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Abstract: The measures of information transfer which correspond to non-additive entropies, have1

intensively been studied in previous decades. The majority of work includes the ones which belongs2

to Sharma-Mittal entropy class, such as Renyi, Tsallis and Landsberg-Vedral entropies. All of the3

considerations follows the same approach mimicking some of various and mutually equivalent4

definitions of Shannon information measures, and the information transfer is quantified by an5

appropriately defined measure of mutual information, while the maximal information transfer is6

considered as a generalized channel capacity. However, all of the previous approaches fail down to7

satisfy at least one of ineluctable properties that a measure of (maximal) information transfer should8

satisfy, leading to counterintuitive conclusions and predicting nonphysical behavior even in the case9

of very simple communication channels. This paper fills the gap, by proposing new measures named10

the α-q mutual information and the α-q channel capacity. Beside standard Shannon approaches, a11

special cases of these measures include the α-mutual information and α-capacity, which are well12

established in the information theory literature as measures of additive Rényi information transfer,13

while the cases of Tsallis, Gaussian and Landsberg-Vedral entropies can also be accessed by special14

choices of the parameter q. It is shown that, unlike the previous definition, the α-q mutual information15

and the α-q capacity satisfy the set of ineluctable axioms, by which they are non-negativity, less16

than or equal to the input and the output non-additive entropies, they reduce to zero in the case of17

totally destructive channels and to the (maximal) input non-additive entropy in the case of perfect18

transmission. Thus, unlike the previous approaches, the proposed (maximal) information transfer19

measures do not manifest non-physical behaviors such as sub-capacitance or supper-capacitance,20

which could qualify them as appropriate measures of information transfer.21

Keywords: Rényi Entropy, Tsallis entropy, Landsberg-Vedral entropy, Sharma-Mittal entropy,22

α-mutual Information, α-channel Capacity23

1. Introduction24

In the past, there was extensive work on defining the information measures which generalize the25

Shannon entropy [1], such as one parameter Renyi entropy [2], Tsallis entropy [3], Landsberg-Vedral26

entropy [4], Gaussian entropy [5], and two parameter Sharma-Mittal entropy [5,6], which reduces27

to former ones for special choices of the parameters. Sharma-Mittal entropy can axiomatically be28

founded as the unique q-additive measure [7,8] which satisfies generalized Shannon-Kihinchin axioms29

[9,10], and has widely been explored in different research fields starting from statistics [11], to30

thermodynamics [12], [13], to quantum mechanics [14], [15] to machine learning [16], [17] and to31

cosmology [18], [19]. Sharma-Mittal entropy has also be recognized in the field of information theory32

where the measures of conditional Sharma-Mittal entropy [20], Sharma-Mittal divergences [21] and33

Sharma-Mittal entropy rate [22] has been established and analyzed.34
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A considerable research has also been done in the field of communication theory in order35

to analyze information transmission in the presence of noise, if instead of Shannon’s entropy36

the information is quantified with (an instances of) Sharma-Mittal entropy and, in general, the37

information transfer is quantified by an appropriately defined measure of mutual information, while38

the maximal information transfer is considered as a generalized channel capacity. Thus, after Rényi’s39

proposal for the additive generalization of Shannon entropy [2], several different definitions for40

Rényi information transfer were proposed by Sibson [23], Arimoto [24], Augustin [25], Csiszar [26],41

Lapidoth and Pfister [27] and Tomamichel and Hayashi [28]. These measures has thoroughly been42

explored and their operational characterization in coding theory, hypothesis testing, cryptography43

and quantum information theory were established, which qualifies them as a reasonable measure of44

Rényi information transfer [29]. Similar attempts has also be performed in the case of non-additive45

entropies. Thus, starting from the work of Daroczy [30] who introduced a measure for generalized46

information transfer related to Tsallis entropy, several attempts followed for the measures which47

corresponds to non-additive particular instances of Sharma-Mittal entropy, so that the definitions for48

Rényi information transfer were considered in [24], [31], Tsallis information transfer were considered49

in [32] and Landsber-Vedral information transfer in [4] [33].50

In this paper we provide a general treatment of Sharma-Mittal entropy transfer and we provide51

a detailed analyses of existing measures, showing that all of the definitions related to non-additive52

entropies fail down to satisfy at least one of ineluctable properties common to Shannon case, by53

which the information transfer has to be non-negative, less than input and output uncertainty, equal54

to the input uncertainty in the case of perfect transmission and equal to zero, in the case of totally55

destructive channel. Thus, breaking some of these properties implies unexpected and counterintuitive56

conclusions about the channels, such as achieving super-capacitance or sub-capacitance [4], which57

could be treated as a nonphysical behavior. As an alternative, we propose the α-q mutual information58

as a measure of Sharma-Mittal information transfer, being maximized with the α-q channel capacity.59

The α-q mutual information generalizes the α-mutual information by Arimoto [24], which is defined60

as a q-difference between the input Sharma-Mittal entropy and appropriately defined conditional61

Sharma-Mittal entropy if the output is given, while the α-q-capacity represents a generalization of62

Arimoto’s α-capacity in the case of q = 1. In addition, several other instances can be obtained by63

specifying the values of the parameters α and q, which includes the information transfer measures for64

Tsallis, Landsber-Vedral and Shannon entropy, as well as the case of Gaussian entropy which was not65

considered before in the context of information transmission.66

The paper is organized as follows. In Section 4 we review basic properties of the α-capacity. The67

basic properties and special instances of Sharma-Mittal entropy are listed in Section 2. The α-q mutual68

information and the α-q channel capacity are defined and analyzed in Section 6. In Section ?? we69

review the previous definitions, discuss their unphysical behavior and show that the α-q information70

transfer measure avoid it.71

2. Sharma-Mittal entropy, conditional entropy and divergence72

Let the sets of positive and nonnegative real numbers be denoted with R+ and R+
0 , respectively,

and let the mapping ηq : R→ R be defined in

ηq(x) =


x, for q = 1

2(1−q) x − 1
(1− q) ln 2

, for q 6= 1
(1)
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so that its inverse is given in

η−1
q (x) =


x, for q = 1

1
1− q

log((1− q)x ln 2 + 1), for q 6= 1
. (2)

The mapping hq and its inverse are increasing continuous (hence invertible) functions such that
η(0) = 0 . The q-logarithm and is defined in

