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Abstract—Analyzing the characteristics of scanning activities
generated by compromised Internet-of-Things (IoT) devices is
instrumental for early detection of IoT malware propagation.
In this letter, we leverage about 3 TB of empirical passive
network measurements to investigate IoT-generated scanning
activities. Specifically, we exploit stochastic processes to model
low-rate scans by incorporating the effect of random sampling
and jitter on the observed packet Inter-Arrival Times (IAT).
We verify the derived formulations using simulated results and
empirically explore scans targeting common services (Telnet and
HTTP) to demonstrate the effectiveness of our approach towards
modeling low-rate scans while generating practical cyber threat
intelligence.

Index Terms—IoT botnets, IoT infections, Stochastic analysis,
Internet measurements, Darknet.

I. INTRODUCTION

The rise of Internet-of-Things (IoT) malware, which heavily
rely on Internet-scale scanning activities to exploit vulnerable
devices [1]-[3], highlight the pervasive nature of such scan-
ning activities on the Internet. More specifically, the empirical
analysis of scanning activities generated by IoT infections,
typically operating within well-orchestrated botnets, highlight
different low-rate scanning events, induced by diverse im-
plementations of the employed IoT scanning modules. For
instance, the Mirai IoT botnet sends batches of low-rate
scanning packets followed by an idle state while waiting for
SYN-ACK replies, which trigger further operations. Another
prevalent low-rate scanning technique is implemented by di-
viding the traffic into equal sized packet bursts, which are
separated by constant idle time intervals (e.g., T' = 1sec) [4].

Despite the fact that scanning modules can be implement
with different settings to control scanning rates and frequen-
cies, low-rate scanners produce distinguishable characteristics
that are observed in the distribution of their Inter-Arrival
Times (IAT). Moreover, while low-rate scans can be per-
formed by any host, motivated by the prevalence of low-
rate stealthy scans generated by compromised devices within
well-coordinated botnets [2], [3], in this letter, we draw upon
significant empirical data extracted from a large-scale network
telescope [5] to infer and characterize low-rate scanning ac-
tivities generated by exploited devices. While packet IAT has
been previously used as an effective feature for characterizing
network scans [6], [7], we aim at providing a better under-
standing of the scanning activities through empirical analysis
and probabilistic modeling of the perceived IAT, which would
pave the way for exploring IoT-centric open research problems

and much needed diverse applications, including IoT device
fingerprinting, malware attribution and campaign detection.

To achieve such objectives, we leverage a /8 network
telescope (darknet) to infer scanning traffic generated by com-
promised devices. We then obtain device information/labels
by performing instantaneous scanning and banner analysis of
such devices to identify various information such as device
type (e.g., IoT/non-IoT) and known malware signatures (e.g.,
Mirai). Furthermore, we perform empirical analysis of the
scanning activities by measuring the IAT Probability Density
Functions (PDF) for all devices through implementing a series
of dimension reduction techniques, while clustering correlated
devices into meaningful groups. Indeed, the obtained results
demonstrate the effectiveness of our approach towards clas-
sifying IoT and non-IoT devices based on the distribution of
their IAT, while showing that devices infected by the same
IoT malware family are likely to be correlated due to their
similar scanning behaviors. Finally, while we introduce novel
stochastic processes for modeling low-rate scanning activities
based on observed packet IAT, we provide empirical evidence
to support the accuracy of the theoretical model in estimating
the behaviors of different groups of correlated devices that
perform low-rate stealthy scanning activities.

Along this line of thoughts, we frame the contributions of
this letter as follows:

o Executing empirical and probabilistic analysis of scanning
activities based on their packet IAT as perceived from a
network telescope. Our objective is to explore methods for
enhancing IoT security, device fingerprinting, and botnet
inference.

« Employing stochastic processes for modeling scanning pack-
ets’ IAT, while considering network-specific factors such as
random packet sampling, path delay, and jitter. The proposed
model is validated and shown effective and accurate in
modeling different employed scanning modules for various
groups of correlated IoT devices.

o Empirically investigating IoT-generated scanning events tar-
geting two prominent services (i.e., Telnet and HTTP) and
demonstrating the effectiveness of the proposed approach
in differentiating between IoT and non-IoT devices based
on their modeled TAT, while correlating devices based on
distinguishable scanning characteristics. This can be used to
uncover common infections, infer orchestrated campaigns,
and provide digital evidence related to IoT malware.



II. PROPOSED MODEL

A. Stochastic modeling of stealthy loT scanning activities

In this letter, we use stochastic modeling to formulate the
probability density function of IAT for randomly sampled
packets from a given source towards a vantage point on
the Internet. The proposed model is founded on three main
hypotheses and assumptions: (1) The scanners/infected IoT
devices generate stationary behaviors which allow us to model
their longitudinal activities; (2) Scanners send scan packets
following a burst-idle model; and (3) We are only able to
observe small sample of darknet-received packets which are
randomly selected.

