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ABSTRACT

We propose a simple definition of an explanation for the
outcome of a classifier based on concepts from causality. We
compare it with previously proposed notions of explanation,
and study their complexity. We conduct an experimental
evaluation with two real datasets from the financial domain.
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1 INTRODUCTION

Machine-learning (ML) models are increasingly used today
in making decisions that affect real people’s lives, and, be-
cause of that, there is a huge need to ensure that the mod-
els and their decisions are interpretable by their human
users. Motivated by this need, there has been a lot of inter-
est recently in the ML community in studying Interpretable
models [19]. There is currently no consensus on what inter-
pretability means, and no benchmarks for evaluating inter-
pretability [7, 12]. The only consensus is that simpler models
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such as linear regression or decision trees are considered
more interpretable than complex models like deep neural
nets. However, two general principles for approaching inter-
pretability have emerged in the literature that are relevant
to our paper. The first is the idea of simplifying the model.
Rudin [19] defines explanation as approximating a model so
that it becomes interpretable; thus, at a very high level, we
will use the term explanation to mean a simple piece of infor-
mation that helps interpreting a model. Citing Doshi-Velez
and Kim [7]: explanations are ... the currency in which we
exchanged beliefs. The second is the idea that a good notion
of explanation should be grounded in causality [17]. This
idea has frequently been mentioned in the literature, but no
consensus exists on how to convert it into a formal definition.

There are two levels at which one can provide explana-
tions [14, 18]. A global explanation aims at explaining the
model as a whole, while a local explanation concerns a partic-
ular outcome, i.e. a single decision. For example, consider a
bank that uses a machine learning model to decide whether
to grant loans to individual customers. Then the global ex-
planation concerns the entire model, for example it explains
it to a developer or an auditor, while, in contrast, a local
explanation concerns a single decision, for an individual
customer. For example the customer applies for a loan, the
bank runs the model, and outcome is to deny the loan, and
the customer asks why? The bank needs to provide an ex-
planation. In this paper we are concerned only with local
explanations. We argue that they are of particular interest
to the data management community, because they need to
be provided interactively, and they often require processing
a large amount of data, for example to compare the current
customer with the entire population of the bank’s customers.

The golden standard for explanations are black-box expla-
nations [14, 18], which are independent of the inner work-
ings of the classifier. LIME [18] explains an outcome by
learning an interpretable model locally around the outcome;
SHAP [14, 15] explains an outcome by modeling it as a Shap-
ley cooperative game and assigning a score to each feature.
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However, lacking a common benchmark for evaluating the
quality of the explanation, researchers are also considering
white-box explanations, based on the intuition that knowl-
edge of the inner workings of the model can help better
explain a particular outcome. For example, a successful ex-
planation framework has been developed by Chen et al. [4]
for the Credit Risk assessment problem, by co-designing the
model and the explanation.

The goal of this paper is three-fold. First, we introduce
a black-box notion of explanation based on causality. Our
definition extends the simplified notion of actual cause and
responsibility described in [16] to a new black-box explana-
tion score, called RESP. Unlike SHAP, which is grounded in
cooperative games, RESP is grounded in causality. Second,
we examine the data-management challenge of computing
black box explanations. Both RESP and SHAP explanations
require access to a probability distribution over the popula-
tion. We consider two probability spaces, the product space
and the empirical space, and show that computing SHAP
is #P-hard in the former, while RESP is meaningless in the
latter. Our finding suggests that future research needs to
focus on designing realistic, yet tractable probability spaces,
in order to support the efficient computation of black-box
explanations. Finally, we conduct an empirical evaluation
of the quality of black-box explanations. We compare both
RESP and SHAP to the white-box explanation for the Credit
Risk problem [4] and find that RESP is very close to the white-
box explanation. On closer inspection of the cases where the
two explanations differ reveals that the reason is that the
white-box explanation is based only on the current entity,
and ignores the population as a whole; in contrast, RESP is
based on causality and, thus, takes into account counterfac-
tual outcomes, which can be computed by examining the
entire population. We also compare RESP and SHAP on a
second dataset (where no white-box explanation is available)
and measure their sensitivity to bucketization.

In this paper we only consider feature-based explanations,
which rank the features by some score, representing their
importance for a particular outcome. This is similar to previ-
ous work on SHAP [14, 15] and to [4]. Feature-based expla-
nations are attractive because they are very simple. Other
approaches have been proposed in the literature: Wachter
et al. [24] compute counterfactual explanations for entity e
by solving an optimization problem that finds the entity e’
closest to e for which L(e) # L(e’). LIME [18] provides as
explanation a simple, linear model learned locally around
the outcome. DeepLIFT [21] computes importance scores for
input features by comparing it with a reference entity. Goyal
et al. [9] and Ghorbani et al. [8] introduce concept-based
explanations, and Khanna et al. [11] provide explanations
consisting of items in the training data. Counterfactuals are
also central to the notion of recourse [22], which examines
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the feasibility of a user to change the decision of a model, and
algorithmic transparency [6], which measures the degree of
influence of inputs on outputs of decision systems.

In summary, this paper makes the following contributions:

e We define the explanation problem for a black-box
classifier; Sec. 2.

e We introduce RESP, a black-box explanation score
based on causality; Sec. 3

e We describe the formal connection between RESP and
SHAP, showing that, while they are somewhat corre-
lated, they are quite different; Sec. 4.

e We establish the computational complexity of RESP
and SHAP over two simple probabilistic models of the
population; Sec. 5.

e We conduct an extensive experimental evaluation; Sec. 6.