Logq(x) = ηq(log x) =


log x, for q = 1

x(1−q) − 1
(1− q) ln 2

, for q 6= 1
, (3)

and its inverse, the q-exponential, is defined in

Expq(y) =

 2y, for q = 1

(1 + (1− q)y ln 2)
1

1−q for q 6= 1
, (4)

for 1 + (1− q)y ln 2 > 0. Using ηq, we can define the pseudo-addition operation ⊕q [7,8]

x⊕q y = ηq

(
η−1

q (x) + η−1
q (y)

)
= x + y + (1− q)xy; x, y ∈ R, (5)

and its inverse operation, the pseudo substraction

x	q y = ηq

(
η−1

q (x)− η−1
q (y)

)
=

x− y
1 + (1− q)y ln 2

; x, y ∈ R (6)

The ⊕q can be rewritten in terms of the generalized logarithm by settings x = log u and y = log v so
that

Logq(u · v) = Logq(u)⊕q Logq(v); u, v ∈ R+. (7)

2.1. Sharma-Mittal entropy73

Let the set of all n-dimensional distributions be denoted with

∆n ≡
{
(p1, . . . , pn)

∣∣∣ pi ≥ 0,
n

∑
i=1

pi = 1

}
; n > 1. (8)

Let the function Hn : ∆n → R+
0 satisfy the following Shannon-Khinchin axioms, for all n ∈ N, n > 1.74

[GSK1] Hn is continuous in ∆n;75

[GSK2] Hn takes its largest value for the uniform distribution, Un = (1/n, . . . , 1/n) ∈ ∆n, i.e.76

Hn(P) ≤ Hn(Un), for any P ∈ ∆n;77

[GSK3] Hn is expandable: Hn+1(p1, p2, . . . , pn, 0) = Hn(p1, p2, . . . , pn) for all (p1, . . . , pn) ∈ ∆n;78

[GSK4] Let P = (p1, . . . , pn) ∈ ∆n, PQ = (r11, r12, . . . , rnm) ∈ ∆nm, n, m ∈ N, n, m > 1 such that
pi = ∑m

j=1 rij, and Q|k = (q1|k, . . . , qm|k) ∈ ∆m, where qi|k = rik/pk and α ∈ R+
0 is some fixed

parameter. Then,

Hnm(PQ) = Hn(P)⊕q Hm(Q|P), where Hm(Q|P) = f−1

(
n

∑
k=1

p(α)k f (Hm(Q|k))

)
, (9)

where f is an invertible continuous function and P(α) = (p(α)1 , . . . , p(α)n ) ∈ ∆n is the α-escort79

distribution of distribution P ∈ ∆n defined in (38).80
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[GSK5] H2

(
1
2 , 1

2

)
= Logq(1).81

As it is shown in [9], the unique function Hn which satisfies [GSK1]-[GSK5] is Sharma-Mittal82

entropy [6]. In the following paragraphs, we will identify the entropy of a random variable X with the83

entropy of its distribution PX and using the notation Hα,q(X) ≡ Hn(PX), Sharma-Mittal entropy.84

In the following paragraphs we assume that X and Y are discrete jointly distributed random85

variables taking values from a sample spaces {x1, . . . , xn} and {y1, . . . , ym}, and distributed in86

accordance to PX ∈ ∆n and PY ∈ ∆m, respectively. In addition, the joint distribution of X and87

Y be denoted in PX,Y ∈ ∆nm and the conditional distribution of X given Y will be denoted in88

PX|Y =
PX,Y(x,y)

PY(y)
∈ ∆m, provided that PY(y) > 0.89

Thus, for a random variable which is distributed to X, Sharma-Mittal entropy can be expressed in

Hα,q(X) =
1

1− q

(∑
x

PX(x)α

) 1−q
1−α

− 1

 , (10)

and it can equivalently be expressed as the ηq transformation of Rényi entropy as in

Hα,q(X) ≡ ηq (Rα(X)) . (11)

Sharma-Mittal entropy, for α, q ∈ R+
0 \ 1, being continuous function of the parameters and the sums

goes over the support of PX . Thus, in the case of q = 1, α 6= 1, Sharma-Mittal reduces to Rényi entropy
of order α [2]

Rα(X) ≡ Hα,1(X) =
1

1− α
log

(
∑
x

PX(x)α

)
, (12)

which further reduces to Shannon entropy for α = 1, q = 1, [34]

S(X) ≡ H1,1(X) = ∑
x

PX(x) log PX(x), (13)

while in the case of q 6= 1, α = 1 it reduces to Gaussian entropy [5]

Gq(X) ≡ H1,q(X) =
1

(1− q) ln 2

(
n

∏
i=1

PX(x)PX(x) − 1

)
(14)

In addition, Tsallis entropy [3] is obtained for α = q 6= 1,

Tq(X) ≡ 1
(1− q) ln 2

(
∑
x

PX(x)q − 1

)
(15)

while in the case of for q = 2− α it reduces to the Landsberg-Vedral entropy [4]

Lα(X) ≡ Hα,2−α(X) =
1

(α− 1) ln 2

(
1

∑x PX(x)α
− 1
)

. (16)

3. Sharma-Mittal information transfer axioms90

One of the main goals of information and communication theories is characterization and analysis
of the information transfer between sender X and receiver Y, which communicate through a channel.
The sender and receiver are described by probability distributions PX and PY while the communication
channel with the input X and the output Y is described by transition matrix PY|X :

P(i,j)
Y|X = PY|X(yj|xi). (17)
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We assume that maximum likelihood detection is performed at the receiver, which is defined by the
mapping d : {y1, . . . , ym} → {x1, . . . , xn} as follows:

d(yj) = xi ⇔ PY|X(yj|xi) > PY|X(yj|xk); for all k 6= i, (18)

assuming that the inequality in (18) is uniquely satisfied. Thus, if the input symbol xi is sent and the
output symbol yj is received, the xi will be detected if xi = d(yj) and detection error will be made
otherwise, and we define the error function functions φ : {x1, . . . , xm} × {y1, . . . , ym} → {0, 1} as in

φ(xi, yj) =

{
1, if xi = d(yj)