1) Modeling of the scanning source: In general, we assume
scanners send batch of n packets and go dormant/idle for a
deterministic or a random period. This dormant period can
be due to imposing rate limiting, time required to process
response packets, or performing other tasks. We model the
scan traffic process as a modulated stochastic point process
defined as X (t) = 3 B(t—T;), where B(t) = S7_(6(t—jA)
is a batch of packets sent out every A and J(.) is the Dirac
Delta impulse. For simplicity, in case of A < E{T'}, which is
a correct assumption for low-rate scans, we substitute the batch
function with B(t) = nd(t). The batch arrival times 7; can be
deterministic T; = 6(¢ — i7T') or can be any renewal process
with an arbitrary distribution T; — T;_1 ~ f(z). In general,
while the PDF of IAT can form any arbitrary distribution, our
proposed model aims at capturing the most prevalent practices
of scanners in their stationary phase.

2) Effect of random sampling: It is important to note that
a relatively small portion of the overall scanning activities
generated by compromised devices is captured at the network
telescope. Therefore, the observed PDF of packet IAT is
different from the actual distribution before sampling. Inline
with that, when random packet sampling is applied, the traffic
is only observed at the time of arrival of the selected packets,
where each packet is either kept with probability p or discarded
with probability 1 — p.

Theorem 1. The inter-arrival PDF of scan packets sent in

batches of n packets with inter-batch distribution T; —T;_1 ~
f(x) after sampling is deﬁned as:

9(t) = (1= —=)o(t) + — quz Lfi(t) (1)
where p = (1 —p) ,q = l—p and fi(t) is the k-fold
convolution of PDF f(t) and defined recursively as:

t
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0

Proof. To prove Theorem 1, we mix the discrete process for
cases with zero or one packet from each batch with a con-
tinuous distribution function f(x). Given the latest received
packet from a sample s at time 5, = 0, we want to
determine the probability of observing subsequent scanning
packet in exactly ts,__ ,timeunits. The probability to receive
at least one more packet from the current batch is 1 — n—.
Further, the probability to receive the next packet from batch

1 rather than prior batches is Tfp qp'. However, the arrival time

probability density function of the i*” batch should be taken
into consideration, which is equal to the k-fold convolution of

f(t) 81
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Corollary 1.1. Laplace transform of the probability density
Sfunction g(t) has closed form:

g(t) - T

—1-Z T Fs)
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“4)

Proof. Since we know that 6(¢) d(s) and
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Given the transform f(¢), numerical inversion algorithms
can be applied to calculate g(t) for any desired ¢ by inverting
the transform G(s) in Eq. (4) [9], [10]. Similarly, we can
calculate the source distribution f(¢) by rewriting Eq. (4)
to find F(s) based on G(s) and numerically inverting it.
Subsequently, we investigate the final distribution ¢(t) in two
common cases; exact inter-arrivals f(t) = 6(¢ — T) and
exponential distribution f(t) = Ae " u(t)

Proposition 1.1. In case of a precise batch inter-arrival

f@) ~6(t—=T):
Zpl L5t —4T)

g(t) = (1 - —
Proof. Leveraging Theorem 1 and the fact that f;(¢) = 6(t —
iT'), the final result is straightforward. O

(6)

Therefore, when we observe equal distant peaks in IAT
PDF with peak values reduced by a p factor, we can estimate
the number of packets in each batch and the timing between
batches T'.

Proposition 1.2. In case of batches of packets, which are
sent out with Poisson distribution (inter-arrival time of batches
are following exponential distribution f(t) = Ae™*u(t)), we
observe exponential shape distribution with rate g\:

WFU—%WWﬁ%WfWW) (7)



Proof. Knowing that f(t) = Ae™*u(t), its Laplace transform

is F(s) = Si)\ and using Corollary 1.1:
2 A
q q S+
G(s)=(1—-—)d(s) + —
()= (1= 0300s) + 1 E
q g qA (8)
=(1--—) —
( np) (s) I ——Y
S Inverse q q —qAt
t)=(1—-—)d(t —(gN)e ¢ t
1) = (1 = L350 + L (@)e=u(t)
O