2 PROBLEM DEFINITION

Fix a set of features {Fy, . . ., F, }, with finite domains Dom(F;).
We assume to have a classification model denoted by L. Given
values x, . . ., x, in the corresponding domains, the classifier
returns a value L(xy, ..., x,) € {0, 1}. The inner workings of
the classifier are irrelevant to us. It may be a decision tree,
or a boosted model, or a deep neural network, or any other
program that, given input features, returns a 0 or a 1. We
will only assume to have access to a black-box computing
L, given values of the features. Our discussion also applies
to the case when L returns a continuous value in R, but for
simplicity we will assume its value is in {0, 1}.

We consider the scenario in which L is applied to an en-
tity e, for example an individual customer petitioning for a
loan. We identify the entity by its features, e = (xy,. .., xp),
and denote the classifier’s output by L(e). Our goal is to
provide an explanation for this output L(e). Throughout
the paper we will assume that the output L = 0 represents
the “good” outcome while L = 1 represents the “bad” out-
come, for example, L(e) = 0 means that the loan is granted,
while L(e) = 1 means the loan is denied. We are mainly
interested in explaining the outcome L(e) = 1, but our dis-
cussion also applies to entities with the good outcome 0.
We consider only feature-based explanations, which assign a
score to each feature F;, and return as explanation the fea-
ture with the highest score, or a small set of features with
highest scores. For example, if the explanation is the fea-
ture NumberOfInquiresLast7Days, then we would tell the
customer “your loan was denied because of the number of
inquires to your credit history in the last 7 days”. Banks
often deny loans when there are a large number of recent
inquires to the customers’ credit history, in order to prevent
customers from quickly opening multiple credit accounts at
independent banks.
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In order to produce meaningful explanations, we will as-
sume that, in addition to the entity e and the black box clas-
sifier L, we also have access to a probability space Q on
entities. For example, this can be the known distribution of
the population of customers applying for loans. A meaning-
ful explanation should be informed by typical customers over
that population, as we explain below. We will write e ~ Q to
denote the fact that e is chosen at random from the space Q.

In this paper we study two black-box explanation scores.
The first is our new proposal, called the RESP-score, and is
grounded in the principle of actual cause. The second score,
SHAP-score, has been proposed recently [15], and is based on
the Shapley value of a cooperative game. Both are black-box
explanations, in that they are oblivious to the inner work-
ings of the classifier L. We evaluate empirically these two
explanations, and compare them to a white-box explanation
defined by Chen et al. [4], for a specific classification task.

Throughout the paper we denote the set of n features by
¥ . For any subset S C # we denote by es the restriction of
an entity e to the features in S.

3 THE COUNTER- AND RESP-SCORES

We introduce here our novel black-box explanation score,
by applying the principle of causal reasoning. Halpern and
Pearl [10] give a formal definition of an actual cause, while
Chockler and Halpern extend it to a degree of causality, called
responsibility [5]. Both notions were simplified and adapted
to database queries [16]. We review them here, then adapt
them to feature-based explanations.

Fix an entity e*, and assume its outcome is L(e*) = 1.
A counterfactual cause [10, 16] is a feature F; and a value
v such that L(e) = 0, where e def ox [F; := o] is the entity
obtained from e* by setting F; = v and keeping all other
values unchanged. Then, (F;, v) is a counterfactual cause, if,
by changing only F; to v, the outcome changes from 1 to 0,
i.e. from “bad” to “good”. Thus, the notion of a counterfactual
applies to the pair (F;,v), i.e. the value is important.

We adapt this notion to define the COUNTER-score of
a feature F; (without any value). The COUNTER-score is
defined as the expected counterfactual causality over the
random choices of the values v:

Definition 3.1. Fix an entity e*. The COUNTER-score of a
feature F; is:

COUNTER(e*, Fy) E'L(e*) ~ E |L(e)ler—(r) = €} (5,

Here, the conditional expectation is taken over the random
entity e ~ Q conditioned on having the same features as e*
except for F;.

To see the intuition behind our definition, fix some value
v, and let e = e*[F; := v]. If (F;,v) is a counterfactual cause,
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then the difference L(e*) —L(e) is 1; otherwise the difference
is 0. The COUNTER-score is simply the expected value of
this difference.

We explain now the importance of the probability space
Q, over which we take the expectation E[...]. Suppose a
bank is deciding loan applications for customers in the US.
A customer, Alice, was denied the loan, and she asks for an
explanation. After examining millions of prior customers,
the clerk notices that one customer had exactly the same
features as Alice, but was born in Luxembourg, and was
granted the loan. Luxembourg is a tiny state in Europe whose
population is financially very savvy, which explains why
that loan was granted while Alice was denied. Thus, place-
of-origin=Luxembourg is a counterfactual cause. However, it
is a poor explanation, because it is not representative of the
population for Alice. The definition of COUNTER-score takes
this into account: COUNTER(Alice, place-of-origin) is
very small, because the vast majority of customers identical
to Alice except for place-of-origin were also denied the loan
application. Thus, our bank will provide Alice with a different
explanation, one having a larger COUNTER-score.

