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A connected digraph in which the in-degree of any vertex 
equals its out-degree is Eulerian; this baseline result is used 
as the basis of existence proofs for universal cycles (also 
known as ucycles or generalized deBruijn cycles or U-cycles) 
of several combinatorial objects. The existence of ucycles is 
often dependent on the specific representation that we use for 
the combinatorial objects. For example, should we represent 
the subset {2, 5} of {1, 2, 3, 4, 5} as “25” in a linear string? 
Is the representation “52” acceptable? Or is it tactically 
advantageous (and acceptable) to go with {0, 1, 0, 0, 1}? In 
this paper, we represent combinatorial objects as graphs, as in 
[3], and exhibit the flexibility and power of this representation 
to produce graph universal cycles, or Gucycles, for k-subsets 
of an n-set; permutations (and classes of permutations) of 
[n] = {1, 2, . . . , n}, and partitions of an n-set, thus revisiting 
the classes first studied in [5]. Under this graphical scheme, 
we will represent {2, 5} as the subgraph A of C5 with edge 
set consisting of {2, 3} and {5, 1}, namely the “second” 
and “fifth” edges in C5. Permutations are represented via 
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their permutation graphs, and set partitions through disjoint 
unions of complete graphs.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

A somewhat loose definition of universal cycles was used in a recent VCU seminar talk 
by Glenn Hurlbert in which he stated that “Broadly, universal cycles are special listings 
of combinatorial objects in which codes for the objects are written in an overlapping, 
cyclic manner.” By “special” Hurlbert means “without repetitions”, i.e., so that each 
linear window of a specific length represents a different object. We stress that the “codes 
for the objects” are not pre-dictated but are often chosen in a conventional way. See [1]
and [7] for exhaustive treatments.

Example 1. The cyclic string 112233 encodes each of the six multisets of size 2 from the 
set {1, 2, 3}, with, e.g., 31 and 22 representing {1, 3} and {2, 2} respectively. The window 
size is 2.

Example 2. The string 11101000 encodes each of the binary three-letter words in the 
obvious way, but is also a ucycle of the eight subsets of {1, 2, 3}, with the binary string 
coding – in which membership in the set is indicated by a 1, e.g., 101 represents the 
subset {1, 3}. The string can also be a representation of all subgraphs of the complete 
graph K3. The window length is 3.

Other examples will be given throughout the paper.
A ucycle is usually shown to exist by showing that an arc digraph D is Eulerian, which 

in turn holds if it is (a) balanced (i.e., the indegree i(v) of every vertex v ∈ D equals 
its outdegree o(v)) and (b) weakly connected. Weak connectedness is often showed by 
exhibiting a path from any starting vertex to a strategically chosen sink vertex. The edge 
set of the arc digraph consists of the objects that we are trying to ucycle, and the vertices 
are most often taken to be the “overlaps” between consecutive edges. Alternately, edges 
are labeled as the concatenation of adjacent vertex labels. We illustrate this strategy
by showing that the set of n-letter words on a k-letter alphabet admits a ucycle (this 
is the classical deBruijn theorem). Vertices of D are (n − 1)-letter words with an edge 
from v1 to v2 if the last (n − 2) letters of v1 coincide with the first n − 2 letters of v2. 
The edge label, obtained by concatenation, are the desired objects we seek to ucycle. 
Connectedness is easy to establish, and in- and out-degrees may both be seen to be k, 
so D is Eulerian and the Eulerian cycle spells out the ucycle. The arc digraph that leads 
to the ucycle in Example 2 is given in Fig. 1.
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Fig. 1. The arc digraph for Example 2.

In the deBruijn theorem example above, we can alternately think of the vertices as 
multisets of [n − 1], with each entry appearing between 0 and (k − 1)-times, and with, 
e.g., a word such as 30221 (n = 6, k = 4) representing the multiset {1, 1, 1, 3, 3, 4, 4, 5}. 
Moreover, under this interpretation, there is an edge from v1 to v2 if the multiset fre-
quencies of {2, . . . , n −1} in v1 coincide with the multiset frequencies of {1, . . . , n −2} in 
v2, and the concatenated edge is a multiset of [n], with each element occurring ≤ k − 1
times. This notion of a window shift necessitating a relabeling of the vertices is crucial 
in the context of graph universal cycles, Gucycles, which we turn to next. But first some 
motivation. Note that Gucycles are simply ucycles with graph encodings. Why study 
Gucycles? First we shall see that we are able to use graph encodings to exhibit Gucycles 
in situations where regular ucycles do not exist. More importantly, however, graph en-
codings might provide another device that may be used to prove existence of ucycles in 
many other situations, yet unstudied. We start with some key definitions from [3] and 
an example:

