Full Paper Track

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Investigating and Mitigating Degree-Related Biases
in Graph Convolutional Networks

Xianfeng Tang', Huaxiu Yao', Yiwei Sun®, Yigi Wang?, Jiliang Tang*
Charu Aggarwal®, Prasenjit Mitra®, Suhang Wang ™

The Pennsylvania State UniversityT, Michigan State Universityi, IBM T.J. Watson, NY, USAS
{xut10,huy144,yus162,pum10, szw494}@psu.edu {wangy206,tangjili}@msu.edu charu@us.ibm.com

ABSTRACT

Graph Convolutional Networks (GCNs) show promising results for
semi-supervised learning tasks on graphs, thus become favorable
comparing with other approaches. Despite the remarkable success
of GCNe, it is difficult to train GCNs with insufficient supervision.
When labeled data are limited, the performance of GCNs becomes
unsatisfying for low-degree nodes. While some prior work analyze
successes and failures of GCNs on the entire model level, profiling
GCNs on individual node level is still underexplored.

In this paper, we analyze GCNs in regard to the node degree
distribution. From empirical observation to theoretical proof, we
confirm that GCNs are biased towards nodes with larger degrees
with higher accuracy on them, even if high-degree nodes are un-
derrepresented in most graphs. We further develop a novel Self-
Supervised-Learning Degree-Specific GCN (SL-DSGCN) that mit-
igate the degree-related biases of GCNs from model and data as-
pects. Firstly, we propose a degree-specific GCN layer that cap-
tures both discrepancies and similarities of nodes with different
degrees, which reduces the inner model-aspect biases of GCNs
caused by sharing the same parameters with all nodes. Secondly,
we design a self-supervised-learning algorithm that creates pseudo
labels with uncertainty scores on unlabeled nodes with a Bayesian
neural network. Pseudo labels increase the chance of connecting to
labeled neighbors for low-degree nodes, thus reducing the biases
of GCNs from the data perspective. Uncertainty scores are further
exploited to weight pseudo labels dynamically in the stochastic
gradient descent for SL-DSGCN. Experiments on three benchmark
datasets show SL-DSGCN not only outperforms state-of-the-art self-
training/self-supervised-learning GCN methods, but also improves
GCN accuracy dramatically for low-degree nodes.

ACM Reference Format:

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, YiqgiWang, Jiliang Tang and Charu
Aggarwal, Prasenjit Mitra, Suhang Wang. 2020. Investigating and Mitigating
Degree-Related Biases in Graph Convolutional Networks. In Proceedings
of the 29th ACM International Conference on Information and Knowledge
Management (CIKM’20), October 19-23, 2020, Virtual Event, Ireland. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3340531.3411872

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °20, October 19-23, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10...$15.00
https://doi.org/10.1145/3340531.3411872

1435

1 INTRODUCTION

Over last few years, Graph Convolutional Networks (GCNs) have
benefited many real world applications across different domains,
such as molecule design [37], financial fraud detection [29], traffic
prediction [30, 38], and user behavior analysis [11, 18, 27]. One of
the most important and challenging applications for GCNs is to
classify nodes in a semi-supervised manner. In semi-supervised
learning, GCNs recursively update the feature representation of
each node by applying node-agnostic transformation parameters.
The whole training process is supervised by a few labeled nodes. *

However, degree distributions of most real-world graphs (e.g.,
citation graphs, review graphs, etc.) are power-law [1, 6, 9]. While
the degree of major nodes are relatively small, few nodes on the
long-tail side can dominate the training/learning of GCNs (we refer
to Figure 1 in the analysis section as examples). We argue the power-
law distributed node degree could hurt the performance of GCNs.
On the one hand, nodes on such a graph are not independent and
identically distributed (i.i.d), thus the parameters of a GCN should
not be shared by all nodes. As suggested by [19], nodes with various
degrees play different roles in the graph. Taking social networks
as an example, high-degree nodes are usually leaders with higher
influence; while most low-degree ones are at the fringes of the
network. Current GCNs with node-agnostic parameters overlook
the complex relations and roles of nodes with different degrees. On
the other hand, the non-i.i.d node degrees can hurt the message-
passing mechanism of GCNs. In fact, the superior performance of
GCNs relies on the information propagating from labeled nodes
to unlabeled nodes [10]. Obviously, nodes with lower degrees are
less likely to be connected to labeled neighbors, compared with
high-degree ones. As a result, less information are passed to these
low-degree nodes, resulting in unsatisfying or even poor prediction
performance. Few literature have explored the effects of non-i.i.d
node degrees on real-world graphs. Recently, Wu et al. [31] propose
a multi-task learning framework for GCNs, where the degree in-
formation is encoded into learned node representations. However,
simply incorporating the value of degree as an extra feature does
not solve the potential biases of GCNs, and low-degree nodes still
suffer from the insufficient supervisions.

Therefore, in this paper, we analyze the degree-related biases in
GCNs thoroughly. First, we design a series of observational tests to
validate our assumption: the performance of GCNs are not evenly
distributed regarding node degrees, and GCNs are biased on low-
degree nodes. We further prove that the training of GCNs are more
sensitive to nodes with higher degrees using sensitivity analysis
and influence functions in statistics [16, 35]. Inspired by the analytic
results, we realize two challenges of addressing the degree-related

*Suhang Wang is the corresponding author.

Full Paper Track

biases in GCNs as follows: (C1) How to capture the complex
relation among nodes with different degrees? We recognize
three types of node relations including global shared relation, local
intra-relation, and local inter-relation. The global shared relation
captures the common property among all nodes in the whole graph
(i.e., what GCNs already done); the local intra-relation describes the
similarity of nodes with the same degree; and the local inter-relation
further characterizes the interacted information from nodes with
similar degrees, as they may behave likewise. Therefore, a suffi-
ciently generalized and powerful degree-specific GCN is required,
which not only balances the global generalization and local degree
customization of different nodes, but also captures local relation
among nodes with various degrees; and (C2) How to provide ef-
fective and robust information to facilitate the learning of
GCNs on low-degree nodes? It is non-trivial to make accurate
predictions with limited labeled neighbors, due to the biased in-
formation propagation. How to create sufficient supervisions for
low-degree nodes is extremely challenging.

