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Abstract: The measures of information transfer which correspond to non-additive entropies, have
intensively been studied in previous decades. The majority of work includes the ones which belongs
to Sharma-Mittal entropy class, such as Renyi, Tsallis and Landsberg-Vedral entropies. All of the
considerations follows the same approach mimicking some of various and mutually equivalent
definitions of Shannon information measures, and the information transfer is quantified by an
appropriately defined measure of mutual information, while the maximal information transfer is
considered as a generalized channel capacity. However, all of the previous approaches fail down to
satisfy at least one of ineluctable properties that a measure of (maximal) information transfer should
satisfy, leading to counterintuitive conclusions and predicting nonphysical behavior even in the case
of very simple communication channels. This paper fills the gap, by proposing new measures named
the a-g mutual information and the a-g channel capacity. Beside standard Shannon approaches, a
special cases of these measures include the a-mutual information and a-capacity, which are well
established in the information theory literature as measures of additive Rényi information transfer,
while the cases of Tsallis, Gaussian and Landsberg-Vedral entropies can also be accessed by special
choices of the parameter 4. It is shown that, unlike the previous definition, the - mutual information
and the a-g capacity satisfy the set of ineluctable axioms, by which they are non-negativity, less
than or equal to the input and the output non-additive entropies, they reduce to zero in the case of
totally destructive channels and to the (maximal) input non-additive entropy in the case of perfect
transmission. Thus, unlike the previous approaches, the proposed (maximal) information transfer
measures do not manifest non-physical behaviors such as sub-capacitance or supper-capacitance,
which could qualify them as appropriate measures of information transfer.

Keywords: Rényi Entropy, Tsallis entropy, Landsberg-Vedral entropy, Sharma-Mittal entropy,
a-mutual Information, a-channel Capacity

1. Introduction

In the past, there was extensive work on defining the information measures which generalize the
Shannon entropy [1], such as one parameter Renyi entropy [2], Tsallis entropy [3], Landsberg-Vedral
entropy [4], Gaussian entropy [5], and two parameter Sharma-Mittal entropy [5,6], which reduces
to former ones for special choices of the parameters. Sharma-Mittal entropy can axiomatically be
founded as the unique g-additive measure [7,8] which satisfies generalized Shannon-Kihinchin axioms
[9,10], and has widely been explored in different research fields starting from statistics [11], to
thermodynamics [12], [13], to quantum mechanics [14], [15] to machine learning [16], [17] and to
cosmology [18], [19]. Sharma-Mittal entropy has also be recognized in the field of information theory
where the measures of conditional Sharma-Mittal entropy [20], Sharma-Mittal divergences [21] and
Sharma-Mittal entropy rate [22] has been established and analyzed.
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A considerable research has also been done in the field of communication theory in order
to analyze information transmission in the presence of noise, if instead of Shannon’s entropy
the information is quantified with (an instances of) Sharma-Mittal entropy and, in general, the
information transfer is quantified by an appropriately defined measure of mutual information, while
the maximal information transfer is considered as a generalized channel capacity. Thus, after Rényi’s
proposal for the additive generalization of Shannon entropy [2], several different definitions for
Rényi information transfer were proposed by Sibson [23], Arimoto [24], Augustin [25], Csiszar [26],
Lapidoth and Pfister [27] and Tomamichel and Hayashi [28]. These measures has thoroughly been
explored and their operational characterization in coding theory, hypothesis testing, cryptography
and quantum information theory were established, which qualifies them as a reasonable measure of
Rényi information transfer [29]. Similar attempts has also be performed in the case of non-additive
entropies. Thus, starting from the work of Daroczy [30] who introduced a measure for generalized
information transfer related to Tsallis entropy, several attempts followed for the measures which
corresponds to non-additive particular instances of Sharma-Mittal entropy, so that the definitions for
Rényi information transfer were considered in [24], [31], Tsallis information transfer were considered
in [32] and Landsber-Vedral information transfer in [4] [33].

In this paper we provide a general treatment of Sharma-Mittal entropy transfer and we provide
a detailed analyses of existing measures, showing that all of the definitions related to non-additive
entropies fail down to satisfy at least one of ineluctable properties common to Shannon case, by
which the information transfer has to be non-negative, less than input and output uncertainty, equal
to the input uncertainty in the case of perfect transmission and equal to zero, in the case of totally
destructive channel. Thus, breaking some of these properties implies unexpected and counterintuitive
conclusions about the channels, such as achieving super-capacitance or sub-capacitance [4], which
could be treated as a nonphysical behavior. As an alternative, we propose the a-g mutual information
as a measure of Sharma-Mittal information transfer, being maximized with the «-g channel capacity.
The &-g mutual information generalizes the a-mutual information by Arimoto [24], which is defined
as a g-difference between the input Sharma-Mittal entropy and appropriately defined conditional
Sharma-Mittal entropy if the output is given, while the a-g-capacity represents a generalization of
Arimoto’s a-capacity in the case of g = 1. In addition, several other instances can be obtained by
specifying the values of the parameters « and g, which includes the information transfer measures for
Tsallis, Landsber-Vedral and Shannon entropy, as well as the case of Gaussian entropy which was not
considered before in the context of information transmission.

The paper is organized as follows. In Section 4 we review basic properties of the a-capacity. The
basic properties and special instances of Sharma-Mittal entropy are listed in Section 2. The a-g mutual
information and the a-q channel capacity are defined and analyzed in Section 6. In Section ?? we
review the previous definitions, discuss their unphysical behavior and show that the a-g information
transfer measure avoid it.