0, otherwise,
(19)

as well as the detection error if a symbol xi is sent

Perr(xi) = ∑
yj

PY|X(yj|xi)φ(xi, yj); for all xi. (20)

Totally destructive channel: A channel is said to be totally destructive if

P(i,j)
Y|X = PY|X(yj|xi) = PY(yj) =

1
m

; for all xi, (21)

i.e. if the sender X and receiver Y are described by independent random variables,

X ⊥⊥ Y ⇔ PX,Y(x, y) = PX(x)PY(y), (22)

where the relationship of independence is denoted in ⊥⊥. In this case, φi(yj) = 1 for all yj and the91

probability of error is Perr(xi) = 1; for all xi, which means that a correct maximum likelihood detection92

is not possible.93

Perfect communication channel: A channel is said to be perfect if for every xi,

P(i,j)
Y|X = PY|X(yj|xi) > 0, for at least one yj (23)

and for every yj

P(i,j)
Y|X = PY|X(yj|xi) > 0, for exactly one xi. (24)

Note that in this case PY|X(yj|xi) can still take a zero value for some yj and that φi(yj) = 0 for any94

non-zero PY|X(yj|xi). Thus, the error probability is equal to zero Perr(xi) = 0; for all xi, which means95

that perfect detection is possible by means of a maximum likelihood detector.96

Noisy channel with non-overlapping outputs: A simple example of a perfect transmission
channel is the noisy channel with non-overlapping outputs, which is schematically described in Figure
1. It is 2-input m = 2k-output channel (k ∈ N) defined by the transition matrix:

PY|X =

[
PY|X=x1

PY|X=x2

]
=

[
1
k . . . 1

k 0 . . . 0
0 . . . 0 1

k . . . 1
k

]
(25)

(in this and in the following matrices, the symbol "· · · " stands for the k-time repletion). In the case of
k = 1 and m = 2k = 2, the channel reduces to the noiseless channel. Although the channel is noisy, the
input can always be recovered from the output (if yj is received and j ≤ k, the input symbol x1 is sent,
otherwise x2 is sent). Thus, it is expected that the information which is passed through the channel is
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y1

x1
...

yk

yk+1

x2
...

y2k

1/k

1/k

1/k

1/k

Figure 1. Noisy channel with non-overlapping
outputs

x1 y1

x2 y2

1 − p

p

p

1 − p

Figure 2. Binary symmetric
channel

equal to the information that can be generated by the input. Note that for a channel input distributed
in accordance with

PX =

[
PX=x1

PX=x2

]
=

[
a

1− a

]
; 0 ≤ a ≤ 1, (26)

the joint probability distribution PX,Y can be expressed as in:

PX,Y =

[
a
k . . . a

k 0 . . . 0
0 . . . 0 1−a

k . . . 1−a
k

]
(27)

and the output distribution PY, which can be obtained by the summations over columns, is

PY =
[
PY=y1 , . . . , PY=ym

]T
=

[
a
k

, . . . ,
a
k

,
1− a

k
, . . . ,

1− a
k

]T
. (28)

Binary symmetric channels: The binary symmetric channel (BSC) is a two input two output
channel described by the transition matrix

PY|X =

[
PY|X=x1

PY|X=x2

]
=

[
1− p p

p 1− p

]
, (29)

which is schematically described in Figure 2. Note that for p = 1
2 BSC reduces to a totally destructive97

channel, while in the case of p = 0 it reduces to a perfect channel.98

3.1. Sharma-Mittal information transfer measures axioms99

In this paper, we search for information theoretical measures of information transfer between
sender X and receiver Y, which communicate through a channel if the information is measured with
Sharma-Mittal entropy. Thus, we are interested in the information transfer measure, Iα,q(X, Y), which
is called the α-q-mutual information and its maximum,

C = max
PX

Iα,q(Y, X), (30)

which is called the α-q-capacity and which requires the following set of axioms to be satisfied.100

(A1) The channel cannot convey negative information, i.e.

Cα,q(X, Y) ≥ Iα,q(X, Y) ≥ 0. (31)
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(A2) The information transfer is zero in the case of a totally destructive channel, i.e.

PY|X(y|x) =
1
m

, for all x, y ⇒ Iα,q(X, Y) = Cα,q(X, Y) = 0, (32)

which is compatible with the conclusion that the probability of error is one, Perr(xi) = 1; for all101

xi, in the case of a totally destructive channel.102

(A3) In the case of perfect transmission, the information transfer is equal to the input information, i.e.

X = Y ⇒ Iα,q(X, Y) = Hα,q(X), Cα,q(X, Y) = Logqn, (33)

which is compatible with the conclusion that the probability of error is zero, Perr(xi) = 0; for103

all xi, in the case of a perfect transmission channel, so that all the information from the input is104

conveyed.105

(A4) The channel cannot transfer more information than it is possible to be sent, i.e.

Iα,q(Y, X) ≤ Cα,q(Y, X) ≤ Logq n, (34)

which means that a channel cannot add additional information.106

(A5) The channel cannot transfer more information than it is possible to be received, i.e.

Iα,q(Y, X) ≤ Cα,q(Y, X) ≤ Logq m, (35)

which means that a channel cannot add additional information.107

(A6) Consistency with the Shannon case:

lim
α→1,q→1

Iα,q(X, Y) = I(X, Y), and lim
α→1,q→1

Cα,q(X, Y) = C(X, Y) (36)

Thus, the axioms (A2) and (A3) ensure that the information measures are compatible with the108

maximum likelihood detection (18)-(20). On the other hand, the axioms (A1), (A4) and (A5), prevent109

a situation in which a physical system conveys information in spite of going through a completely110

destructive channel, or in which the negative information transfer is observed, indicating that the111

channel adds or removes information by itself, which could be treated as non-physical behavior112

without an intuitive explanation. Finally, the property (A6) ensure that the information transfer113

measures can be considered as generalizations of corresponding Shannon measures. For these reasons,114

we assume that the satisfaction of the properties (A1)-(A5) is mandatory for any reasonable definition115

of Sharma-Mittal information transfer measures.116

4. The α-mutual information and the α-capacity117

One of the first proposals for Rényi mutual information goes back to Arimoto [24] who considered
the following definition of mutual information:

Iα(X, Y) =
α

1− α
log

∑
y

(
∑
x

P(α)
X (x)Pα

Y|X(y | x)

