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ABSTRACT

Many real-world applications, e.g., healthcare, present multi-variate
time series prediction problems. In such settings, in addition to
the predictive accuracy of the models, model transparency and
explainability are paramount. We consider the problem of build-
ing explainable classifiers from multi-variate time series data. A
key criterion to understand such predictive models involves elu-
cidating and quantifying the contribution of time varying input
variables to the classification. Hence, we introduce a novel, modu-
lar, convolution-based feature extraction and attention mechanism
that simultaneously identifies the variables as well as time inter-
vals which determine the classifier output. We present results of
extensive experiments with several benchmark data sets that show
that the proposed method outperforms the state-of-the-art baseline
methods on multi-variate time series classification task. The results
of our case studies demonstrate that the variables and time intervals
identified by the proposed method make sense relative to available
domain knowledge.
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1 INTRODUCTION

Recent advances in high throughput sensors and digital technolo-
gies for data storage and processing have resulted in the availability
of complex multivariate time series (MTS) data, i.e., measurements
from multiple sensors, in the simplest case, sampled at regularly
spaced time points, that offer traces of complex behaviors as they un-
fold over time. There is much interest in effective methods for classi-
fication of MTS data [3] across a broad range of application domains
including finance [58], metereology [8], graph mining [55, 60], au-
dio representation learning [17, 54], healthcare [13, 34], human
activity recognition [38, 57], among others. The impressive success
of deep neural networks on a broad range of applications [31] has
spurred the development of several deep neural network models
for MTS classification [15]. For example, recurrent neural network
and its variants LSTM and GRU are the state-of-the-art methods for
modeling the complex temporal and variable relationships [10, 27].

In high-stakes applications of machine learning, the ability to
explain a machine learned predictive model is a prerequisite for es-
tablishing trust in the model’s predictions, and for gaining scientific
insights that enhance our understanding of the domain [28, 39].
MTS classification models are no exception: In healthcare appli-
cations, e.g., monitoring and detection of epileptic seizures, it is
important for clinicians to understand how and why an MTS clas-
sifier classifies EEG signal as indicative of onset of seizure [50].
Similarly, in human activity classification, it is important to be able
to explain why an MTS classifier detects activity that may be con-
sidered suspicious or abnormal [62]. Although there has been much
recent work explaining black box predictive models and their pre-
dictions [23, 28, 39], the existing methods are not directly applicable
to MTS classifiers.

Developing explainable MTS data presents several unique chal-
lenges: Unlike in the case of classifiers trained on static data samples,
MTS data encode the patterns of variable progression over time. For
example, compare the brain wave signals (electroencephalogram or
EEG recordings) from a healthy patient with those from a patient
suffering from epileptic seizure as shown in Figure 1 [22, 50]. The
two EEG recordings differ with respect to the temporal patterns
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(a) Normal example
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Figure 1: Normal and seizure brain wave signal examples.

in the signals [37]. Because EEG measurements obtained at high
temporal resolution suffer from low signal-to-noise ratio, the EEG
recordings from healthy patients (see Figure 1(a)) display some of
the spike-like signals that are similar to those indicative of seizure
Figure 1(b). However, the temporal pattern of EEG signals over a
larger time window shows clear differences between healthy and
seizure activity. Thus, undue attention to local, point-wise obser-
vations, without consideration of the entire temporal pattern of
activity [32] would result in failure to correctly recognize abnormal
EEG recordings that are indicative of seizure. In contrast, focusing
on the temporal pattern of activity over the relevant time windows
as shown in Figure 1, would make it easy to distinguish the EEG
recordings indicative of healthy brain activity from those that are
indicative of seizure, and to explain how they differ from each other.
In the case of MTS data, each variable offers different amounts of
information that is relevant to the classification task. Furthermore,
different variables may provide discriminative information during
different time intervals. Hence, we hypothesize that MTS classifiers
that can simultaneously identify not only important variables but
also the time intervals during which the variables facilitate effective
discrimination between different classes can not only improve the
accuracy of MTS classifiers, but also enhance their explainability.
Hence, we introduce a novel, modular, convolution-based feature
extraction and attention mechanism that simultaneously (i) identi-
fies informative variables and the time intervals during which they
contain informative patterns for classification; and (ii) leverages the
informative variables and time intervals to perform MTS classifica-
tion. Specifically, we propose Locality Aware eXplainable Convolu-
tional ATtention network (LAXCAT), a novel MTS classifier which
consists of dedicated convolution-based feature extraction network
and dual attention networks. The convolution feature extraction
network extracts and encodes information from a local temporal
neighborhood. The dual attention networks help identify the infor-
mative variables and the time intervals in which each variable helps
discriminate between classes. Working in concert, the convolution-
based feature extraction network and the dual attention networks
maximize predictive performance and the explainability of the MTS
classifier. The major contributions of this work are as follows:

e We consider the novel problem of simultaneously selecting
informative variables and time intervals with informative
patterns for discrimination between the classes to optimize
the accuracy and explainability of MTS classifiers;
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e We describe a novel modular architecture consisting of a
convolution-based feature extraction network and dual at-
tention networks to effectively address this problem;

e We present results of extensive experiments with several
benchmark data sets and show that LAXCAT outperforms
the state-of-the-art baseline methods for MTS classification;

e We present results of case studies and demonstrate that the
variables and time intervals identified by the proposed model
are in line with the available domain knowledge.

The rest of the paper is organized as follows. Section 2 reviews
related work; Section 3 introduces the problem definition; Section
4 describes our proposed solution; Section 5 describes our experi-
ments and case studies; Section 6 concludes with a brief summary
and discussion of some directions for further research.

2 RELATED WORK

Multivariate Time Series Classification. Multi-variate time se-
ries classification has received much attention in recent years. Such
methods can be broadly grouped into two categories: distance-
based methods [1] and feature-based methods [21]. Distance-based
methods classify a given time series based on the label(s) of the time
series in the training set that are most similar to it or closest to it
where closeness is defined by some distance measure. Dynamic time
warping (DTW) [5] is perhaps the most common distance measure
for assessing the similarity between time series. DTW, combined
with the nearest neighbors (NN) classifier is a very strong baseline
method for MTS classification [3]. Feature-based methods extract
a collection of informative features from the time series data and
encode the time series using a feature vector. The simplest such
encoding involves representing the sampled time series values by a
vector of numerical feature values. Other examples of time series
features include various statistics such as sample mean and vari-
ance, energy value from the Fourier transform coefficients, power
spectrum bands [7], wavelets [43], shapelets [61], among others.
Once time series data are encoded using finite dimensional fea-
ture vectors, the resulting data can be used to train a classifier
using any standard supervised machine learning method [26]. The
success of deep neural networks on a wide range of classification
problems [31] has inspired much work on variants of deep neural
networks for time series classification (see [15] for a review). How-
ever, as noted earlier, the black box nature of deep neural networks
makes them difficult to understand. Deep neural network models
for MTS classification are no exceptions.

Explainable Models. There has been much recent work on meth-
ods for explaining black box predictive models (reviewed in [28, 39],
typically, by attributing the responsibility for the model’s predic-
tions to different input features. Such post hoc model explanation
techniques include methods for visualizing the effect of the model
inputs on its outputs [65, 67], methods for extracting simplified rules
or feature interactions from black box models [20, 41], methods that
score features according to their importance in prediction [2, 9, 36],
gradient based methods that assess how changes in inputs impact
the model predictions [9, 51, 52], and methods for approximating
local decision surfaces in the neighborhood of the input sample via
localized regression [6, 47, 49].
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An alternative to post hoc analysis is explainability by design,
which includes in particular, methods that identify an informative
subset of features to build parsimonious, and hence, easier to under-
stand models. Such methods can be further categorized into global
methods which discover a single, instance agnostic subset of rele-
vant variables, and local methods which discover instance-specific
subsets of relevant features. Yoon et al. [63] proposed a principal
component analysis-based recursive variable elimination approach
to identify informative subset of variables on an fMRI classification
task. Han et al. [25] use class separability to select optimal subset
of variables in a MTS classification task. When the data set is het-
erogeneous, it may be hard to identify a single set of features that
are relevant for classification over the entire data set [64]. Such a
setting calls for local methods that can identify instance-specific
features. One such local method uses an attention mechanism [4].
Choi et al. [11] proposed RETAIN, an explainable predictive model
based on a two-level neural attention mechanism which identifies
significant clinical variables and influential visits to the hospital in
the context of electronic health records classification. RAIM [59]
introduced a multi-channel attention mechanism guided by dis-
crete clinical events to jointly analyze continuous monitoring data
and discrete clinical events. Qin et al. [46] proposed a dual-stage
attention-based encoder-decoder RNN to select the time series vari-
ables that drive the model predictions. Guo et al. [24] explored the
structure of LSTM networks to learn variable-wise hidden states
to understand the role of each variable in the prediction. A key
limitation of the existing body of work on explaining black box
neural network models for MTS classification is that they focus on
either identifying a subset of relevant time series, or a subset of
discrete time points. However, many practical applications of MTS
classification, require identifying not only the relevant subset of
the time series variables, but also the time intervals during which
the variables help discriminate between the classes.