2. Sharma-Mittal entropy, conditional entropy and divergence

Let the sets of positive and nonnegative real numbers be denoted with R™ and Ry, respectively,
and let the mapping 7, : R — R be defined in

X, for g=1

Mg(x) = ¢ 20-9)x _q @
m, for q # 1
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so that its inverse is given in

x, for g=1

-1 _
g (%) = 11qlog((1—q)xlr12—|—1), for g#1’ @

The mapping h,; and its inverse are increasing continuous (hence invertible) functions such that
17(0) = 0. The g-logarithm and is defined in

log x, for g=1
Log, (x) = n4(logx) = ¢ x(1-9) _1 , 3)
q s -
A—gmz o 171
and its inverse, the g-exponential, is defined in
2, for g=1
Equ (y) = 1 4 (4)
(1+(1—-q)yln2)™7 for g#1
for 14 (1 —g)yIn2 > 0. Using #,, we can define the pseudo-addition operation @y [7,8]
x@gy =1 (17 () 41 W) =x+y+(1—qxy; xyeR, ®)
and its inverse operation, the pseudo substraction
_ “1fy -1 _ x—y i
X qu - 77f1 (W (x) 17@ (y)) 1 + (1 _ q)ylnzl x’y € ]R (6)

The @&, can be rewritten in terms of the generalized logarithm by settings x = logu and y = log v so
that

Logq(u ‘v) = Logq(u) @4 Logq(v); u,v € Ry. 7)
2.1. Sharma-Mittal entropy

Let the set of all n-dimensional distributions be denoted with

n
Anz{(Plf-.-,Pn) PiEO,ZPizl}; n>1 (8)
i-1

Let the function H,, : A, — ]Rg satisfy the following Shannon-Khinchin axioms, foralln € N, n > 1.

[GSK1] Hj, is continuous in Ay;

[GSK2] H, takes its largest value for the uniform distribution, U, = (1/n,...,1/n) € Ay, ie.
H,(P) < Hy,(Uy), forany P € Ay;

[GSK3] H,, is expandable: H,1(p1, p2,..-,Pn,0) = Hu(p1,p2, ..., pn) forall (p1,...,pn) € Ap;

[GSK4] Let P = (p1,...,pPn) € Dn, PQ = (111,712, -, Tum) € Bpm, n,m € N, n,m > 1 such that
pi = E]m:l rij and Qi = (Gijks - - Gmjk) € Dm, where q; = ri/prand a € R is some fixed
parameter. Then,

Hun(PQ) = Hy(P) @y Hu(Q|P), where Hy(QIP) = f" (llep,i”ﬂHm(Qk))), )

(@) ()

where f is an invertible continuous function and P(*) = (py /- pn’) € Ay is the a-escort
distribution of distribution P € A, defined in (38).
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[GSK5] H, (4,4 ) = Log, (1).

As it is shown in [9], the unique function H, which satisfies [GSK1]-[GSK5] is Sharma-Mittal
entropy [6]. In the following paragraphs, we will identify the entropy of a random variable X with the
entropy of its distribution Px and using the notation H, 4(X) = Hy(Px), Sharma-Mittal entropy.

In the following paragraphs we assume that X and Y are discrete jointly distributed random
variables taking values from a sample spaces {x1,...,x,} and {y,...,ym}, and distributed in
accordance to Px € A, and Py € Ay, respectively. In addition, the joint distribution of X and
Y be denoted in Pxy € Ay and the conditional distribution of X given Y will be denoted in

Pyjy = ng;;y) € Ay, provided that Py (y) > 0.
Thus, for a random variable which is distributed to X, Sharma-Mittal entropy can be expressed in

1—q
T-a

Hog(X) = 71— (sz<x>“> -1, (10)

q

and it can equivalently be expressed as the 7, transformation of Rényi entropy as in

Ha,q(X) =1y (Ru(X))- (11)

Sharma-Mittal entropy, for a, g € R] \ 1, being continuous function of the parameters and the sums
goes over the support of Px. Thus, in the case of 4 = 1, « # 1, Sharma-Mittal reduces to Rényi entropy
of order « [2]

Ra(X) = Hyt(X) = = log (2 Px<x>“> , (12)
which further reduces to Shannon entropy fora = 1,9 = 1, [34]
S(X)=Hi1(X ZPX x)log Px(x), (13)
while in the case of g # 1, « = 1 it reduces to Gaussian entropy [5]

Gy(X) = Hy4(X) = (12;)1112 (1‘{ Py () ) 1) (14)

In addition, Tsallis entropy [3] is obtained for &« = g # 1,

Tp(X) = W <;Px(x)‘7 - 1) (15)

while in the case of for § = 2 — « it reduces to the Landsberg-Vedral entropy [4]

140 = Huz+09 = iy (e 1) (16

3. Sharma-Mittal information transfer axioms

One of the main goals of information and communication theories is characterization and analysis
of the information transfer between sender X and receiver Y, which communicate through a channel.
The sender and receiver are described by probability distributions Px and Py while the communication
channel with the input X and the output Y is described by transition matrix Pyx:

Pl(/lé() = Pyx(yjlxi)- (17)
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We assume that maximum likelihood detection is performed at the receiver, which is defined by the
mapping d : {y1,...,ym} = {x1,...,x,} as follows:

d(y;)) =xi < Pyx(yjlxi) > Pyx(yjlx); forallk #1, (18)

assuming that the inequality in (18) is uniquely satisfied. Thus, if the input symbol x; is sent and the
output symbol y; is received, the x; will be detected if x; = d(y;) and detection error will be made
otherwise, and we define the error function functions ¢ : {x1,..., X} X {y1,...,ym} — {0,1} asin

1, ifx; =d(y;)
X;,Y;) = 19
Pl y]) {0, otherwise, 19)
as well as the detection error if a symbol x; is sent
Perr(xi) = Y Pyx(yjlxi)p(xi, y;);  forall x;. (20)
Yj
Totally destructive channel: A channel is said to be totally destructive if
PYR = Pyx(yjlx) = Py(y) = - forall ¥, (21)
i.e. if the sender X and receiver Y are described by independent random variables,
XLY & Pxy(xy)=Px(x)Py(y), (22)

where the relationship of independence is denoted in L. In this case, ¢;(y;) = 1 for all y; and the
probability of error is Pe,(x;) = 1; for all x;, which means that a correct maximum likelihood detection
is not possible.