3) Network jitter: Data traversing over a communication
network experience varying delays. Modeling the transit delay
requires to take into account several factors such as propa-
gation delay, queuing delay, and congestion in the network.
Since we aim at modeling the packet inter-arrival distribution
targeting a network telescope, we only consider the effects
of network jitter, which is defined as the transit delay of
successive packets between the two measure points. Delay
variation or jitter is an inherent feature of packet switched
communication networks due to various bottlenecks. We as-
sume that we are observing packets in a monitoring point,
where all packets traverse a similar path. Assuming a constant
jitter 7, the observed inter-arrival distribution is g(t — 7).
Therefore, calculating the final inter-arrival distribution h(t)
after taking into account the sampling and the network jitter
distribution j(¢) would be as follows:

mo = [ imet-n =i g ©

However, the actual distribution function h(t) is slightly
distorted due to the fact that often it is challenging to infer
the exact order of the scanning packets and therefore, the
observed IAT seem to be zero for values less than zero. This
slight distortion is however ignored as it possesses negligible
impact on the derived outcomes. Despite the fact that different
models have been used to describe network jitter [11]-[13], the
most common model which is often used in typical conditions
(under no strong congestion, and in wide-area networks) is the
Laplace distribution.

1 lt—el
= —e

26
Proposition 1.3. In case of precise batch inter-arrival f(t) ~
§(t—"T), the final observed inter-arrival distribution is h(t) =

(1- L)1)+ L > Pt =)

J(tle, B) (10)

B. Validation

We perform a series of experiments to simulate packets’ IAT
at the darknet and compare results to the probability density of
observed packet IAT derived using Theorem 1. As illustrated
in Figures la and 1b, we choose different batch sizes (n
packets) for the two modeled batch inter-arrival distributions:
d(t — T) (Figure la), and exponential (Figure 1b). Further,
we choose p = fle‘ for sampling probability at the darknet,
and A = 50us. The analysis indicates a close to perfect

accuracy when comparing theoretical and simulation results,

Inter-arrival time (1)

(a) (with T' = 1)

Inter-arrival time (7)

(b) (with A = 1)

Fig. 1: Validating the accuracy of the relation in Theorem
1 against simulated batch IATs for (a) distribution §(t — T)
(Proposition 1.1), and (b) exponential distribution (Proposition
1.2). We select p = ﬁ and A = 50us for all tests.

which corroborates the validity and soundness of the derived
theoretical relations.

III. EXPERIMENTAL RESULTS

A. Data Collection

We leverage passive data collected at a large-scale network
telescope (darknet) maintained by the Center for Applied
Internet Data Analysis (CAIDA) [5]. The darknet provides
a thorough view of Internet scanning activities by capturing
one-way traffic at a large number of routable, yet unused IP
addresses (about 16M). CAIDA’s network telescope represents
a large destination IP address block, where it captures packets
from a given source following similar paths with equal delays.

To this end, we utilized the algorithms developed in [2]
to analyze about 3.6 TB of darknet data (Oct-08-2019),
identify scanning traffic generated by compromised hosts
(112,851), and infer device labels (IoT/non-IoT). In addi-
tion, we employed the Dvoretzky—Kiefer—Wolfowitz (DKW)
inequality [14] to estimate the minimum sample size s >
(5iz)In(2), which represents the amount of scanning packets
required by each source for achieving acceptable accuracy
in the estimated empirical probability functions. Our analysis
resulted in selecting the error e = 0.02 and confidence level
a = 0.1 (i.e., 90% confidence), with a minimum sample size
s > 3, 744 packets.

In general, we identified 112,851 scanners that generated
more than 4,000 packets, among which, about 82.4% were IoT.
Further, we leveraged Mirai’s traffic signatures [3] to identify
IoT scanners with Mirai infections (47.8% of all).
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B. Empirical Analysis of Packet Inter-Arrival Times

To compare the IAT Probability Density Functions (PDF)
and detect different classes of scans, we adopt the ¢ Wasser-
stein distance measure, which is an extension of the Eu-
clidean distance metric for comparing distributional-valued
data. Subsequently, we leveraged a tailored technique rooted
in Principle Component Analysis (PCA) to analyze the prob-
ability Density functions [15]. This method reduces the
dimensions of the data by measuring differences in a number
of characteristics such as position, scale, and shape of their
observed distributions. Following this approach, we transform
the obtained IAT distributions to a 5-Dimensional space using
the HistDAWass R package [16]. We used the data2hist
function with manual break points, with 0.01 intervals to
convert vectors of arrival times to histograms. Finally, we
perform subsequent HDBSCAN clustering [17] with minimum
number of neighbor points=3, min cluster size=100, and
outliers threshold=0.4, to explore further correlations. Note
that results are illustrated using 2 main PCA components in
2-D plots. In what follows, we demonstrate the applicability
and added-value of the proposed stochastic model through
use cases of scanning activities that target two prominent
destination ports/services representing Telnet and HTTP.
Telnet port 23: Telnet ports (e.g., 23/2323) have been heavily
targeted by compromised IoT devices in recent years. We
investigate traffic generated by 7,957 devices that targeted
Telnet port 23 by transforming their packet IAT to a 5D space.
Furthermore, we perform subsequent clustering using HDB-
SCAN to identify correlated devices, as presented in Figure 2a.
The results highlight three main groups of correlated devices,
representing mainly IoT devices. Moreover, it is interesting
to see that the majority of devices clustered in group #3
are labeled with Mirai signatures [2]. Furthermore, the vast
majority of devices within every group follow almost the same
distributions of packet IAT, as illustrated in Figure 2b. More-
over, the scanning signatures for each group represented by the
mean value of their given distributions, confirm the theoretic
derivations for packet IAT, as presented in Section II-A. We

