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ABSTRACT

Graph translation is very promising research direction and has a
wide range of potential real-world applications. Graph is a natural
structure for representing relationship and interactions, and its
translation can encode the intrinsic semantic changes of relation-
ships in different scenarios. However, despite its seemingly wide
possibilities, usage of graph translation so far is still quite limited.
One important reason is the lack of high-quality paired dataset. For
example, we can easily build graphs representing peoples’ shared
music tastes and those representing co-purchase behavior, but a
well paired dataset is much more expensive to obtain. Therefore,
in this work, we seek to provide a graph translation model in the
semi-supervised scenario. This task is non-trivial, because graph
translation involves changing the semantics in the form of link
topology and node attributes, which is difficult to capture due to
the combinatory nature and inter-dependencies. Furthermore, due
to the high order of freedom in graph’s composition, it is difficult to
assure the generalization ability of trained models. These difficul-
ties impose a tighter requirement for the exploitation of unpaired
samples. Addressing them, we propose to construct a dual repre-
sentation space, where transformation is performed explicitly to
model the semantic transitions. Special encoder/decoder structures
are designed, and auxiliary mutual information loss is also adopted
to enforce the alignment of unpaired/paired examples. We evaluate
the proposed method in three different datasets.
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1 INTRODUCTION

Graph-to-Graph translation aims at transforming a graph in the
source domain to a new graph in the target domain, where different
domains correspond to different states. Figure 1 gives an illustration
of the graph-to-graph translation process. The graph in the source
domain depicts shared music tastes of users, with each attributed
node representing a user and the user’s portraits. We want to trans-
late the attributed graph of shared music tastes to co-watch graph in
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Figure 1: An example of graph-to-graph translation
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the target domain, which represents similar reading preference. The
translation function is expected to generate the target graph based
on the source graph. It is in effect learning to capture the intrinsic
attributes, like aesthetic preferences and personal characters in this
case, and discovering the patterns behind that domain transition.
It can facilitate many real-world applications. For instance, given
the brain network of a healthy subject, we may want to predict
the brain network when the subject has certain disease. Given the
traffic flow of a city, we want to estimate the traffic flow when
events such as concert is held in the city.

The popularity of graph translation is attracting increasing at-
tention and several efforts have been made. Most of them focus on
modeling the transition of graph topology in the form of edge exis-
tence and node attributes across the source and the target domains.
For example, [10] formally defined this task and proposed a basic
framework based on edge-node interactions. [11] extended previ-
ous work by building two parallel paths for updating nodes and
edges respectively, and introduced a graph frequency regulariza-
tion term to maintain the inherent consistency of predicted graphs.
There are also some other works focusing on special needs of dif-
ferent applications. For example, [6] introduced domain knowledge
into the translator design for reaction prediction, and [28] adopted
multi-head attention to capture the patterns in skeleton mapping.

Despite their dedications, all aforementioned graph-to-graph
translation algorithms investigate fully-supervised setting, i.e., large-
scale paired graphs in source and target domain are available to
provide supervision for learning translation patterns. However, for
many domains, obtaining large-scale paired graphs is a non-trivial
task, sometimes even impossible. The source and target graphs are
expected to share the exactly same node sets, which is expensive
to guarantee and collect in large scale. For example, in Figure 1,
the source-domain graphs can be obtained from music streaming
platforms like Spotify, and the target domain from e-book platforms
like Amazon Kindle. It is difficult to build the corresponding pairs,
as users could use different IDs across those two platforms. Another
example is the brain networks, where two domains are brain activ-
ity patterns of healthy people and Dyslexia patients respectively.
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In this case, constructing pairs would need the same person in both
healthy and diseased situation, which is impossible.

Although large-scale paired graph dataset is difficult to collect,
dataset with limited number of paired graphs and large number of
unpaired graphs is much easier to build, which enables us to ex-
plore semi-supervision techniques addressing this problem. Graph
translation follows the classical auto-encoder framework, with an
encoder in source domain and a decoder in target domain. Through
introducing auxiliary reconstruction tasks and building a source-
domain decoder and a target-domain encoder, those mono-domain
graphs can be utilized to boost the learning process. Recovering the
original source graph imposes a higher requirement on the source-
domain encoder to extract more complete and representative fea-
tures, and reconstructing the graph based on the its embedding can
also guide the target-domain decoder to model the real graph distri-
butions in the that domain. However, directly extending previous
works in this manner has its pitfalls. The source and target domains
are assumed to share one same embedding space, and the extracted
embedding of source graphs are used for both reconstruction task
and translation task, which makes it difficult to model the semantic
drifts across two domains. Take 1 for example, embedding of node 2
would be close to node 3 as a result of message-passing mechanism
in the source domain, but they are supposed to be distant in order
to recover the non-connection information in the target domain.
This trade-off could impair model’s expressive ability and lead it to
get sub-optimal performance.

To cope with this semantic gap, we design a new framework,
which we call as SegTran, as shown in Figure 2. Concretely, we de-
sign a specific translation module to model the semantic transition
explicitly and enforce the alignment across two domains. This trans-
lation module is trained on the limited number of paired graphs,
while other components can benefit from both paired cross-domain
graphs and unpaired mono-domain graphs during training. Further-
more, to assure that patterns captured by the translation module
is general, we also explored providing auxiliary training signals
for it by maximizing the mutual information between the source
graph and its translation results. The structures of the encoder and
decoder are also specially designed, as graph translation facing
some intrinsic difficulties, due to diverse topology and the inter-
dependency between nodes and edges [10]. The main contributions
of the paper are:

e We propose a new framework for graph translation which
is better at coping with the semi-supervised scenario. It can
promote future research of graph translation algorithms as
the lack of large scale paired dataset is one key obstacle its
exploration and applications.