Perfect communication channel: A channel is said to be perfect if for every x;,

P&{Q = Py|x(yj|xi) >0, foratleast one y; (23)
and for every y;
P&"Q = Py|x(yjlxi) >0, for exactly one x;. (24)

Note that in this case Py|x(y;|x;) can still take a zero value for some y; and that ¢;(y;) = 0 for any
non-zero Py|x(y;|x;). Thus, the error probability is equal to zero Per(x;) = 0; for all x;, which means
that perfect detection is possible by means of a maximum likelihood detector.

Noisy channel with non-overlapping outputs: A simple example of a perfect transmission
channel is the noisy channel with non-overlapping outputs, which is schematically described in Figure
1. It is 2-input m = 2k-output channel (k € N) defined by the transition matrix:

PY\X:x 1 10 0
P — 1 — k k 2
Y|x [ Pyix—s, 0 0 1 1 (25)

(in this and in the following matrices, the symbol "- - - " stands for the k-time repletion). In the case of
k =1 and m = 2k = 2, the channel reduces to the noiseless channel. Although the channel is noisy, the
input can always be recovered from the output (if y; is received and j < k, the input symbol x; is sent,
otherwise x; is sent). Thus, it is expected that the information which is passed through the channel is
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1/k _— " X1 1-p v
X _— : /
T 1k ' P
—
Yi+1
1/k — p
X2 / \
1k
—_— Yk X2 1-p Y2

Figure 1. Noisy channel with non-overlapping Figure 2. Binary symmetric

outputs channel

equal to the information that can be generated by the input. Note that for a channel input distributed
in accordance with

PX:x a
Px = v = ; 0<a<l, 26
the joint probability distribution Px y can be expressed as in:
£ £ 0 ... 0
PX,Y: [ 6 6 1;11 o 1%& ‘| (27)

and the output distribution Py, which can be obtained by the summations over columns, is

(28)

a a 1—a 1—a T
R R Tk .

Py = [PY:yl""’PY:]/m]T: {

Binary symmetric channels: The binary symmetric channel (BSC) is a two input two output
channel described by the transition matrix

Pyx = [ Prix=x ] = [ = 7 ] (29)

Py|x=x, p 1-p

which is schematically described in Figure 2. Note that for p = % BSC reduces to a totally destructive
channel, while in the case of p = 0 it reduces to a perfect channel.

3.1. Sharma-Mittal information transfer measures axioms

In this paper, we search for information theoretical measures of information transfer between
sender X and receiver Y, which communicate through a channel if the information is measured with
Sharma-Mittal entropy. Thus, we are interested in the information transfer measure, I, 4 (X,Y), which
is called the a-g-mutual information and its maximum,

C = maxIy4(Y, X), (30)
Px

which is called the a-g-capacity and which requires the following set of axioms to be satisfied.

(A1) The channel cannot convey negative information, i.e.

Caq(X,Y) > Ing(X,Y) > 0. (31)
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(A;) The information transfer is zero in the case of a totally destructive channel, i.e.
1
PY‘X(y\x) = forallx,y = Ing(X,Y)=Cay(X,Y)=0, (32)

which is compatible with the conclusion that the probability of error is one, Perr(x;) = 1; for all
x;, in the case of a totally destructive channel.
(As) In the case of perfect transmission, the information transfer is equal to the input information, i.e.

X=Y = Ig(X,Y)=Hy(X), CyylX,Y)=1Logn (33)

which is compatible with the conclusion that the probability of error is zero, Per+(x;) = 0; for
all x;, in the case of a perfect transmission channel, so that all the information from the input is

_ conveyed.
(A4) The channel cannot transfer more information than it is possible to be sent, i.e.

Ing(Y, X) < Cag(Y, X) < Logq n, (34)

which means that a channel cannot add additional information.
(As) The channel cannot transfer more information than it is possible to be received, i.e.

Iog(Y, X) < Cay(Y,X) < Log, m, (35)

which means that a channel cannot add additional information.
(Ag) Consistency with the Shannon case:

im  L(X,Y)=I(X,Y), and lim Cuq(X,Y)=C(X,Y) (36)

a—1,4—1 a—1,g—1

Thus, the axioms (A;) and (A3) ensure that the information measures are compatible with the
maximum likelihood detection (18)-(20). On the other hand, the axioms (A1), (A4) and (As), prevent
a situation in which a physical system conveys information in spite of going through a completely
destructive channel, or in which the negative information transfer is observed, indicating that the
channel adds or removes information by itself, which could be treated as non-physical behavior
without an intuitive explanation. Finally, the property (As) ensure that the information transfer
measures can be considered as generalizations of corresponding Shannon measures. For these reasons,
we assume that the satisfaction of the properties (A1)-(As) is mandatory for any reasonable definition
of Sharma-Mittal information transfer measures.