) 1
α

 (37)

where the escort distribution PX(α) is defined as in

P(α)
X (X) =

PX(x)α

∑x PX(x)α
, α > 0, (38)
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and he also invented an iterative algorithm [35] for the computation of the α-capacity which is defined
form the α-mutual information:

Cα(PYX ) = max
PX

Iα(X, Y). (39)

Notably, the Arimoto’s mutual information can equivalently be represented using the conditional
Rényi entropy

Rα(X|Y) = α

α− 1
log2 ∑

y
PY(y)

(
∑
x

PX|Y=y(x)α

) 1
α

, (40)

as in
Iα(X, Y) ≡ Rα(X)− Rα(X|Y), (41)

which can be interpreted as the input uncertainty reduction after the output symbols are received and
in the case of α → 1, the previous definition reduces to Shannon case. In addition, this measure is
directly related to the famous Gallager exponent,

E0 (ρ, PX) = − log

∑
y

(
∑
x

PX(x)P
1

1+ρ

Y|X (y | x)

)1+ρ
 (42)

which has been wieldy used for establishing of upper bound of error probability in channel coded
communication systems [36] via the relationship [29]:

Iα(X, Y) =
α

1− α
E0

(
1
α
− 1, P(α)

X

)
(43)

In addition, in the case of α→ 1, it reduces to

I1(X, Y) = lim
α→1

Iα(X, Y) = I(X, Y), (44)

where

I(X, Y) = ∑
x,y

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PY(y)
(45)

stands for Shannon’s mutual information [37].118

The α-mutual information Iα(X, Y) and the α-capacity Cα(PYX ) satisfies the axioms (A1)-(A6) for119

q = 1 and α > 0 as stated by the following theorem, which further justify their usage as the measures120

of (maximal) information transfer.121

Theorem 1. The mutual information measures It
α(X, Y); t ∈ {a, s} satisfy the following set of properties122

(A1) The channel can not convey negative information, i.e.

Ct
α(X, Y) ≥ It

α(X, Y) ≥ 0. (46)

(A2) The (maximal) information transfer is zero in the case of totally destructive channel, i.e.

PY|X(y|x) =
1
m

, for all x, y ⇒ It
α(X, Y) = Ct

α(X, Y) = 0 (47)

(A3) In the case od perfect transmission, the (maximal) information transfer is equal to the (maximal) input
information, i.e.

X = Y ⇒ It
α(X, Y) = Rα(X), Ct

α(X, Y) = log n (48)
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(A4) The channel can not transfer more information than it is possible to send, i.e.

It
α(Y, X) ≤ Ct

α(Y, X) ≤ log n; (49)

(A5) The channel can not transfer more information than it is possible to receive, i.e.

It
α(Y, X) ≤ Ct

α(Y, X) ≤ log m. (50)

(A6) Consistency with Shannon case:

lim
α→1

It
α(X, Y) = I(X, Y), and lim

α→1
Ct

α(X, Y) = C(X, Y) (51)

Proof. As shown in [38], Rα(X|Y) ≤ Rα(X), and the nonnegativity property (A1) follows from the
definition of Arimoto’s mutual information (41). In addition, if X ⊥⊥ Y, then PY|X(y|x) = PY(y) so that
the definition (59) implies the property (A2). Furthermore, in the case of perfect transmission channel,
the mutual information (59) can be represented in

Iα(X, Y) =
α

α− 1
log

∑y

(
∑x PX(x)αPα

Y|X(y | x)
) 1

α

(
∑x P(α)

X (x)
) 1

α

=
α

α− 1
log

∑y

(
PX(d(y))αPα

Y|X(y | d(y))
) 1

α

(
∑x P(α)

X (x)
) 1

α

(52)
and since

∑
y

(
PX(d(y))αPα

Y|X(y | d(y))
) 1

α
= ∑

y
PX(d(y))PY|X(y | d(y)) =

∑
x

∑
y:d(y)=x

PX(d(y))PY|X(y | d(y)) = ∑
x

PX(x) ∑
y:d(y)=x

PY|X(y | x) = 1 (53)

we obtain Iα(X, Y) = Rα(X) which proves the property (A3). Moreover, from the definition as shown123

in [38], the Arimoto’s conditional entropy is positive and satisfies the weak chain rule Rα(X|Y) ≥124

Rα(X)− log m, so that the properties (A4) and (A5) follows from the definition of Arimoto’s mutual125

informatio (41). Finally, the property (A6) follows directly from the equation (44), and can be approved126

using L’Hôpital’s rule, which competes the proof of the theorem.127

128

5. Alternative definitions of the α-mutual information and the α-channel capacity129

Since Renyi’s proposal, there were several lines of the research for an appropriate definition and
characterization of information transfer measures related to Rényi entropy which are established by
the substitution of Rényi divergence measure,

Dα(P||Q) =
1

α− 1
log

(
∑
x

P(x)αQ(x)1−α

)
, (54)

instead of Kullback-Leibler one

D(P||Q) = D1(P||Q) = ∑
x

P(x) log
P(x)
Q(x)

, (55)
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in some of various definitions which are equivalent in the case of Shannon information measures (45)
[29]:

I(X, Y) = min
QY

E
[

Dα

(
PY|X‖QY

)]
= min

QY
E
[

Dα

(
PY|X‖QY

)]
= min

QX
min
QY

Dα (PX,Y‖QXQY) = Dα (PX,Y‖PXPY) = S(X)− S(X|Y) (56)

where S(X|Y) stands for Shannon conditional entropy.130

All of these measures are consistent with Shannon case in the view of the property (A6), but their131

direct usage as measures of Rényi information transfer leads to a breaking of some the properties132

(A1)-(A5), which justifies the usage of Arimoto’s measures from the previous section as appropriate133

ones in the context of this work. In this section, we review the alternative definitions.134

5.1. Information transfer measures by Sibson135

An alternative approaches based on Rényi divergence can were proposed by Sibson [39], who
introduced

Js
α(X; Y) = min

QY
Dα

(
PY|XPX‖QYPX

)
, (57)

which can be represented as in [40]

Js
α(X, Y) =

α

α− 1
log

∑
y

(
∑
x

PX(x)Pα
Y|X(y | x)

) 1
α

 (58)

and in the discrete setting can be related with Gallager exponent as in [29]:

Js
α(X, Y) =

α

1− α
E0

(
1
α
− 1, PX

)
(59)

which differs from Arimoto’s definition (59) since in this case the escort distribution does not participate136

in the error exponent, but an ordinary one. However, in the case of perfect channel for which137

X = Y, the conditional distribution Pα
Y|X(y | x) = 1 for x = y and zero otherwise, so that Sibson’s138

measure (58) reduces to R1/α, thus breaking the axiom (A3). This disadvantage can be overcame by139

reparametrization α ↔ 1/α so that Js
1/α(X, Y) is used as a measure of Rényi information transfer,140

and the properties of the resulting measure can be considered in a similar manner as in the case of141

Arimoto’s one.142

5.2. Information transfer measures by Augustin and Csiszar143

An alternative definition of Rényi mutual information was also presented by Augustin [25], and
latter Csiszar [26], who defined

Iac
α (X; Y) = min

QY
E
[

Dα

(
PY|X‖QY

)]
, (60)

However, in the case of perfect transmission, for which X = Y, the measure reduces to Shannon
entropy

Iac
α (X; Y) = S(X) (61)

which breaks the axiom (A3).144
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5.3. Information transfer measures by Lapidoth, Pfister, Tomamichel and Hayashi145

Similar obstacle as in the case of Augustin-Csiszar measure can be observed in the case of the
mutual information which was considered be Lapidoth and Pfister [27] and Tomamichel and Hayashi
[28] who proposed

Ilpth
α (X; Y) = min

QX
min
QY

Dα (PX,Y‖QXQY) . (62)

As shown in [27] (Lemma 11) if X = Y, then

Jα(X; Y) =


α

1−α R∞(X) if α ∈
[
0, 1

2

]
,

R α
2α−1

(X) if α > 1
2

R 1
2
(X) if α = ∞

(63)

so that the axiom (A3) is broken in this case, as well.146

Remark 1. Despite the difference between the definitions of information transfer, in the discrete setting, the147

alternative definitions discussed above reaches the same maximum over the set of input probability distributions,148

PX, [26], [41] and their operational characterization of these measures, their further properties, and their149

relevance in source and channel coding, hypothesis testing, cryptography and quantum information theory can150

be found in [40], [29], [42], [43], [44], [45], [46], [47], [48].151

5.4. Information transfer measures by Chapeau-Blondeau, Delahaies, Rousseau, Tridenski, Zamir, Ingber and152

Harremoes153

Chapeau-Blondeau, Delahaies and Rousseau [31], and independently Tridenski, Zamir and Ingber
[49] and by Harremoes [50] defined Rény mutual information using Rényi divergence (54), so that the
mutual information defined using the Rényi divergence

Jc
α(X, Y) = Dα (PX,Y‖PXPY) (64)

for α > 0 and α 6= 1, while in the case of α = 1 it reduces to Shannon mutual information. Note154

that the ordinal definition can correspond only to a Rényi entropy of order 2− α since in the case of155

X = Y it reduces to Ic
α(X, Y) = R2−α (see also [50]), which can be overcame by the reparametrization156

α = 2− q, similarly as in the case of Sibson’s measure. This measure have been discussed in the157

past with the various operational characterizations, and could be also considered as a measure of158

information transfer, although the satisfaction of all of the axioms (A1)-(A6) is not self-evident for a159

general channels.160

5.5. Information transfer measures by Jizba, Kleinert and Shefaat161

Finally, we mention the definition by Jizba, Kleinert and Shefaat [51],

J j
α(X, Y) ≡ Rα(X)− Rj

α(X|Y). (65)

which is defined in the same manner as in Arimoto’s case (41), but with another choice of conditional
Rényi entropy

Rj
α(X|Y) = 1

1− α
log ∑

x
P(α)

X (x)2(1−α)Rα(X|Y=y), (66)

which arises from Generalized Shannon-Khinchin axiom GSK4 if the pseudo-additivity in the equation162

(9) is restricted to an ordinary addition, at which case the GSK axioms uniquely determine Rényi163

entropy [52]. However, despite a wide applicability in modeling of causality and financial time series,164

this mutual information can take negative values which breaks the axiom (A1), which is assumed to be165
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mandatory in this work. For further discussion physicalism of negative mutual information in the166

domain of financial time series analysis, the reader is referred to [51]167

6. The α-q mutual information and the α-q capacity168

In the past several attempts were done to define an appropriate channel capacity measure which169

corresponds to instances of Sharma-Mittal entropy class. All of them follow a similar recipe by which170

the channel capacity is defined as in (30), as a maximum of appropriately defined mutual information171

Iα,q. However, all of the classes consider only a special cases of Sharma-Mittal entropy and, all of them172

fails down to satisfy at least one of the properties (A1)-(A5) that a information transfer has to satisfy, as173

we will discuss Section 7.174

In this section we propose a general measures of the α-q mutual information and the α-q capacity175

by the requirement that the axioms (A1)-(A5) are satisfied, which could qualify them as appropriate176

measures of information transfer, without non-physical properties. The special instances of the α-q177

(maximal) information transfer measures are also discussed and the analytic expressions for ninary178

symmetric channel are provided.179

6.1. The α-q information transfer measures and its instances180

The α-q-mutual information (41) is defined using the q-substraction defined in (6), as follows:

Ia
α,q(X, Y) = Hα,q(X)	q Hα,q(X|Y), (67)

where we introduced the conditional Sharma-Mittal entropy Hα,q(Y|X) as in

Hα,q(X|Y) = ηq (Rα(X|Y)) = 1
(1− q) ln 2


∑

y
PY(y)

(
∑
x

PX|Y=y(x)α

) 1
α


α(1−q)

α−1

− 1

 (68)

and Rα(X|Y) stands for Arimoto’s definition of conditional Rényi entropy (40).The expression (67)
can also be obtained if the mapping ηq is applied to the both sides of the equality (41) by which the
Arimoto’s mutual information is defined, so that we establish the relationship

Ia
α,q(X, Y) = ηq (Iα(X, Y)) = ηq

 α

1− α
log

∑
y

(
∑
x

P(α)
X (x)Pα

Y|X(y | x)

) 1
α

 (69)

and can be represented using Gallager error exponent (42) as in

Ia
α,q(X, Y) = ηq

(
α

1− α
E0

(
1
α
− 1, P(α)