Definition 1.1. Given a labeled graph G with vertex set V (G) = {v1, v2, ..., vN } with 
vertices labeled by the rule vj → j and an integer n ∈ {1, . . . , N − 1}, an n-window 
of G is the subgraph of G induced by the vertex set V = {vi, vi+1, . . . , vi+n−1} for 
some i, where vertex subscripts are reduced modulo N as appropriate, and vertices are
relabeled such that vi → 1; vi+1 → 2, . . . vi+n−1 → n. For each i ∈ {1, . . . , N}, we denote 
the corresponding ith n-window of G as WG,n(i), or as Wn(i) if G is clear from the 
context.
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Fig. 2. Gucycle of all labeled graphs on 3 vertices.

Fig. 3. The arc digraph that produces the Gucycle in Fig. 2.

Definition 1.2. Given F , a family of labeled graphs on n vertices, a graph universal cycle
(Gucycle) of F , is a labeled graph G on N vertices such that the sequence of n-windows 
of G contains each graph in F precisely once. That is, {Wn(i)|1 ≤ i ≤ N} = F , and 
Wn(i) = Wn(j) ⇒ i = j.

Brockman et al. [3] prove the existence of Gucycles of classes of labeled graphs on 
n vertices, including all simple graphs, trees, graphs with k edges, graphs with loops, 
graphs with multiple edges (with up to d duplications of each edge), directed graphs, 
hypergraphs, and r-uniform hypergraphs. Fig. 2 shows the Gucycle of the 8 labeled 
graphs on n = 3 labeled vertices. For simplicity we have not labeled the N = 8 vertices 
from 1 to 8. For example, the fifth graph is the complete graph K3 on the vertices 
{5, 6, 7}, which have been relabeled as {1, 2, 3}. The Gucycle is, in turn, is constructed 
from the arc digraph in Fig. 3 in the following fashion: Each arc in the arc digraph 
induces an edge label. For example, the two arcs going from K2 to itself are labeled, as 
shown, by K3 and P3, depending on whether the edge between v3 to v1 is present or 
not (the edge between v2 and v3 is always present). Since the arc digraph is Eulerian, 
we use the Eulerian circuit in Fig. 3 to spell out the Gucycle in Fig. 2. In other words, 
we concatenate the vertex labels, and, for the edge labels, we consider all possibilities 
of how edges may or may not exist between the new vertex and previous ones. Thus we 
use exactly the same process to go from the arc digraph to the Gucycle as we do with 
the ucycles in deBruijn’s theorem.

In this paper, we extend the family of classes F that admit Gucycles to

• Subgraphs of size k of the cycle Cn. This leads to Theorem 2.5, namely the existence 
of Gucycles for k-subsets of an n-set, for all values of k, n.
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• A class of multiple edge subgraphs of Cn, which yields Theorem 2.6 (Gucycles for 
k-multisets of an n-set ∀k, n).

• Permutation graphs on n vertices. This leads to Theorem 3.1, which exhibits the 
existence of Gucycles for all permutations of [n].

• Transposition graphs on n vertices, leading to the existence of Gucycles for permu-
tation involutions (Theorem 3.2).

• Disjoint unions of cliques on n vertices. This leads to Theorem 4.1 on Gucycles for 
set partitions.

2. Subsets and multisets

Example 3. (Ucycle for 3-subsets of [8]; [12]):

1356725 6823472 3578147 8245614 5712361 2467836 7134582 4681258,

where each block is obtained from the previous one by addition of 5 modulo 8, is an 
encoding of the 56 3-subsets of the set [8]. The window is of length 3, and, e.g., the 
block 836 represents the subset {3, 6, 8}. If we are to represent k-subsets of [n] via their 
elements, then, as in the above example, we clearly must have each element of [n] appear 
the same number of times in the ucycle, and thus

n
∣∣(n

k

)

is a necessary condition for the existence of a ucycle. In [5], Chung et al. conjectured 
that for each k, there exists an n0(k) such that ucycles exist for k-subsets of [n] provided 
that n ≥ n0(k) is such that the divisibility condition above holds. This conjecture was 
proved by [9]. For work prior to [9] see also [13] and [15], in addition to [5] and [12].