4. The a-mutual information and the a-capacity

One of the first proposals for Rényi mutual information goes back to Arimoto [24] who considered
the following definition of mutual information:

1

I(X,Y) = 1:4 log { ) (ZP;(f)(x) Vx| x)) a (37)

v X

where the escort distribution Py, is defined as in

Pl (x) = LX)

= (0 x>0, (38)
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and he also invented an iterative algorithm [35] for the computation of the x-capacity which is defined
form the a-mutual information:
Ca(Py,) = max L(X,Y). (39)
X

Notably, the Arimoto’s mutual information can equivalently be represented using the conditional
Rényi entropy

o

Ro(X[Y) = ——log, ¥ Pr(y) (ZPXY_M“) : (40)
y X

asin
L(X,Y) = Ru(X) — Ra(X]Y), (41)
which can be interpreted as the input uncertainty reduction after the output symbols are received and

in the case of &« — 1, the previous definition reduces to Shannon case. In addition, this measure is
directly related to the famous Gallager exponent,

1 I+p
Eo (0, Px) = —log (Z (ZPx(x)Pylr;; v x)> ) (42)
y X

which has been wieldy used for establishing of upper bound of error probability in channel coded
communication systems [36] via the relationship [29]:

1 P
L(X,Y) = 1250 (a—l,P§()) (43)

In addition, in the case of « — 1, it reduces to
L(X,Y)= lin} L(X,Y)=1(XY), (44)
o—r

where Py (1,1)
X,y
I(X,Y) =Y Pxy(x,y)log o220 22
(X0 = L Prxx o8 b py y)
stands for Shannon’s mutual information [37].
The a-mutual information I, (X, Y) and the a-capacity Cy (Py, ) satisfies the axioms (A1)-(As) for
g = 1and & > 0 as stated by the following theorem, which further justify their usage as the measures
of (maximal) information transfer.

(45)

Theorem 1. The mutual information measures IL,(X,Y); t € {a, s} satisfy the following set of properties
(A1) The channel can not convey negative information, i.e.
Ce(X,Y) > (X, Y) > 0. (46)
(Az) The (maximal) information transfer is zero in the case of totally destructive channel, i.e.
Py x (ylx) = %,for alx,y = IL(XY)=CLX,Y)=0 (47)
(As) In the case od perfect transmission, the (maximal) information transfer is equal to the (maximal) input

information, i.e.
X=Y = I(XY)=Ry(X), CLX,Y)=logn (48)



129

Version May 18, 2021 submitted to Entropy 9 of 23

(Ag) The channel can not transfer more information than it is possible to send, i.e.

IL(Y,X) < CL(Y,X) <log n; (49)
(As) The channel can not transfer more information than it is possible to receive, i.e.

IL(Y,X) < CL(Y,X) <log m. (50)
(Ag) Consistency with Shannon case:

lim (X, Y)=1(XY), and lim CH(X,Y)=C(X,Y) (51)

Proof. As shown in [38], Ry(X|Y) < R4(X), and the nonnegativity property (A;) follows from the
definition of Arimoto’s mutual information (41). In addition, if X L Y, then Py|x(y|x) = Py(y) so that

the definition (59) implies the property (A;). Furthermore, in the case of perfect transmission channel,
the mutual information (59) can be represented in

2=

(X, Y) = « 110g Ly (ZxPX( )“P{’;‘X( |x)> o« o , (Px(d(y))lxp?\x( d(y)))

Yy
- (z P () vl (TP ()

2=

(52)
and since

2=

Y (Px (@) P (v | d(y») = L Pxdy))Pyx(y | ) =
y
DD Px(d(y))Pyx(v | d(y ZPX x) Y, Py\x ylx)=1 (53)

yid(y)=x yid(y)=

we obtain I (X,Y) = Ry (X) which proves the property (A3). Moreover, from the definition as shown
in [38], the Arimoto’s conditional entropy is positive and satisfies the weak chain rule R, (X|Y) >
Ry (X) —logm, so that the properties (A4) and (As) follows from the definition of Arimoto’s mutual
informatio (41). Finally, the property (A¢) follows directly from the equation (44), and can be approved
using L'Hopital’s rule, which competes the proof of the theorem.

O

5. Alternative definitions of the a-mutual information and the a-channel capacity

Since Renyi’s proposal, there were several lines of the research for an appropriate definition and
characterization of information transfer measures related to Rényi entropy which are established by
the substitution of Rényi divergence measure,

Da(PlIQ) =

7 log (Zp(x)“Q(x)l“"> : (54)

instead of Kullback-Leibler one

D(PI|Q) = Di(PI|Q) = Y P(x) log ~o)

. Q) 9)
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in some of various definitions which are equivalent in the case of Shannon information measures (45)
[29]:
I(X,Y) = minE [ Dy (Pyx/|Qv)] = minE [De (Pyixl1Qy)]

= rglxnnélyn Dy (Px,y||QxQy) = Da (Px,y|[PxPy) = S(X) — S(X]Y) (56)

where S(X|Y) stands for Shannon conditional entropy.

All of these measures are consistent with Shannon case in the view of the property (Ag), but their
direct usage as measures of Rényi information transfer leads to a breaking of some the properties
(A1)-(As), which justifies the usage of Arimoto’s measures from the previous section as appropriate
ones in the context of this work. In this section, we review the alternative definitions.

5.1. Information transfer measures by Sibson

An alternative approaches based on Rényi divergence can were proposed by Sibson [39], who
introduced

Ja(X;Y) = min D, (PY\XPX | QYPX) , (57)
Qy
which can be represented as in [40]

1
o

o
Ja(X,Y) = —— log ; (;Px(x)l’fﬁx(y | x)) (58)
and in the discrete setting can be related with Gallager exponent as in [29]:
BY) = 2 Ey (£ —1,Py (59)
e 1—a a

which differs from Arimoto’s definition (59) since in this case the escort distribution does not participate
in the error exponent, but an ordinary one. However, in the case of perfect channel for which
X =Y, the conditional distribution P{’;' «(y | x) = 1for x = y and zero otherwise, so that Sibson’s
measure (58) reduces to Ry /,, thus breaking the axiom (Aj3). This disadvantage can be overcame by
reparametrization a <> 1/a so that Jj, L(X,Y) is used as a measure of Rényi information transfer,
and the properties of the resulting measure can be considered in a similar manner as in the case of
Arimoto’s one.