To address these challenges, in this paper, we propose a novel
Self-Supervised-Learning Degree-Specific GCN (SL-DSGCN), which
reduces the biases from non-i.i.d node degrees in conventional
GCNs. In particular, we first design a degree-specific GNN layer,
which considers both globally shared information and local re-
lation among nodes with same degree value. A recurrent neural
network (RNN) based parameter generator is designed for model-
ing the inter-degree relation, which is ignored in the prior work
DEMO-Net [31]. We then leverage the massive unlabeled nodes to
construct artificial supervisions for low-degree nodes. We propose
a self-supervised-learning paradigm where a Bayesian neural net-
work serves as the teacher and assigns pseudo/soft labels jointly
with uncertainty scores on unlabeled nodes. We further utilize the
uncertainty scores as a guidance in stochastic gradient descent
to prevent overfitting inaccurate pseudo labels when training SL-
DSGCN. SL-DSGCN is evaluated on three benchmark datasets and
show superior performance over state-of-the-art methods. Besides,
it reduces label prediction error on low-degree nodes dramatically.

In summary, our contributions are three-fold:

We study a novel problem of addressing the degree-related biases
in GCNs. To the best of our knowledge, we are the first to analyze
this problem empirically and theoretically.

We design SL-DSGCN that tackles the degree-related biases in
GCNs from both model and data distribution aspects using the
proposed degree-specific GCN layer and self-learning algorithm,
correspondingly.

We validate SL-DSGCN on three benchmark graph datasets and
confirm that SL-DSGCN not only out-performs state-of-the-art
baselines, but also improves the prediction accuracy on low-
degree nodes significantly.

2 RELATED WORK

In this section, we review related works, which includes graph
neural networks and self-supervised learning.

2.1 Graph Convolutional Neural Networks

Graph data are ubiquitous in real-world. Recently, graph convo-
lutional neural networks (GCNNs) have achieved state-of-the-art
performance for many graph mining tasks [10, 15, 34], and many ef-
forts have been taken [13, 25, 26, 33, 35, 36]. In general, these GCNNs

1436

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

could be divided into two categorizes: spectral based GCNNs and
spatial-based GCNN . Bruna et al. firstly propose the spectral based
GCNN:Gs [4] by applying the spectral filter on the local spectral space
according to the spectral graph theory. Following this work, various
spectral-based GCNNSs [3, 8, 10, 15] are developed to improve the
performances. GCN [15] aggregates the neighborhood information
from the perspective of spectral theory. With the similar intuition,
GraphSAGE [10] extends prior works in the inductive setting. The
spectral based GCNNs usually require to compute the Laplacian
eigenvectors or the approximated eigenvalues as suggested by spec-
tral theory, and these methods are inefficient on large scale graph.
Different from the spectral based ones, to improve the efficiency,
the spatial-based GCNNs [2, 28, 39] attempt to directly capture
the spatial topological information and use the mini-batch training
schema. For example, DCNN[2] combines graph convolutional op-
erator with the diffusion process and Velickovi¢ et al. proposes the
graph attention network [28] with the self-attention mechanism on
the neighbors of the node and assign different weights accordingly
during the aggregation process. Of all these GCNNs, GNNs [15] are
highly favorable by the computer science community [17, 24] due
to the reliable performance. Thus, we select GCNs for this work.

Though GCNs have show promising results, recent advance-
ments [7, 34, 42] also reveal various issues of GCNs including the
over-smoothing and the vulnerability. In this paper, we empirically
validate a new issue of GCNNs, i.e., GCNNs are biased towards high-
degree nodes and have low accuracy on low-degree ones. A potential
reason is the imbalanced labeled node distribution. The issue is
amplified when the total amount of labeled node for training is
small.

2.2 Self-Supervised Learning

Recently, self-supervised learning, which generally refers to ex-
plicitly training models with automatically generated labels, has
become a successful approach in computer vision and natural lan-
guage processing for unsupervised pretraining and for addressing
the issue of lacking labeled data [14]. For example, pretext tasks
such as Image Inpainting [21] and Image Jigsaw Puzzle [20] are
widely adopted in computer vision domains.

The success of self-supervision has motivated its study in graph
mining domains. Though still in its early stage, there are a few
seminal work trying to exploit self-supervised training to improve
the performance of GCNs [12]. For example, Li et al. [17] propose
the co-training and self-training based GCN models by expanding
the training node set with pseudo labels from its nearest neighbor-
hoods; Sun et al. [24] combine DeepCluster [5] with a multi-stage
training framework so that the generalization performance of GCNs
with few labeled nodes are improved.

Despite their initial success, existing studies mainly utilize self-
supervised training as a trick for GCNs, without digging deep into
why self-supervised training can improve the performance and
what kind of nodes are benefited most from the self-supervised
training. Our work is inherently different from existing ones on
self-supervised GCNs. The lack of labeled neighborhoods among
low-degree nodes motivate us to explore self-supervised training
to balance the label distribution. The proposed self-supervision
based one teacher-student network is also different from existing
work. In addition, we also address the issue from the perspective of
degree-specific layers.

Full Paper Track

To the best of our knowledge, only few work address the de-
gree non-i.i.d sampled problem. DEMO-Net [31] learn the degree-
specific representation for each node via the explicitly designed
hash table. This work is significantly different from ours. Besides, it
fails to capture the similarity of nodes with close degree values, where
the RNN-based parameter generator in SL-DSGCN is able to do so.

3 PRELIMINARIES

We use G = (V, E,X) to denote a graph, where V = {0y, ...,0on}
is the set of N nodes, & C V X V represents the set of edges, and
X = {x1,...,xn} indicates node features. We use d; € R* to denote
the degree of node v;. In semi-supervised setting, partial nodes come
with labels and are denoted as VL, where the corresponding label
of node v; is y;. Similarly, the unlabeled part is defined as VY.

We introduce the architecture of a GCN. A GCN contains mul-
tiple layers. Each layer transforms its input node features to an-
other Euclidean space as output. Different from fully-connected
layers, a GCN layer takes first-order neighbors’ information into
consideration when transforming the feature vector of a node. This
“message-passing” mechanism ensures the initial features of any
two nodes can affect each other even if they are faraway neigh-
bors, along with the network going deeper. We use xg, to denote
the learned representation of node v from the I-th layer in a GNN
(I =1,---,L). Specifically, xg = X,. The output node features of
the I-th layer, which also formulate the input to the next layer, are
generated as follows:

1

= 0'(

1
l 0j EZ)\;(I) Vdi ’ d]

where N (i) denotes the immediate neighbor nodes of v; and o is
the activation function (e.g., ReLU).

We take node classification as an example task for the rest of the
paper, without loss of generality. The objective of training GNNs is
to minimize the following cross-entropy loss function:

L=), Le)=-) yilog

U,’E(VL DiE(VL

11
ij),

@

where y, and 7, are true and predicted labels, respectively. Typi-
cally, g, = Softmax(ng)) is acquired by applying Softmax to the
representations from the last layer.