X

))
=

1
(1− q) ln 2

(
2

α(1−q)
1−α E0

(
1
α−1,P(α)

X

)
− 1
)

. (70)

Arimoto’s α-q-capacity is now defined in

Cα,q = max
PX

Iα,q(X, Y) (71)

and using the fact that ηq is increasing it can be related with corresponding α-capacity as in

Cα,q = max
PX

Ia
α,q(X, Y) = max

PX
ηq (Iα(X, Y)) = ηq

(
max

PX
Iα(X, Y)

)
= ηq (Ca

α(X, Y)) . (72)
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In the same manner as in the case of the α-capacity, using the expressions (44), (45) and (1), for
α = 1 both Arimoto’s and Sibson’s α-q mutual information reduces to

I1,q =
1

(1− q) ln 2

(
∏
x,y

2
PX,Y(x,y) log

PX,Y (x,y)
PX (x)PY (y) − 1

)

=
1

(1− q) ln 2

(
∏
x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)

− 1

)
(73)

the α-q channel capacity is given in

C1,q = max
PX

(
1

(1− q) ln 2

(
∏
x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)

− 1

))
(74)

and these measures can serve as (maximal) information transfer measures corresponding to Gaussian181

entropy which was not considered before in the context of information transmission. Naturally, if in182

addition q→ 1, the measures reduce to Shannon’s mutual information and Shannon capacity [37].183

Additional special cases of the α-q (maximal) information transfer includes the α-mutual184

information (41) and the α-capacity (39), which are obtained for q = 1, while the measures which185

corresponds to Tsallis entropy can be obtained for q = α and the ones which corresponds to186

Landsberg-Vedral entropy for q = 2− α. These special instances are listed in Table 1.187

As discussed in Section 7, previously considered information measures cover only particular188

special cases and break at least one of the axioms (A1)-(A5), which lead to unexpected and189

counterintuitive conclusions about the channels, such as negative information transfer and achieving190

super-capacitance or sub-capacitance [4], which could be treated as a nonphysical behavior. On the191

other hand, apart from the generality, the α-q information transfer measures proposed in this work192

overcame the disadvantages which could qualify them as appropriate measures, as stated in the193

following theorem.194

Theorem 2. The α-q information transfer measures Iα,q(X, Y) and Cα,q satisfy the set of the axioms (A1)-(A6).195

Proof. The proof is straightforward application of the mapping ηq to the equations in the α-mutual196

information properties (A1)-(A5), while the (A6) follows from the above discussion.197

Remark 2. Note that the symmetry Iα,q(X, Y) = Iα,q(Y, X) does not hold in general neither in the case of198

Arimoto’s nor Sibson’s type defined Sharma-Mittal mutual information [53], [54] and if the mutual information199

is defined so that the symmetry is preserved, the property (A1) might be broken. In addition, the alternative200

definition of the mutual information, Iα,q(Y, X) = Hα,q(Y)− Hα,q(Y|X), which uses ordinary substraction201

operator instead of 	q operation, can also be introduced, but in this case the property (A4) might not hold in202

general, as discussed in Section 7.203

6.2. The α-q capacity of binary symmetric channels204

As shown by Cai and Verdú [42], the α-mutual information of Arimoto’s type Iα are maximized
for the uniform distribution PX = (1/2, 1/2), and Arimoto’s α-capacity has the value

Cα(BSC) = 1− rα(p), (75)

where the binary entropy function rα is defined

rα(p) = Rα(p, 1− p) =
1

1− α
log(pα + (1− p)α), (76)
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for α > 0, α 6= 1 while in the limit of α→ 1, the expression (76) reduces to the well known result for
the Shannon’s capacity (see Fano [55])

C1(BSC) = lim
α→1

Cα(BSC) = 1 + p log p + (1− p) log(1− p). (77)

The analytic expressions for the α-q-capacities of binary symmetric channel can be obtained from the
expressions (72) and (75), so that

Cα,q(BSC) = ηq (Cα(BSC)) =
1

(1− q) ln 2

(
21−q (pα + (1− p)α)−

1−q
1−α − 1

)
(78)

and in the case of q = 1 it reduces to the case of Rényi entropy, while in the case of α = 1, to the case of
Gaussian entropy (75)

C1,q(BSC) =
1

(1− q) ln 2

(
2pp(1− p)1−p − 1

)
(79)

The analytic expressions for BSC α-q capacities for another instances can straightforwardly be obtained205

by specifying the values of the parameters and the instances are listed in Table 1 and the plots of the206

BSC α-q-capacities which corresponds to Gausian and Tsallis entropies are shown in Figure 3 and207

Figure 4.208

The α-q-capacity (78) can equivalently be expressed in

Cα,q(BSC) = Logq 2	q hα,q(p), (80)

where Sharma-Mittal binary entropy function is defined in

hα,q(p) = Hα,q(p, 1− p) =
1

1− q

(
(pα + (1− p)α)

1−q
1−α − 1

)
, (81)

which reduces to Rényi binary entropy function

hα,1(p) = lim
q→1

hα,q(p) = Rα(p, 1− p) =
1

1− α
log (pα + (1− p)α)) , (82)

in the case of q = 1 and to Gaussian binary entropy function

h1,q(p) = lim
α→1

hα,q(p)Rα(p, 1− p) =
1

1− α
log (pα + (1− p)α)) , (83)

in the case of α = 1. The expression (80) can be interpreted similarly as in the Shannon case. Thus, for209

a BSC channel with input X and output Y can be modeled with an input-output relation Y = X⊕ Z210

where ⊕ stands for modulo 2 sum and Z is channel noise taking values from {1, 0} and is distributed211

in accordance to (p, 1− p). If we measure the information which is lost per bit during transmission212

with the Sharma-Mittal entropy Hα,q(Z) = hα(p), then Cα,q stands for useful information left over for213

every bit of information received.214

7. An overview of the previous approaches for Sharma-Mittal information transfer measures215

In this section, we review the previous attempts for the definition of Sharma-Mittal information216

transfer measures which are defined from the basic requirement of consistency with Shannon measure217

as given by the axiom (A6). However, as we show in the following paragraphs, all of them break at218

least one of the axioms (A1)-(A5), which are satisfied in the case of the α-q (maximal) information219

transfer measures (67) and (71), in accordance to the discussion from Section 6.220
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Figure 3. The α-q-capacity of BSC for Gaussian entropy (the case of α = 1) as a function of q for various
values of the channel parameter p from 0.5 (totally destructive channel) to 0 (perfect transmission). All
of the curves lies between 0 and Logq2, which is the maximum value of the Gaussian entropy.