also fit these distributions to the theoretical models (Figure 2b)
and show that packet IAT can indeed be a distinguishable
feature when comparing scanning activities generated by com-
promised devices, especially those performing low-rate scans.

Our analysis resulted in identifying an inter-batch arrival
distribution f(t) = 726(¢t — 1.05) for devices within group #3,
which translates to sending 72 packets every 1.05 seconds.
Similarly, devices within group #2 were sending 25 packets
every 1 second (f(t) = 256(¢ — 1)). Furthermore, each group
of scanners might exhibit different overall target size (e.g.,
number of IP addresses). Therefore, we had to slightly adjust
the p values to account for these differences while fitting the
distributions. Group #1 on the other hand exhibits slightly
different IAT distribution, with devices sending batches of
1,100 packets following f(t) = 0.016e =96 with A = 0.016.
This very low rate approximately equals to 6—10, which means
that these scanners send about 1,100 packets before going idle
for some random time (average of 60 seconds), possibly due
to processing the response packets, before sending the next
batch of packets.

In addition to packet IAT, we obtain the scanner rates
from the darknet, with groups #1 to #3 having rates equal
to 0.0782, 0.0983, and 0.2860, respectively. It is important to
note that the observed rates do not provide sufficient details for
comparing behavioral characteristics among different scanners.
Nevertheless, considering that we observe similar distributions
of packet IAT in each identified cluster (Figure 2b), we may
have a chance to accurately fingerprint these groups based
on their IAT distributions, which in turn, characterize the
implementation of their underlying scanning modules and
parameters. Indeed, this highlights the importance of packet
IAT analysis, which can be used along with other packet/flow
features for further clustering/classification of scanning ac-
tivities generated by different malware variants. In addition,
our analysis shed light on an important characteristics of
the majority of the explored scanners, which are found to
generate low-rate scanning behaviors with some kind of rate
limiting techniques, resulting in sending scanning packets in
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batches separated by specific idle times that can be leveraged
to characterize and distinguish between them.

HTTP ports 80 and 8080: We investigate IAT PDFs related to
2,743 compromised devices that targeted HTTP ports 80/8080,
which are also among the most targeted ports when analyzing
scanning campaigns [18]. Interestingly, our analysis highlights
two distinguishable dense areas in Figure 3a, which illustrate
high similarities in the scanning packets IAT distributions
of the inferred IoT and non-IoT devices, respectively. We
also follow the same approach used for analyzing port 23
by performing HDBSCAN clustering on the obtained IAT
distributions, and identify two distinctive groups of scanners
with correlated IAT probability distributions, with group A
to contain mainly IoT devices and group B to correspond to
non-IoT (Figure 3b). In addition, devices in group A send
a larger number of scans every 3 seconds, while devices in
group B send relatively fewer packets per second. Further,
while it is clearly observed that the distribution of IATs within
group A do not follow any of the proposed models in this
letter (Figure 3c), we can still estimate the corresponding
IAT distributions f(t) by leveraging the numerical approaches
explained following Corollary 1.1. Given this distinguishable
behavior, it is clear that the analysis of packet IAT can in
fact help in meaningfully classifying IoT and non-IoT devices
based on characteristics of their scanning activities.

IV. CONCLUSION

In this letter, we propose and evaluate novel stochastic pro-
cesses to model scanning activities generated by compromised
IoT devices based on their packet Inter-Arrival Times (IAT),
as perceived by a large-scale network telescope. Moreover,
we perform empirical analysis using over 3 TB of recent data
and evaluate our approach through two use cases of scanning
activities targeting Telnet and HTTP services. The obtained
results demonstrate the effectiveness of both our empirical
approach and probabilistic models towards distinguishing IoT
and non-IoT devices based on the distributions of their packet
IAT, while correlating groups of IoT devices that are likely to
be operating within well-defined orchestrated botnets.
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