4 DATA ANALYSIS

In this section, we conduct preliminary analysis on real-world

graphs to show the properties of real-world graphs for semi-supervised

node classification and the issue of GCNs on these datasets. The
preliminary analysis lays a solid foundation and paves us a way to
design better GCNs. Since we aim to discover the issue of GCNs
on real-world datasets, we choose four widely used datasets from
GCNes literature to perform the analysis, which includes Cora, Cite-
seer, Pubmed [15], and Reddit [10]. Note that the split of training,
validation and testing on all datasets are the same as described in
the cited papers.

4.1 Degree Distribution

The degree distribution of most real-world graphs follows the
power-law [1, 9]. To verify this, we plot the degree distribution of
the four datasets in Figure 1. As we can see from the figure, degrees

1437

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Cora Citeseer
00 1500
e Euso—
>
Ca00 Z1000 |
% “’ 7504
5]
=200 I 2 500
2504
. Ill-- o) Ill--___
8 8 10
Degree Degree
Pubmed Reddit
10000
2000
g 8000 E
1500’
< 6000 <
9] 9]
8 4000 “Grooo+
z =
I
NL1 I FEPEP | IHHHIHIIH
8 10 0 45 60 75
Degree Degree

Figure 1: Degree distribution.

of the majority of nodes are relatively low, and decrease as the value
of degree raise up. The shape of the degree distributions verify our
assumption. The power-law distribution indicates nodes on graph
are non-i.i.d distributed. Applying the same network parameters
on all nodes may result in sub-optimal prediction/classification.

4.2 Accuracy Varying Node Degree

GCNs rely on message-passing mechanism, and aggregates the
information from neighbors to learn representative embedding
vectors. Because the degree of nodes follows a nonuniform (power-
law) distribution, low-degree nodes, which are the majority, will
receive less information during the aggregation. As a results, the
error rate on low-degree nodes could be higher. To validate the
assumption, we train GCNs following the same setting in [15],
and report its error rate on node classification tasks w.r.t degree
of nodes. From Figure 2, we find that, when degree is small, the
error rate decreases significantly as the degree of nodes becomes
larger. This verify our assumption that low-degree nodes receive
less information during the aggregation and GCNss is biased against
low-degree nodes.

0a- Cora Citeseer
: 0.5
9 0.3 Qoaq
c o
— 0.3
o 021 e
= =
w Wwo.2
0.14 I
0.14
8
Degree Degree
Pubmed Reddit
0.301
0.5
0.28 1 o
0.4+
*éo.zs *é
+ 0.24 03
o
£=0.224 o2
w
0.20 1 I I 0.1
0.18 4 I
0.0*
8
Degree Degree

Figure 2: Error distribution w.r.t node degree.

Full Paper Track

Cora 0.4- Citeseer
o 0.5 o
S 0.4 5 03
e o
E 0.3 E 0.2
2 02 3
© @ 0.14
S o I I 4 I
00 8 ool
8 8
Degree Degree
004 Pubmed Reddit
o o 1.09
50.03 4)
o o
Bo.021 8
> Q9
%0 014 g 1
1 I I S
0.00*. ‘
8 45 60 75
Degree Degree

Figure 3: Ratio of being neighbor with a labeled node.

4.3 Labeled Neighbor Distribution

To further understand how the non-uniform degree distribution
hurts GCNs, we analyze the probability of being connected to any
labeled neighbor w.r.t node degree, as illustrated in Figure 3. We
can conclude that nodes with higher degrees are much more likely
to own labeled neighbors comparing with lower degree ones. In
training process, GCNs use back-propagation to update its neural
parameters such that the classification error on labeled nodes is
reduced. Thanks to the message-passing mechanism, nodes with
labeled neighbors participate more frequently in the optimization
process. As a result, GCNs performs better on high-degree nodes.

4.4 Bridging Node Degree and Biases in GCNs

Inspired by Koh and Liang [16] and Xu et al. [35], we borrow ideas
of sensitivity analysis and influence functions in statistics field to
measure the influence of a specific node to the accuracy of GCNs.
We first define node influence from node v; to vy as follows:

1(i, k) = || B(axt /axp), 3)

which measures how the feature of v; affects the training of GCN
on node vy. Because the loss function is defined purely on labeled
nodes, the influence of any unlabeled node (say v;) to the whole
GCN can be approximated by the overall influence of every labeled
node:

S(i) = Z 10, k). (4)
[eyL

We can summarize the relation of node degree and the performance

of GCNss in the following theorem:

THEOREM 4.1. Assume ReLU is the activation function. Let v; and
vj denote two nodes in a graph. If we have d; > d;, then the influence
score follows: S(i) > S(j) of an untrained GCN.

ProorF. The partial differential between xg and xg is derived as:

2

un €N (i)

ox! 1 1 axll
—L = — . diag(1,,) - WK .
oxXp ~d; o N, 9%

where o7 denote the output from the activation function (i.e. ReLU)
at the [-th GCN layer, and diag(1y,) is a diagonal mask matrix

®)

1438

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

representing the activation result. Using chain rule, we further
derive:

= \/did), - Z n —d1ag(ILg,) wl, (6)

p=11=L P
where ¥ is the set of all (L + 1)-length random-walk paths on the
graph from node v; to vy, and p! represents the I-th node on a
specific path p (p” and p° denote node i and k, accordingly). Note
that every path is fully-connected where v,,; € N (p™*1) for any p

and any [. Similar to Xu et al. [35], the expectation of axf /9%y can
be estimated as follows:

- g

p=1 \I=L P
-0 3 Y[
o eN(i) p=1
where p = (\/ﬁ/\/d_l) -diag(1e;) -WE only correlated to v; and vy,
and ¥, denote the set of all L-length walks from a neighborhood of
v; to vg. Assume the neighborhoods are randomly distributed (i.e.,
op is (near) randomly sampled), the expectation on walks starting
from neighborhoods can be replaced by a constant value v:

ZE ([—dlag(]l,,l) w)

p=1 lL1P

and we further have:
L

J) = pd;v = v/dyd; - diag(1s,) WL« \/(Ti,

axl
E 5Xk

axL axL
therefore, if d; > dj, then we have E >E . By summing

[—dlag(ILUl) wl) ()

lLlP

®)

up over all labeled nodes in V¥, we have S(i) > S(j). O

We validate our conclusion in Figure 4.

We first visualize the influence score distribution on a subgraph
of the Cora dataset in Figure 4a. Clearly, the hub node at the cen-
ter of the graph gains a much higher influence score than others.
We further analyze the distribution of the influence score on four
datasets, and report the results in Figure 4b. Clearly, the influence
score increases as the node degree becomes larger. This indicates
that nodes with larger degrees have higher impact on the training
process of GCN, resulting in imbalanced error rate distribution over
different degrees.