0 1 2 3 4 5 6 7 8 9 10

q

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
q
,q

p = 0

Tq

(

1
2 ,

1
2

)

= Logq(2)

p = 0.5

Figure 4. The α-q-capacity of BSC for Tsallis entropy (the case of α = q) as a function of q for various
values of the channel parameter p from 0.5 (totally destructive channel) to 0 (perfect transmission). All
of the curves lies between 0 and Logq2, which is the maximum value of the Tsallis entropy.
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Hα,q Iα,q Cα,q

Rα

q = 1

α

1− α
E0

(
1
α − 1, P(α)

X

)
1− log(pα + (1− p)α)

1− α

Rα

q = 1

α

1− α
E0

(
1
α − 1, P(α)

X

)
1− log(pα + (1− p)α)

1− α

Tα

q = α

1
(1− α) ln 2

(
2αE0

(
1
α−1,P(α)

X

)
− 1
)

1
(1− α) ln 2

(
21−α(p

1
α + (1− p)

1
α )−α − 1

)

Lα

q = 2− α

1
(α− 1) ln 2

(
2−αE0

(
1
α−1,P(α)

X

)
− 1
)

1
(1− α) ln 2

(
21−α(pα + (1− p)α)−1 − 1

)

Gq

α = 1

1
(1− q) ln 2

(
∏x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)
− 1

)
1

(1− q) ln 2

(
21−q p(1−q)p(1− p)(1−q)(1−p) − 1

)

E0 (ρ, PX) = − log

(
∑y

(
∑x PX(x)P

1
1+ρ

Y|X(y | x)
)1+ρ

)
Table 1. The instances of the α-q-mutual information for different values of the parameters and
corresponding expressions for the BSC α-q-capacities.

7.1. Daróczy’s capacity221

The first considerations of generalized channel capacities and generalized mutual information for
the q-entropy goes back to Daróczy [30], who introduced the generalized of conditional entropy

TD
q (Y|X) = ∑

x
Pq

X(x)Tq(Y|X = x), (84)

where the row entropies are defined as in

Tq(Y|X = x) =
1

(1− q) log(2)

(
∑
x

PY|X(y|x)q − 1

)
. (85)

and the mutual information is defined as in

Jd
α,q(X, Y) = Tq(Y)− TD

q (Y|X), (86)

However, in the case of totally destructive channel, X ⊥⊥ Y, PY|X(y|x) = PY(y), Tq(Y|X = x) =
Tq(Y) and

Tq(Y|X) = Tq(Y)∑
x

PX(x)q (87)

so that

Jd
α,q(X, Y) = Tq(Y)

(
1−∑

x
PX(x)q

)
=

(
1−∑

x
PX(x)q

)
Logqm. (88)
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This expression is zero for an input probability distribution PX = (1, 0, . . . , 0) and its permutations,
but, in general, it is negative for q < 1, positive for q > 1 and 0 only for q = 1, so that the axiom (A2) is
broken (see Figure 5). As a result, the channel capacity which is defined in accordance to (30), is zero
for q ≤ 1, and positive for q > 1, which is illustrated in Figure 6 by the example of BSC for which the
Daroczy’s channel capacity can be computed as in [30], [56]

CD
BSC =

1− 21−q

q− 1
− 2−q

q− 1
[1− (1− p)q − pq]. (89)

In the same Figure, we plotted the graph for the α-q channel capacities proposed in this work, and all222

of them remain zero in the case of totally destructive BSC as expected.223

7.2. Yamano capacities224

Similar problems as above arise in the case of mutual information and corresponding capacity225

measures considered by Yamano [33] who addressed the information transmission which is226

characterized by Landsberg-Vedral entropy Lq, given in (16).227

Thus, the first proposal is based on the mutual information of the form

JY1
q (X, Y) = Lq(X) + Lq(Y)− Lq(X, Y) (90)

where the joint entropy is defined in

Lq(X, Y) =
1

q− 1

(
1

∑x,y PX,Y(x, y)q − 1

)
. (91)

However, in the case of fully destructive channel, PY(y) = 1/m and PX,Y(x, y) = PX(x)/m, so that

JY1
q (X, Y) =

1
q− 1

(
1

∑x PX(x)q − 1
)
+

1
q− 1

(
mq−1 − 1

)
− 1

q− 1

(
mq−1 1

∑x PX(x)q − 1
)

(92)

which can be simplified to

JY1
q (X, Y) =

1−mq−1

q− 1

(
1

∑x PX(x)q − 1
)

(93)

Similarly as in the case of Daroczy’s capacity this expression is zero for an input probability distribution
PX = (1, 0, . . . , 0) and its permutations, but, in general, it is negative for q > 1, positive for q < 1 and 0
only for q = 1, so that the axiom (A2) is broken (see Figure 5). In Figure 6 we illustrated the Yamano
channel capacity as a function of the parameter q, in the case of two input channel with PX = [a, 1− a],
the channel capacity is zero for q > 1 (which is obtained for PX = [1, 0]), and

CY
BSC =

1
q− 1

(
2q − 1− 22q−2

)
, (94)

for q > 1 (which is obtained for PX = [1/2, 1/2]). In the same Figure, we plotted the graph for the α-q228

channel capacities proposed in this work, and, as before, all of them remain zero in the case of totally229

destructive BSC as expected.230

Further attempts were done in [33], where the mutual information is defined following in an
analogous manner to (64) and (64), with the generalized divergence measure introduced in [57]. Thus,
the alternative measure for mutual information is defined in

JY
q (X, Y) =

1
(1− q) ln 2

1

∑x,y Pq
X,Y(x, y)

[
1−∑

x,y
PX,Y(x, y)

(
PX(x)PY(y)
PX,Y(x, y)

)1−q
]