It is possible for an entity e* to have no counterfactual
cause. This happens when, changing any single feature to
any other value, the modified entity e has the same outcome
L(e*) = L(e) = 1. A pair (F;,v) is called an actual cause with
contingency (T, w), where T is a set of features and w is a
set of values, if (F;,v) is a counterfactual cause for e*[I :=
w] [10, 16]. In other words, denoting e’ def ox [T :=w] and
e €e’[F; == v], the pair (F;,v) is an actual cause for e*
with contingency (T, w) iff L(e*) = L(e’) =1 # L(e”’) = 0.
For an illustration, suppose Alice is 30 years old and denied
the loan. Setting NumberOfInquiresLast7Days = 0 will not
change the outcome, however, if Alice where 5 years older,
then setting NumberOfInquiresLast7Days = 0 would grant
Alice the loan. Thus, NumberOfInquiresLast7Days = 0 is
an actual cause with contingency set (Age, 35). Chockler and
Halpern [10] defined the responsibility of an actual cause
(F;,v) with contingency (T, w) as 1/(1 + |T'|); intuitively,
smaller T results in a larger responsibility, in particular a
counterfactual cause has responsibility 1, because then I' = 0.

We introduce now the RESP-explanation score.!

Definition 3.2. Fix an entity e*, and a contingency (T, w)
such that L(e*) = L(e’), where €’ def e* [T := w]. The RESP-
score of a feature F; w.r.t. to the contingency (T, w) is:
L) -E [L(e")legf—{m = €5 ()
1+ T

RESP(e*, F, T, w)

In [3] contingency sets for causes at the attribute- value level for query
answers from databases were defined along similar lines.
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We define RESP(e*, F;) as max,, RESP(e*, F;, T, w), where T
is the smallest set for which this score is # 0.

In other words, the RESP-explanation score is defined as
follows. We first set ' = 0, in which case RESP(e*, F;, T, 0) =
COUNTER(e*, F;). If this is non-zero, then its value defines
the RESP-score. If it is zero, then we increase T, until we find
a contingency such that RESP(e*, F;, T, w) # 0; this value
represents the RESP-score.

4 THE SHAPLEY-SCORE

Motivated by machine learning applications in the medical
domain, Lundberg and Lee [15] have proposed the Shapley
explanation score of a feature F;, in short SHAP-score. This
score is not grounded in causality, but instead it is based on
the Shapley value of cooperative games [20].2 We review it
here briefly.

Fix an entity e* and a feature F;. Let 7 be a permutation
on the set of features F; in other words, i fixes a total order
on the set of features. Denote by 7<Fi the set of features F;
that come before F; in the order r; similarly, 75F denotes
7<Fi U {F;}. The contribution of the feature F; is defined as:

(e Fi ) FE|L(e)leer = b, |~ E|L@leser = ek

Definition 4.1. Fix an entity e*. The SHAP-score of a fea-
ture F; is the average contribution of F; over all permutations
7, in other words:

1
SHAP(e*, F;) déf; D e(e* Fym)

/4

where n = || is the number of features.

The intuition is as follows. Extend the classifier L to enti-
ties with missing features, as follows. If e¥ is an entity with
features S C F, then define L’ to be the expected value over
the missing features: L’(e%) def E[L(e)|es = ef]. In particu-
lar, when all features are missing, then L’(0) = E[L(e)], and
when all features are present then L’(e*) = L(e*). Consider
the following process: we present the features of e* to the
classifier L’ one by one, in some order 7. The output of L’
changes, step by step, from E[L(e)] to L(e*). The contribu-
tion c(e*, F;, ) of the feature F; represents the amount of
change observed when we introduce F;. The SHAP-score
simply averages this contribution over all permutations 7.

The appeal of the SHAP-score is that it splits the differ-
ence L(e*) —E[L(e)] among the n features Fi, . .., F,, which
means:

D, SHAP(e",F) =L(e*) ~E[L(e)] M

%In [13] Shapley scores have been assigned to database tuples to quantify
their contribution to query results.
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This follows immediately from the fact that, for any fixed
permutation x, ),; c(e*, F;, 7) = L(e*) — E[L(e)]. Several
good properties of the SHAP-score are discussed in [14].
However, unlike the RESP-score, there is no causal semantics
associated to the SHAP-score. In particular, it is possible for
the SHAP-score of some feature to be < 0, a fact that we
observed in our experiments.

We now explain the connection between the SHAP-score
and the causality-based scores introduced in Sec. 3. Fix a set
S € ¥ — {F;}, and define the contribution of F; w.r.t. S as:

def
¢'(e" F9) € B[ L@)lesur) = €5 s, |~ E [L(e)les = €]
For a number 0 < ¢ < n, denote by (T_}F"}) the subsets of
size £ of ¥ — {F;}. We define the SHAP-score at level ¢ as

fn—¢—1)!
SHAP(e* F,.¢) & £n—¢- 1!

c’(e*,F;,S) (2)
se(7)

It is immediate to check that the SHAP-score is the sum of
all n levels, SHAP(e*, F;) = X, ,_; SHAP(e*, F;, ¢). Using
this property, we prove the following connection between
the SHAP-score and the causality-based scores:

PROPOSITION 4.2. SHAP(e* F;, n—1) = COUNTER(e* F;).

n!

The proof follows immediately from the definitions. This
“connection” reveals more about how different the RESP- and
SHAP-scores are. Level n — 1 is only one of the many lev-
els of the SHAP-score, while the RESP-score agrees with
the COUNTER-score only when the contingency is empty.
Thus, while the RESP- and SHAP-scores are somewhat corre-
lated, they are derived from different principles (causality vs.
Shapley value) and have different mathematical definitions.

5 PROBABILITY SPACES AND
ALGORITHMS

A key difficulty in computing the RESP- and SHAP-scores
consists in defining the probability space Q. In practice we
do not have access to the population defining Q, but only to a
sample, for example the training data, or the test data T. The
RESP- and SHAP-scores require the computation of many
conditional expectations, and it is not possible to properly
estimate them from a sample T. In this paper we propose
two simple approaches to defining Q, and study how the
RESP- and SHAP-scores can be computed in each case.

