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Internet-scale Insecurity of Consumer Internet of Things:
An Empirical Measurements Perspective
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ELIAS BOU-HARB, The Cyber Center for Security and Analytics, UT at San Antonio (UTSA)

The number of Internet-of-Things (IoT) devices actively communicating across the Internet is continually
increasing as these devices are deployed across a variety of sectors, constantly transferring private data across
the Internet. Due to the extensive deployment of such devices, the continuous discovery and persistence of
IoT-centric vulnerabilities in protocols, applications, hardware and the improper management of such IoT
devices has resulted in the rampant, uncontrolled spread of malware threatening consumer IoT devices.

To this end, this work adopts a novel, macroscopic methodology for fingerprinting Internet-scale compromised
IoT devices, revealing crucial cyber threat intelligence on the insecurity of consumer IoT devices. By developing
data-driven techniques rooted in machine learning methods and analyzing 3.6 TB of network traffic data,
we discover 855,916 compromised IP addresses, with 310,164 fingerprinted as IoT. Further analysis reveals
China and Brazil to be hosting the most significant population of compromised IoT devices (100,000 and
55,000 respectively). Additionally, we provide a longitudinal analysis on data from one year ago against this
work, revealing the evolving trends of IoT exploitation, such as the increased number of vendors targeted
by malware, rising from 50 to 131. Moreover, countries such as China (420% increased infected IoT count)
and Indonesia (177% increased infected IoT count) have seen notably high increases in infection rates. Lastly,
we compare our geographic results against Global Cybersecurity Index ratings, verifying that countries with
high GCI ratings such as the Netherlands and Germany had relatively low infection rates. However, upon
further inspection, we find that the GCI rate does not accurately represent the consumer IoT market, with
countries such as China and Russia being rated with ‘high’ CGI scores, yet hosting a large population of
infected consumer IoT devices.

CCS Concepts: « Security and privacy — Network security; Intrusion/anomaly detection and malware
mitigation; » Computer systems organization — Embedded and cyber-physical systems.

Additional Key Words and Phrases: Internet-of-Things, IoT security, Data Science, IoT forensics
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1 INTRODUCTION

The recent rise in embedded system technologies has instigated a significant increase in the devel-
opment and deployment of Internet-of-Things (IoT) devices. The Internet-of-Things is generally
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defined to encompass any device capable of connecting to the Internet, interacting with other
devices and exchanging data. Primarily adopted in consumer markets, government agencies and
critical infrastructure [4], the mass manufacturing of such embedded devices has surpassed multiple
benchmarks, each underestimating the impact and rapid increase of actively communicating IoT
devices across the Internet [9]. The expansion of the IoT paradigm is especially evident within the
consumer market as businesses and smart homes embrace these emerging technologies. In fact,
over 70% of all North American households have at least one Internet-connected IoT device and the
global median of 40% shows an upward trend [28]. Behind the enormous growth of the IoT paradigm
resides consumers looking to make their daily lives more convenient through automated device
functionality, including enhanced opportunities for communication made possible by Internet
transmissions [33, 51]. Yet, despite the widespread deployment of consumer IoT devices, very little
effort is taken towards securing such devices, leading to the uncontrolled spread of malware and
development of large-scale, malicious IoT-centric botnets [34].

Botnets are a collection of devices infected by a common malware, in which a command-and-
control infrastructure allows a bot master to launch malicious attacks [3, 27]. Once infected, bots
will begin to scan the Internet space to find similarly vulnerable devices to compromise. Hackers
specifically target IoT devices within the consumer market due to their abundant vulnerabilities and
the lack of awareness towards device security. In late 2016, the most notorious IoT-specific botnet
known as Mirai emerged. Consisting of over 400,000 compromised IoT devices, the Mirai botnet
launched momentous Distributed Denial of Service (DDoS) attacks, reaching transmission rates of
1.1Tbps [2]. Targeting networked consumer-based IoT devices, the explosive growth and offensive
capabilities of the Mirai botnet advertised the perfect breeding ground for similarly devastating
botnets, with new strains of malware being identified daily [27]. The rampant spread and evolution
of massive botnet campaigns emphasizes the necessity of researching Internet-scale mitigation and
remediation techniques. Furthermore, consumer IoT devices are at the highest risk of exploitation
by such malware due to the lack of information technology and security departments overseeing
the security postures of such devices. As it stands, no trained or specialized department entity
is responsible for monitoring, remediating and preventing IoT device exploitation in consumer
realms.

Indeed, thoroughly securing IoT devices is a complex issue, with vulnerabilities existing in device
hardware, firmware, protocols and cryptographic module implementations [40]. IoT devices are
regularly configured with unused ports and services left open, virtually left unprotected with default
configurations (e.g., credentials). Default credentials are extremely vulnerable to dictionary-based
brute-force password attacks and similar intrusions on common services such as Telnet and FTP,
allowing hackers to gain unauthorized access into devices [2, 28]. Moreover, IoT applications tend to
request unnecessary administrative privileges, leading to an increased number of intrusion points.
55% of applications requested administrative rights for operations that they do not actively use and
42% were granted rights that were not explicitly requested [19]. Furthermore, vulnerabilities are
actively exploited during the installation of patches and updating of firmware. Many updates are
requested and installed through plain text network traffic, allowing for hackers to covertly capture
network traffic originating from compromised devices and retrieve firmware binaries, which can
then be reverse engineered to discover additional vulnerabilities and intrusion points [52].

Forced recruitment into botnet campaigns to launch malicious attacks is not the the only security
risk threatening IoT devices. IoT devices within the consumer sector primarily include cameras,
sensors, monitors and appliances that are networked together to remotely automate domestic
household or business environments [51]. The inherent nature of such devices leads to an increased
amount of private and public data that is actively recorded, cached and communicated across the
Internet. Malicious entities may target consumer IoT devices to infiltrate and steal private data such
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as financial records, personal identity characteristics and health-related information. Transmissions
from compromised IoT devices can be used to profile the device owner, gathering evidence to reveal
their identity and device usage statistics, including the times that the device owner is home or at
work [46]. The threat to privacy is already affecting the consumer market, with 74% of smaller
businesses reporting cyber-related attacks and 90% of large organizations experiencing similar
breaches [29]. Consumer data is at risk of being exploited without proper measures for securing
IoT devices, evident through examining the malicious entities which are actively developing and
propagating malware to take advantage of poorly secured devices.

Research Problem Statement. The growth of the IoT paradigm has created an environment in
which hundreds of thousands, if not millions, of unsecured IoT devices are currently deployed and
in usage. Unprotected devices are at risk of being compromised, in which malicious entities threaten
the security, privacy and safety of their operating environments, which may directly affect the
device owner. Despite the threat to IoT devices and private information, public knowledge of device
security is largely inadequate. It is common for device owners to be unaware of proper safety tech-
niques and generally disregard implementing security measures. Moreover, cybersecurity efforts
towards identifying, mitigating and remediating Internet-scale compromised IoT devices are largely
impeded by multiple inherent IoT device characteristics. Specifically, the large number of vendors,
each producing many variations of similar firmware and hardware, conforms a heterogeneous
nature onto IoT devices. Therefore, the IoT paradigm is extremely diverse, a characteristic which
hampers efforts to curate and analyze IoT-centric empirical data and artifacts. Furthermore, ana-
lyzing network traffic to discover specific identifiers of IoT devices, such as manufacturer, vendor,
device type, model and operating system is extremely difficult. Only a small fraction (results from
this work indicate less than 10%) of the Internet-wide IoT device population responds with relevant
service banners when contacted, requiring the development of a comprehensive machine learning
classifier to effectively learn from the smaller population to fingerprint the remaining compromised
IoT devices. To this end, in order to provide IoT-specific cyber threat intelligence and artifacts,
this work develops a novel, data-driven methodology for inferring compromised IoT devices and
categorizing device-specific information. Moreover, this work focuses on device metrics derived
from sorting infected IoT devices within the consumer market sector.