We design novel encoder/decoder architectures by using
position embedding, multi-head attention, along with an
explicit translation module, to achieve higher expressive
ability. The design of each component is well-justified.
Experiments are performed on three large datasets, and our
model achieved the state of art result on all of them. Exten-
sive analysis of our model’s behavior is also presented.

The rest of the paper are organized as follows. In Sec. 2, we
review related work. In Sec. 3, we formally define the problem.
In Sec. 4, we give the details of SegTran. In Sec. 5, we conduct
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experiments to evaluate the effectiveness of SegTran. In Sec. 6, we
conclude with future work.

2 RELATED WORK

In this section, we review related work, which includes graph trans-
lation and semi-supervised translation.

2.1 Graph Translation

Translation of complex structures has long been a hot research
topic. Sequence-to-sequence learning is a standard methodology
for many applications in natural language processing domain [2, 31].
Tree-structured translation was found to be beneficial for molecular
generation tasks in the chemistry field [14, 17]. With the develop-
ment of novel architectures, especially transformer [35] and graph
convolution network [20], the power of deep network in modeling
inter-dependency and interactions have been greatly improved,
which make it possible to translate a more general and flexible
structure, the graph.

In graph, information are contained in both nodes and edges,
and its translation has some intrinsic difficulties. First is the diverse
topology structures. The semantics of graphs are not only encoded
in each node’s feature vector, but also in each edge’s (non-)existence,
which is combinatory in nature. Therefore, encoding a whole graph
as a vector is often found to be brittle [10]. Second, nodes and edges
are inter-dependent, and they interact in an iterative way [42]. This
‘recurrent’ relationship is difficult to model, because it could easily
go ’explode’ or ’shrink’, and make the learning process unstable.
Third, the relationship between nodes and their neighbors are non-
local. Say, distant nodes could still attribute to the existence of the
target edge. These difficulties make it more difficult to capture the
patterns and model the distributions of graphs.

Earlier works mainly focus on obtaining the intermediate rep-
resentation during the translation process for downstream tasks,
like [19, 29], and payed little attention to the design of special mod-
els. [22] translates across different graph views by modeling the
correlations of different node types, and [6, 23] use a bunch of
predefined rules to guide the target graph generation processes.
All these works require domain knowledge, and their models are
domain-specific. [30] introduces some techniques from the natural
language processing domain, but their work is refrained to the
topology, and is not suitable for our setting. Works more related
to ours are [10, 11], which both focus on building a general graph
translation framework. [10] updates node attributes and edge exis-
tence iteratively, and adopt a GAN [8] to improve the translation
quality. [11] constructs a node-edge co-evolution block, and de-
signs a spectral-related regularization to maintain the translation
consistency.

2.2 Semi-supervised Translation

Semi-supervised problem, where only a small fraction of training
data has supervision, is also an important research problem. Pre-
vious works have dedicated to exploit unlabeled samples in many
approaches: exploiting relationship among training examples [18],
enhancing feature extractors with auxiliary unsupervised task [9],
reducing model bias with ensemble-based methods [21], etc. How-
ever, most of these methods are proposed for discriminative models,
assuming availability of a shared intermediate embedding space
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with limited dimensions, or expecting the output to be a vector
of probability. Our task is in essence a generative task, with both
the input and output lying in the same space with a very large
dimension, making those approaches infeasible.

The most related tasks to our problem setting is the utilization
of monolingual dataset in neural machine translation, where un-
paired sentences in the target language are used to boost model’s
performance. The most popular method there is based on back
translation [1, 26, 27], where a pre-trained target-to-source trans-
lator is applied to those unpaired sentences, hence pseudo source
sentences can be obtained. They train the translator by enforcing
it to generate real target from those fake pseudo sentences in the
source language. In this way, a cycle-consistency can be built, and
it has shown to get state-of-the-art performance. However, in those
tasks, the semantic across domains are the same, which enables
them to use one shared embedding space for both the source and
the target sentences. Say, the meaning of the sentence remains the
same, only the grammar and dictionary changes. And this differ-
ence in syntax and dictionaries can be encoded in the parameters
of decoder model. Similar is the case of unsupervised style transfer
in computer vision field [44], where only low-level features like
texture and color can change across domains.

3 PROBLEM SETTING

Many real-world problems can be viewed as the graph-to-graph
translation problem, i.e., given the graph of an object in source
status, predict the graph of the same object in target status. For
example, predict the shared reading preference of a group of people
given their similarity in music taste, or generate the brain activity
network of a subject after certain diseases based on it in the healthy
state.

Throughout the paper, we use Gi = {V!, AL Fi} to denote an
attributed graph of the i-th object in source status, where V"
{U{, el v,’;l_ }isa set of n; nodes, Ai € R™*"i s the adjacency matrix

of Gé, and Fi € R"%ds denotes the node attribute matrix, where
Fg (j) € R1%9s is the node attributes of node jand D is the dimension
of the node attributes. Similarly, we define the corresponding target
graph of i as G; ={Vi Ai, F;} where Af € R™*"Mi js the adjacency
matrix of G;, and F } € R"%4t with d; being dimensionality of node
attribute in target status. We set F; to be the same as F! in this work
due to the dataset, but our model can also be used to the scenarios
when they are different. Note that we assume G. and G! share the
same set of nodes while their graph structures are different. This
is a reasonable assumption for many applications. Still take Figure
1 for an example, the nodes, referring to users, have to remain in
the same set to build the correspondence across two domains. But
the edges, representing uses’ relationship with each other, along
with node attributes can be different. For two graphs of different
objects in the same status, say G} and G{, we consider V¢ # V;
because V¢ = V; is a special case, which can also be handled by
our model.