In this section we assume to have a dataset T with N tuples
and n + 1 attributes, Fi, ..., Fy,, C, where each row represents

an entity e and C represents a count, i.e. the number of times

e occurs in the sample. We denote by D; def IIg,(T), the

domain of the feature F;. Our goal is to define a probability
space Q over D X - - - X D, that is a generative model for T,
over which we compute the RESP- and SHAP-scores.
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// create views from all domains:
create view Dy as select Fy, sum(C) from T group by F;
create view Dy as select Fy, sum(C) from T group by F2

// Compute the RESP-score of F3 with T ={F1,F4}:
with temp as

(select y.Fq1, z.Fy4,
L(y.F1, Fy, x.F3, z.Fq, F¥, ..)*sum(x.C)/M as S
from D; y, Dg z, D3 X
group by y.Fy, z.Fy4
having L(y.Fy1, F}, F;, z.Fy, F;‘, Fr, ..0=D

select max(1-S)/3 from temp

Figure 1: Illustration of how to compute the RESP-
score over the product domain Qp using SQL queries.
T is the input data, M := }..re.C is a constant, and
the classifier L(- - -) is a User Defined Function. The in-
put entity e* is given by constants F1*, F2*,.. ., and we
assume L(F1* F2*,...) = 1. The figure shows how to
compute the RESP-score for F;, with contingency F;, F;.
The division by 3 represents the division by 1 + |T|.

5.1 The Product Space

Let p(F; = x) be the observed marginal probability of the
value F; = x in the data T. The product space, Qp, is defined
by choosing all feature values independently:

p((x1,- - %)) déf]f[p(ﬂ = x;)

The advantage of the product space is that it covers the
entire domain Dy X - -+ X D, and it preserves the marginal
probabilities of each feature. On the negative side, Qp does
not capture any correlations.

Score Computation Algorithm We first show how to
compute the RESP-explanation. For that we need to compute
the RESP-score of each feature, then return the feature with
highest score. For a fixed feature F;, we start by computing
the COUNTER-score, by applying Def. 3.1 directly:

E|L@lerr) =5 )| = D L [F = xDp(Fi =)

xeD;

Thus, we need to perform a single scan over the domain
D; =1IF,(T) and at most | D;| calls to the oracle L. In practice,
most often COUNTER # 0, and then this is the RESP-score
of the feature. Otherwise, we consider contingency sets of
size 1, 2, ... until we find a non-zero score.

We can compute the RESP-score for F; using SQL queries.
First, we create a view of the domain D; for each feature
F; € ¥. Then, given a set I of features, we can compute
the max,, RESP(e, F;,T',w) in one query that computes an
aggregate over the Cartesian product of the domains of F;
and each feature in T'. Fig. 1 sketches the queries for the case
when the feature F; is F3, and the contingency set is {Fy, Fy}.
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We now turn to the task of computing the SHAP-score.
Unfortunately, the SHAP-score is intractable in this model.
We show that it is #P-hard, even if classifier L is a white-box:

THEOREM 5.1. Suppose all features are binary, F; € {0,1}.
Then the following problem is #P-hard: “Given a classifier
L specified as a monotone 2CNF function with variables
Fi,...,F,, and an entity e* € {0, 1}", compute the SHAP-
scores of all its features”.

Proor. The following problem is #P-complete [23]: “Given
a monotone 2CNF Boolean formula L = A(; jyep(Fi V Fj)
(where E C [n] X [n]), compute the number of truth assign-
ments #L”. It follows immediately that the following prob-

lem is also #P-hard: compute the probability p(L) ey /2",
when each variable F; is set independently to 1 with prob-
ability 1/2. We describe polynomial-time Turing reduction
from the SHAP-scores computation problem to the proba-
bility computation problem. Let L be any monotone 2CNF
for which we want to compute p(L). Consider the follow-
ing dataset T with two entities: (0,0,...,0) and (1,1,...,1),
where the count is C = 1 for both entities. Then each mar-
ginal probability is p(F; = 0) = p(F; = 1) = 1/2, and
the product space is precisely that in which we want to
compute p(L), i.e. all Boolean variables F; are set indepen-
dently to true with probability 1/2. Consider the input entity
e* =(1,1,...,1) (i.e. all variables are set to 1), thus L(e*) = 1
(because the formula is monotone). With n calls to the oracle
for SHAP, we can obtain p(L) as follows: p(L) = E[L(e)] =
L(e*) — ¥, SHAP(e*, F;) = 1 — ¥, SHAP(e*, F;), by (1). O

Thus, we cannot hope to compute the SHAP-score over
the product space Qp. Instead, we consider the empirical
distribution.

5.2 The Empirical Distribution

The empirical distribution defined by T is simply T itself. In
other words, the outcomes with non-zero probability are pre-
cisely the tuples in T, and the probabilities are given by their
frequencies in T. We denote Qp the empirical distribution de-
fined by the set T. An advantage of the empirical distribution
is that it captures not only the marginal probabilities, but
also the correlations between features. A disadvantage of the
empirical distribution is that it associates a zero probability
to every unseen entity.