5 APPROACH

With the above analysis, we summarize the limitations of GCNs as
follows: (1) GCNs use the same set of parameters for all nodes and
fails to model the local intra- and inter- relations of nodes, resulting
in model-aspect biases; (2) low degree nodes are less likely to have
labeled neighbors and participate inactively when training GCNs,
such biases come from the data distribution aspect. To address these
issues, we propose SL-DSGCN that improves GCNs from two folds:
Firstly, we propose a degree-specific GCN (DSGCN) layer whose
parameters are generated by a recurrent neural network (RNN).
Nodes with different degrees have their own specific parameters
so that the local intra-relation is captured. Besides, as parameters

Full Paper Track

(a) Topology of influence score on a subgraph of Cora. Darker
colors denote higher influences.

le-4 Cora le-4 Citeseer
0201 o 5
S S
4
H15 9
(V] 3
o
cl.09 2
g g
EO.S* I I E 1
0o /M - - B - - - 0= Hm I —_
2 4 [} 8 10 2 4 6 8 10
Degree Degree
le-s Pubmed et Reddit
2.59 €
© Yos
02.01 o
[O
n 0no.6
wl5)
o v
104 5%
= =
= i = IHH\H\H\ N il ‘
om e _m_ o alll
2 4 6 8 10 0 15 30 45 60 75 90
Degree Degree

(b) Distribution of influence score varying node degree.

Figure 4: Distributions of the Influence Score.

are iteratively generated from the same RNN, their inner correla-
tions help model the inter-relation of nodes with similar degrees.
The DSGCN layer balances the global generalization and local dis-
crepancies for nodes with various degrees. Secondly, we design a
self-supervised-learning algorithm to construct pseudo labels with
uncertainty within unlabeled nodes. This is achieved by training
a Bayesian neural network (BNN). The DSGCN is fine-tuned on
both true and pseudo labels, where the artificial ones are weighted
according to their uncertainties. This prevents SL-DSGCN from
overfiiting to inaccurate pseudo labels.

5.1 Degree-Specific GCN Layer

As the training of a GCN is dominated by high-degree nodes, using
one set of parameters could lead to sub-optimal results. To increase
the diversity of learned parameters for nodes with different degrees,
following aggregation can be used to distinguish the degree-specific
information from the graph:

X£+1 = O'(Z a,'j(Wl +Wfi(j))xﬁ')’
JEN(D)

©

where Wfi) captures degree-specific information. W! is the origi-

nal GNN parameters at layer [in Eqn 1.

The design of W‘li(j)
way is making degree-specific parameters unique for all degrees.
However, the maximum value of node degree on a graph can be
extremely large due to the long-tail power-law distribution, con-
structing unique parameters for every degree is impractical. Besides,
some higher degrees are underrepresented, with only few nodes
available. How to prevent underfitting issue for them is also a chal-
lenging problem. To overcome this issue, Wu et al. [31] propose

is a non-trivial task. One straight-forward

1439

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

RNN
w, {wl —w — W — W4)
Node Features ‘
i o
g 2\\\3 ®
=" ®
5\6 X6

Figure 5: GNN with degree-specific trainable parameters.
Node features multiply with different parameters generated
by the RNN according to their degree.

a hashing-based solution where some degrees are mapped to the
same entry of a hash table containing multiple sets of GCN parame-
ters. By manually tuning the size of the hash table, the total number
of degree-specific parameters is under control.

However, the hashing-based approach randomly maps node de-
gree to parameters, and ignores the local inter-relations of nodes
with similar degrees. If two nodes have close degree values, their
may have a tight correlation. The necessity of capturing local inter-
relation of nodes motivates us to adopt an RNN to generate the
degree-specific parameters, which is shown in Figure 5. Specifi-
cally, let Wé denote the initialization input to an RNN cell RNN(+),
degree-specific parameters are generated as follows:

1
1/ (10)

where W]i 4 is the updated hidden state of the RNN after feeding

W]g as the input, and dmay is a threshold to prevent long-tail issue

=RNN(W}), k= 0,1, , dmax,

of the degrees. Nodes with degree higher than dmax are processed
using Wél ax+1- Lhe generated parameters can cover every degree.
The advantages of using an RNN are (1) as RNN is iterating over
all degrees, generated degree-specified parameters are correlated
with each other corresponding to the degree so that modeling
local inter-relations of nodes is guaranteed; (2) the total number
of actual trainable parameters is fixed (i.e., the initialization input
and parameters in the RNN cell), which is more efficient comparing
with setting up every Wﬁl (i) separately or use a hashing table. Note
that the generated parameters from RNN naturally capture the
local intra-relation because every degree has its unique parameters.
Besides, the shared parameters W handles the globally shared node
relations.

While the DSGCN layer reduces degree-related biases in GCNs
from the model aspect, low-degree nodes still participate less fre-
quently when training the DSGCN. To provide sufficient supervi-
sions for low-degree nodes, we introduce a self-supervised-learning
algorithm that creates high-quality pseudo-labels on unlabeled
nodes.

5.2 Self-Supervised-Training with Bayesian
Teacher Network

In most semi-supervised settings on graph data, the number of
unlabeled nodes is much larger than that of labeled ones (i.e.,
|'VE| < |VY|. We assume the existence of a graph annotator
that can heuristically generate pseudo-labels for nodes in VY, such
as propagation algorithm [41], label spreading [40], and PairWalks
[32]. The pseudo-labels are noisy and less accurate compared with
the true labels from V¥ because of the limitations of the annotator.

Full Paper Track

Degree-Specific GCN
(4Q]

)
l %BNN MIW
l

—_—

Annotator

Teac'h,er
Pseudo labels

(a) Pre-train student and teacher.

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Soft + True Labels (V£5)

P() Student
¢
ae) Teacher 0‘\0

B — b

b) Finetune the student on VLS with dynamic step size.
Yy P

Figure 6: Overall framework of SL-DSGCN.

The intuition of proposed self-learning algorithm is to leverage
the large amount of pseudo-labels in the training of GCNs so that
even for low-degree nodes can have labeled neighbors. However,
different from existing literature [17, 24] that use pseudo labels
in the same way of true labeled nodes, we also judge the quality
of pseudo labels to avoid overfitting on inaccurate pseudo labels.
Specifically, we design a Bayesian neural network as a teacher to
justify the quality of pseudo-labels from the annotator, so that the
GCNss as a student can fully exploit the pseudo-labels. There are
two steps of the self-learning process as illustrated in Figure 6.