Contributions. Motivated by the aforementioned IoT-centric challenges and the deficit of Internet-
scale measurements related to the IoT paradigm at large, this work offers a number of contributions
towards the identification, characterization and indexing of Internet-scale compromised consumer
IoT devices.

e A learning-driven classification method for inferring infected consumer IoT devices.
Leveraging passively-collected network telescope data, the proposed methodology identifies
compromised IP addresses, extracts features from packet headers and retrieves text input
from service banners to create a valid training and test data set. The aggregated data is
then leveraged for supervised training of shallow machine learning classifiers to accurately
fingerprint Internet-scale compromised IoT devices. To expedite the reproducibility of our
results while motivating additional studies and measurements of IoT security, we make our
developed models and source code available via https://github.com/ccsa-rd/TMIS-IoT.

e Empirical consumer IoT statistics. This work analyzes 3.6 TB of recent network traffic
over a 24-hour time interval to fingerprint compromised IoT devices. 855,916 infected IP ad-
dresses were discovered actively scanning the Internet space, with a total of 310,164 identified
as compromised IoT devices. Further results on the geographic location, targeted ports and
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IoT vendors reveal malware trends across the global IoT environment. Within the consumer
IoT market, Internet Service Provider Rostelcom in Russia and Turk Telekom in Turkey show
the highest infection rates with 3,589 and 3,559 compromised devices, respectively. Of the 20
reported ISPs, 7 originate from China, including China Telecom Hubei (3,238 devices) and
China Telecom Hunan (2,987 devices).

e Evolution of compromised IoT devices over a one year time interval. We analyze a data
set previously collected in December, 2018 and compare the outcomes with our current results.
Comparisons reveal critical insights on the evolution of vulnerabilities, revealing that China
witnessed a 420% increase in infected IoT devices, while Brazil saw a 63.3% decrease. Further
enumerating upon malware evolution, trends are detailed with their resulting implications
on the consumer IoT landscape, such as the drastic increase of targeted vendors (50 in 2018,
131 in 2019) and the increased range of scans (i.e, the emergence of UDP scans on ports 16285,
8000 and 8080), illustrating new, evolved malware strains and a higher probability of future
infections.

Organization. The rest of the paper is organized as follows. The following section introduces
background terminology referenced later in this work. Next, Section 3 provides a comprehensive
review on related literature that explore IoT protocol vulnerabilities, botnets and general IoT device
security. Section 4 will detail the proposed methodology behind the classifier used to fingerprint
Internet-scale infected consumer IoT devices. Section 5 executes and evaluates the proposed
approach to reveal crucial IoT-specific cyber threat intelligence. Section 6 initiates a discussion
and elaborates upon possible methodologies for mitigating and remediating compromised IoT
devices. Lastly, Section 7 summarizes the contributions of this work while discussing potential
improvements and several topics for future works.

2 BACKGROUND

Network telescopes, also known as darknets, are allocated sets of the IP address space that are
routable, yet intentionally do not host any legitimate services. The lack of hosted services ensures
that Internet traffic received by network telescopes is unsolicited and reliably contains discrete
anomalies such as worms, DDoS backscatter and various other forms of malicious traffic [18, 24].
Network telescopes offer a large-scale, macroscopic vantage point for collecting Internet-wide
traffic [25]. Similarly, honeypots are deployed systems that interactively act vulnerable to attract
malicious activity and gather malware-specific information [16]. While honeypots do not offer
extensively large vantage points, the collected data reveals crucial in-depth malware intelligence.
Analyzing the network traffic captured by network telescopes, honeypots and similar architectures
reveals, among other threat information, compromised IP addresses, which are a vital component
for comprehensive methodologies that characterize exploited devices [6, 7].

The vast majority of packets collected by network telescopes are attributed to botnet campaigns
actively scanning the Internet space for vulnerable devices in an attempt to propagate. The most
common form of Internet scanning is performed through sending Transport Control Protocol (TCP)
packets carrying a SYN flag without an attached payload. Such TCP SYN packets can be used to
verify if a target is open for communication, which is why compromised devices will continually
send these packets to multiple destination ports, scanning for open services to communicate with.
Across a massively distributed Content Distribution Network’s (CDN) firewall, the vast majority
of TCP packets received were identified as scan-relate and subsequently dropped. In fact, 98% of
all TCP packets received by the CDN’s firewall had the SYN bit set and did not carry a payload,
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indicating scanning activities [41]. Recent works leveraging passively collected scan packets are
further detailed in the related works section.

Additionally, evaluations and results from this work are compared against geographical distribu-
tions developed by the Global Cybersecurity Index (GCI) [49]. GCI releases yearly, questionnaire-
based measurements to identify the type, level and evolution over time of cybersecurity commitment
in countries from a regional and global perspective, while comparing the level of engagement in cy-
bersecurity programs and initiatives. GCI metrics shed light on societal awareness of cybersecurity
based on five key ideologies: legal, technical, organizational, capacity building and cooperation.
Because this work provides Internet-scale measurements of compromised IoT devices, as well as
reveals geographically defined results, our comparisons and correlations with GCI measurements
illustrate a detailed, global perspective of the current state of IoT security.

3 LITERATURE REVIEW

In this section, we review related works to provide insight on the foundations of this research.
We begin by introducing the insecurities within IoT device management, then elaborate upon
IoT-centric protocol vulnerabilities and finally review various methodologies and classifiers used to
identify compromised IoT devices.

Vulnerable IoT device management. Consumer IoT devices are primarily deployed within
households, which have recently adopted the label smart homes. Unlike IoT devices deployed
in government, critical infrastructure and higher education, consumer IoT devices rarely have a
designated authority for overseeing device health and mitigating the spread of malware [43]. Yet,
even these information technology specialists face many challenges as they deviate from traditional
roles. Security operations must continually introduce new policies to actively mitigate frequently
evolving malware, phishing scams and related attacks against industry and infrastructure. Consid-
ering the gradually escalating roles of security analysts, the lack of a responsible party specialized
in protecting against such threats within private households results in improper management and
insufficient protection of consumer IoT devices. Facilitated by the lack of societal knowledge, device
owners are generally left unaware of potential security risks and leave their devices unprotected
[11].

Recent publications have identified common risks and vulnerabilities within the consumer IoT
market. For instance, Ali et al. performed an information risk assessment on possible security threats
against IoT devices [1]. Security risks were identified by the severity of what actions an attacker can
accomplish after successfully exploiting a device, including the amount of data that can be stolen
or lost. Of the identified vulnerabilities, user credentials posed the highest risk of being targeted by
malicious attacks. If user credentials are hacked, the attacker will gain unauthorized access into the
system, allowing for the execution of subsequent malicious operations and even preventing device
owners from accessing their devices. Additional IoT risks include software exploitation, malicious
code being injected within software applications and devices being compromised to spy on users,
including location information services [1, 21].