To learn a model that can predict graph-to-graph translation,
we need a set of paired graphs to provide supervision. We use
G? = {G}, G;}Z”l to denote N, paired graphs. However, obtaining
large-scale paired graphs is not easy. In many cases, it is difficult or
even impossible to acquire the representation of one graph in two
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domains, like the reading/music preference example and the brain
network example. Thus, Np is usually small, which cannot well
train a model for graph translation. Fortunately, it is relatively easy
to obtain a set of unpaired graphs, i.e., graph in one status with its
corresponding graph in another status missing. For simplicity, we
use G° = {Gé}f\:}sl to denote a set of N graphs in the s status, and
G = {G;}fi’l to represent a set of Ny graphs in the t status. GP =

{GLG! fi’i is the overlapping part of G* and G* with N, < Ng and
Np < N;. With the above notations, the problem of semi-supervised
graph translation is formally defined as

. . N,
Given G°, G' and GP = {G},G}}, |, we aim to learn a function f

that can transform a source-domain graph to the target domain, i.e.,

f(G) =G, (1)
Note that though we only consider two statuses, it is straightfor-
ward to extend our setting to multi-status graph translation.

4 METHODOLOGY

In this section, we give the details of the proposed framework
SegTran for semi-supervised graph-to-graph translation. It is chal-
lenging to directly translate a graph from one domain to another
domain because (i) the graph structures are complex and discrete;
and (ii) we have limited paired graphs to provide supervision. Thus,
our basic idea is to learn good representations that preserves the
topological and nodal features, translate the graph in latent domain
and project the translated representation back to graph in target
domain.

An illustration of the proposed framework is shown in Figure 2.
It is composed of three components: (i) two encoders which aim to
learn node and graph representations for graphs of each domain;
(ii) two decoders which aim to reconstruct the attributed graph to
guide the encoder to learn good representations during training
phase and to predict the graph in target domain during test phase;
and (iii) a translator which is designed to translate the graph in
the latent domain from both node and graph level. In addition, the
translator leverages both the paired and unpaired graph for learn-
ing better transition ability. This design has several advantages: (i)
It allows the unpaired graphs to provide auxiliary training signals
for learning better encoder; (ii) Through sharing the same decoder
for both translation and reconstruction tasks, its ability in modeling
the graph distribution of the target domain can also be enhanced,;
and (iii) Due to the semantic gap issue, instead of constructing one
shared embedding space and expect it to be domain-agnostic, we
explicitly modeling the semantic transition process through a trans-
lator module, and form the so-called “dual embedding” between
the source and target domain. Next, we give the details of each
component.

Given an input attributed graph, we first introduce an encoder
to learn node embedding that capture the network topological and
node attributes so that we can conduct translation in the latent
space. Graph neural networks (GNNs) have shown promising re-
sults for learning node representations [12, 15, 16, 20, 33]. Thus,
we choose GNN as the basic encoder. The basic idea of GNN is
to aggregate a node’s neighborhood information in each layer to
update the representation of the node, which can be mathematically
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Figure 2: Overview of the framework

written in a message-passing framework [7]:

hl = o(Linear(hl™!, MEAN (W1, w € N (0)))). ()

hg, is the embedding of node v at layer I, w belongs to v’s neighbor
groups N (v), and o refers to the activation function. We use a linear
layer as the updating function and mean as message function re-
spectively. However, previous works have found two main issues of
classical GNNs. The first is that their expressiveness is significantly
constrained by the depth. For example, a k-layer graph convolution
network(GCN) can only capture k-order graph moments without
the bias term [5], and each layer is effectively a low-pass filter and
resulting in too smooth graph features as it goes deep [37]. This
issue would weaken GNN’s representation ability, making it harder
to encode topology information in the processed node embedding.
The second issue is that most of them are position-agnostic. Classi-
cal GNNss fail to distinguish two nodes with similar neighborhood
but at different positions in the graph [41, 43]. This problem be-
comes severer when we are using GNN to extract node embeddings
to predict the existence of edges. For example, if both nodes v, v’
and their neighborhoods N (v), N'(v”) have similar attributes, the
encoder would tend to produce similar embedding for them. This
makes it hard for the decoder to learn that v is not connected to
N(v’) but v’ is.

To address these issues, we extend classical message-passing
based GNNs by adding skip connections and using position embed-
ding, as shown in Figure 3. With skip connections, higher GNN
layers can still access lower-level features, and better representa-
tions can be learned. Concretely, we concatenate the initial node
attributes to the output of each encoding layer, as in Figure 3. As to
the position embedding, inspired by the work of [41], we represent
each node using the lengths of their shortest paths to a couple of se-
lected anchors. Concretely, each time a graph is to be inputted, say
G!, we randomly selected k nodes as anchors, and calculate position
embedding of each node basing on them. We use Pos’. € R™%K to
denote the initial position embedding of it. As proven by their work,
bound of position distortions can be calculated for an anchor set of
the size O(log?N), where N is the number of nodes in that graph.
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Considering the size of graphs in our dataset, we preset it to eight
for simplicity. Although the absolute values of obtained position
embedding would be different when the anchor set changes, their
relative relationship remains the same, and can be exploited.