5.2.1 Pre-training with the Annotator. Firstly, we build the student
network using the proposed degree-specific GNN layer. As shown
in Figure 6a, the student first applies multiple DSGCN layers over
the input graph (/(-) part) to capture the dependencies of graph
structure and to model the correlation among nodes with differ-
ent degrees. Taking the graph G as an input, /() transform each
node into its representation vector. To further classify each node,
we then apply fully-connected layers followed by a softmax layer
(¢(-) part) on representation vectors from ¢/ (-). Different from con-
ventional GNNS, the student network leverage i/(-) to learn data
representation from the graph, and assign the classification task to
the second part ¢(-). Using the pseudo labels from the annotator,
we pre-train the student network so that /() is fitted to the data
and ¢(-) becomes a noisy classifier. The whole student network is
represented by ¢(y/(-)).

However, simply treating all pseudo labels as ground truth will
hurt the performance. We then design a teacher network to estimate
the uncertainty of pseudo labels from the annotator. The teacher
network is constructed based on a Bayesian neural network (BNN)
[?]. We use the node representation from the data representation
learner ¥/(-) as the input, to train a fully-connected BNN using
real-world truely labeled nodes VL, as illustrated in Figure 6a. In
particular, the BNN aims at learning the posterior distribution of
its parameters, defined as follows:

PP (x)) o< p(Y(x)I5) - p(£), (11)

where { denotes the parameters of the BNN, p({) is the prior of
{ that contains our assumption of the network parameters, and
p(¥(x)]0) is the likelihood which describe the input data (i.e., node
representation from /(x)). The probability distributions of model
parameters { are updated with the Bayes theorem taking into ac-
count both the prior and the likelihood. Without loss of generalities,
we use normal distribution as the prior for the BNN. We fix the
representation learner when updating the BNN part, so that the

1440

wl
S,
%\\j <%

(a) Uncertainty scores from the
teacher network. Darker color
means higher uncertainty and
“T” denotes training nodes.

(b) Classification error of the
teacher network. Red and green
denote wrong and correct predic-
tion respectively, and black rep-
resents training nodes.

Figure 7: Uncertainty score and error distribution of the
teacher network. Generally, nodes closer to labeled (train-
ing) ones tend to have lower uncertainty and error rate.

teacher can leverage the knowledge from the annotated results.
Besides, training on top of {/(-) ensures the teacher is learning in
the same representation space of the student, so that the judge-
ment of unlabeled nodes in further steps is unbiased and has no
domain shifting for the student network. We use a two-layer fully-
connected network as the approximation for the likelihood. The
posterior mean p and posterior covariance k of the BNN is acquired
after training the BNN model, and are further used to create soft
labels on unlabeled nodes with uncertainties. In particular, for every
unlabeled node v; € VY, we acquire its prediction and uncertainty
score as follows:

y; = fu(x), o =g(k(xy)),

where f(-) and g(-) are two functions (e.g., neural networks) that
map the posterior mean and covariance vectors to desired soft label
and uncertainty score.

We visualize the prediction and uncertainty of the teacher BNN
trained on a small subset from the reddit network dataset in Figure
7. As we can see in Figure 7a, the uncertainty for labeled nodes
are almost zero, indicating the teacher fit the training data very
well. Meanwhile, we also observe that the uncertainty scores on
low degree nodes tend to be larger, which is consistent with our
previous analysis. As low degree nodes have less impact on the
training loss function and receive less supervision from labeled
neighbors, it is harder to generate a confident prediction for them.
Similarly in Figure 7b, it is more likely for low degree nodes to be
misclassified than high degree ones.

Full Paper Track

5.2.2 Fine-tuning Student with Uncertainty Scores. After the pre-
training of student and teacher network, the second step of the
self-learning process is fine-tuning the student network using gen-
erated labels and uncertainty scores from the teacher. We define a
softly-labeled node set VS ¢ VY where nodes in V° are labeled
identically by both the annotator and the teacher. The intuition is
similar to majority vote. Given large amount of unlabeled nodes, it is
worthwhile to compile a cleaner labeled node set as a compensation
to the existing true labeled nodes.

Existing works exploring self-learning for GNNs treat selected
pseudo labels in the same way of using labeled nodes. For example,
Li et al. [17] and Sun et al. [24] progressively add selected nodes
with pseudo labels into the training set. However, such solutions
are sub-optimal. One bottleneck is that all selected pseudo labels
are equally treated, and are utilized in the same way of true labeled
nodes. However, even for pseudo labels with high confidence, they
still contain more noise than the real labeled part.

Fortunately, the proposed BNN-based teacher network naturally
solves the above challenge. The generated uncertainty scores can be
utilized when training with pseudo labels. Specifically, we fine-tune
the student network on VIS = VL U VS using stochastic gradient
descent (SGD) algorithm, where the uncertainty score controls the
step size for each nodes in VLS. We use 6 to denote parameters in
the student network, the optimization (learning) goal is as follows:

6* = argmax, £(6) = Z L(0::0). (12)
UiE(VLS
The updating rule for parameters 6 is:
0 =0- Z niL(vi; 0), (13)
v; VLS
where 7; is a dynamic step size defined as follows:
mi=n-nf nf =n-exp(-acy) - exp(pdy), (14)

which contains three parts. The first part 5 is the global step size
used in classic SGD. The second part 17 penalize each sample (node)
by its quality, using the uncertainty score acquired from the teacher
network. We choose a negative exponential function over the uncer-
tainty score so that nodes with larger uncertainty participate less
in the updating process. The third term empirically assigns larger
weights to nodes with higher degrees according to the observations
in Figure 4a and Figure 7. Here « and f are hyperparameters that
balance three parts in the dynamic step size. Generally, larger val-
ues of « and/or ff pay more attention to the uncertainty scores and
the degree distribution, correspondingly. After fine-tining on VLS
using SGD with dynamic step size, we use the student network to
predict node labels.

5.3 Training Algorithm

We summarize the self-learning process in Algorithm 1. Line 1-3 are
the pre-training of student and teacher network. After acquiring
predictions and uncertainty scores from the pre-trained teacher in
Line 4, we compile VS using true labels and the softly-labeled
nodes (Line 5-6). Finally, as introduced in Line 7-9, the student
network is fine-tuned on VS with dynamic step size. Note that
although we select GCN as the basis of SL-DSGCN, the idea of
capturing globally shared, local intra- and inter- relations of nodes

1441

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

with an RNN-based parameter generator, and using self-supervised-
learning with dynamic step size are model agnostic. Namely, they
can also be applied on other GNN models, such as graph attention
networks [28], GraphSAGE [10], etc. We leave this part for future
work.