Leveraging data compiled by Avast Software, Kumar et al. reported the current security posture
of deployed consumer IoT devices [28]. It was discovered that many IoT devices had ports and
protocols left open, even if they are not exclusively used by the device. These unused ports receive
and communicate with incoming transmissions, resulting in unguarded intrusion points. Many
devices were found to have left the File Transfer Protocol (FTP) and Telnet services open, and
17.4% of devices had weak FTP credentials while 2.1% had weak Telnet credentials. To validate
the claim that credentials were weak, a list of 200 common username and password combinations
was leveraged for a brute-force dictionary attack against the identified devices. The dictionary
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attacks revealed admin/admin to be the most popular username/password combination, accounting
for 88% of weak FTP credentials and 36% of weak Telnet credentials. Furthermore, these weak
credentials are the default values installed by device manufacturers, with some defaults being
less secure than others. 55.3% of TP-LINK routers with open FTP services were identified to have
weak credentials, while 10.9% of D-LINK routers were equally vulnerable. The risk of exploitation
through brute-force attacks on vulnerable credentials is extremely high and can be replicated across
a myriad of consumer IoT devices [52]. Without device owners actively updating manufacturer
defaults or similarly weak credentials, the threat of brute-force exploitation persists.

Furthermore, Fernandes et al. analyzed the Samsung SmartThings programming framework
[19]. Consisting of over 500 IoT-oriented applications, known as SmartApps, the SmartThings
framework is among the leading IoT development frameworks. With such a widespread distribution
of developers and their applications, numerous security flaws leave consumer IoT devices vulnerable.
55% of SmartApps requested device operations that they never accessed and 42% of SmartApps were
granted capabilities that they did not explicitly request, leading to the over-privilege of offending
applications. These over-privileged applications are vulnerable to exploitation through design flaws,
allowing hackers full access to the host device. Fernandes et al. exploited popular applications by
launching a wide array of attacks against a variety of consumer IoT devices, including security
locks and fire alarms. These preceding works highlight the dire state of consumer IoT security,
vulnerable to exploitation through improper device administration and management.

Indeed, such works offer valuable insight on vulnerabilities within poorly managed devices.
Improper management such as leaving unused ports and services open, failing to update default
credentials and installing potentially unsafe applications leaves consumer IoT devices vulnerable
to exploitation. Complementary to these findings, our methodology for retrieving device-specific
information requires actively scanning and searching for open ports to recover service banners. By
targeting a total of 45 unique ports that were selected based on the popularity of hosted services,
as well as determined by previous artifacts of malware, we are able to communicate with improp-
erly secured devices. Successfully retrieving service banners from open ports reveals text-based
information detailing device specifications and assists with fingerprinting compromised devices.

IoT-centric protocol vulnerabilities. Poor device management leaves IoT devices vulnerable;
however, it is not the only threat to consumer IoT device security. IoT-specific protocols are
vulnerable to exploitation as well. The radio protocols Z-Wave and ZigBee are popular IoT protocols
due to their reliability when communicating signals indoors, specifically through concrete walls.
Fouladi and Ghanoun released a comprehensive work detailing the Z-Wave protocol stack layers,
including the development of a device for intercepting transmissions [20]. The proposed device,
labeled as Z-Force, decoded and disassembled Z-Wave transmissions, allowing for devices utilizing
the Z-Wave protocol to be remotely exploited with the attacker remaining undetected. Fernandes
et al. continued the analysis of the Z-Wave protocols, compromising encrypted keys used by
automated IoT lock systems [19].

Similarly, Ur et al. [50] studied IoT access control within home automation devices. Multiple
Internet-connected IoT devices were tested, with many utilizing the Z-Wave protocol, including
a wireless LED lighting system, bathroom scale and an electronic door lock that are available in
consumer markets. By investigating ownership processes, roles and monitoring device capabilities,
the authors revealed that IoT devices allow for physical access control. Further, this work illustrates
a major IoT security flaw, where many IoT devices do not properly log activities. Important
information such as labeling which user account issued a specific operation, what time the operation
was issued and the state of the device are not tracked. Improper logging prevents device owners
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who regularly monitor their devices from accurately auditing device activity and user privileges,
allowing attackers to remain stealthily hidden.

Alternatively, Ronen and Shamir demonstrated a number of vulnerabilities and attack vectors
which can be used to remotely exploit IoT lighting systems, followed by launching several attacks
using compromised lights [42]. The authors proved such devices were vulnerable to various
misdemeanors and certain exploits threatened the entire host network; within a corporate setting,
classified data was remotely ex-filtrated without a trace. Moreover, exploited lights can be used to
harm device owners, revealed by testing light strobing at specific, seizure-inducing frequencies.
Through similar vectors, Ho et al. investigated protocol and system vulnerabilities in IoT smart
locks [23]. The authors demonstrated that exploited locks could be forcibly opened through remote
commands and that safety procedures meant to alert device owners of exploitation can be revoked
or disabled.

These works highlight the insecurity of IoT-specific protocols, which can be exploited for the
remote compromising of consumer IoT devices. Similarly to the aforementioned improper manage-
ment of IoT devices, the lack of secure IoT architectures continues to leave devices vulnerable. To
quantify the number of infected IoT devices, this work provides Internet-scale empirical evidence of
such remote exploitation of IoT devices, passively identifying the ports and services on vulnerable
hosts that have been compromised.

Fingerprinting compromised IoT devices. Preceding works begin with aggregating network
traffic data sets through network telescopes, honeypots and similar collection architectures. Pas-
sively collected network traffic is used to identify infected IP addresses, yet additional processing is
required to identify IoT-specific characteristics. To this end, many works leverage Internet search
engines such as Shodan [45] and Censys [47] to retrieve Internet-scale device information [37, 48].
Internet search engines actively scan the Internet space at fixed intervals to locate devices with open
ports and services, retrieving available service banners. Banners contain text-based information
regarding device specifications and scripts can be developed to search and retrieve specific regular
expressions that correlate with device information [28]. Antonakakis et al. leveraged a network
telescope and multiple honeypots to aggregate network traffic related to the Mirai malware [2].
Mirai-generated network traffic carries a unique identifier - the packet header’s TCP sequence
value is equal to the destination IP address. After identifying 1.2 million infected hosts utilizing
their network telescope, Censys scans retrieved valuable device information and the work revealed
the Mirai campaign’s device composition and multiple attack vectors. Similarly, Cetin et al. de-
ployed a network telescope consisting of 300,000 IP addresses to collect network generated by
Mirai strains [11]. Using banners retrieved from Censys and Nmap, infected IoT devices were
identified and notification-based remediation efforts were successfully tested. Further, Shaikh et
al. combined Shodan and Censys database results to identify compromised IoT devices at large,
reporting empirical statistics on infection rates [44].

In contrast, a number of methodologies collect localized network traffic for IoT device classifica-
tion. Meidan et al. generated network traffic using a collection of IoT devices, PCs and smartphones
[31]. Specific packet features relating to TCP connections were extracted and used as a training
data set for a machine learning classifier, which accurately differentiated IoT-generated traffic
from non-IoT. Alternatively, Miettinen et al. captured IoT-specific network traffic generated during
initial setup processes [32]. These signatures were mapped using random forest classification,
achieving a relatively high accuracy when determining device characteristics. Guo et al. located
manufacturer-specific servers used for device set up, downloading updates and running popular
applications [22]. By using IoT devices within a controlled environment, the preconfigured IP routes
used to automatically connect with manufacturer servers were revealed. Mapping the traffic sent
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to each server’s address, device-specific features were identified and successfully used to identify
the IoT devices active within a college campus.