5.2. Information transfer measures by Augustin and Csiszar

An alternative definition of Rényi mutual information was also presented by Augustin [25], and
latter Csiszar [26], who defined

(X Y) = minE [De (PyixllQv)] (60)

However, in the case of perfect transmission, for which X = Y, the measure reduces to Shannon
entropy
(X Y) = S(X) (61)

which breaks the axiom (A3).
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5.3. Information transfer measures by Lapidoth, Pfister, Tomamichel and Hayashi

Similar obstacle as in the case of Augustin-Csiszar measure can be observed in the case of the
mutual information which was considered be Lapidoth and Pfister [27] and Tomamichel and Hayashi
[28] who proposed

l pth . .
X;Y) = minmin D
(X;Y) = rgirgin D (

). (62)
As shown in [27] (Lemma 11) if X =Y, then
%R (x) ifac o],

« (X)  ifa>; (63)

) ifa =0

]zx(X} Y) =

N\»—- N

so that the axiom (A3) is broken in this case, as well.

Remark 1. Despite the difference between the definitions of information transfer, in the discrete setting, the
alternative definitions discussed above reaches the same maximum over the set of input probability distributions,
Px, [26], [41] and their operational characterization of these measures, their further properties, and their
relevance in source and channel coding, hypothesis testing, cryptography and quantum information theory can
be found in [40], [29], [42], [43], [44], [45], [46], [47], [48].

5.4. Information transfer measures by Chapeau-Blondeau, Delahaies, Rousseau, Tridenski, Zamir, Ingber and
Harremoes

Chapeau-Blondeau, Delahaies and Rousseau [31], and independently Tridenski, Zamir and Ingber
[49] and by Harremoes [50] defined Rény mutual information using Rényi divergence (54), so that the
mutual information defined using the Rényi divergence

J2(X,Y) = Dy (Pxy||PxPy) (64)

for « > 0 and a # 1, while in the case of a = 1 it reduces to Shannon mutual information. Note
that the ordinal definition can correspond only to a Rényi entropy of order 2 — & since in the case of
X =Y itreduces to IS(X,Y) = Ry_, (see also [50]), which can be overcame by the reparametrization
« = 2 — g, similarly as in the case of Sibson’s measure. This measure have been discussed in the
past with the various operational characterizations, and could be also considered as a measure of
information transfer, although the satisfaction of all of the axioms (A1)-(A) is not self-evident for a
general channels.

5.5. Information transfer measures by Jizba, Kleinert and Shefaat

Finally, we mention the definition by Jizba, Kleinert and Shefaat [51],
JA(X,Y) = Ra(X) = RL(X]Y). (65)

which is defined in the same manner as in Arimoto’s case (41), but with another choice of conditional
Rényi entropy

RL(X|Y) = logZP x)2(1- R (X[Y=y), (66)

which arises from Generalized Shannon-Khinchin axiom GSK4 if the pseudo-additivity in the equation
(9) is restricted to an ordinary addition, at which case the GSK axioms uniquely determine Rényi
entropy [52]. However, despite a wide applicability in modeling of causality and financial time series,
this mutual information can take negative values which breaks the axiom (A;), which is assumed to be
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mandatory in this work. For further discussion physicalism of negative mutual information in the
domain of financial time series analysis, the reader is referred to [51]

6. The x-g mutual information and the a-g capacity

In the past several attempts were done to define an appropriate channel capacity measure which
corresponds to instances of Sharma-Mittal entropy class. All of them follow a similar recipe by which
the channel capacity is defined as in (30), as a maximum of appropriately defined mutual information
Iy,4- However, all of the classes consider only a special cases of Sharma-Mittal entropy and, all of them
fails down to satisfy at least one of the properties (A1)-(As) that a information transfer has to satisfy, as
we will discuss Section 7.

In this section we propose a general measures of the a-g mutual information and the a-g capacity
by the requirement that the axioms (A1)-(As) are satisfied, which could qualify them as appropriate
measures of information transfer, without non-physical properties. The special instances of the a-g
(maximal) information transfer measures are also discussed and the analytic expressions for ninary
symmetric channel are provided.

6.1. The w-q information transfer measures and its instances

The a-g-mutual information (41) is defined using the g-substraction defined in (6), as follows:
Ipg(X,Y) = Hag(X) ©q Hag(X]Y), (67)

where we introduced the conditional Sharma-Mittal entropy Hy 4(Y|X) as in

B

Hag(XIY) = g (Ra(XI¥) = =i | | D) (2pxyy<x>“> 1l e
v X

and R, (X]Y) stands for Arimoto’s definition of conditional Rényi entropy (40).The expression (67)
can also be obtained if the mapping 7, is applied to the both sides of the equality (41) by which the
Arimoto’s mutual information is defined, so that we establish the relationship

1
® o
Iag(X,Y) = 11q (I(X,Y)) = 11q (1 — 108 (Z (ZP;(?)(JC) vix (v | x)) )) (69)
y X
and can be represented using Gallager error exponent (42) as in