We are more interested, however, in binary string-type codings that dispense with 
divisibility conditions, and next guide the discussion in this direction.

Ucycles for k-subsets of [n] cannot exist in the binary string coding unless k = n − 1
when we have the ucycle 111 . . . 10; for other values of k, we are forced into an incomplete 
cycle as seen by the example

a = 110000 → 100001 → 000011 → 000110 → 001100 → 011000 → a

for k = 2; n = 6.
Several authors have proved results that produce ucycles for objects related to 

(n
k
)
, 

the set of all k-subsets of n. For example, in [10], the authors prove that under certain 
conditions, there exists an s-ocycle of all the permutations of a fixed multiset, where an 
ocycle, or overlap cycle, is one in which the overlap between consecutive k windows is 
not k − 1 – but rather equals s. If we take the multiset to be one with k ones and n − k

zeros we see that the following is true



6 A. Cantwell et al. / Advances in Applied Mathematics 127 (2021) 102166
Fig. 4. Gucycle of the 2-subsets of [6].

Proposition 2.1. ([10]) There exist, for 1 ≤ s ≤ n − 2; gcd(n, s) = 1, s-ocycles of 
(n

k
)

in 
the binary string coding.

In another paper [6], we see that

Proposition 2.2. ([6]) Universal packings of length 
(

n
k

)
(1 − o(1)) exist for each k.

Note that there is no divisibility condition that hampers the universality of Proposi-
tions 2.1 and 2.2. The same is true of the next result from [2]:

Proposition 2.3. ([2]) For each 1 ≤ s < t ≤ n there exists a ucycle of binary words of 
length n with between s and t ones, i.e., of subsets of size in the range [s, t], in the binary 
string coding.

For example, the binary string 1110011010 is a ucycle of all subsets of size 2 and 3 of a 
4-element set, using a window of length 4, and the binary string coding. Proposition 2.3
will prove to be critical in the proof of Theorem 2.5.

Now we have seen above that ucycles of 2-subsets of [6] do not exist in the binary 
string coding nor in the traditional sense, since 6 does not divide 

(6
2
)
. Consider, however, 

the 15-vertex graph in Fig. 3, which is a Gucycle of all 2-edge subsets of K4. It is not 
surprising that this Gucycle exists – by virtue of Theorem 3.5 in [3], which states that 
Gucycles exist for all graphs on n vertices with precisely k edges. If we next label the 
six edges of K4 lexicographically according to the code

{1, 2} = 1; {1, 3} = 2; {1, 4} = 3; {2, 3} = 4, {2, 4} = 5; {3, 4} = 6,

we see that the Gucycle in Fig. 4 can be viewed as a Gucycle of the fifteen 2-subsets of 
[6]. Once again, to reduce clutter in the diagram, we have not labeled the fifteen vertices 
in Fig. 4.

Since Kn has 
(

n
2
)

edges, we quickly see that the following is a corollary of the above 
theorem, and a special case of Theorem 2.5 below:

Proposition 2.4. There exists a Gucycle of all k-subsets of an N -element set, where 
N =

(
n
2
)

for some n.

Notice that in the above Gucycle each of the six edges of K4 appears five times, even 
though a specific edge, e.g., the one joining v5 and v6 plays the role of a {1, 2} edge, 
a {2, 3} edge, and a {3, 4} edge, and thus represents the numbers 1, 4, and 6. On the 
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Fig. 5. Gucycle windows of the 3-subsets of [5].

other hand the edge joining v2 and v5 only plays the role of the number 3 (i.e., the edge 
{1, 4}). By contrast, in the traditional approach to ucycles of k-element subsets of [n], 
an element such as “4” always represents itself, i.e., the number 4.

Theorem 2.5. For each 1 ≤ k ≤ n there exists a Gucycle for k-element subsets of [n].

Proof. By Proposition 2.3, there exists a binary string coding ucycle of all k − 1 and 
k-subsets of [n − 1]. Label the edges of Cn as e1 = {1, 2}, e2 = {2, 3}, . . . , en = {n, 1}. 
Identify the binary string of the k-subset A of [n − 1], consisting of ones in the rith 
positions; 1 ≤ i ≤ k with the edges {ei : 1 ≤ i ≤ k}. Identify the binary string of the 
(k − 1)-subset A of [n − 1], consisting of ones in the rith positions; 1 ≤ i ≤ k − 1 with 
the edges {ei : 1 ≤ i ≤ k − 1; en}.