The aforementioned literature face certain limitations when translated to Internet-scale measure-
ments. First, not every malware will carry such a profound signature as Mirai. Works that leverage
malware-specific signatures are unable to identify newly emerged malware such as those exploiting
zero-day vulnerabilities. Moreover, Internet search engines detect devices with open ports and
services; however, there is no guarantee that they are already compromised. Further processing and
correlation between data sets of known compromised addresses is required to accurately leverage
Internet search engine data bases. Additionally, recent malware has been found to be closing open
ports and services, preventing reinfection by competing malware and reducing the probability of
Internet search engines detecting these compromised devices [2, 27]. Furthermore, testing within
local networks does not offer an Internet-scale perspective, while these works additionally require
physical IoT devices to generate specific, localized network traffic. In contrast, our work leverages
a complex set of rules to aggregate a labeled data set from retrieved service banners. This data is
then fed into machine learning classifiers for training to fingerprint unreachable compromised IoT
devices and predict device characteristics from extracted packet features.

4 INFERRING INFECTED CONSUMER IOT DEVICES

The adopted classifier can be described by three sequential steps: (1) passive collection of network
traffic by leveraging a network telescope (Step 1 of Figure 1); (2) Internet-wide active analysis
through scanning, banner grabbing and characteristic labeling (Steps 2-4 of Figure 1); (3) and
lastlv. utilizine input data sets to develop machine learnine classifiers to accuratelv fingerorint
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4.1 Passive Measurements: Network telescope

In this section, we elaborate upon the methodology used to preprocess the network traffic captured
at a network telescope before inferring Internet scanning activities.

Data collection and preparation. To begin aggregating the initial data set, we have utilized a
/8 network telescope operated by the Center for Applied Internet Data Analysis (CAIDA) [10].
Encompassing over 16 million routable IP addresses, such a large-scale network telescope offers an
enormous vantage point for collecting Internet-scale unsolicited traffic, with roughly 3.6 terabytes
of network data collected per 24-hour time increment. While this specific dataset is subject to
MOUs and cannot be shared, interested readers can request access to CAIDA’s network telescope
through their DHS IMPACT initiative. Despite the advantages of an extensive network telescope,
not all of the collected traffic is relevant to our study, with unnecessary packets in the form of DDoS
attack backscatter and misconfiguration traffic [18]. DDoS backscatter is generated as a result of
malicious entities spoofing IP addresses located within the network telescope to launch attacks,
followed by the targeted victim responding to the spoofed address. Misconfiguration traffic may
be generated by hardware and software faults, or improperly configured network routing. To this
end, this work employs, from a previous work [5], a darknet-specific, probabilistic sanitization
model that identifies and filters out misconfiguration traffic, cleansing a network traffic data set
to prepare it for further analysis and processing. Rather than relying on arbitrary thresholds for
packet counts in specific time intervals, the probabilistic model calculates the likelihood that a
traffic source intentionally scanned a specific destination. For space limitations and to keep the
focus of this article on the presented work, we do not elaborate further on the inner details of the
sanitization model, but kindly refer the reader to [5] for more details.

Inferring probing activities. Following the sanitization of misconfiguration traffic and related
noise, compromised host addresses were identified through analyzing scan-like activities of scanner
packets [35, 36]. A Threshold Random Walk (TRW) probing algorithm extracted packet flows
corresponding to compromised hosts. The TRW algorithm searched for subsequently ordered
packets attributed to the same source IP address within a 300 second time interval, employing a 64
packet threshold to determine if a source host was intentionally scanning the network telescope
space. This metric is a typically sound threshold when attempting to extract scanners from darknet
data sets [17]. In contrast, if the time interval expired without the threshold being met, the host
was not labeled as a scanner and its associated records were removed from the data set. Flows that
met the specified threshold within the time interval were extracted and labeled as scanning hosts.

Packet feature extraction for IoT classification. After grouping related packets into flows,
packet features were extracted to further supplement the training data set. Because the majority
of observed traffic is TCP SYN scans, the primarily extracted features reside within TCP and
IP header fields. These features include values such as the application protocol, type of service,
total length, time to live, source IP, destination IP, etc., for a total of 18 unique classifier fields.
Additionally, previous results revealed the presence of assorted TCP OPTIONS being set, possibly to
evade detection from firewalls or intrusion detection systems. To address our findings, 6 additional
options were included as fields within the feature set: NOP, MSS, WSCALE, SACKOK, SACK and
TIMESTAMP (displayed in Table 1). Furthermore, applicable features were extracted from packets
utilizing UDP and ICMP, while a constant 0 value is used for unavailable fields. This constant is also
used for TCP packet features that are not present or missing. Lastly, the minimum, first quantile,
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median, third quantile and maximum values are computed for each feature, resulting in a total of
120 features comprising the classifier’s training and test data sets, displayed in Figure 2.

The elements of our extensive feature set are not weighted equally, with a number of features
offering distinct insights into malware scanning trends and IoT-centric bots. Primarily, the des-
tination port and destination IP address of each packet was used to identify the services that a
particular malware targeted. Moreover, other fields such as the TTL and TCP window size were
used to investigate operating system firmware. However, while these features may require a higher
preference within our feature set, malware is capable of altering packet header fields when scanning
the Internet space. Commonly identified packet features and signatures are actively changed in

Feature Extraction
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Fig. 2. Extracted components of each field

4.2 Active Measurements: Building the data set for labeling

This section elaborates upon our methodology for retrieving IoT-device characteristics that are
necessary for creating an accurately labeled training data set.

Port scanning and banner grabbing. After identifying compromised hosts actively scanning the
network telescope, we utilized the Internet scanning tool ZMap [14] and the application scanner
ZGrab [13] to provide comprehensive analysis on device specifications. In order to verify the
integrity of returned information, it was imperative to immediately reverse scan detected hosts to
prevent any potential dynamic IP reallocation errors. Each identified IP address was scanned across
the 45 most prevalent ports, selected based on the popularity of allocated default ports and services,
typically left open in IoT devices. From these ports, we obtained service banner fields and applica-
tion details from various protocols such as HTTP(s), TELNET, SMTP(s), IMAP(s), POP3(s), SSH and
FTP, etc. Furthermore, additional scanning modules were developed to extract RTSP and SIP banners.

Device labeling. Internet search engines such as Censys release device information from their
recurring Internet-wide scans. Statistics on regularly open protocols, manufacturers, vendors,
device type, model and operating system are included. Furthermore, scanning software such as
Nmap and ZTag release similarly orchestrated lists. While it is unrealistic to assume these lists
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Categories Description Data Type Range
Target-based
Protocol Targeted protocols that malware target Categorical (ICMP, TCP, UDP)
Destination Port ~ Targeted ports and associated services Discrete [0,..., 2% — 1]

Length-based

Total Length The length of an entire IP packet (in bytes) Discrete [20,...,52]
TCP offset The size of the TCP header (in bytes) Discrete [0,...,60]
TCP Data Length  The size of the TCP data (in bytes) Discrete [0, ..., 60]

Time-based
Inter-arrival time The difference in time between the currentand Continuous -
previous packet that are attributed to the same
source address

Other IP header fields
Type of Service  Defines how the datagram should be used (e.g.  Discrete [o,...,2% - 1]
delay, reliability, precedence, throughput, etc.)
Identification A unique number assigned to a datagram frag-  Discrete [0,..., 21 — 1]

ment, to be used during the reassembly of a
fragmented datagram.