4.1 Encoder

With these preparations, now we can present the formulations of
our extended GNN structure. In I-th block, the message passing
and fusing process can be written as:

hl, = CONCAT (a(W, - CONCAT (b1 H™! - A 0])),Fy), (3)

p, = CONCAT(a(W), - CONCAT (pl; 1, P Al 0])), Posy). (4)
gl = [hll_l,hé_l, .. ,hil_l] represents node embedding at layer
I — 1, A[;, 0] is the v-th column in adjacency matrix, and pi-1 =
[pll_l,plz_l, e ,pil_l] is the position embedding at that layer. F
and Pos are the initial node attributes and position embedding

respectively. W% and Wfp are the weight parameters, and o refers
to the activation function such as ReLU.

4.2 Decoder

With the representation learned by the encoder, we introduce a
decoder to reconstruct the graph. Note that the decoder is not only
used to perform the reconstruction task during training phase, but
will also be used to complete the graph translation in test phase.
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During testing, suppose we are given Gﬁ, to predict G, it need to
first go through source-domain encoder, then translator, followed
by the target-domain decoder.

After the encoding part, for each node v, now we have two
representation vectors, H, and P,. H, is the embedding of the
node attributes, and P, is the processed embedding for its relative
position in the graph. To predict the existence of edges between two
nodes, clearly both these two features are helpful. Considering that
these two features carry different-level semantic meanings and are
in different embedding spaces, directly concatenating them might
be improper. In order to learn to fuse the position and attribute
information, we construct the decoder with a number of same-
structured blocks. Inside the block, we apply a multi-head attention
layer [35] with “Query”/“Key” being P and “Value” being H. Its
formulation can be written as:

I(T
LS
Vi

head; = Attention(PW <, PWK, HWY),
Hop = CONCAT (heady, heads, - - - , heady,) -WO.

Attention(Q,K, V) = softmax(
®)

WlQ € Rd"’d’f,Wf( € RéPdk, WY € RéH:4 and they are the query
embedding matrix, key embedding matrix, value embedding ma-
trix respectively. WO is the output matrix which fuse the result
from different heads. dp/dy is the dimensionality of P/H, which
is the obtained position/node embedding from the encoder. dy. is
the embedding dimension of Query/Key, and d, is the embedding
dimension of Value. In this way, model can learn to utilize the posi-
tion information in aggregating/updating attribute embedding in a
data-driven approach.

Then, after concatenating position embedding and processed at-
tribute embedding, we use a weighted inner production to perform
link prediction:

E = CONCAT(Hp, P)

Apred = softmax(a(ET -S-E)). (©)

Here, S is the parameter matrix capturing the interaction between
nodes. For node attribute prediction, we append a two-layer MLP

after the multi-head attention module as:

Fyred = MLP(CONCAT(Ho, P)), )

Since each graph are usually sparse, i.e., the majority elements
in the adjacency matrix A are zero, simply treating each element in
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the adjacency matrix equally for the graph reconstruction loss will
make the loss function dominated by missing links, causing trivial
results. To alleviate this problem, following existing work [25], we
assign higher weight to non-zero elements in A as follows:

ifAij >0

otherwise

®)

where § is between 0 and 1 to control the weight of the missing links
in a graph. With S, the graph reconstruction loss can be written as:

Lrec(G) = IS © (Aprea = AIF + IFprea = Fllf ©)

where © denotes element-wise multiplication.

4.3 Translator Module

With the encoders and decoders in place, now we can introduce
how we learn the translation patterns across two domains. In this
framework, we model the translation process in the intermediate
level, through transitioning a source graph embedding to its target
graph embedding. As shown in Figure 2, Translator module is a
key component in our framework, which is required to build the
mapping from source domain to target domain. Concretely, we
adopt a MLP structure to implement it. The translator operates in a
node-wise fashion, using both global feature along with node-level
feature as the input:

Hv,t_preda Pu,t_pred =MLP(CONCAT (Hys, Py,

READOUT (Hy), READOUT (Py))). (10)

t_pred refers to the translated result, and Hy; preq represent the
translated intermediate-level node attribute embedding of node
v. Same is the case for P,; ,,q. READOUT is the global pooling
function, which is used to fuse the representation of all nodes in a
graph. In this way, the graph-level embedding is appended to the
extracted node-level embedding, so that translation patterns can
be learned with both local and global features.

During training, this correspondence is easy to be established
for paired graphs. We can perform a regression task and minimize
the prediction loss in the intermediate embedding level as:

2 2
LD s (Gs.Gr) = I H; —=Hy preall2+ P =Py preqll  (11)

In this equation, ¢ refers to the embedding obtained from the target
graph, and t_pred means the predicted result based on the source
graph by the translator module.