For example, let n = 5, n − 1 = 4, and k = 3. We identify the binary string (0, 1, 1, 1)
of the 3-subset {2, 3, 4} of {1, 2, 3, 4} by the second, third, and fourth edges of C5, namely 
{2, 3}, {3, 4}, and {4, 5}. We identify the binary string (1, 0, 0, 1) of the 2-subset {1, 4}
of {1, 2, 3, 4} by the first, fourth, and fifth edges of C5, namely {1, 2}, {4, 5}, and {5, 1}.

The key idea of the proof is that we are identifying both (k − 1)- and k- subsets of 
[n − 1] with a k-subgraph of Cn. Note that the edge en, if present, is not part of the 
graph induced by the next (or any other) window. Thus, there is a bijection between 
binary-string coded subsets of size k − 1 or k, of [n − 1], and the k-subgraphs of Cn. The 
latter, in turn, can be identified with the collection of k-subsets of [n], via the bijection 
j → ej . �

Fig. 5 provides an example which shows how the ucycle 1110011010 of 2- and 3-
element subsets of a 4-element set, obtained via Proposition 2.3, translates to a Gucycle 
of the 3-subsets of [5].

Theorem 2.6. For each k and n ≥ 2, there exists a Gucycle for k-multisets of [n].

Proof. We start with the following result in [4], which improves on Theorem 4.1 in [2]:

Proposition 2.7. Let k, n ∈ Z+. Consider n letter words w = (w1, w2, . . . , wn) on the 
k + 1-letter alphabet Λ = {0, 1, . . . , k}, and define the weight h(w) of w by h(w) =∑n

i=1 wi. Let s, t ∈ Z+ satisfy 0 ≤ s < s + k ≤ t ≤ nk. Let W be the collection of 
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Fig. 6. Gucycle of the 2-multisets of [4].

all such words with weights between s and t. Then there exists a ucycle of the elements 
of W.

To prove Theorem 2.6, we will let s = 0 and t = k in Proposition 2.7. By Proposition 2.7, 
for n ≥ 2 there exists an alphabet coding ucycle of all multisets of [n −1] of size between 0 
and k. Label the potential multi-edges of Cn as e1 = {1, 2}, e2 = {2, 3}, . . . , en = {n, 1}. 
Identify the alphabet string of the k-multiset A of [n − 1], consisting of the number ai

in the rith positions; 1 ≤ i ≤ n − 1 with the multi-edge sets {ei : 1 ≤ i ≤ n − 1}, 
where ei contains ai edges. Identify the alphabet string of the m-multiset A of [n − 1]
(0 ≤ m ≤ k − 1), consisting of ai in the rith positions; with the multiedges edges 
{ei : 1 ≤ i ≤ n − 1; en} (where ei contains ai edges for 1 ≤ i ≤ n − 1 and en contains 
k −m edges). Since the edge en, if present, is not part of the graph induced by any other 
window, we see that there is a bijection between alphabet-string coded multisets of size 
between 0 and k, of [n − 1], and a Gucycle of k-multigraphs of Cn. The latter, in turn, 
can be identified with the collection of k-multisets of [n], via the bijection j → ej . Fig. 6
illustrates how Proposition 2.7 may be used for n = 4; k = 2. In this figure, the ucycle 
of ten 0-, 1-, and 2- multisets of {1, 2, 3} is given by 0011010020, and the Gucycle of ten 
2-multisets of {1, 2, 3, 4}, encoded by the multigraphs of C4, is pictured. Once again, we 
do not label the vertices in Fig. 6 from 1 to 10. �
Remark. As noted, the traditional way of exhibiting the existence of ucycles is to identify 
a digraph (the “arc digraph”) and show that it is both balanced (i(v) = o(v) for each v) 
and weakly connected. We do not do that in the proofs of Theorems 2.5 and 2.6, noting 
that this work has already been done in [2] and [4].

3. Permutations

If one attempts to create a ucycle of the permutations of {1, 2, 3} using the letters 
1, 2, and 3, then a full ucycle cannot result, since the cycle terminates before all six 
permutations are included, as one sees with the example

123 → 231 → 312 → 123.