Time to Live Counter used to determine the number of Discrete [o,...,28 = 1]
router hops before the packet is dropped. This
field is OS-dependent and decrements with
each hop in a route.

Source IP The IPv4 address of the sender’s packet and ~ Discrete [o,...,23% - 1]
can be leveraged for discovering the geoloca-
tion of the scanning host.

Destination IP The IPv4 address of the receiver’s packet, vari- ~ Discrete [o,...,2%% - 1]
ous malware use different patterns to scan the
cyber space.

Other TCP header fields
Source Port Sending port Discrete [0,..,2% - 1]
Sequence Used to keep the packets of a segment in or-  Discrete [0, ..., 2% - 1]

der. This field is manually changed by the
IoT-centric Mirai malware (Seq.Number ==
Dest.Address).

ACK Sequence Used to ensure that the packets of a segment ~ Discrete [o,...,2% - 1]
are sent and received in the correct order.

Reserved Aligns the total header size as a multiple of four ~ Discrete [0,..,2° —1]
bytes, to increase packet sending and retrieval
processing.

Flags Eight control bits: CWR, ECE, URG, ACK,PSH,  Discrete [o,..,28 - 1]
RST, SYN, FIN

Window Size The number of bytes the sender will buffer  Discrete [0, ..., 2% — 1]
when receiving response packets. This field is
often OS-dependent and can be used for OS

fingerprinting.

Urgent Pointer Pointer used to indicate the priority ranking  Discrete [0,...,21 - 1]
of a packet and its related data.

TCP Options

WSCALE Window Scaling, determines the growth of the Discrete [0,...,21 - 1]
window size as packets are received.

MSS Maximum Segment Size, defines the largest Discrete [o,...,28 — 1]
sized segment that will be used during a con-
nection between two hosts.

TIMESTAMP Detailing the exact time the packet was sent. Binary exists/null

NOP No Option, used as a buffer to separate differ- Binary exists/null
ent options within a packet.

SACK-permitted  Selective Acknowledgment-permitted, identi- ~ Binary exists/null
fies specific data that is allowed during a TCP
connection.

SACK Selective Acknowledgment, used to convey ex-  Binary exists/null

tended acknowledgment for the number and
specific sequence of packets received by the
receiver to the sender.

Table 1. Detailed list of extracted fields from scan packets. The minimum, first quantile, median, third quantile
and maximum values are computed for each field to prepare the feature set.
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include every IoT device being manufactured and sold within consumer markets, the combination
of multiple publicly available lists results in an extensive, Internet-scale archive of text rules to
determine device features.

We continue to expand our list of IoT device labels by creating a set of regular-expression (regex)
keywords relating to IoT devices, manufacturers and vendors. These regex keywords leveraged
common, recurring IoT naming conventions across multiple vendors, as well as more specific
expressions to target and detail popular models. Beginning with a generalized expression developed
by Yang et al. [53], we extracted IoT-specific device information from service banners. Next, we
reduced false positive results with more advanced, strict regex filtering. Lastly, we extracted specific
sequences with manually tailored regex. For instance, the regex used to identify all device models of
the HP Officejet Pro Printer series is available in Table 2. Furthermore, devices found to be running
multi-purpose operating systems were labeled as non-IoT, generally identified by keywords such
as "Win64", "Ubuntu", "Microsoft", etc., while we labeled specialized devices as IoT when found to
have operating systems such as "embedded", "RouterOS", "FritzOS" and similar systems.

Table 2. Example regular expressions used for feature extraction

] \ Regular Expression ‘

General "[a-z]+[-1?[a-z!]*[0-9]+[-1?[-]?[a-z0-9]"
Advanced | "[A-Za-z0-9]+[-1?\s?[A-Za-z0-9!1*\d+[-]1?\s?[A-Za-z0-9!]"
Specific "Officejet\s[Prol+?\s?[A-Z0-9]1+\s?[A-Za-z0-9]+?"

4.3 loT-centric Machine learning classifier

This section details the machine learning classifier that was trained with our aggregated device
labels. Once trained, the classifier was used to fingerprint compromised IoT devices by operating
on newly received network telescope traffic.

Random Forest. Random forest classifiers are a combination of tree predictors assorted with
each tree dependent on a random vector that is sampled independently, yet equally distributed
across all trees in the forest. Random forest algorithms overcome several problems with decision
trees, including a reduction in over-fitting and variance [8].

Support Vector Machine (SVM). Assuming the training data set of features and label pairs
(x4, ¥i),i = 1,...,] where x; € R" and binary labels y € {1, —l}l, the support vector machine (SVM)
[12] is based on the following optimization problem:

l
min lWTW + CZ & subject to yi(ngzS(xi) +b)>1-¢, and & >0. (1)
wbé 2 =

The features vector x; is mapped into a higher dimensional space by the function ¢. Next, SVM
calculates the linear separating hyperplane containing the maximal margin value within this dimen-
sional space. C > 0 is defined as the penalty parameter of the error term. Furthermore, K(x;, x;) =
¢(xi)” ¢(x;) is called the kernel function. Although many kernels have been proposed, in this paper
we leverage the radial basis function (RBF) which is defined as K (x;, x;) = exp(—y||x; — x[*), y > 0.
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Gaussian Naive Bayes (GNB). The Naive Bayes Model is based on the Bayes Rule, which
is defined as: P(A|B) = %. The supporting logic evaluated the posterior probability of
output label (Y) given the input X. The posterior probability is derived from each of the individual
probabilities from features(X;) given the output label Y. The form of binary classification with two

classes C; and C, is defined below:

P(x1,x2,...,%,|C;).P(C;)
P(x1>x25 v ,xn)
Additionally, Naive Bayes makes the assumption that all features, xi, . . ., x,, are independent.
Therefore we can derive the formula:

P(Cilx1, x2, ..., xp) = . i€el2 )

P(Cy)
( X2y o v v, Xn)
If a training data set contains multlple class labels, P(C; IX ) is calculated for each class. The class

with the maximum probability is chosen as the output. Lastly, the Gaussian Naive Bayes algorithm
assumes that all features are following a Gaussian distribution.