Score Computation Algorithm We start by describing
how to compute the SHAP-score over the probability space
Qp. We apply Eq.(2), and compute the conditional expecta-
tion E[L(e)|es = e}] for each set of features S C {Fy,..., F,}.
Each conditional expectation requires a complete pass over
the data T, which becomes impractical when n is larger than
20 or so. We propose to use an optimization borrowed from
the Apriori algorithm [1]. As the set S increases, the set of
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entities e € T that satisfy es = e;‘ decreases, until it becomes
a singleton {e}. At that point, for every superset S’ the con-
ditional expected value is the same as L(e), and hence we
can stop increasing the set S. In fact, we can stop even ear-
lier: when all entities in the set {e | es = e} have the same
outcome L(e) (either 0 or 1). While the worst case runtime
of the algorithm is still exponential in n, in practice this op-
timization is quite effective and we were able to compute
the SHAP-score for up to n = 30 attributes. We present the
algorithm to compute the SHAP-scores in [2].

While it is possible to compute the RESP-score in this
model, unfortunately this score is meaningless: for most enti-
ties €* the RESP-score will require a very large contingency
set, leading to meaningless explanations. To see the intuition
behind this, fix the set T and consider a new entity e*, not
necessarily in T. For example, T is our training set, while e*
is a new, random customer, not present in T. In order to have
a non-zero RESP-score with empty contingency set, we need
to find some entity e € T that agrees in all features, except
one, with e*. This is very unlikely given a random choice
for e*. Extending this simple observation we prove:

THEOREM 5.2. Let L be any classifier, and let T C Dy X+ -+ X
D,, be a set of size N that defines the empirical probability
space Qg. Fix an integer ¢ > 0. Then, for a randomly chosen
entity e*, the probability (over the random choices of €*) that
RESP(e*, F;,T) # 0, for some feature F; and some contingency
setT of size < ¢, is < N(1+ X ; |D;|)*'|/T1; |Djl.

Proor. If RESP(e*, F;,T) # 0 for some feature F; and
some contingency I', then there must exists two entities
e’,e” € T such that (a) e* and e’ agree on all features except
T, (b) e’ and e’ agree on all features except F;, and (c) L(e*) =
L(e’) # L(e”).In particular, (a) and (b) imply that e* satisfies
the following property:

Je” € T : e* and e” agree on all but ¢ + 1 features  (3)

We claim that its probability is < N(1+; [D;[)*'|/T1; |D;l,
which proves the theorem. To prove the claim, start by fixing
an entity e” € T. Consider a set of features (F;);es, for
some set /] C [n]: the probability that a randomly chosen
entity e* agrees with e’ on all features except those in J
is 1/[Ikefn1-y 1Dkl = I1jes IDjl/Tkeqn) IDkl- By the union
bound, the probability that a randomly chosen e* agrees
with e’ on any set of features J, with size |J| < ¢, is: <

Yrin1<e ey IDj1/ Tkeqny 1Dkl < (14 X5 1D;DH/TT; ID;.
Finally, the claim follows from the union bound applied to
e’ eT. O

In essence, the theorem says we are very unlikely to find
good RESP-explanations using the empirical space. For ex-
ample, assume n = 30 features, each with a domain of size
|D;| = 10, and a test data T with N = 10000 entities. We are
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interested in the probability that a randomly chosen e* has
non-zero RESP-score with a contingency set of size < c. By
the theorem, this probability is < 10000 - (1+300)*1/10% ~
300°*1 - 1072, When ¢ = 8, this quantity is 2 - 107°. It is very
unlikely that a randomly chosen entity will have a explana-
tion with a contingency of size 8 or smaller. On the other
hand, explanations with contingency sets 8 or larger become
meaningless. In other words, the empirical distribution is
not practical for computing the RESP-score.

5.3 Discussion

In this paper we will use the marginal probability space Qp
when computing the RESP-score, and will use the empirical
probability space Qr when computing the SHAP-score. We
are forced with this choice by our two results above. One
of the main take-aways of this paper is that future work on
explanation needs to explore more sophisticated choices for
the probability space Q.

6 EXPERIMENTAL EVALUATION

We empirically evaluate the black-box RESP and SHAP-
explanations on a FICO dataset, and also how they compare
to a well-known white-box explanation for FICO data. In [2],
we also compare our scores with an approximation of the
SHAP-score from [15].

We further consider a Kaggle dataset used to detect credit
card fraud, for which the explanation scores require a bucke-
tization of continuous features. We evaluate how robust the
scores are to these transformations. Due to Space constraints,
we only preset a summary of the results for this dataset. The
details on the dataset and experiments are presented in [2].
Evaluation Setup. All experiments are performed in Python
3.7 using the Pandas library, and on an Intel i7-4770 3.40GHz/
64bit/32GB with Linux 3.13.0.

For the RESP-score, we restrict the size of the contingency
sets to at most 1. If an entity does not have an non-zero RESP-
score for contingency sets of size 1, we return no explanation.
FICO Dataset. We consider the dataset from the public FICO
challenge [4]. The objective of the challenge is to provide
explanations for credit risk assessments.

The dataset consists of 23 continuous features and 10,459
entities. The features are shown in the left column of Table 1.
The dependent variable RiskPerformance encodes whether
the applicant will make all payments within 90 days of being
due (good, 0), or will make a payment over 90 days after
due (bad, 1). We remove 588 entities from the dataset, for
which all values are missing (indicated by the value -9). This
is because we cannot provide explanations for entities for
which we have no information.