One needs to enhance the alphabet in order to provide a ucycle of Sn via an order-
isomorphic representation. For example, the string 124324 encodes each of the six 
permutations of {1, 2, 3} in an order isomorphic fashion (e.g. 243 represents the per-
mutation 132). In [5] it was shown that between 1 and 5n additional symbols suffice, and 
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Fig. 7. Gucycles of all permutations of [3].

it was shown in [14] that only one extra symbol was actually needed. In [10] s-ocycles of 
Sn were shown to exist for suitable values of s. Also in [5] a ucycle was exhibited with 
n symbols provided that the n − 1 overlaps were order-isomorphic but not identical. For 
n = 3, such a ucycle is given by

132 → 312 → 123 → 231 → 321 → 213.

In this example the last two elements of the first vertex, namely 32, are not identical to 
the first two vertices of the second vertex, i.e., 31 – but they are both order isomorphic 
to 21, which is what ultimately allows the ucycle to exist under these more relaxed 
circumstances.

We recall that the permutation graph of π ∈ Sn has vertex set [n] with an edge present 
between i and j if i < j but π(i) > π(j), i.e., if {i, j} is an inversion. For example K4, 
is the permutation graph of π = 4321. In this section we represent an permutation via 
its permutation graph and exhibit the fact that the class of permutation graphs can be 
placed in a Gucycle for each n. Fig. 7 illustrates this for n = 3, where the Gucycle lists 
the six permutations in the order

321 → 231 → 312 → 213 → 123 → 132,

on six numbered vertices.

Theorem 3.1. For each n, the set Sn of all permutations on n elements can be placed in 
a Gucycle via their permutation graphs.

Proof. We define an arc digraph as follows: Let V be the set of all permutation graphs 
on {1, 2, . . . , n − 1}. The n edges emanating from vertex π = π1 . . . πn−1 are labeled 
according as how the index n is inserted into π, and the vertices that they point towards 
are labeled as the reduction of the edge label, minus the index 1, to the set [n − 1]. For 
example, there are two edges from π = 123 to η = 312, and these are labeled as 4123 and 
1423; the edge between π and ν = 132 is labeled as 1243; and, finally, the edge between 
π and μ = 123 is labeled as 1234. In general, the insertion of the new element must be 
done in a way that respects the inversion structure of the starting vertex if one is to 
exploit the permutation graph representation that we are employing. To give another 
example, the degree structure of the vertex 132 is shown in Fig. 8.

It is clear that the outdegree of π is n for each vertex. We note that the “overlap” 
between adjacent vertices is not of the customary form; for example π above ends in 23, 
which is neither equal, nor order isomorphic, to the starting segment 31 of η. In general, 
we have that π2 follows π1 if the inversion structure of {1, 2, . . . , n − 2} in π2 is the same 
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Fig. 8. The degree structure of the vertex 132 for n = 4.

as the inversion structure of {2, . . . , n − 1} in π1. This is in contrast to (but echoes) the 
existence of an edge in the deBruijn cycle scheme, in which word w2 follows word w1 if 
the letters in the positions {1, 2, . . . , n −2} of w2 are the same as the letters {2, . . . , n −1}
of w1.

Turning to the indegree of π, the n edges pointing towards vertex π = π1 . . . πn−1 are 
labeled according as how the index 1 is inserted into π′ = (π1 + 1) . . . (πn−1 + 1), with 
corresponding vertices equaling the edge label minus the index n. The indegree of π is 
thus n as well. For example, the vertices 123, 213, and 231 point towards 123, with edge 
labels 1234; 2134; and 2314&2341 respectively.

We claim that the digraph D defined above is weakly connected and exhibit this easily 
by creating a path between any starting vertex and the identity permutation (that has 
an empty permutation graph). To do this, we merely insert the symbol n at the end of 
a vertex to create a vertex π in which for which πn−1 = n − 1. This process is repeated 
until all the symbols are in their natural order. For example, we have

43152 → 32415 → 21345 → 12345.

Since D is balanced (i(v) = o(v) ∀v) and weakly connected, it is Eulerian, and the 
Eulerian circuit spells out the Gucycle. �

The reader will recall that, in the context of permutations, an involution is a permu-
tation that is its own inverse, and which consists therefore of transpositions and fixed 
points, i.e. 1- and 2-cycles. To represent an involution graphically, perhaps the simplest 
device is to do so using unions of K1 s (the fixed points) and K2 s (the transposition). 
The transposition graph of an involution is the labeled graph thus obtained. The next 
main result of this section is that all involutions on n elements can be placed in a Gucy-
cle. For example, for n = 4, a Gucycle of the ten involutions of [4] can be seen in Fig. 9, 
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Fig. 9. Gucycle of the 10 involutions on {1, 2, 3, 4}.