P(Cilx1, e, m) = (]‘[ P(x)|C)) 5 . deL 3)

Min |0.00036 | 0.0005 | 0.021 | 0.0081 | 0.0099 | 0.0053 | 0.02 0.014 [0.00018| 0.0068 | 1.1e-05 0 |00012 | 0.027 | ©0 [0.0065 | 0.003 | 0.0036 |0.0081 [ 0.0033 | 0 |0.00079 0.07

=

Q1| 0002 |0.00053| 0.021 |0.0052 | 0.013 | 0.005 | 0.0067 | 0.02 0.0066 | 0.0002 | 0.0057 [13e-05| 0 |00021 [ 0027 | 0 | 0017 |0.0025 00051 |0.0074 | 0.0033 | 0 |0.00086

Median | 0.0015 {0.00077| 0.014 | 0.008 |0.0082 | 0.0053 | 0.004 | 0.024 0.0061 |0.00011 | 0.0048 | 3.8¢-05| 0 | 0.0024 | 0.021 0 | 0015 | 0.0015 | 0.0053 | 0.011 [0.0045| 0 |0.0017

Q3 [0.00084 |0.00069 | 0.027 | 0.0081 | 0.012 | 0.0051 | 0.0066 | 0.01 | 0.021 | 0.0071 | 0.0001 | 0.0041 |0.00016| ©O |0.0043 | 0.025 | ©0 | 0.012 | 0.0019 | 0.0059 | 001 |0.0066| 0 | 0.002

Max | 0.0008 |0.00089 | 0.0093 | 0.0078 | 0.011 | 0.0051 | 0.022 | 0.011 | 0.0096 | 0.0079 |6.3¢-05| 0.0052 |1.8¢-05| 0 | 0.0016 | 0.016 0 | 0.0069 | 0.0028 | 0.0047 | 0.008 [0.00065| 0 |0.00075
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Fig. 3. Ranking of features’ importance

Evaluation of machine learning classifiers. We begin by selecting three machine learning
classifiers to be trained using the extracted packet features. Using the sklearn Python library, we
investigated a Random Forest (RF), Gaussian Naive Bayes (GNB) and Support Vector Machine (SVM)
classifier, evaluating their performance metrics and coming to the conclusion that the RF model
was best suited for our data set, referenced in Figure 4. For the RF model, multiple hyperparameters
were tested over 1000 model iterations to discover the most optimal classifier with respect to
the AUC-ROC. We searched for a range of values (following Ebadi et al. [15]) on the number
of estimators, maximum depth, minimum samples leaf, minimum samples split, bootstrap and
criterion. The best RF model had the respective values: 70 estimators, a maximum depth of 16,
12 minimum samples leaf, 4 minimum samples split, bootstrap=false and criterion=entropy. For
the SVM model, we tested different values for penalty and gamma. The best SVM model had the
respective values: 1 and 0.1.

To validate the results of each classifier, we rely on standard machine learning metrics including
precision, recall, F-measure and the Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) for determining IoT devices. Precision is the ratio of correctly classified IoT devices over every
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Fig. 4. Classifier metrics on training and test data set

For this work, the three aforementioned shallow machine learning algorithms were chosen after
the deliberation and analysis of similar machine learning classifiers in our extended publications
[38, 39]. The results of these works proved that with the correct feature set, both shallow and deep
learning algorithms will have sufficiently acceptable results when fingerprinting compromised IoT
devices. Utilizing the classifiers developed in the aforementioned works, this comprehensive analysis
illustrates the weight of each packet header field that comprised the feature set. Visualized in Figure
3, the investigation revealed that correlating the distribution of a scanning hosts’ destination ports
was the highest weighted feature. The categorization of destination ports indicated the scanner’s
intentions, specifically hinting at malware-specific scanning trends. Similarly, the source port,
total packet length, and window size features were weighted with high preference. While the
remaining features did not reach the same level of weight as those mentioned, they were necessary
for differentiating between hosts and IoT botnet-specific campaigns. To this end, for more in-depth
analysis of our feature sets and comparisons between machine learning algorithms, indicating why
we selected shallow learning classifiers, we kindly refer the reader to our extended publications
(38, 39].

To create a training data set for our RF classifier, the previously extracted packet features are
combined with the comprehensive list of IoT device specifications. The training data set contains
device features corresponding to 40,140 identified devices, of which 28,457 are IoT and 11,683 are
multi-purpose, non-IoT devices. The test data set is comprised of device features for 10,035 identified
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devices, with 7,154 IoT devices and 2,881 multi-purpose, non-IoT devices. The aforementioned
metrics are displayed in Figure 4.

Furthermore, despite the omission of the Mirai signature as a feature (TCP.Seq = Dest.Addr),
the classifier successfully identified 58,675 Mirai-infected IoT devices, with only 259 IoT devices
incorrectly classified (over 99.56% accuracy).

5 EMPIRICAL ANALYSIS

To shed light on the insecurity of consumer IoT devices, we leverage the proposed techniques to
correlate the results with organizational databases on geolocation statistics and filtering devices by
sector. Detailed analysis on the consumer IoT sector is reported below.

5.1 Empirical Results and Current State of Consumer loT Insecurities

The CAIDA network telescope collected unsolicited scan traffic from 855,916 unique IP addresses
throughout a 24-hour time frame on November 08, 2019. Of these identified hosts, 310,164 of
them are identified as compromised IoT devices. After discovering the infected 10T devices, they
were geographically identified using the Maxmind GeoLite2 database [30]. Leveraging additional
business sector databases and the results from our Maxmind geolocation, we filtered IoT devices
attributed to non-consumer sectors (e.g., health, financial, education, etc.).

Such databases are reliable for IP-geolocation due to the architecture implemented by the Internet
Assigned Numbers Authority (IANA) for distributing the IP address space. Generally, entire IP
address blocks are geographically assigned to the five major Regional Internet Registries (RIR).
These RIR are then responsible for breaking their address blocks into smaller sizes and allocating
them to nation-states within their jurisdiction (e.g., AFRINIC for Africa and APNIC for Asia/Pacific).
Once allocated, the IP address block is then distributed to multiple ASNs, who proceed to sell or
provide their services country-wide. While the IP addresses may shift within each nation-state
(e.g., DHCP churn and IP reassignment), the national IP address block tends to remain constant -
allowing for accurate measurements at a country-level [26].

Utilizing the MaxMind GeoLite2 database, identified devices were then organized by geographic
location, with the results displayed in Figure 5 and Table 3. These statistics reveal China and Brazil
to have an overwhelmingly higher number of compromised IoT devices than the rest of the world.
After fingerprinting, the most significant number of infected addresses originated from China, with
a total of 510,031 unique addresses (96,275 of which were 10T devices), while Brazil revealed a total
of 60,181 (55,428 of which were IoT devices). The global population is not evenly distributed across
countries, resulting in some having higher populations that others. This is directly correlated with
the number of devices active within each country, so the aforementioned results may be skewed.
Therefore, to overcome this variance, the percentages of compromised IoT-devices vs non-IoT
devices is further explored.

Interestingly, only 18.87% of compromised Chinese devices were IoT, while 92.10% of Brazilian
devices were IoT. Having such a high percentage of infected IoT devices indicates national emphasis
on IoT security is extremely low, with little to no effort taken towards securing IoT devices in
comparison towards securing traditional, multipurpose devices. Accordingly, Iran hosts the greatest
number of compromised IoT devices in relation to total devices, with 94.62% of compromised devices
classified as IoT. The third highest percentage was found to be Vietnam, with 71.67% addresses
relating to IoT devices.

Figure 6 illustrates the top 20 Internet Service Providers (ISP) rated by the number of infected
IoT devices originating from each company, with statistics spanning across multiple nations. The
highest number of compromised IoT devices originated from Rostelecom in Russia, with 3,589
infected addresses. Closely following is Turkish company Turk Telekom, with 3,559 compromised
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Fig. 5. Geographical location of infected loT devices

Table 3. Relation of total compromised devices to loT devices across the most populated regional countries.