3 PROBLEM DEFINITION

Let X = {x(l), .. .,X(T)} be a multivariate time series sequence,
where x(*) € RF denotes the P dimensional observation at time
point ¢. xit € R means the value of the i-th variable sampled at
time point t. We use X = {(X1,y1), ..., (XN, yn)} to denote a set of
N input sequences along with their true labels, where X; is the i-th
multivariate time series sequence and y; is its corresponding label.
Based on the context, ¢ can be used to index either a time point or a
time interval. In multivariate time series classification (MTSC), the
goal is to predict the label y of a MTS data X. For example, given
sequences of EEG recordings of a subject from multiple channels
corresponding to different locations on the brain surface, the task
is to predict whether it denotes healthy or seizure activity. As
noted earlier each multivariate time series, not all the features
equally inform the classification. In addition, for the important
variables, only few key time intervals are typically important for
discrimination between the different classes. Hence the problem of
explainable MTSC is formally defined as follows

Given an MTS training data set X = {(X1,y1),..., (XN, yn)}, learn
a function f that can simultaneously predict the label of a MTS data,
and identify the informative variables and the time intervals over
which their values inform the class label.
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4 THE PROPOSED FRAMEWORK - LAXCAT

We proceed to describe Locality Aware eXplainable Convolutional
ATtention network (LAXCAT). Figure 2 provides an overview of
the LAXCAT architecture. LAXCAT consists of three components:
(i) a convolutional module that extracts time-interval based features
from the input multivariate time series sequence; (ii) variable atten-
tion module, which assigns weights to variables according to their
importance in classification; and (iii) temporal attention module,
which identifies the time intervals over which the variables identi-
fied by the variable attention module inform the classifier output.
The LAXCAT architecture is designed to learn a representation of
the MTS data that not only suffices for accurate prediction of the
class label for each MTS data instance, but also helps explain the
assigned class label in terms of the variables and the time intervals
over which the values they assume inform the classification. We
now proceed to describe each module of LAXCAT in detail.

4.1 Feature Extraction via Convolutional Layer

The first step is to extract useful features from the input time series.
The key idea of the feature extraction module is to incorporate tem-
poral pattern of values assumed by a time series variable as opposed
to focusing only on point-wise observations. Given a multivariate
time series input sequence X = {x(l), .. .,X(T)}, with x(®) ¢ RP,
where T is the length of the sequence and P is the number of covari-
ates, we adopt convolutional layer to automatically extract features
from the time series. Specifically, a 1-d convolutional layer with ker-
nel size 1 X L is applied on each input variable where L is the length
of the time interval of interest. The kernel window slides through
the temporal domain with overlap. The convolutional weight is
shared along the temporal domain and each input variable has its
own dedicated feature extraction convolutional layer. In our model,
we adopt a convolutional layer with J filters so that a J-dimensional
feature vector is extracted for each variable from each time interval.
The convolutional layer encodes multivariate input sequence by:

1)

where ¢; ; € R/ is the feature vector for x; extracted from the ¢-th
time interval of interest, t = 1,. .., [. Number of intervals, /, depends
on the convolution kernel length L and convolution stride size.
The convolution-based feature extraction yields features that
incorporate the temporal pattern of values assumed by the input
variables within a local context (determined by the convolution
window). The attention mechanism applied to such features mea-
sures the importance of the targeted time interval, as opposed to
specific time points. Thus, the convolutional layers can learn to
adapt to the dynamics of each input time series variable while en-
suring that the attention scores are attached to the corresponding
input variables. The multiple filters attend to different aspects of
the signal and jointly extract a rich feature vector that encodes the
relevant information from the time series in the time interval of
interest. Note that for each variable, the convolution computation
on each time interval can be carried out in parallel, as opposed to
the sequential processing in canonical RNN models. Furthermore,
the number of effective time points is significantly reduced by
considering intervals as opposed to discrete time points. This also
reduces the computational complexity for downstream attention

{cit} =CNN; (xi), i=1,...,P
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Figure 2: Proposed LAXCAT model framework. The framework is comprised of three major components: CNN feature extrac-
tion module and two attention modules. The CNN layer extracts informative features within each time interval of interest
(TOI). The two attention modules work together to identify informative variables and key TOIs.

mechanism. While we limit ourselves to the simple convolution
structure described above, the LAXCAT architecture can accommo-
date more sophisticated e.g., dilated [42] convolution structures for
more flexible feature extraction from MTS data.