However, for the large amount of unpaired graphs, this kind
of training signals can not be obtained. Inspired by [4, 13], we
propose to use the mutual information(MI) score as an auxiliary
supervision to better align these two spaces, as it can quantify
the dependence of two random variables. If two graphs are paired,
then they should have a high MI score with each other, and if
they are not paired, then their MI score would be low. Therefore, by
optimizing the MI score between the translated result and the source
graph, the translator module would be encouraged to produce more
credible results. However, as the dimension of embedding space is
too high(RN" (dp+dr)), directly working on it could suffer from curse
of dimensionality and could result in brittle results. Addressing
this, we apply MI score to global-level embedding through the
READOUT function, which can change the dimension to R%+F
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For simplicity of notation, we use gs to denote the global feature of
graph G; after the READOUT

gs = READOUT(CONCAT (H, Py)), (12)

and use g; preq to denote the output of this translator module, the
global feature of translated result

8t_pred = READOUT(CONCAT (H; _pred: Pt pred)) (13)

The mutual information score is calculated on top of that, following
the same procedures as [13], which involves a specific estimator
MI:

LK/U(GS’thpred) = MI(gs. 8¢ pred) (14)
4.4 Objective Function of SegTran

Putting previous parts together, we can get our full model architec-
ture. The optimization goal during training can be written as:

1
min—— Lf (Gs, Gt)
0 |1GP| (G Eer rans
|gs Z Lrec(Gs) + —+ |gt Z Lrec(Gr)) (15)
GseGs GsegG!
+p- (LMI(GS, Gt pred))-

IGSI

Besides the paired translation loss Ltr ans defined in Equation 11,
we also add the reconstruction loss L. defined in Equation 9 and
MI loss L defined in Equation 14. L is applied to graphs from
both source and target domains, and its weight is controlled by the
hyper-parameter A. L5 is applied to only unpaired source graphs,
by computing the mutual information between G and translation
result G; preq, and its weight is controlled by p.

4.5 Training Algorithm

Besides, as our model is composed of multiple different components,
we follow a pretrain-finetune pipeline to make the training process
more stable. The full training algorithm can be found in Algorithm 1.
We first pre-train the encoder and decoder using the reconstruction
loss with both paired and unpaired graphs, so that one meaningful
intermediate embedding space for each domain can be learned.
Then, we fix them, only train the translator module, to learn the
mapping between two embedding spaces. After that, we fix the
whole model, and prepare the mutual information estimator. When
all these preparations are done, we start the fine-tune steps, by
alternatively updating on paired and unpaired graphs, and train
the whole model in an end-to-end manner.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness
of SegTran and the factors that could affect its performance. In
particular, we aim to answer the following questions.

e How effective is SegTran in graph translation by leveraging
paired and unpaired graphs?

e How different ratios of unpaired graphs could affect the
translation performance of SegTran?

e What are the contributions of each components of SegTran?
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Algorithm 1 Full Training Algorithm

Input: {(Gs,G1)P,(Gs)¥, (Gr)¥}
Output: Reconstructed Gg and G;
1: Initialize the encoder, decoder in both source and target domain,
by pretraining on loss Lyec(Gs) and Lyec(Gy);
2: Fix other parts, only train the translator module, based on loss
Lfrans;
3: Fix the whole model, pretrain the mutual information estimator,
following [13];

4: while Not Converged do

5:  Receive a batch of paired graphs (Gs, G;)?;

6:  Update the model using Lrec + Ltrans;

7. Update the mutual information estimator;

8:  Receive a batch of unpaired graphs (Gs)¥, (G;)%;
9:  Update the model using Lyec + Lmr;

10: end while

11: return Trained encoder, decoder, and translator module.

We begin by introducing the experimental settings, datasets and
baselines. We then conduct experiments to answer these questions.
Finally, we analyze parameter sensitivity of SegTran.

5.1 Experimental Settings

5.1.1 Datasets. We conduct experiments on one synthetic dataset,
BA [10], and two widely used real-world datasets, DBLP [32] and
Traffic !. The details of the datasets are given as follows:

e BA:In BA dataset, source domain is constructed by the Barabasi-
Albert model [24]. The graph is built by adding nodes to it sequen-
tially with preferential attachment mechanism, until it reaches
40 nodes. Each newly-added node is connected to only one exist-

ing node randomly, with probability Z . Here, k; means the

current degree of node i. This method can generate graphs that
follow the scale-free degree distributions. The target graph is con-
structed as 2-hop reach-ability graph, i.e., if node i is 2-hop reach-
able from node j in the source graph, then they are connected
in the target graph. As the generated graphs are unattributed,
we initialize the node attribute matrix F to be the same as adja-
cency matrix A. We include this synthetic dataset to understand
if SegTran can really capture the translation patterns.

DBLP: DBLP is a multi-view citation network, with 22559 nodes
representing researchers. It provides edges of three types, repre-
senting co-authorship, citation, and research overlapping respec-
tively. Each node has a 2000-dimension vector available, encoding
the research interests. In our experiment, we use the citation net-
work as the source, and research overlapping network as the
target domain. This dataset is given in the transductive learning
setting, and all the nodes appeared in one single large graph.
Addressing this, we manually split it by first selecting a center
node and then sampling nodes within its 2-hop neighborhood
to get a smaller graph. The sampled graphs are not required to
have exactly same number of nodes, and we control the graph
size by setting the upper-bound of node degree as 15.

!https://data.cityofnewyork.us/Transportation/2018-Yellow-Taxi-Trip-Data/t29m-
gskq
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Table 1: Statistics of Three Datasets.