Country China | Brazil | Indonesia | India | Russia | USA | Vietnam | Mexico | Iran | Taiwan
Total 510,031 | 60,181 | 20,798 | 20,706 | 19,649 | 19,380 | 18,754 | 15,283 | 12,829 | 10,919
ToT 96,275 | 55,428 12,466 9,029 | 9,325 | 5,223 13,442 8,840 | 12,140 | 5,627
Percentage (%) | 18.87 92.10 59.93 43.60 | 47.45 | 26.95 71.67 57.84 94.62 51.53

devices. Furthermore, 7 out of the 20 ISPs were located in China, including China Telecom Hubei
(3,238) and China Telecom Hunan (2,987), ranking 3rd and 5th, respectively.

Next, we enumerate the port combinations most commonly targeted by unsolicited scan traffic.
Over 1000 distinct combinations of port scanning were identified, with the top 17 most popular distri-
butions displayed in 7. Roughly 91,000 IoT devices (29.34% of all identified IoT devices) were recorded
scanning a three port distribution, 23 (TCP:Telnet), 80 (TCP:HTTP) and 8080 (TCP:HTTP/Alt).
Nearly 11,500 devices (3.71% of all identified IoT devices) specifically targeted the Telnet protocol,
solely scanning ports 23 and 2323. These results are consistent with historic measurements of
IoT-centric malware targeting the numerous vulnerabilities in Telnet. Not all of the results follow
typical trends. An unexpected 13,000 compromised IoT devices focused their scans on TCP port
5555, while 4,000 compromised IoT devices solely scanned TCP port 60001 (4.19% of all identified
IoT devices). Similarly, the large number of IoT devices specifically focusing their scans against
ports that do not host popular services (1024, 1588, 3128, 5984 and 9000), possibly indicates that
malware campaigns are targeting a newly discovered vulnerability.
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Fig. 6. Top ISPs ranked by number of compromised loT devices

It is worth noting the centralization of compromised IoT scan patterns against the vast distribu-
tion of non-IoT patterns. From the top 17 port combinations, 216, 326 out of 310, 164 IoT devices
are recorded (69.7% total). In contrast, only 123, 638 out of 545, 752 non-IoT devices are recorded
(22.7% total). The stark contrast indicates that non-IoT malware target a wider distribution of ports
and services while searching for vulnerabilities. While IoT scans are strictly TCP-based, non-IoT
scans includes UDP and ICMP scans on ports 53, 16285, 8000 and 8080 (14.7% of top non-IoT scans).

Exploited device vendors were identified through extracted banner information, with the results
displayed in Figure 8. Devices belonging to 131 total vendors were identified, with MikroTik devices
demonstrating significantly higher exploitation rates than other vendors, accounting for 47.59%
of all fingerprinted IoT devices. Aposonic and Hikvision displayed high exploitation rates with
11.71% and 6.57% devices carrying their brand name. Because we are unable to retrieve device
information for every identified IoT device through retrieval, combined with the fact that some
banners returned less information than others, the comparison of vendors against identified device
types reveals interesting results. Consumer IoT devices primarily consisted of network routers
(32.33% of IoT devices), cameras (28.17% of 10T devices) and DVRs (9.40% of IoT devices). Vendors
such as MikroTik primarily manufacture network routers, while Aposonic and Hikvision emphasize
cameras.

5.2 Evolution of Consumer loT Infections

In order to facilitate a longitudinal analysis on the insecurity of consumer IoT devices, we compare
and contrast our results with a data set from approximately one year ago, in December 2018. As
mentioned in the previous section, the IANA’s methodology for assigning IP address blocks results
in each nation’s IP address spaces remaining relatively constant. Therefore, while local IP addresses
may alternate, at the national-level provided by this work, the IP addresses are considered relatively
stable across the one year time frame.

Comparing the results of the two time frames indicates a 13.8% global decrease of compromised
IoT devices, dropping from 359,826 (Dec. 2018) to 310,164 (Nov. 2019), as shown in Figure 9.
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Fig. 7. Comparison of the most prevalent ports and protocols. The first number indicates protocol and the
following numbers indicate the targeted ports (TCP=6, UDP=17, ICMP=1)
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Fig. 8. Top vendors ranked by number of compromised loT devices

Multiple conclusions can be derived from this decrease, from a global and nation-state perspective.
Globally, a greater sense of cybersecurity awareness has led to the implementation of more secure
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device management procedures and enhanced security practices. The employment of more rigorous
security posture has resulted in lowered exploitation rates, coinciding with the visualized downward
trend. Alternatively, after two years of rampantly spreading malware, specifically variants of Mirai,
the vulnerable IoT ecosystem has become saturated with territorial malware. Saturation may
be caused by a number of combined factors, namely, the peaked exploitation of unprotected
legacy systems. At this point in time, the number of vulnerable legacy devices that have not been
compromised has decreased to a point in which malware propagation is significantly slowed.
This trend is further facilitated by the evolving territorial malware that prevent reinfection of
compromised systems by competitors. Once saturation has occurred, combined with the gradual
implementation of advanced security procedures for remediation and mitigation, the total number
of infected devices will see a gradual decline.
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Fig. 9. December 2018 to November 2019 comparison of total number of compromised loT devices within

select countries

Regional trends relating to the increase of compromised IoT devices by country are contrasted
against the effectiveness of additional mitigation and security techniques. Compared against results
from last year, Brazil and Iran saw a significant decrease in compromised IoT devices. Last year,
Brazil was recorded to have 150,875 compromised devices while Iran was recorded to have 36,591
devices. These figures have been reduced to 55,428 (66.3% decrease) and 12,140 (66.8% decrease),
respectively. In contrast, China (420%), Indonesia (177%), Mexico (97.5%) and the United States (75%)
faced momentous surges in infections. The results of this work infers that the gradual increase
in the number of compromised IoT devices is attributed to evolving malware attack vectors, with
malicious hackers no longer solely targeting legacy devices, but aiming to expand their exploitation
across a growing number of modern manufacturer/firmware-specific vulnerabilities.

Moreover, a distinct decrease in the number of Mirai-infected devices was discovered. Last year,
roughly 89,000 devices were fingerprinted with the Mirai malware, which has now dropped to
58,675 devices (roughly 34% decrease). Our results enumerates a significant decrease in port 23 and
2323 (Telnet) scans, yet an increase in previously unrecorded ports, such as 60001. This phenomenon
illustrates the evolution of malware away from traditional Mirai-based attack vectors, supported by
the increased number of ports targeted, specifically leveraging the UDP protocol. The downward
trend of the Mirai botnet hints to a large-scale shift of targets for malware which are continually
searching for and exploiting newly emerged vulnerabilities.
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5.3 Comparative Analysis of Consumer loT Infections and Countries’ Security Posture

This section elaborates upon the classifier’s results in comparison with the Global Cybersecurity
Index (GCI). As noted in Section 2, the GCI is a yearly rating of the cybersecurity commitment in
countries from a regional and global perspective, ranking the level of engagement of cybersecurity
programs and initiatives.