) = (5 (2P = i (TR 1) o
Lx,q(X,Y)_m] (1_“E0 (IX 1'PX >) = (1—q)]n2 2 . 70)
Arimoto’s a-g-capacity is now defined in
Cag = max IM(X, Y) (71)
Px

and using the fact that 77, is increasing it can be related with corresponding a-capacity as in

Cuq = max Iz,q(X, Y) = max Mg (L(X,Y)) = Mg (max I.(X, Y)) =14 (Ci(X,Y)). (72)
Px Px Px
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In the same manner as in the case of the a-capacity, using the expressions (44), (45) and (1), for
« = 1 both Arimoto’s and Sibson’s #-g mutual information reduces to

1 Px Y(x,y) logM
T g2 2 Px(0Py(y) — 1
YT (1—q)n2 (5[

: PX Y(xr y) )PX,Y(x,y)

the a-g channel capacity is given in

B 1 Px y(%,y) )Px,y(x,y) -
C1q = max ((1 — g2 (Hy (Pt ! 79

and these measures can serve as (maximal) information transfer measures corresponding to Gaussian
entropy which was not considered before in the context of information transmission. Naturally, if in
addition 4 — 1, the measures reduce to Shannon’s mutual information and Shannon capacity [37].

Additional special cases of the w-g (maximal) information transfer includes the a-mutual
information (41) and the a-capacity (39), which are obtained for 4 = 1, while the measures which
corresponds to Tsallis entropy can be obtained for 4§ = & and the ones which corresponds to
Landsberg-Vedral entropy for g4 = 2 — a. These special instances are listed in Table 1.

As discussed in Section 7, previously considered information measures cover only particular
special cases and break at least one of the axioms (A1)-(As), which lead to unexpected and
counterintuitive conclusions about the channels, such as negative information transfer and achieving
super-capacitance or sub-capacitance [4], which could be treated as a nonphysical behavior. On the
other hand, apart from the generality, the a-g information transfer measures proposed in this work
overcame the disadvantages which could qualify them as appropriate measures, as stated in the
following theorem.

Theorem 2. The a-q information transfer measures In (X, Y) and Cq g satisfy the set of the axioms (A1)-(Ag).

Proof. The proof is straightforward application of the mapping 7, to the equations in the a-mutual
information properties (A1)-(As), while the (As) follows from the above discussion. [J

Remark 2. Note that the symmetry Iq(X,Y) = I 4(Y, X) does not hold in general neither in the case of
Arimoto’s nor Sibson’s type defined Sharma-Mittal mutual information [53], [54] and if the mutual information
is defined so that the symmetry is preserved, the property (A1) might be broken. In addition, the alternative
definition of the mutual information, I 4(Y,X) = Hyq(Y) — Haq(Y|X), which uses ordinary substraction
operator instead of ©4 operation, can also be introduced, but in this case the property (Ay) might not hold in
general, as discussed in Section 7.

6.2. The w-q capacity of binary symmetric channels

As shown by Cai and Verdd [42], the a-mutual information of Arimoto’s type I, are maximized
for the uniform distribution Px = (1/2,1/2), and Arimoto’s a-capacity has the value

Ca(BSC) =1 —r4(p), (75)

where the binary entropy function r, is defined

1
ru(p) = Ra(p, 1= p) = 7= log(p* + (1= p)*), (76)

—
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for « > 0, & # 1 while in the limit of « — 1, the expression (76) reduces to the well known result for
the Shannon’s capacity (see Fano [55])

C1(BSC) = lim C(BSC) = 1+ plogp + (1 — p)log(1 — p). (77)

The analytic expressions for the a-g-capacities of binary symmetric channel can be obtained from the
expressions (72) and (75), so that

1
2V (P (1 - p)¥) T —1 7
Aoz (2 - ) 78)
and in the case of g = 1 it reduces to the case of Rényi entropy, while in the case of « = 1, to the case of
Gaussian entropy (75)

Cu,q(BSC) = 14 (Ca(BSC)) =

1
C1q(BSC) = 7= 51ma (2rr (1= p)'=r 1) (79)

The analytic expressions for BSC a-g capacities for another instances can straightforwardly be obtained
by specifying the values of the parameters and the instances are listed in Table 1 and the plots of the
BSC a-g-capacities which corresponds to Gausian and Tsallis entropies are shown in Figure 3 and
Figure 4.

The a-g-capacity (78) can equivalently be expressed in

Ca,q(BSC) = Log, 2 ©q haq(p), (80)
q

where Sharma-Mittal binary entropy function is defined in

—_
=

heg(p) = Hug(p,1— p) = —— (0 + (1= ) 1), (81)
1—9¢

which reduces to Rényi binary entropy function

1
hyy(p) = lim heq(p) = Ra(p, 1 —p) = ——log (p* + (1 —p)*)), (82)
g—1 1—a

in the case of 4 = 1 and to Gaussian binary entropy function

g (p) = lim hag (p)Ra(p, 1~ p) = £ log (9" + (1~ p)*)), )
in the case of & = 1. The expression (80) can be interpreted similarly as in the Shannon case. Thus, for
a BSC channel with input X and output Y can be modeled with an input-output relation Y = X ® Z
where & stands for modulo 2 sum and Z is channel noise taking values from {1,0} and is distributed
in accordance to (p,1 — p). If we measure the information which is lost per bit during transmission
with the Sharma-Mittal entropy Hy ;(Z) = ha(p), then Cy 4 stands for useful information left over for
every bit of information received.