Algorithm 1: Self-learning for SL-DSGCN
Input: G = (V,8,X)
Output: Parameters 6 of student network ¢ (y/(-))
// Pre-training

Acquire pseudo-labels for VU using a graph annotator;
Pre-train ¢(¢/(+)) on pseudo labels;

Fix 1/(-) and pre-train BNN part of the teacher network;
Acquire prediction y; and uncertainty score c; for every

-

)

@

'S

node in VU from the teacher;
// Fine-tuning
Compile a soft-labeled node set VS ¢ VU where the
teacher network agrees with the annotator;
Build VLS = VL U VS to fine-tune the student network;
while not converge do

@«

a

® N

Compute dynamic step size n; for v; € VIS as
ni=n-n¢-nd

Update parameters of the student network as
0'=0- Zvie(VLS ni L(vi; 0);

©

10 end

6 EXPERIMENTS

In this section, we conduct experiments on real-world datasets to
evaluate the effectiveness of SL-DSGCN. In particular, we aim to
answer the following questions:

e Can SL-DSGCN outperform existing self-training algorithms for
GNNs on various benchmark datasets?

e How do the degree-specific design (DSGCN), the machine teach-
ing approach, and the dynamic step size contribute to SL-DSGCN?

e How sensitive of SL-DSGCN is on the selection of softly-labeled
node set?

Next, we start by introducing the experimental settings followed
by experiments on node classification to answer these questions.

6.1 Experimental Setup

6.1.1 Datasets. For a fair comparison, we adopt same benchmark
datasets used by Sun et al. [24] and Li et al. [17], including Cora,
Citeseer, Pubmed [22]. Each dataset contains a citation graph, where
nodes represent articles/papers and edges denote citation correla-
tion. Node features are constructed using bag-of words features.
The detailed statistics of the datasets are summarized in Table 1.

Table 1: Statistics of the Datasets

Dataset ‘Nodes Edges Classes Features

Cora 2708 5429 7 1433
CiteSeer | 3327 4732 6 3703
PubMed | 19717 44338 3 500

Full Paper Track

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Table 2: Node Classification Performance Comparison on Cora, Citseer and PubMed

Dataset Cora Citeseer PubMed
Label Rate 0.5% 1% 2% 3% 4% 0.5% 1% 2% 3% 4% 0.03% 0.06% 0.09%
LP 29.05 38.63 53.26 70.31 73.47 | 32.10 40.08 42.83 4532 49.01 39.01 48.7 56.73
ParWalks 37.01 41.40 50.84 58.24 63.78 19.66 23.70 29.17 35.61 42.65 | 35.15 40.27 51.33
GCN 35.89 46.00 60.00 71.15 75.68 | 34.50 4394 5442 56.22 58.71 4797 56.68 63.26
DEMO-Net | 33.56 40.05 61.18 72.80 77.11 36.18 43.35 53.38 56.5 59.85 | 48.15 57.24 62.95
Self-Train 4383 5245 6336 70.62 77.37 | 42.60 46.79 5292 58.37 60.42 | 57.67 61.84 64.73
Co-Train 40.99 52.08 64.27 73.04 75.86 | 40.98 56.51 5240 57.86 62.83 | 53.15 59.63 65.50
Union 45.86 53.59 64.86 73.28 77.41 4582 5438 5598 60.41 59.84 | 58.77 60.61 67.57
Interesction | 33.38 49.26 62.58 70.64 77.74 | 36.23 55.80 56.11 5874 62.96 | 59.70 60.21 63.97
M3S 50.28 58.74 68.04 75.09 78.80 | 48.96 53.25 5834 6195 63.03 | 59.31 65.25 70.75
SL-DSGCN ‘ 53.58 61.36 70.31 80.15 81.05 ‘ 54.07 56.68 59.93 62.20 64.45 ‘ 61.15 65.68 71.78

6.1.2 Baselines. We compare SL-DSGCN with representative and
state-of-the-art node classification algorithms, which includes:

e LP [41]: Label Propagation is a classical self-supervised learning
algorithm which where we iteratively assign labels to unlabelled
points by propagating labels through the graph. It serves as the
weak annotator in our framework.

e ParWalks [32]: ParWalks extends label propagation by using
partially absorbing random walk.

e GCN [15]: GCN is a widely used graph neural network. It defines
graph convolution via spectral analysis.

o DEMO-Net [31]: It proposes multi-task graph convolution where
each task represents node representation learning for nodes with
a specific degree value, thus leading to preserving the degree spe-
cific graph structure. DEMO-net also contains other constraints
to improve the representation learning, including order-free and
seed-oriented. These constraints are removed for a fair compari-
son because they do not tackle the degree-related biases of GCNis,
and can be applied on all above methods. We choose the weight
version of DEMO-net due to better performances.

e Co-Training [17]: This method uses the ParWalk to find the most
confident vertices — the nearest neighbors to the labeled vertices
of each class, and then add them to the label set to train a GCN.

e Self-Training, Union and Intersection [17]: Self-training picks
the most confident soft-labels of GCN and puts it into the labeled
node set to improve the performance of GCN. Union takes the
union of the most confident soft-labels by both GCN and ParWalk
as self-supervision while Intersection takes the intersection of
the two as the self-supervision.

e MS3S [24]: Multi-Stage Self-Supervised Training leverages Deep-
Cluster technique to provide self-supervision and utilizes the
cluster information to iterative train GNN.

6.1.3 Settings and Hyperparameters. The training and testing set
are generated as follows: we randomly sample x% of nodes for
training, 35% nodes for testing, and treat the remained nodes as
unlabeled ones for each dataset. Furthermore, to understand how
SL-DSGCN performs under various label sparsity scenarios in real-
world, for CORA and Citeseer, we vary x as {0.5,1, 2, 3,4}. Since
PubMed is relative larger than Cora and CiteSeer, we vary x as
{0.03,0.06,0.09} for it. Note that we set x as small values because
in typical setting of real-world semi-supervised node classification
tasks, only a small amount of nodes are labeled for training [17, 24].

1442

We adopt the same hyper-parameters for GCN as introduced by
Kipf and Welling [15], which is a two-layer GCN with 16 hidden
units on each layer. For DEMO-Net, Self-Train, Co-train, Union,
and Intersection, we adopt their public code and tune hyperparam-
eters for the best performance. We implement M3S following the
descriptions in the paper [24]. For the student network part, both
¢(-) and () are implemented by one DSGCN layer. We set dmax
to 10. The Bayesian neural network part of the teacher contains
two fully-connected layers, each contains 16 hidden units. We fix a
and f to 1. Note that for fair comparison, we set all self-supervised-
learning GCNs to two-layers with 16 hidden units, which is aligned
with both GCN and SL-DSGCN. We report the averaged results
over 10 times of running.