BA | DBLP | Traffic
Dataset Size 5000 | 22559 | 8760
Average Graph Size || 40 125 100
Paired Training 500 | 2255 876
Unpaired Training || 2000 | 9020 | 3504
Paired Testing 1000 | 4510 | 1752

o Traffic: For traffic dataset, we use the publicly available New
York Taxi Trip dataset in year 2015. Each trip record contains
the take-on and take-off places, as well as the trip-start time. We
follow prior studies [36, 38—40] and split the city into 100 regions,
and build the edges based on the taxi flow amount between each
region pairs within one hour. This results in 365 * 24 graphs in
total. On this dataset, we perform a traffic flow prediction task,
and set the target domain as the graph state one hour in the
future. Node attributes are initialized using the mean of historic
taxi flows in the past 24 hours.

The statistics of the three datasets are summarized in Table 1,
where “Dataset Size” is the total number of graphs and “Average
Graph Size” is the average number of nodes in each graph. Note
that in BA and Traffic datasets, all graphs have the same size. As
we adopt the semi-supervised problem setting, we only use a small
subset of graphs as paired, and treat a larger subset as unpaired.
The size of each subset is also listed in the “Paired Training” and
“Unpaired Training”, respectively. The number of paired graphs for
testing is listed in the “Paired Testing” row.

5.1.2  Baselines. We compare SegTran with representative and
state-of-the-art supervised and semi-supervised graph-to-graph
translation approaches, which includes:

e DGT [10]: This method belongs to the encoder-decoder frame-
work. The encoder is composed of edge-to-edge blocks to update
the edge representation and edge-to-node blocks to obtain the
node embedding. The decoder performs an inverse process as
to the encoder, and maps extracted node representation to the
target graph. It also utilizes a discriminator and follows the ad-
versarial training approach to generate more “real” graphs. For
implementation, we used the the code provided by the author 2.

e NEC-DGT [11]: This is the state-of-the-art approach in graph
translation, which also follows the encoder-decoder framework.
To model the iterative and interactive translation process of nodes
and edges, it split each of its block into two branches, one for
updating the node attributes and one for updating the edge rep-
resentations. Special architecture is designed for each branch.
Besides, it also designed a spectral-based regularization term to
learn and maintain the consistency of predicted nodes and edges.
We use the implementation provided by the author 3.

e NEC-DGT-enhanced: As both DGT adn NEC-DGT can only work
on paired graphs, they are unable to learn from those unpaired
training samples, which would make the comparison unfair. Ad-
dressing this problem, we design an extension of NEC-DGT by
adding a source-domain decoder, and call it NEC-DGT-enhanced.

Zhttps://github.com/anonymous1025/Deep-Graph-Translation-
3https://github.com/xguo7/NEC-DGT
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With this auxiliary decoder, NEC-DGT-enhanced can utilize un-
paired graphs by performing reconstruction tasks, which is sup-
posed to improve the performance of the encoder. Note that this
can be treated a a variant of SegTran without dual embedding
and translator module.

e SegTran_p: To further validate the performance of our model
design and verify the improvement can be gained from utilizing
unpaired graphs, we also designed a new baseline, SegTran_p. It
is of the same architecture as SegTran, but is trained only on the
paired graphs.

5.1.3 Configurations. All experiments are conducted on a 64-bit
machine with Nvidia GPU (Tesla V100, 1246MHz , 16 GB memory),
and ADAM optimization algorithm is used to train all the models.
For DGT, NEC-DGT, and NEC-DGT-Enhanced, the learning rate
is initialized to 0.0001, following the settings in their code. For
SegTran and SegTran_p, the learning rate is initialized to 0.001. In
SegTran, the value of hyper-parameter A and y are both set as 1.0.
A more detailed analysis over the performance sensitivity to them
can be found in Section 5.5. Besides, all models are trained until
converging, with the maximum training epoch being 5000.

5.1.4  Evaluation Metrics. For the evaluation metrics, we adopt
mean squared error(MSE) and mean average percentage error(MAPE).
As MSE is more sensitive when the ground-truth value is large and
MAPE is more sensitive when the ground-truth value is small, we
believe they can provide a more comprehensive comparison com-
bined. Besides, class-imbalance exists in this problem, as edges are
usually sparse, and directly training on them would result in trivial
results. Addressing it, we re-weight the importance of edges and
non-edges during the loss calculation, in both training and testing.

5.2 Graph-to-Graph Translation Performance

To answer the first question, we compare the graph tranlation per-
formance of SegTran with the baselines under the semi-supervised
scenario on the three datasets. We train the model on the paired
and unpaired training graphs, and conduct graph translation on
the test graph. Each experiment is conducted 5 times to alleviate
the randomness. The average performance with standard deviation
in terms of MSE and MAPE are reported in Table 2. From the table,
we can make following observations:

e SegTran outperforms all other approaches by a reasonable mar-
gin. Compared with NEC-DGT-Enhanced, It shows an improve-
ment of 0.082 on BA dataset, 0.005 on DBLP, and 0.009 on Traffic
dataset measured by MSE loss. In the term MAPE loss, the im-
provements are 0.033, 0.013, and 0.016 respectively. This result
validates the effectiveness of SegTran.

e SegTran performs much more stable than NEC-DGT-Enhanced,
although they both utilize unpaired graphs. Looking at the stan-
dard deviations, it can be observed that NEC-DGT-Enhanced has
higher performance variations. For example, its standard devi-
ation on BA dataset is about two times that of SegTran. This
phenomena could result from NEC-DGT-enhanced’s difficulty in
trading-off between the semantics from source domain and the
semantics from target domain during learning the intermediate
embedding space.

o The performance differences on DBLP dataset is smaller than
those on the other two. This could result from the dataset size.
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Table 2: Comparison of different approaches in the semi-supervised scenario. Among these approaches, DGT, NEC-DGT and
SegTran_p use only paired graphs, while NEC-DGT-Enhanced and SegTran use both paired and unpaired graphs during training,.