7. An overview of the previous approaches for Sharma-Mittal information transfer measures

In this section, we review the previous attempts for the definition of Sharma-Mittal information
transfer measures which are defined from the basic requirement of consistency with Shannon measure
as given by the axiom (A4). However, as we show in the following paragraphs, all of them break at
least one of the axioms (A1)-(As), which are satisfied in the case of the a-g (maximal) information
transfer measures (67) and (71), in accordance to the discussion from Section 6.
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Figure 3. The a-g-capacity of BSC for Gaussian entropy (the case of @ = 1) as a function of g for various

values of the channel parameter p from 0.5 (totally destructive channel) to 0 (perfect transmission). All

of the curves lies between 0 and Loqu, which is the maximum value of the Gaussian entropy.
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Figure 4. The a-g-capacity of BSC for Tsallis entropy (the case of « = g) as a function of g for various

values of the channel parameter p from 0.5 (totally destructive channel) to 0 (perfect transmission). All

of the curves lies between 0 and Log, 2, which is the maximum value of the Tsallis entropy.
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Hy,q Lnyg Caq
Re & (1 pl) | log(p* +(1-p)*)
1— (E X ) B 1—w
q=1
Re & E, 1 1 P(“) 1 log(p"‘ + (1 _ P) )
1—a 0 <E X ) 1—w
q=1
T,
o 1 an(rl,PQ‘)) B 1 1—a v
(1—a)ln2( ! (1—a)ln2 (2 (pe+(=p)¥) 1)
=
. L (e(ind) 4 L e (1)) -
(x—1)In2 (1-a)ln2 P P
g=2-u
Gy 1 Py y(x Pxy(xy)
y(4Y) 1) | (ray0eae ) a-00p)
g2 <HW (mome) 1) g (2P0 Y
a=1
1+p
Eg (0, Px) = —log (Zy (Zx Px(x) ;&(y | x)) )

Table 1. The instances of the a-g-mutual information for different values of the parameters and

corresponding expressions for the BSC a-g-capacities.

7.1. Daréczy’s capacity

The first considerations of generalized channel capacities and generalized mutual information for
the g-entropy goes back to Daréczy [30], who introduced the generalized of conditional entropy

TP (Y|X) =

LPx(x

where the row entropies are defined as in

T,(Y|X =x) = ()110g (ZPYlX (y|x)T — 1>

and the mutual information is defined as in

However, in the case of totally destructive channel, X L Y, Py x(y|x)

V) CPe(x)

T,(Y) and

so that

Jaqg(X,Y) = Ty(Y) -

T, (Y|X) =

]gzl,q(xf Y) = Tq(y) (1 - pr(x)q> =

)T, (Y|X =x), (84)
(85)
TP (Y|X), (86)

= Py(y), Ty(Y|X = x) =

(87)

(88)

(1 - ZPX(x)q> Log,m
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This expression is zero for an input probability distribution Px = (1,0,...,0) and its permutations,
but, in general, it is negative for g < 1, positive for g > 1 and 0 only for g = 1, so that the axiom (A,) is
broken (see Figure 5). As a result, the channel capacity which is defined in accordance to (30), is zero
for g <1, and positive for g > 1, which is illustrated in Figure 6 by the example of BSC for which the
Daroczy’s channel capacity can be computed as in [30], [56]

1—21-7 274
g—1  q-1

Chsc = [1—(1—p)7—p). (89)

In the same Figure, we plotted the graph for the a-g channel capacities proposed in this work, and all
of them remain zero in the case of totally destructive BSC as expected.

7.2. Yamano capacities

Similar problems as above arise in the case of mutual information and corresponding capacity
measures considered by Yamano [33] who addressed the information transmission which is
characterized by Landsberg-Vedral entropy L, given in (16).

Thus, the first proposal is based on the mutual information of the form

JH(X,Y) = Lg(X) + Lo(Y) — Ly(X, Y) (90)

where the joint entropy is defined in

1 1
Ly(X,Y) = g <2x,y o e 1) : (1)

However, in the case of fully destructive channel, Py(y) = 1/m and Px y(x,y) = Px(x)/m, so that

Y _ 1 r o e S I e e
e =5 (g )t (07 ) - (0 ) o

which can be simplified to

hx,y) = = ( !

1 (sr )

Similarly as in the case of Daroczy’s capacity this expression is zero for an input probability distribution

(93)

Px = (1,0,...,0) and its permutations, but, in general, it is negative for g > 1, positive for g < 1 and 0
only for g4 = 1, so that the axiom (A5) is broken (see Figure 5). In Figure 6 we illustrated the Yamano
channel capacity as a function of the parameter g, in the case of two input channel with Px = [a,1 — 4],
the channel capacity is zero for 4 > 1 (which is obtained for Px = [1,0]), and

1
Y - q_1_ n2q-2
C%qu_1<2 1-2 ), (94)

for g > 1 (which is obtained for Px = [1/2,1/2]). In the same Figure, we plotted the graph for the a-q
channel capacities proposed in this work, and, as before, all of them remain zero in the case of totally
destructive BSC as expected.

Further attempts were done in [33], where the mutual information is defined following in an
analogous manner to (64) and (64), with the generalized divergence measure introduced in [57]. Thus,
the alternative measure for mutual information is defined in

y _ 1 1 3 ; Px (x)Py(y)\ '
]q (X’Y) - (1 _q) lnzzx,y P?(/Y(X,y) |jl %PX,Y< /y) ( PX,Y(xry) ) ‘| : (95)
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Figure 5. Dar6czy’s (solid lines) and Yamano’s (dashed lines) mutual information in the case
of totally destructive BSC as functions of the input distribution parameter a, Px = [a,1 —a]
for different values of g, getting negative values for ¢ < 1 and q > 1, respectively, breaking the
axioms (A7) and (A5). The a-g-mutual information is zero and satisfies (A1) and (A7)
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Figure 6. Dardczy’s (solid lines) and Yamano’s (dashed lines) capacities in the case of totally
destructive BSC as functions of the parameter 4. In the regions of 4 < 1 and g > 1, respectively,
corresponding negative mutual information are maximized for Px = [1,0] T (zero capacity) having
the positive values outside the regions and breaking the axiom (A»). The a-g-capacity is zero and
satisfies (A5).
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Figure 7. Landsberg-Vedral capacities for Landsberg-Vedral (solid lines) and Tsallis (dashed lines)
entropies in the case of (perfect) noisy channel with non-overlapping outputs with m outputs as
functions of g, for different values of . The axiom (A,) is broken for all m > 2 and satisfied in
the case of corresponding a-g-capacities.