6.2 Node Classification Performance

To answer the first research question, we conduct node classification
with comparison to existing self-training algorithms for GNNs on
the datasets introduced above. The experimental results in terms
of accuracy for the three datasets are reported in Table 2. From the
table, we make the following observations:

e Generally, self-supervision based approaches such as M3S, Inter-
section and Union outperform algorithms without self-supervision
such as LP and GCN, which implies that self-supervision could
help provide more labeled nodes to training so that the percent-
age of labeled neighborhood of low-degree increases.

o Aslabel rate x increases, the performance improvement of self-
supervision based approaches over non-self-supervision approaches
decreases. For example, on Cora dataset, as x increase from 0.5%
to 4%, the performance improvement of M3S and SL-DGNN over
GCN are {14.39,12.74,8.04,3.94,3.12} and {17.69, 15.36, 10.31,
9.00,5.37}, respectively. This is because as the amount of la-
beled data increases, the percentage of labeled neighborhood
of low-degree also increases, which makes the introduction of
self-supervision less useful.

e For all the three datasets and label rate, SL-DSGCN consistently
outperforms all the baselines significantly, which shows the ef-
fectiveness of the proposed framework. In particular, both M3S
and SL-DSGCN adopt self-supervision. SL-DSGCN significantly
outperforms M3S because SL-DSGCN explicitly model degree-
specific GNN layer through LSTM, which could benefit the low-
degree nodes more.

Full Paper Track

Cora 50 Citeseer
807 mm GeN = GCN
DSGNN 70 DSGNN
> SL-DSGNN SL-DSGNN
Y60 0
© 260
—_
S —_
0 REY
Qa0 Q
< <Tao
30
20 I I |
2 4 6 8 10 2 4 6 8 10
Degree Degree

Figure 8: Node Classification Performance on Nodes with
Different Degrees

6.3 Performance on Low Degree Nodes

SL-DSGCN is motivated by the observation that the number of
labeled nodes for low-degree nodes is very much smaller than
that of high-degree nodes, which makes GNN biased towards high-
degree nodes. Thus, degree specific GNN layer and self-training
with Bayesian teacher networks are leveraged to alleviate the issue.
To validate the effectiveness of the proposed framework SL-DSGCN
on low-degree nodes, we further visualize the node classification
performance of low-degree nodes on Cora and Citeseer in Figure 8.
Note that for Cora and Citeseer, 96.45% and 97.53% nodes have a
degree less than 11. From the figure, we observe that:

e Both DSGCN and SL-DSGCN outperform GNN significantly, espe-
cially on node with small degrees, which shows the effectiveness
of degree specific layer and self-supervision for improving per-
formance of low-degree nodes. In addition, SL-DSGCN has better
performance than DSGCN, which implies that the degree spe-
cific layer and self-supervision improves the performance from
two different perspectives. Degree specific layer tries to learn
node-specific parameters to reduce the bias towards high-degree
nodes while self-supervision tries to improve the number labeled
nodes in each node’s neighborhood.

When degree the node degree is very small, say {1,2,3,4,5}, the
improvement of DSGCN and SL-DSGCN is very significant. As
the degree become larger, the improvement becomes smaller. This
is because when degree is very small, most of these nodes have
very few labeled nodes in their neighborhood. A small amount
of soft-label and the degree-specific parameters could improve
the performance a lot. However, when the degree become larger,
there are already enough supervision to train a good GNN, which
makes the improvement insignificant. However, as the major-
ity nodes in graphs are low degree nodes, SL-DSGCN can still
improve the overall performance significantly.

6.4 Ablation Study

In this subsection, we conduct ablation study to understand the im-
pact of degree-specific GNN, the dynamic step size for SGD, and the
self-teaching algorithm, which answers the second research ques-
tion. Specifically, several variations of SL-DSGCN are compared
including (1): DSGCN which applies the degree-specific parameters
on GCN; (2) MT-GNN which replace the dynamic step size with
original one and remove the softly-labeled node set from V9 (ie.,
only use the labeled nodes for fine-tuning the student network).
MT-GNN can be treated as a GNN enhanced by the vanilla machine
teaching algorithm; (3) SL-DSGCN g which removes the dynamic
step size; and (4) SL-GNN which removes the degree-specific design
in the student network. The performance of SL-DSGCN and the

1443

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Table 3: Ablation study on Cora dataset.

Label Rate | 0.5% 1% 2% 3% 4%
DSGCN 36.11 47.67 61.91 73.87 77.03
MT-GNN | 50.51 57.47 67.26 7852 78.84
SL-DSGCNy | 51.36 59.85 6881 79.14 79.90
SL-GNN 52.05 6041 69.51 79.75 80.21
SL-DSGCN | 5358 61.36 7031 80.15 81.05

Table 4: Ablation study on Citeseer dataset.

Label Rate | 0.5% 1% 2% 3% 4%
DSGCN | 37.51 4475 5541 569 60.24
MT-GNN | 49.78 50.75 55.14 59.01 61.23
SL-DSGCNy | 51.89 5326 5838 60.63 62.15
SL-GNN | 52.77 5479 57.27 61.98 63.99
SL-DSGCN | 54.07 56.68 59.93 62.20 64.45

Table 5: Influence of the softly-labeled node set.

Dataset ‘ Node set ‘ 0.5% 1% 2% 3% 4%

DSGCN 36.11 47.67 6191 73.87 77.03

C Vs 47.21 55.10 67.15 76.39 75.07
ora ‘%

(VT 50.73 58.29 6885 77.24 76.93

SL-DSGCN | 53.58 61.36 70.31 80.15 81.05

DSGCN 37.51 44.75 5541 56.9 60.24

. (VS 50.68 53.42 57.10 60.52 60.63
Citeseer ’g

Vi 52.25 5280 55.13 61.82 61.01

SL-DSGCN | 54.07 56.68 59.93 62.20 64.45

variants on Cora and Citeseer are reported in Table 3 and 4, respec-
tively. From these two tables, we observe that: (i) In terms of the
comparison between SL-GNN and SL-DSGCN, SL-DSGCN performs
slightly better than SL-GNN, which shows that degree specific layer
can slightly improve the performance; (ii) In terms of the compari-
son between SL-DSGCN ¢ and SL-DSGCN, SL-DSGCN has better
performance than SL-DSGCN, which is because SL-DSGCN g
doesn’t adopt the dynamic step size; and (iii) SL-DSGCN signifi-
cantly outperforms DSGCN, which shows the effectiveness of the
proposed self-supervised training.