DBLP Traffic

MSE

MAPE

MSE

MAPE

0.385 £ 0.0074
0.205 £ 0.0026
0.197 £ 0.0016

0.276 £ 0.0068
0.159 £+ 0.0024
0.148 £+ 0.0033

0.252 £ 0.0071
0.138 £ 0.0274
0.076 £ 0.0087

0.183 + 0.0064
0.110 £ 0.0186
0.065 £ 0.0122

BA
Methods MSE MAPE
DGT 0.377 £ 0.0053 | 0.281 + 0.0029
NEC-DGT 0.217 £ 0.0042 | 0.153 +0.0032
NEC-DGT-enhanced || 0.195 + 0.0045 | 0.131 + 0.0021
SegTran_p 0.154 £ 0.0038 | 0.119 + 0.0026
SegTran 0.132 + 0.0028 | 0.098 + 0.0011

0.203 £ 0.0029
0.192 £+ 0.0007

0.151 £ 0.0017
0.135 + 0.0003

0.091 £ 0.0072
0.067 £ 0.0046

0.067 £ 0.0059
0.049 + 0.0027

Refering to Table 1, DBLP dataset is significantly larger than
both other two datasets. Therefore, the bonus from adding more
unpaired graphs would be smaller, which results in this result.

o Generally, NEC-DGT-Enhanced performs better than NEC-DGT,
and SegTran performs better than SegTran_p. This observation
can test the significance of learning from unpaired graphs. NEC-
DGT-Enhanced follows the exactly same structure as NEC-DGT
other than an auxiliary decoder to perform reconstruction on the
source-domain graphs, and it achieves an improvement of 0.022,
0.008 and 0.062 respectively measured by MSE losses. Similar
observations can be made in the case of comparing SegTran
and SegTran_p. This result shows that in the case when paired
graphs are limited, it is important to use unpaired graphs to boost
model’s performance.

To summarize, these results prove the importance of introduc-
ing unpaired graphs to graph translation tasks with only limited
number of paired training samples. Besides, they also validate the
intuition that explicitly modeling the difference between two do-
mains in the intermediate space can make it easier for the model to
utilize unpaired graphs.

» 0.20 0.100
g 8
— C-DGT-Enhanced
: — geEgTEanTE o I.I_J.I 0.075
%\ 0.15 0
z — -l -Enhance
0.050| = LEgorT e
0.2 0.4 0.6 0.2 0.4 0.6
Unpaired Graph Ratio Unpaired Graph Ratio
(a) BA (b) Traffic

Figure 5: Affects of Ratios of Unpaired Graphs.

5.3 Ratio of Unpaired Graphs

In this subsection, we analyze the sensitivity of our model and NEC-
DGT-Enhanced towards the amount of unpaired graphs, which
answers the second question. We fix the number of paired training
graphs, and change the settings by taking different percentage
of samples in the dataset as unpaired graphs for semi-supervised
training. Concretely, we vary unpaired graph to paired graph ratio
as {10%, 20%, 30%, 40%, 50%, 60%}, and fix other hyper-parameters
unchanged. We only report the performance on BA and Traffic as
we have similar observation on DBLP. The results are presented in
Figure 5 From the figure, we make the following observations:

o In general, as the increase of ratio of unpaired graphs, the per-
formance of both NEC-DGT-Enhanced and SegTran increases,
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Table 3: Evaluation of the significance of different designs
in our approach on BA and DBLP datasets. The scores are
computed using MSE loss.

Methods BA DBLP

Semi sup || Semi sup
Shared Embedding 0.196 0.245
No position 0.142 0.204
No MI 0.141 0.197
No multi-head attention 0.135 0.190
SegTran 0.132 0.192

which implies that unpaired graphs can help to learn better en-
coder and decoder for graph-to-graph translation.

o As the increase of the ratio of unpaired graphs, the performance
of SegTran is consistently better than NEC-DGT-Enhanced, which
validate the effectiveness of SegTran in learning from unpaired

graphs.

5.4 Ablation Study

To answer the third question, in this subsection, we conduct ab-
lation study to understand the importance of each component of
the proposed framework SegTran. All experiments are performed
in semi-supervised setting, with configurations exactly same as
SegTran, if not stated otherwise.

Gain from dual embedding In our model design, “dual embed-
ding” is adopted to distinguish between the source and the target
domain, and help the model to learn more from unpaired graph. To
test its affect, we perform an ablation study by removing the trans-
lation module, requiring two domains to share the same embedding
space. Other parts are not influenced, except the mutual informa-
tion loss, which is no longer needed in this case. The performance
of “Shared Embedding” in terms of MSE is shown in Table 3. From
the table, we can see that on both BA and DBLP dataset, compared
with SegTran, removing dual embedding and changing to shared
embedding would result in a significant performance drop, which is
about 0.065 and 0.053 points decrease, respectively. This is because
“dual embedding” can ease the trade-off between reconstruction and
translation tasks. Without it, the same features would be used for
them, which could result in sub-optimal performance. This result
shows the effectiveness of this design in leveraging the semantic
change from source domain to target domain.