. (95)
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Figure 5. Daróczy’s (solid lines) and Yamano’s (dashed lines) mutual information in the case
of totally destructive BSC as functions of the input distribution parameter a, PX = [a, 1− a]T

for different values of q, getting negative values for q < 1 and q > 1, respectively, breaking the
axioms (A1) and (A2). The α-q-mutual information is zero and satisfies (A1) and (A2)
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Figure 6. Daróczy’s (solid lines) and Yamano’s (dashed lines) capacities in the case of totally
destructive BSC as functions of the parameter q. In the regions of q < 1 and q > 1, respectively,
corresponding negative mutual information are maximized for PX = [1, 0]T (zero capacity) having
the positive values outside the regions and breaking the axiom (A2). The α-q-capacity is zero and
satisfies (A2).
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Figure 7. Landsberg-Vedral capacities for Landsberg-Vedral (solid lines) and Tsallis (dashed lines)
entropies in the case of (perfect) noisy channel with non-overlapping outputs with m outputs as
functions of q, for different values of m. The axiom (A4) is broken for all m > 2 and satisfied in
the case of corresponding α-q-capacities.

However, in the case of the simplest perfect communication channel for which X = Y, the mutual
information reduces to

JY
q (X, Y) =

1
(1− q) ln 2

1−∑x PX(x)2−q

∑x PX(x)q 6= Lq(X) (96)

which breaks the axiom (A3).231

7.3. Landsber-Vedral capacities232

To avoid these problems, Landsberg and Vedral [4] proposed the mutual information measure
and related channel capacities for Sharma-Mittal entropy class Hα,q, particularly considering the choice
of q = α, which corresponds to Tsallis entropy, q = 2− α and the case of q = 1 which corresponds to
Rényi entropy.

I(Y, X) = Hα,q(Y)− HLV
α,q (Y|X), (97)

where the conditional entropy HLV
α,q (Y|X) is defined as in

HLV
α,q (Y|X) = ∑

x
PX(x)Hα,q(Y|X = x) (98)

and

Hα,q(Y|X = x)LV =
1

1− q

(∑
y

PY|X=x(y|x)α

) 1−q
1−α

− 1

 , (99)
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Although this definition bear some similarities with the α-q mutual information proposed in233

formula (67), several key differences can be observed. The first one, it characterizes the information234

transfer as the output uncertainty reduction, after the input symbols are known, instead of input235

uncertainty reduction, after the output symbols are known (41). In addition, it uses the ordinary −236

operation, instead of the 	q one. Also note that the definition of conditional entropy (98) in generally237

differs from the definition proposed in (68).238

The definition (97) successfully the issue the axiom (A2) which appear in the case of Daroczy
capacity since in the case of totally destructive channel (X ⊥⊥ Y), PY|X(y|x) = PY(y) and Lq(Y|X =

x) = Lq(Y) and Lq(Y|X) = Lq(Y), so that Ilv
α,q(X, Y) = 0. However, the problems remains with the

axiom (A5), which can be observed in the case of noisy channel with non-overlapping outputs if the
number of channel inputs is lower than the number of the channel outputs n < m. Indeed, in the case
of noisy channel with non-overlapping outputs given by the transition matrix (25) both of the row
entropies Lq(Y|X = x) has the same value which is independent of x

Hα,q(Y|X = x) =
k1−q − 1

(q− 1) ln 2
= Logqk; for x = x1, x2, (100)

and the maximal value of Landsberg-Vedral mutual information (97) is obtained only by maximizing
Hα,q(Y) over PX, which is achieved if X is uniformly distributed, since in this cae Y is uniformly
distributed, as well (a = 1

2 in (26)), so that the maximal value of the output entropy is Hα,q(Y) =

Logq(2k) and the mutual information is maximized for.

C = Logq(2k)− Logq(k) (101)

which is greater than Logq(2) for k ≥ 2, i.e. for m ≥ 4 outputs, so that the axiom (A5) is broken, which239

is illustrated in Figure 7.240

7.4. Chapeau-Blondeau - Delahaies - Rousseau capacities241

Following the similar approach as in Section (5.4), Chapeau-Blondeau, Delahaies and Rousseau
considered the definition of mutual information which corresponds to Tsallis entropy using Tsallis
divergence,

Dq,q(P||Q) =
1

q− 1

(
∑
x

P(x)qQ(x)1−q − 1

)
, (102)

and can be written in

Ict
α (X, Y) = Dα,α (PX,Y‖PXPY) = ηα (Dα (PX,Y‖PXPY))

=
1

1− α

(
1−∑

x,y
PX,Y(x, y)αPX(x)1−αPY(y)1−α

)
. (103)

However, this definition is not directly applicable as a measure of information transfer fo Tsallis entropy242

with index q, since in the case of X = Y it reduces to Ic
q(X, Y) = T2−α, requries the reparametrization243

α = 2− q, similarly as in the Section 5.4, while the satisfaction of the axioms (A4)-(A5) is not self244

evident.245

8. Conclusion and future work246

A general treatment of Sharma-Mittal entropy transfer was provided together with the analyses247

of existing information transfer measures for non-additive Sharma-Mittal information transfer. It is248

shown that the existing definitions fails down to satisfy at least one of ineluctable properties common249

to Shannon case, by which the information transfer has to be non-negative, less than input and250

output uncertainty, equal to the input uncertainty in the case of perfect transmission and equal to251



Version May 18, 2021 submitted to Entropy 21 of 23

zero, in the case of totally destructive channel. Thus, breaking some of these properties implies252

unexpected and counterintuitive conclusions about the channels, such as achieving super-capacitance253

or sub-capacitance [4], which could be treated as a nonphysical behavior.254

In this work, alternative measures of the α-q mutual information and the α-q channel capacity255

were proposed so that all of ineluctable properties which are broken in the case of the Sharma-Mittal256

information transfer measures considered before, are satisfied, which could qualify them as physically257

consistent measure of information transfer. Taking into account the previous research in non-extensive258

statistical mechanics [3], where the linear growth of the system entropy has been recognized as259

an ineluctable property of physical quantity in non-extensive [58] and non-exponentially growing260

system [59], and taking into account the previous research from the field of information theory,261

where Sharma-Mittal entropy has been considered an appropriately scaling measure which provides262

extensive information rates [21], the α-q capacity seems to be a promising measure for characterization263

of information transmission in the scenarios where Shannon entropy rate diverges or disappears in264

infinite time limit.265
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