6.5 Sensitivity on Softly-labeled Node Set

In this subsection, we further analyze how the construction of
softly-labeled node set can impact the performance of SL-DSGCN.
We compare the intersection approach in SL-DSGCN with the fol-
lowing alternations: (1) using pseudo labels from the annotator
and build (Vj for all unlabeled nodes; (2) using predictions from

the teacher network and compile (Vig for all unlabeled nodes; and
(3) without adding any soft labels, which is actually DSGCN. The
node classification performance of SL-DSGCN with comparison
to the three alternatives is reported in Table 5. From the table, we
make the following observations: (i) Compared with training with-
out soft-labels, i.e., trained on VL only, using soft-labels, i.e., V3,
"Vj‘? and V5, can significantly improve the performance, which
shows the importance of soft-labels in providing supervision to
GNN for classification; and (ii) Though V<, (V; and VS all utilize

Full Paper Track

soft-labels, the performance of VS is much better than V g and

’VTS , which indicates that the teacher network and the annotator
may infer some wrongly labeled nodes that could negatively affect
the performance. Taking the intersection of these two can help pick
nodes with correct soft labels and improve the performance.

7 CONCLUSION

In this paper, we empirically analyze an issue of GNN for semi-
supervised node classification, i.e., when labeled nodes are ran-
domly distributed on the graph, nodes with low degrees tend to
have very few labeled nodes, which results in sub-optimal perfor-
mance on low-degree nodes. To solve this issue, we propose a novel
framework SL-DSGCN, which leverages degree-specific GCN layers
and the self-supervised-learning with Bayesian teacher network
to introduce more labeled neighbors for low-degree nodes. Experi-
mental results on real-world detests demonstrate the effectiveness
of the proposed framework for semi-supervised node classifica-
tion. Further experiments are conducted to help understand the
contributions of each components of SL-DSGCN.

There are several interesting directions which need further in-
vestigation. First, the proposed DSGCN layer and self-supervised-
learning with Bayesian teacher network are generic framework
which can benefit various GNNs. In this paper, we only use GCN as
backbone. We will investigate the framework for other GNNs such
as GAT [28]. Second, we mainly focus on the degree issue of attrib-
uted graphs. Heterogeneous information networks [23] are also per-
vasive in the real world. Similar issue also exists in heterogeneous
graphs. Therefore, we will extend SL-DSGCN for heterogeneously
network by considering different types of links/edges.

ACKNOWLEDGEMENT

This material is based upon work supported by, or in part by, the
National Science Foundation (NSF) under grant IIS-1909702, IIS-
1955851, and the Global Research Outreach program of Samsung
Advanced Institute of Technology under grant #225003. The find-
ings and conclusions in this paper do not necessarily reflect the
view of the funding agency.

REFERENCES

[1] Réka Albert and Albert-Laszl6 Barabasi. 2002. Statistical mechanics of complex
networks. Reviews of modern physics (2002).

[2] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

In Advances in neural information processing systems.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE

Signal Processing Magazine (2017).

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral

networks and locally connected networks on graphs. arXiv:1312.6203 (2013).

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. 2018.

Deep clustering for unsupervised learning of visual features. In ECCV.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark E] Newman. 2009. Power-law

distributions in empirical data. STAM review (2009).

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2019.

Adversarial attack on graph structured data. In ICML.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. In NeurIPS.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law

relationships of the internet topology. ACM SIGCOMM computer communication

review (1999).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurlIPS.

Chao Huang, Xian Wu, Xuchao Zhang, Chuxu Zhang, Jiashu Zhao, Dawei Yin,

and Nitesh V Chawla. 2019. Online purchase prediction via multi-scale modeling

of behavior dynamics. In KDD.

(3]

(4]

1444

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

[12] Wei Jin, Tyler Derr, Haochen Liu, Yigi Wang, Suhang Wang, Zitao Liu, and
Jiliang Tang. 2020. Self-supervised Learning on Graphs: Deep Insights and New
Direction. arXiv preprint arXiv:2006.10141 (2020).

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. 2020.
Graph Structure Learning for Robust Graph Neural Networks. arXiv:2005.10203
(2020).

Longlong Jing and Yingli Tian. 2020. Self-supervised visual feature learning with
deep neural networks: A survey. T-PAMI (2020).

Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. In ICML.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAL

Ruirui Li, Xian Wu, Xian Wu, and Wei Wang. 2020. Few-Shot Learning for New
User Recommendation in Location-based Social Networks. In WWW.

Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and
Bobby Bhattacharjee. 2007. Measurement and analysis of online social networks.
In SIGCOMM.

Mehdi Noroozi and Paolo Favaro. 2016. Unsupervised learning of visual repre-
sentations by solving jigsaw puzzles. In ECCV.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros. 2016. Context encoders: Feature learning by inpainting. In CVPR.
Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine
(2008).

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2016. A survey
of heterogeneous information network analysis. TKDE (2016).

Ke Sun, Zhouchen Lin, and Zhanxing Zhu. 2019. Multi-Stage Self-Supervised
Learning for Graph Convolutional Networks on Graphs with Few Labels.
arXiv:1902.11038 (2019).

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.
2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A
Hierarchical Reinforcement Learning Approach. In WWW. 673-683.

Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang
Wang. 2020. Transferring Robustness for Graph Neural Network Against Poison-
ing Attacks. In WSDM.

Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang
Wang. 2020. Knowing your FATE: Friendship, Action and Temporal Explanations
for User Engagement Prediction on Social Apps. arXiv:2006.06427 (2020).

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv:1710.10903 (2017).
Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,
Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A Semi-supervised Graph
Attentive Network for Financial Fraud Detection. In ICDM.

Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia,
and Jian Yu. 2020. Traffic Flow Prediction via Spatial Temporal Graph Neural
Network. In WWW.

Jun Wu, Jingrui He, and Jiejun Xu. 2019. Demo-net: Degree-specific graph neural
networks for node and graph classification. In KDD.

Xiao-Ming Wu, Zhenguo Li, Anthony M So, John Wright, and Shih-Fu Chang.
2012. Learning with partially absorbing random walks. In NeurIPS.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Neural Networks and Learning Systems (2020).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv:1810.00826 (2018).

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. arXiv:1806.03536 (2018).

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. 2018. Graph
convolutional policy network for goal-directed molecular graph generation. In
NeurlIPS.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph
convolutional networks: A deep learning framework for traffic forecasting.
arXiv:1709.04875 (2017).

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
2018. Gaan: Gated attention networks for learning on large and spatiotemporal
graphs. arXiv:1803.07294 (2018).

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard
Schélkopf. 2004. Learning with local and global consistency. In NeurIPS.
Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled
data with label propagation. (2002).

Daniel Zagner, Amir Akbarnejad, and Stephan Giinnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD.

(13]

[14

[15]
[16]

[17

(18

[19]

[20]
[21]

[22

[23

[24]

[25

[26

[27

[28

[29

[30

[31]
[32]

(33]

(34]

[35

[36]

[37

[39

[40

[41

[42