Importance of position embedding In this part, we test the
effects of the position embedding, and evaluate its contributions in
guiding the encoding process. In removing the position embedding,
we leave the model architecture untouched, and use the first eight
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dimensions of node attributes to replace the calculated position
embedding. Through the result in Table 3, it can be seen that it will
result in a performance drop of 0.01 on BA, and 0.012 on DBLP. This
result shows that position embedding is important for extending
representation ability of graph encoder module.

Importance of MI loss We also test the benefits from auxiliary
mutual information loss when aligning the transformed embedding
of unpaired graphs. For this experiment, we simply remove this loss
during the fine-tune steps, and observe the change of performance.
We find a drop of 0.009 points on BA, and 0.005 on DBLP. The drop
is smaller on DBLP datast, and it may still be a result of dataset
size. As DBLP is much larger, the number of paired graphs is more
sufficient for the training, which makes this auxiliary loss not that
important. But overall, we can observe that this supervision can
train the translator better.

Influence of multi-head attention In this part, we test the in-
fluence of the multi-head attention module in the decoding process.
This module is designed to fuse the processed embedding of nodes
based on their relative distances. The relative distances is measured
using the processed position embedding along with the metric
space constructed by each attention head. Through multi-head
attention, higher-order interaction between processed node em-
bedding and position embedding is supported. For comparison, we
directly remove this layer from the decoder. This manipulation will
not influence other parts of the translation network. From Table 3,
we can see that on BA dataset, this module can bring a moderate
improvement of around 0.003. On DBLP dataset, the performance
is similar whether this module is removed or not. Therefore, the
importance of this layer is rather dependent on the complexity of
dataset, and sometimes it is not necessary.

(b) MAPE

Figure 6: Parameter Sensitivity on BA

5.5

In this subsection, we analyze the sensitivity of SegTran’s per-
formance towards the hyper-parameters A and p, the weight of
reconstruction loss and mutual information loss. We vary both
A and p as {0.3,0.7, 1.0, 1.3}. These experiments all use the same
pre-trained model, as these two hyper-parameters only influence
fine-tune process. Other settings are the same as SegTran. This
experiment is performed on BA dataset, and the result is shown in
Figure 6. The z axis is the translation error measured using MSE
loss, x axis refers to the value of A, and y axis represents p.

From the figure, we can observe that generally, reconstruction
loss and mutual information loss are both important for achieving a
better performance. When A is small, it is difficult for this model to

Parameter Sensitivity Analysis
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achieve a high performance. This observation makes sense because
reconstruction loss guides the encoder to extract more complete
features from input graphs, and consequently has a direct influence
on the quality of intermediate embedding space.

5.6 Case study

In Figure 7, we provide an example of BA dataset to show and
compare the captured translation patterns of SegTran and NEC-
DGT-Enhanced. Figure 7(a) is the source graph, and Figure 7(b) is
the target graph. Figure 7(c) is the result translated by SegTran,
and Figure 7(d) is translated by NEC-DGT-Enhanced. For edges in
Figure 7(c) and Figure 7(d), to show the prediction results clearly,
we split them into three groups. When the predicted existence
probability is above 0.2, we draw it in black if it is true otherwise
in red. When the probability is between 0.05 and 0.2, we draw it in
grey. Edges with smaller probability are filtered out.

It can be seen that SegTran has a high translation quality, and
made no erroneous predictions. In the target graph, node 3 is the
most popular node. The same pattern can be found in the translated
result by SegTran, where node 3 has a high probability of linking
to most other nodes. As to the distant node pairs, like node 5 and 7,
or node 1 and 7, which have no links in the target graph, SegTran
assigns a relatively low probability to their existence, below 0.2.

The performance of NEC-DGT-Enhanced, on the other hand, is
not that satisfactory. It mistakenly split the nodes into two groups,
{0,2,5} and others, and assigns large weight to edges inside them
but little weight to edges between them. Node 5 is connected only
to node 2 in the source graph, therefore NEC-DGT-Enhanced tries
to push the embedding of it as well as its neighbors distant from
other nodes, which could be the reason resulting in this phenomena.
This example shows that SegTran is better in capturing the graph
distributions in the target domain and learning the translation
patterns.

(a) Source

(c) Translated by SegTran ~ (d) Translated by ENC-DGT-

Enhanced
Figure 7: Obtained Case study examples.

6 CONCLUSION AND FUTURE WORK

Graph-to-graph translation has many applications. However, for
many domains, obtaining large-scale data is expensive. Thus, in
this paper, we investigate a new problem of semi-supervised graph-
to-graph translation. We propose a new framework SegTran, which
is composed of a encoder to learn graph representation, a decoder
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to reconstruct and a translator module to translate graph in the
latent space. SegTran adopts dual embedding to bridge the semantic
gap between the source and target domain. Experimental results
on synthetic and real-world datasets demonstrate the effectiveness
of the proposed framework for semi-supervised graph translation.
Further experiments are conducted to understand SegTran and its
hyper-parameter sensitivity.

There are several interesting directions need further investiga-
tion. First in this paper, we mainly focus on translating one graph
in the source domain to another graph in the target domain. In
real-world, there are many situations which require the translation
from one domain to many other domains. For example, in molecu-
lar translation task [14, 17], we could make different requirements
on the properties of translated compound, and each requirement
would form a domain. Therefore, we plan to extend SegTran to
one-to-many graph translation. Second, the graph translation has
many real-world applications. In this paper, we conduct experi-
ments on citation network and traffic network. We would like to
extend our framework for more application domains such as the
graph translation in brain network and medical domains [3, 34].
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