We separate the input dataset into training and test data.
The test dataset is a random sample of 1,975 entities (20% of
the original dataset). We use the training dataset to learn the
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[ Feature Name [ Subscale Name H Entity Feature Score [ Subscale Risk [ Subscale Weight [ Subscale Score [ Global Risk ]
ExternalRiskEstimate ExternalRiskEstimate 61 2.9896 0.8262 1.566 1.2934
MSinceOldestTradeOpen 198 0.2453
MSinceMostRecentTradeOpen TradeOpenTime 14 0.0311 0.4690 2.527 1.1842
AverageMInFile 96 0.2960
NumSatisfactoryTrades NumSatisfactoryTrades 25 0.0001 0.4513 2.156 0.9729
NumTrades60Ever2DerogPubRec 0 0.0003
Eﬁﬁ%ﬁ‘:ﬁfﬁiﬁermemgP“bReC TradeFrequency 207 8:;2; 0.4425 0.359 0.1588
NumTradesOpeninLast12M 0 0.0000
PercentTradesNeverDelq 89 0.5686
MSinceMostRecentDel . 1 0.4015
MachquPublicRccEastlZM Delinquency 4 1.0046 0.6847 2.545 1.7425 0.6146
MaxDelqEver 6 0.0000
PercentInstallTrades 11 0.0009
NetFractionInstallBurden Installment 75 0.3706 0.5273 0.913 0.4817
NumlInstallTradesWBalance 2 1.4898
MSinceMostRecentIngexcl7days 11 0.8318
NumlIngLast6M Inquiry 0 0.0002 0.3172 3.004 0.9529
NumlIngLast6Mexcl7days 0 0.0000
NetFractionRevolvingBurden . 67 1.3938
NumRevolvingTra deEWBalance RevolvingBalance 7 01176 0.6500 1.924 1.2505
NumBank2NatITradesWHighUtilization | Utilization 2 0.8562 0.6490 0.987 0.6406
PercentTradesWBalance TradeWBalance 75 0.4528 0.6113 0.296 0.1808

Table 1: (left) Features and subscales of the classifier for the FICO dataset. (right) Entity e, and the scores, weights,
and risk for both the features and subscales that are computed by the classifier for e.

prediction model, and the test dataset to evaluate the model
and to explain the predictions of the model.

As noted by the FICO community, several input features
are monotonically increasing, i.e., the probability of the out-
come being bad increases with the feature value.

Experiments with FICO Dataset

We compare the black-box RESP- and SHAP-explanations
with a white-box explanation described in [4] specifically
for the FICO dataset. We denote this white-box explanation
as FICO-explanation. In order to explain it, we need to do a
rather detailed review of the model used [4].
Classification Model. Our goal was to use the exact model
and explanation score in [4], but, unfortunately, the pa-
per does not provide sufficient information to replicate the
model, and the online demonstration of the model does not
seem to follow the description in the paper. Hence, we re-
implemented the model using our best understanding of the
description in the paper. Our implementation makes one
design choice that differs from the original model: the input
features are bucketized features into disjoint ranges, as op-
posed to overlapping ranges. This ensures that each entity
has at most one explanation per feature, whereas the original
model can provide several explanations for a single feature
if the feature value falls into several buckets (c.f., Table 1 in
[4]). We next describe the model as we implemented it.

The classifier is a two-layer neural network, where each
layer is defined by logistic regression models. A logistic re-
gression model LRy (x) with features x = (xy,...,x;,) is de-
fined by n + 1 weights 6 = (6, 6y, ..., 0y,), where 6 is the
bias term of the model. For a given entity with features x,
the model computes p = sigmoid(6y + X;c(n) 0i - xi), which
returns a value between 0 and 1. We refer to the outcome of

LR as the probability of risk. The model classifies the entity
as a “bad” outcome if the probability of risk is above 0.5.

The model requires that the continuous input features are
bucketized and one-hot encoded. We use exactly the same
buckets as [4]. One-hot encoding turns the bucketized feature
values into indicator vectors, with one entry for each bucket,
which is 1 if the value is in this bucket, and 0 otherwise. After
bucketization and one-hot encoding, the 23 input features
become 165 binary features, which are input to the model.

Next, the binary features are categorized into 10 disjoint
groups, each group consisting of all binary features derived
from 1-4 input features, called subscales, as shown in Ta-
ble 1. Features within a group describe similar or related as-
pects of an applicant. For example, MScienceOldest TradeOpen,
MScinceMostRecentTradeOpen, and AverageMInFile are cate-
gorized into a single subscale, TradeOpenTime, because they
are all related to the number of months that a trade is open.

The first layer of the classifier consists of one logistic
regression model for each subscale. The model for subscale S
returns the probability of risk associated with the features in
S. The second layer is defined by a single logistic regression
model, whose inputs are the subscale risk predictions of
the models in the first layer, and whose output is the risk
prediction for the entity. For each feature F; (subscale S),
we store the feature score (subscale score), which is a dot
product of the binary vector for F; (subscale risk of S) and
the corresponding parameters.

The models are trained in the R library glmnet, and use
monotonicity constraints to model the monotonicity of the
input features The classification model has an ROC-AUC
score of 0.812 and classifies 1020 entities as a high risk entities
(label 1). We focus on explaining these ‘bad’ outcomes.
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Table 1 depicts, for illustration of the methodology, the
nested structure of the model for one particular entity e in
the dataset. For each subscale S, the LR model is applied to
the binary features of that subscale. For example, the first
feature In Table 1, ExternalRiskEstimate, has value 61, and
falls in the first of the 8 buckets, hence the Subscale risk of
this subscale is sigmoid(fy+60; - 1+6,-0+--- 605 -0), which
is 0.8262 in our example. For another example, the subscale
risk of the Delinquency subscale is 0.6847. Next, all subscale
risks become the input to the logistic regression model at
the second layer: they are multiplied by the weight of the
2nd layer LR, shown in the column Subscale Weight in the
Table, added up and passed through the sigmoid function.
This results in the final risk probability of the entity e, which
in our example is 0.6146. Since the risk is >0.5, the model
classifies e as high risk, i.e., L(e) = 1.