However, in the case of the simplest perfect communication channel for which X = Y, the mutual
information reduces to

11—y, Px(x)*
(1-q)In2 ¥, Px(x)1

Iy (X,Y) = # Lg(X) (96)

which breaks the axiom (A3).

7.3. Landsber-Vedral capacities

To avoid these problems, Landsberg and Vedral [4] proposed the mutual information measure
and related channel capacities for Sharma-Mittal entropy class H, 4, particularly considering the choice
of ¢ = &, which corresponds to Tsallis entropy, § = 2 — « and the case of 4 = 1 which corresponds to
Rényi entropy.

(Y, X) = Haq(Y) — Hyy (Y]X), (97)

where the conditional entropy HD%( Y|X) is defined as in

Hyy (Y]X) = ZPX )Haq(Y|X = x) (98)

and
1 —

<

._.

1 —u
Hag(Y|X = 0)"" = 17— (Z Yix=x(¥/) ) -1 99)



236

237

238

248

249

250

Version May 18, 2021 submitted to Entropy 20 of 23

Although this definition bear some similarities with the a-g mutual information proposed in
formula (67), several key differences can be observed. The first one, it characterizes the information
transfer as the output uncertainty reduction, after the input symbols are known, instead of input
uncertainty reduction, after the output symbols are known (41). In addition, it uses the ordinary —
operation, instead of the ©, one. Also note that the definition of conditional entropy (98) in generally
differs from the definition proposed in (68).

The definition (97) successfully the issue the axiom (A,) which appear in the case of Daroczy
capacity since in the case of totally destructive channel (X L Y), Py|x(y|x) = Py(y) and Lq(Y|X =
x) = Ly(Y) and Ly(Y|X) = Ly(Y), so that I,le’q(X, Y) = 0. However, the problems remains with the
axiom (As), which can be observed in the case of noisy channel with non-overlapping outputs if the
number of channel inputs is lower than the number of the channel outputs n < m. Indeed, in the case
of noisy channel with non-overlapping outputs given by the transition matrix (25) both of the row
entropies L;(Y|X = x) has the same value which is independent of x

kl=1 -1

HugY1X=2) = )iz

= Loqu; for x = x1,xo, (100)

and the maximal value of Landsberg-Vedral mutual information (97) is obtained only by maximizing
H,4(Y) over Px, which is achieved if X is uniformly distributed, since in this cae Y is uniformly
distributed, as well (a = % in (26)), so that the maximal value of the output entropy is Hy4(Y) =
Log, (2k) and the mutual information is maximized for.

C= Logq(Zk) - Logq(k) (101)

which is greater than Logq (2) for k > 2,i.e. for m > 4 outputs, so that the axiom (As) is broken, which
is illustrated in Figure 7.

7.4. Chapeau-Blondeau - Delahaies - Rousseau capacities

Following the similar approach as in Section (5.4), Chapeau-Blondeau, Delahaies and Rousseau
considered the definition of mutual information which corresponds to Tsallis entropy using Tsallis
divergence,

1 _
Dg,q(P[1Q) = =1 (ZP(X)qQ(x)l 7— 1> , (102)
X
and can be written in
I(X,Y) = Dan (Px y||PxPy) = 11a (Da (Px y || PxPy))

- (1—ZPX,y<x,y)“Px(x>1“Py<y>1"‘>. (103)

1—u« %y

However, this definition is not directly applicable as a measure of information transfer fo Tsallis entropy
with index g, since in the case of X = Y it reduces to [[(X,Y) = T»,, requries the reparametrization
a = 2 — g, similarly as in the Section 5.4, while the satisfaction of the axioms (A;)-(As) is not self
evident.

8. Conclusion and future work

A general treatment of Sharma-Mittal entropy transfer was provided together with the analyses
of existing information transfer measures for non-additive Sharma-Mittal information transfer. It is
shown that the existing definitions fails down to satisfy at least one of ineluctable properties common
to Shannon case, by which the information transfer has to be non-negative, less than input and
output uncertainty, equal to the input uncertainty in the case of perfect transmission and equal to
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zero, in the case of totally destructive channel. Thus, breaking some of these properties implies
unexpected and counterintuitive conclusions about the channels, such as achieving super-capacitance
or sub-capacitance [4], which could be treated as a nonphysical behavior.

In this work, alternative measures of the a-g mutual information and the a-g channel capacity
were proposed so that all of ineluctable properties which are broken in the case of the Sharma-Mittal
information transfer measures considered before, are satisfied, which could qualify them as physically
consistent measure of information transfer. Taking into account the previous research in non-extensive
statistical mechanics [3], where the linear growth of the system entropy has been recognized as
an ineluctable property of physical quantity in non-extensive [58] and non-exponentially growing
system [59], and taking into account the previous research from the field of information theory,
where Sharma-Mittal entropy has been considered an appropriately scaling measure which provides
extensive information rates [21], the a-q capacity seems to be a promising measure for characterization
of information transmission in the scenarios where Shannon entropy rate diverges or disappears in
infinite time limit.
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