Fig. 10. Arc digraph for involutions on 1,2,3,4.

in the order 1324, 2143, 4321, 2134, 4231, 1432, 3412, 3214, 1234, 1243, and drawn as a 
labeled graph on ten vertices.

Theorem 3.2. The “transposition graphs” of all involutions of Sn can be placed in a 
Gucycle.

Proof. Let the vertices of a digraph be represented by the transposition graphs of invo-
lutions on n − 1 elements. Now the element n in the next vertex will yield the edge label 
to be an involution on [n] if n pairs up with a previous fixed point, or else forms a fixed 
point of its own. For example, the involution 1324 can yield edge label 53241, 13254, or 
13245, which are incident to the vertices 2134, 2143, and 2134 respectively. Accordingly, 
the outdegree of any vertex v equals the number of fixed points of v plus one. (In general, 
we have that π2 follows π1 if the transposition/fixed point structure of {1, 2, . . . , n − 2}
in π2 is the same as the transposition/fixed point structure of {2, . . . , n − 1} in π1.) 
Likewise, given an involution π on {2, 3, . . . , n} the element 1 might have formed a pair 
with any of the fixed points of π or else been in a fixed point by itself. This shows its 
indegree is the same as its outdegree. Finally, we can easily show weak connectedness 
by successively adding the fixed point n to any vertex until we end with the identity 
permutation. Fig. 10 illustrates the arc digraph for n = 4. �
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Fig. 11. Arc digraph for P(3).

Fig. 12. Gucycle for P(3).

4. Partitions

Let B(n) denote the ordered Bell numbers. In [5] the authors showed that for n ≥ 4
a ucycle exists for the B(n) partitions of [n] into an arbitrary number of parts using an 
enhanced alphabet. See [8] and [11] for other results for partition ucycles. For example, 
we have the ucycle abcbccccddcdeec of P(4), the set of all partitions of {1, 2, 3, 4} into 
an arbitrary number of parts, where, for example, the string dcde encodes the partition 
13|2|4. Note that the alphabet used was in this case of size 5, though an alphabet of 
(minimum) size 5 is shown to suffice to encode P(5) as

DDDDDCHHHCCDDCCCHCHCSHHSDSSDSSHSDDCH

SSCHSHDHSCHSJCDC.

In this section, we show that for Gucycles, the result from [5] holds for n ≥ 1 and that 
no alphabet augmentation is necessary. We will represent a set partition by a union of 
complete subgraphs of Kn. The subgraphs will, of course, be on the elements of the parts. 
For example, the partition 134|256|7 will be represented by two K3 s, on the vertices 
{1, 3, 4} and {2, 5, 6}; and the isolated vertex 7.

For example, the arc digraph and Gucycle for P(3) (on five labeled vertices), and 
the Gucycle for P(4) (on fifteen labeled vertices) may be seen in Figs. 11, 12, and 13
respectively.

Theorem 4.1. For each n ≥ 1, there exists a Gucycle of the partitions P(n) of [n] into 
an arbitrary number of parts.

Proof. The result is obvious for n ≤ 2. For n ≥ 3, we define a digraph as having ver-
tex set equal to the graph representations of set partitions of [n − 1]. If the partition 
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Fig. 13. Gucycle for P(4).

corresponding to a vertex has r parts, then the element n can either augment the r com-
plete graphs, or else form an isolated vertex. These are the out-edge labels, which point 
towards the vertices (unions of complete graphs) induced by the elements {2, 3, . . . , n}. 
This yields o(v) = r + 1 for any vertex with r parts. On the other hand, to see that 
i(v) = r +1 as well, we note that the element ‘1’ could have been in a part by itself, or in 
one of the r parts of {2, 3, . . . , n}. Weak connectedness is easy to establish via the path 
of any vertex to 1|2| . . . |n − 1, with empty graph. To accomplish this, we consecutively 
add the vertex n − 1 until we reach the desired destination. This may be seen by the 
example

12345 → 1234|5 → 123|4|5 → 12|3|4|5 → 1|2|3|4|5. �
5. Open problems

The overarching open problem that arises from this paper is the following: “Find a 
diversity of examples of other combinatorial structures that admit Gucycles.” In a similar 
spirit, one may ask “what combinatorial structures may be fruitfully expressed as labeled 
graphs?” Likewise, if we have a subclass of structures that we seek to Gucycle, should 
we or should we not use the same graph representation used to successfully Gucycle the 
parent class? (Notice that we did not use permutation graphs to Gucycle involutions).
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