The International Telecom Union offers three GCI classifications for countries, defining their
security postures, ranging from high (1.000-0.670), medium (0.669-0.340) and low (0.339-0.000).
Countries with a high GCI emphasize national cybersecurity efforts with laws and funded pro-
grams, while countries with a low GCI show little to no government-sponsored cybersecurity
efforts. Leveraging geographical information reported by Yang et al. [53], the number of deployed
Internet-facing IoT devices per country are revealed. For each reported country, we calculate

the cybersecurity performance of IoT device protection using the metric: (H/C[CountryX]) =
Estimated Number of Healthy IoT Devices in Country X
Number of Compromised IoT Devices in Country X

Detailed results are displayed in Table 4, including the reported number of deployed IoT devices,
the number of identified compromised IoT devices discovered by this work and the related CGI
score for top hosting countries. The Netherlands (1465 H/C and 0.885 GCI), Germany (768 H/C
and 0.849 GCI) and the United States (745.56 H/C and 0.926 GCI), Netherlands) earned ‘high’
GCI ratings. Validating the assumption that countries with a higher GCI typically have lower
percentages of compromised IoT devices, all three nations were recorded to have no greater than
0.00125% infection rates. We further evaluate the consistency of GCI ratings by reporting that Brazil
was rated to have a ‘medium’ GCI (6.92 H/C and 0.577 GCI), with a 12.6% IoT infection rate. Brazil’s
lower GCI rating directly correlates with a higher infection rate when compared with countries
that earned ‘high’ GCI ratings.

Table 4. Detailed report relating to top hosting countries of Internet-facing loT devices. The total number of
deployed devices is retrieved from [53].

Country USA China UK Germany | Russia | Rep. of Korea Brazil Australia
Total Deployed | 3,899,306 | 1,852,239 | 1,024,317 | 753,771 | 578,704 557,697 439,219 432,273
Compromised IoT 5,223 96,275 2,203 979 9,325 4,557 55,428 1,010
H/C 745.56 18.23 463.96 768.93 61.05 121.38 6.92 426.99
GCI 0.926 0.828 0.931 0.849 0.836 0.873 0.577 0.89
Country France Japan Italy Mexico | Canada | Argentina | Netherlands India
Total Deployed 399,487 393,748 295,424 295,424 | 261,446 254,841 233,178 203,878
Compromised IoT 1,088 957 5,997 8,840 938 3,488 159 9,029
H/C 366.17 410.43 48.26 32.41 277.72 72.06 1,465.52 21.58
GCI 0.918 0.88 0.837 0.629 0.892 0.407 0.885 0.719

Figure 10 illustrates the GCI score of countries based on their corresponding H/C score. Although
it is expected to see countries with a low CGI to have poor cybersecurity practices and a smaller
H/C metric, countries such as China, Russia, Italy and India are categorized in the high CGI range,
with very low H/C scores. Despite their emphasis on secure practices and device management,
their high ratio of infected devices reveals that they are having difficulties securing IoT devices
en masse. Further, this indicates that many cybersecurity practices are deployed at government
and large corporate levels, yet consumer IoT devices are left unprotected. The variance of the H/C
metric against the actual number of compromised devices emphasizes the disadvantages of the
consumer market having no specialized oversight. Without a department or agency to enforce
cybersecurity standards, consumer device owners do not effectively protect their devices, resulting
in the discovery of infected IoT devices at alarming rates.
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Fig. 10. Comparing Global Cybersecurity Index with the percentage of compromised loT devices (the total
number of deployed loT devices in each country) for the top countries by number of deployed loT devices

6 DISCUSSION

This section discusses global trends discovered during the evaluation of the proposed classifier and
offers probable causes of such trends.

The results produced by this work illustrate the severity of IoT device security. In a single day,
over 300,000 infected IoT devices were discovered to be actively scanning the Internet space to
propagate and continue spreading their malware. Geolocation trends pinpoint the severity of
malware threats within specific countries, specifically China and Brazil, with tens of thousands of
compromised IoT devices. Additionally, this work’s results reveal that IoT cameras were the single
most exploited device, validating the claim that the consumer IoT sector is being explicitly targeted.

Furthermore, the results of this work were compared against data from last year, which indicated
a global decrease in compromised IoT devices. One possible cause is the saturation of the vulnerable
IoT environment. Following the emergence of Mirai and its variants, a monumental increase in
exploited IoT devices was recorded. However, this trend has begun slowing down due to a variety
of factors. First, the previous study revealed compromised devices across 50 vendors, many of
which are industry leaders in their respective market (i.e, MikroTik routers or Aposonic cameras).
However, this work revealed compromised devices manufactured by 131 different vendors, including
brands that were unaffected or not recorded last year. The increased distribution of malware across
multiple vendors indicates that the vast majority of legacy systems have already been compromised.
Because embedded legacy systems are largely unprotected and do not receive regular patches or
updates, they were the first to fall victim to Mirai-derived malware. As the number of vulnerable,
yet non-exploited devices dwindled, malware aggressively competed with one another, actively
closing vulnerable ports and services to prevent reinfection from other sources. Therefore, the
number of legacy devices that can be infected has dramatically been reduced and malware authors
have needed to branch out and target new vendors. Further, the distribution of targeted ports
has changed in a similar manner, with previous Mirai-targeted ports seeing a decrease in traffic,
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while newly recorded UDP ports have seen a significant increase of unsolicited scans. Secondly,
the newly emerging trend of smaller vendors being exploited may result in a future catastrophic
boom in malware. With hackers beginning to eye additional devices, the number of vulnerabilities
and zero-day exploits being targeted across a larger number of systems may result in exponential
malware propagation and an increased number of compromised devices.

Lastly, when compared against the GCI and related metrics, the results of this work illustrate the
vulnerability of the consumer market. Despite many countries having a high GCI rating, strong
cybersecurity programs and active laws or processes in place to secure their cyberspace, these
countries still show a large number of infected IoT devices. The current global metrics for grading
cybersecurity efforts is heavily geared towards government and institutional efforts, yet does not
properly categorize the consumer market. Many device owners are largely unaware of device
vulnerabilities and security remains an anomaly. To this end, it is paramount that works such as
this shed light on the current state of insecurity within the consumer IoT market. Device owners
need to be informed of secure device management procedures and take an active lead towards
protecting their devices.

7 CONCLUDING REMARKS AND FUTURE WORKS

As the IoT paradigm continues to expand into critical infrastructure, governments and consumer
sectors, the amount of malicious malware and entities attempting to exploit these IoT devices
increases. The consumer sector is particularly at risk, as it lacks a single entity overseeing device
management and its security posture. Moreover, global metrics such as GCI attempt to measure a
country’s emphasis on safe and secure cybersecurity practices yet do not successfully transition
into the consumer sector, demonstrated by the results of this work revealing an enormous number
of compromised consumer IoT devices.

This work expands upon related IoT-centric research by introducing a generalized, large-scale
macroscopic methodology to infer Internet-scale compromised IoT devices and report crucial
empirical metrics within the consumer IoT sector. Over a course of 24 hours, 855,916 compromised
IP addresses were identified, with 310,164 being attributed to infected IoT devices. Country and
vendor-specific results were compared against data from one year ago, indicating a global decrease
in the number of infected IoT devices. While a number of countries such as Brazil and Iran saw a
decrease in compromised IoT devices, countries such as China, Indonesia, Mexico and the United
States of America showed significant increases. This work sheds light on the necessity of further
mitigation and remediation efforts, specifically tailored towards consumer IoT devices.

Future work will expand upon the current methodology to overcome a number of limitations.
This work leveraged shallow machine learning classifiers for compromised consumer IoT device
classification; however, future studies can develop deep learning models, comparing the effectiveness
against the provided shallow models. Furthermore, IoT-specific malware samples can be extracted
and analyzed to create advanced feature sets and further improve the classifier’s functionality.
Lastly, remediation techniques can be explored to rectify compromised IoT devices, at a localized
or global scale.
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