FICO-explanation. We next describe the FICO-explanation
from [4]. For a given entity e, the FICO-explanation is com-
puted in four steps:

(1) Run the model on e to compute the subscale and final
risks, and store the scores for each feature and subscale.
(2) Rank the subscales in decreasing order of the subscale
scores obtained in Step 1, and keep the top two subscales.
(3) For each of the top two subscales, rank its input features
in decreasing order of their feature scores, and keep only
the top two (or all features if there are less than two).
(4) Concatenate the top two features for each of the top two
subscales, sorting first by the subscale score, then by the
feature score. This is the final FICO-explanation ranking.

For the example in Table 1, the top subscales and features
are shown in green. The top-2 subscales are Delinquency and
ExternalRiskEstimate, and the top-2 features in Delinquency
are PercentTradesNeverDelq and MaxDelg2PublicRecLast12M.
Thus, the final FICO-explanation order is: PercentTradesN-
everDelq, MaxDelq2PublicRecLast12M, ExternalRiskEstimate.
Experimental Result. To compare the FICO, RESP, and
SHAP-explanations, we compare (1) the distribution of the
top explanations for each score, and (2) the average similarity
of the top-4 explanations for each entity between all pairwise
combinations of the scores. Recall that both RESP- and SHAP-
scores are black-box models: although we used the same
classification model as for the FICO-explanation, they only
use the outputs of the model.

We report on the explanations for the 1020 entities for
which the classifier predicts 1, i.e., the ‘bad’ outcome. We use
M = N = 2 in Steps 2 and 4 of the FICO-explanations. The
RESP-score fails to provide explanations for 101 entities, due
to the restriction on the size of the contingency set.

Fig. 2 presents the distribution of the top explanations
returned by the FICO, RESP, and SHAP-explanations.
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The first observation is a reasonable correlation between
the FICO-explanation (white-box) and the RESP-explanation
(black-box). Their most frequent top feature is the same,
MSinceMostRecentIngexcl7days, and there are a few other
features that are popular top explanations for both scores.

However, there is an obvious difference with External-
RiskEstimate, which is the second most popular explanation
for RESP, yet is never the top FICO-explanation. To under-
stand it, we looked deeper into the data, and illustrate our
findings with the example that we show in Table 1. As we saw,
the top-2 subscales are Delinquency and ExternalRiskEstimate
in this order(!), hence ExternalRiskEstimate will not be the top
explanation, instead it will be preceded by the two features in
the Delinquency subscale. Thus, although the feature-score
of ExternalRiskEstimate is the highest, it ranks lower only
because of the specific way the FICO-explanation is ranked,
namely it is ranked first by the sub-scale score, and then by
the feature score. This could be adjusted by tweaking the way
one computes the ranking. However, there is a deeper reason
why the FICO-explanation fails to report ExternalRiskEsti-
mate as top explanation: it is because the FICO-explanation
is based only on the current entity e, and ignores other enti-
ties in the population. In contrast, the RESP-score is based
on causality and considers the entire population of entities.
ExternalRiskEstimate is a counterfactual cause of our entity,
because by changing its value from 61 to 81 the outcome
changes from L(e) = 1 to L(e) = 0, while neither Percent-
TradesNeverDelq nor MaxDelq2PublicRecLast12M are causal.
The reason why the first is counterfactual while the others
are not lies in the weights 6; associated to the buckets of these
features. The values 61 to 81 lie in buckets 1 and 5 of Exter-
nalRiskEstimate, respectively, and their weights vary signifi-
cantly: 6; = 2.9896 and 05 = 0. In contrast, the buckets of Per-
centTradesNeverDelq and MaxDelg2PublicRecLast12M have
weights in a small range [1.5, 1.9], and changing their values
is insufficient to change the outcome. The FICO-explanation
looks only at the current bucket, and fails to notice that other
buckets have significantly different values. In contrast, the
RESP-score considers the entire model because it examines
the entire population, checking for a counterfactual feature.

In general, we observe that the top FICO-explanations are
correlated to the weights in the second layer of the classifier.
In fact, the four most common top explanations come from
the three subscales with the highest weight (their weights
are at least 2.5, c.f. Table 1). Thus, they are more likely to
have a high subscale score, and consequently, to be among
the top subscales in Step 2 of the FICO-explanation. This also
explains why the FICO-explanation is less diverse than the
RESP-explanation: it tends to choose features from the same
three subscales. We argue that a good diversity is a desired
quality of an explanation score: we want to be able to give
individualized explanations to the customers, and, assuming
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Key: 0 = MSinceMostRecentIngexcl7days; 1 = ExternalRiskEstimate; 2 = NetFractionRevolvingBurden; 3 = PercentTradesNeverDelq; 4 = AverageMInFile;

5 = MaxDelq2PublicRecLast12M; 6 = NumIngLast6M; 7 = MSinceOldestTradeOpen; 8 = NumSatisfactoryTrades; 9 = NumBank2NatlTradesWHighUtilization;
10 = PercentlnstallTrades; 11 = NumTrades60Ever2DerogPubRec; 12 = NumRevolvingTradesWBalance; 13 = MaxDelgEver; 14 = NumTradesOpeninLast12M;
15 = NumTotalTrades; 16 = NumInqLast6Mexcl7days; 17 = MSinceMostRecentTradeOpen; 18 = NumTrades90Ever2DerogPubRec;

