is
modeled almost accurately by an exponential linear regression
line (R2 = 0.99). Given that we performed our experiments on

9



Parse       Aggregate

Ex
ec
ut
io
n 
Ti
m
e 
(S
ec
on
ds
)

0
10
20
30
40
50
60
70
80
90

100

(a)

0
10
20
30
40
50
60
70
80
90

100

1.5 2.0 2.5 3.0 3.5 4.0
Processed Flowtuples (Millions)

Parse Aggregate

(b)

Figure 11: Execution time analysis for (a) data parsing and aggregation,
and (b) the correlation of execution times to the number of flowtuples in
parsed/aggregated data files.

0
500

1000
1500
2000
2500
3000
3500
4000

3000 6000 9000 12000 15000 18000

Ex
ec
ut
io
n 
Ti
m
e 
(S
ec
on
ds
)

Number of IoT Devices in Merged Files

Figure 12: Correlation of execution time with the accumulative number of IoT
devices in the merged data files.

a single node implementation of Apache Spark, we anticipate
to produce a linear correlation between the execution times and
the number of devices in the merged files by implementing the
system on a cluster of nodes, which will result in shorter exe-
cution times over the accumulated IoT devices.

4.3.2. CPU and Memory Usage
We analyzed the CPU and memory usage for different parts

of the system. The darknet data parser is used for reading flow-
tuples from input files, parsing them and writing parsed flow-
tuples back into output files. These I/O operations tend to be
CPU intensive and can usually use maximum CPU power. On
the other hand, the memory usage for the darknet data parser
stayed almost constant, with about 88MB of needed memory
throughout the operations.

Moreover, we summarize the analysis of the CPU and mem-
ory usage for the data aggregation and profiling processes by
illustrating the results for a sample of four consecutive aggre-
gated and then profiled hourly darknet data files, as shown in
Figures 13 (a–b). At every hourly time interval (T1–T4), the
operations start by reading large amount of data from input
files, followed by aggregation and merging (profiling) opera-
tions, which result in intensive CPU usage (Figure 13a). At the
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Figure 13: CPU and memory usage for a sample of four consecutive hours of
aggregated/profiled darknet data.

end of every interval, the data/results are written back to output
files (JSON), which justifies the noticeable drop in the CPU us-
age (< 30%) during the write operations. The sequence of op-
erations is repeated at every hourly interval, which explains the
recurring high/low CPU usage throughout the analysis. More
importantly, due to the accumulated number of detected IoT de-
vices after every analysis interval, the device profiling/merging
operations required more time to process the data, as observed
by the extended intervals of intensive CPU usage in Figure 13a.
In addition, while the heap size was set to 10GB for this exper-
iment, the memory usage stayed below 9.5GB, with an average
of about 6.7GB of used memory over the analysis interval (Fig-
ure 13b). This is in fact very reasonable due to the size of the
input data files and the number of processed flowtuples during
the aggregation and device profiling operations.

4.4. Limitations and Future Work
The generalizability of our findings might be hampered by

the size of the IoT device sample and the collected darknet data
over the analysis period (5 days). In addition, we rely on ex-
ternal resources of IoT device information and passive network
measurements. Nevertheless, both Shodan and the UCSD net-
work telescope are considered among the largest and most re-
liable sources of data available for research purposes. In ad-
dition, we can overcome these limitations by performing long
term data collection and analysis experiments, which can pro-
duce results in near real-time. Furthermore, we have imple-
mented an Internet-scale IoT device scanning and banner anal-
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ysis tool that mimics Shodan, while providing similar IoT de-
vice information that could be used for validating and extending
our knowledge of deployed IoT devices. Additionally, we have
already started collaborating with other darknet data providers
in order to expand our data, while providing means for com-
paring the compromised IoT device behaviors over an extended
subset of the IPv4 address space. Finally, while we provide
information on the design of the IoT threat repository in Sec-
tion 3.4, the integration and evaluation of this module is consid-
ered for future work, with the aim to make such repository pub-
licly available at large, to strongly support IoT-centric forensics
and Internet-scale remediations.

5. Conclusion

In this paper, we contribute towards empirical IoT forensics
by designing, developing, and thoroughly evaluating a scalable
infrastructure to enable the development of supporting tech-
nologies that help in building a better understanding of com-
promised IoT devices and their unsolicited activities. The de-
veloped system, which leverages the power of big data analyt-
ics frameworks, was utilized to process more than 4TB of pas-
sive network traffic collected at a large-scale network telescope
(darknet) to identify 27,849 compromised IoT devices that gen-
erated more than 300 million unsolicited packets. Furthermore,
we demonstrate the effectiveness of the system through a num-
ber of applied security operations to infer and fingerprint IoT-
generated activities, which enable future work towards IoT-
centric remediation, cyber-situational awareness, malware de-
tection and evolution, to name a few. Finally, while the per-
formance evaluation shows that the system can indeed execute
large-scale data analysis effectively and efficiently, the imple-
mented system is also scalable by design, as it can be extended
through the implementation of Apache Spark on a multi-node
cluster architecture.
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