19 = MSinceMostRecentDelq; 20 = NetFractionInstallBurden; 21 = NumlInstallTradesWBalance; 22 = PercentTradesWBalance;

Figure 2: Distribution of the top ranked features for the fico-, resp-, and shap-explanations. Each bar represents
for how many of the 1020 entities that feature was the top explanation. To facilitate comparison, all three bar
charts list the features in the same order, which is the decreasing order for the RESP-explanation (middle chart).
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Figure 3: Distribution of the intersection size for top-4 explanations for the (left) FICO and RESP-explanations,
(middle) FICO and SHAP-explanations, and (right) RESP and SHAP-explanations.

all features are relevant to the outcome, we expect a diverse
distribution of the top explanations. Of the three graphs in
Fig. 2, the RESP-explanation has clearly the most diversity.
Next, we compared the RESP-explanation to the SHAP-
explanation, and notice that they are rather distinct. To un-
derstand the source of the difference, we focused on the
fact that SHAP-score never returns MSinceMostRecentIn-
qexcl7days as the top-explanation, which is the most fre-
quent top-explanation for the other two scores. Recall that
the SHAP-score is the sum of n — 1 levels, see Eq. (2), and the
£'(n—£-1)!
n!

s

weights of the levels is an inverse binomial term, ;
thus, most of the mass of the score consists of the first levels
£=0,1,...and the lastlevels £ =n—1,n— 2, ..., while the
weights of the middle levels decrease very fast (exponen-
tially). After examining the data, we found that, for each
value of MSinceMostRecentIngexcl7days, the distribution of 0
and 1 outcomes in the test dataset are fairly even. As a re-
sult, the first layer of the SHAP-score (£ = 0) is always close
to zero. On the other hand, recall from Sec. 5 that for the
SHAP-score we are forced to use the empirical probability
distribution, and, as we argued there, the contribution of the
higher levels is zero. This explains why MSinceMostRecentIn-
qexcl7days has a very low SHAP-score. We believe that this

is an artifact of the empirical distribution that underlies the
computation of the SHAP-score. We conjecture that this phe-
nomenon would not occur if the SHAP-score was computed
over more sophisticated probability spaces.

Finally, we compare the top-4 explanations for each pair-
wise combination of the three scores. We assume the top-4
explanations are sets, and ignore their ranking and scores.
We compute two statistics on each entity: (1) the size of the
intersection, and (2) the Jaccard coefficient for set similarity.

Fig. 3 depicts the distribution of the intersection size of the
top-4 explanations. For the FICO- and RESP-explanations,
we observe that 86.8% of the entities share a common expla-
nation. The remaining cases are mostly entities for which
the RESP-score does not provide any explanation, due to
the restriction on the contingency set. For the FICO- and
SHAP-explanations, 88.5% of the entities share a common
explanation. For both comparisons, the number of common
explanations is usually less than three. This is not surpris-
ing, because the top-4 FICO-explanations must come from
the top-2 subscales, whereas the explanations for the RESP
and SHAP-scores tend to be more diverse, by allowing for
explanations from different subscales.

The average Jaccard similarity coefficient for each of the
pairwise score comparisons are: (1) 0.276 for the FICO and
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RESP, (2) 0.213 for the FICO and SHAP, and (3) 0.263 for
the RESP and SHAP. The Jaccard coefficients underline our
observation from Fig. 2: On average the FICO-explanation is
more similar to the RESP- than the SHAP-explanation.
Overall, there is only a limited overlap of the top-4 expla-
nations for the three scores. We believe that this is due to
differences in the explanation methodologies, and the under-
lying probability space for the RESP- and SHAP-scores.
Experiments with Credit Card Fraud Dataset

We summarize our findings for the evaluation of the RESP-
and SHAP-scores on the Kaggle Credit Card Fraud dataset.
The details on the evaluation are provided in [2].

All features in this dataset are high-precision continuous
variables. The RESP- and SHAP-scores require that such
features are bucketized into equi-depth buckets.

We evaluate how sensitive the two scores are to the num-
ber of buckets. We observe that the RESP-score is robust
to the bucketization of the features: varying the number of
buckets has a limited effect on the top RESP-explanations. For
the SHAP-scores, however, there is a tradeoff: as the number
of buckets increase, the number of entities after conditioning
on any feature decreases. As a result, the SHAP-score fails
to give an explanation for large number of buckets.

As for the FICO dataset, the two explanation scores with
the same bucketization have limited overlap: 85% of the top-4
explanations have an overlap of at least two features, yet the
Jaccard similarity coefficient is only 0.22.

7 DISCUSSION

In this paper we introduced a simple notion of explanation,
RESP, for a classification outcome, which is grounded in the
notion of causality. We have compared RESP to the SHAP-
explanation and to a white-box explanation for a specific
classification problem. While no benchmarks exists for ex-
planations [7, 12], our empirical evaluation suggests that
RESP can provide similar or better quality. Our initial goal
of this project was to evaluate the SHAP-score, but we soon
ran into difficulties due to its high computational complexity.
Lundberg et al. [15] claim a polynomial-time implementa-
tion, but it is restricted to decision trees. In contrast, we
have shown that its complexity is #P-hard for the product
space. Because of these difficulties, we proposed the RESP-
explanation, based on the simple concept of counterfactual
cause, and found it quite natural to interpret its results on real
data. On the other hand, our experiments have limited the
SHAP-explanation to the empirical distribution. Future work
is needed to evaluate SHAP on richer probability spaces.
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