The feature extraction module accepts an input time series {xi, . .
and produces a sequence of feature matrices {Cy, ..., C;}, where
C; € RPXJ_ Each row in C; stores the feature vector specific to
each variable within time interval ¢ in the input sequence, i.e.,
Ct = [e1e-- -, Cp,t]T. The variable attention module (see below)
considers the feature matrices at each time interval so as to obtain
a local context embedding vector hy,t = 1,...,1, for each interval.
The temporal attention module construct the summary embedding
z, which is used to encode the MTS data for classification. In the
model, temporal attention measures the contribution of each time
interval to the embedding whereas variable attention controls the
extent to which each variable is important within each interval. We
proceed to discuss the detail of the two attention modules.

4.2 Variable Attention Module

The variable attention module evaluates variable attention and
constructs local context embedding. Specifically, the local context
embedding is an aggregation of the feature vectors weighted by
their relative importance measures within the specific time interval.
The context vector h; € R/ for the ¢-th time interval is obtained by

P
h; = Z i, Cit @)
i=1

where «;, is the attention score for c;; and is equivalently the
attention score dedicated to variable x; in the ¢-th time interval.
To precisely evaluate the importance of each variable, we use
a feed forward network to learn the attention score vectors a; =
[0!1,, el Otpt] ,t =1,...,1. The network can be characterized by

a; = softmax (st), st = 02 (01 (Wl(v) C: + Biv)) WZ(V) + B;V))
®)
where ") € RP (V) ¢ RI<P V) ¢ 1 B(Y) ¢ RIXP are
the model parameters, and o; (-), o2 (-) are non-linear activation
functions such as tanh, ReLU among others. In the feature extrac-
tion stage in Sec. 4.1, each time series input variable is processed
independently and the correlations among the variables have not

L XT}
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been considered. The input data to the variable attention network
is the feature matrix C; which contains all feature vectors in time
interval t. The attention network considers the multivariate corre-
lation and distributes attention weights to each variable so as to
maximize the predictive performance. Note that the local context
embeddings in different intervals can be constructed independently
of each other (and hence processed in parallel). In addition, the
parameters of the variable attention module are shared among all
intervals to ensure parsimony with respect to the model parameters.

The preceding process yields local context embeddings for each
of the time intervals by considering the relative variable importance.
The result is a context matrix H = [hy, ..., hl]T e R consisting
of the context vector at each interval. In the next subsection, we
describe how to compose the summary embedding of the MTS
instance using the temporal attention mechanism.

4.3 Temporal Attention Module

The goal of temporal attention module is to identify key segments of
signals which contain information that can discriminate between
classes. The summary vector z is composed by aggregating the
context embedding vectors weighted by their relative temporal

contribution as follows: .
z= Z Pihy (4)
t=1

where f; is the temporal attention score for the context vector
h; and it quantifies the contribution of the information carried in
interval ¢. Similarly, the temporal attention module is instantiated
by a feed-forward network. The vector of temporal attention scores
b = [B1,...,B] is learned using the following procedure:

b =softmax (u), u= o0y (01 (Wl(T)H + Bgr)) WZ(T) + B;T))

(5)
where W) € R, W) ¢ R/, BT) ¢ R, and B{T) € R1X!
are model parameters, and o7 (-), 02 (-) are non-linear activation
functions. The input to the temporal attention module is the entire
context matrix H. The module takes into account the correlations
among time intervals and the predictive performance of each inter-
val to distribute attention scores.

This concludes the three modules of LAXCAT architecture. To
summarize, the convolutional feature extraction module extracts a
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Figure 3: Explainability of the LAXCAT model.

rich set of features from time series data. The variable and temporal
attention modules, construct an embedding of the MTS data to be
classified by attending to the relevant variables and time intervals.

4.4 Learning LAXCAT

Given the encoding z which captures the important variables and
time intervals of the input multivariate time series sequence, we
can predict the class label of the sequence as follows:

y=f(zW) (6)

where W is the weights of f(-), a fully connected network!.
Given a set of training instances {(Xi,y1), ..., (Xn,yn)}, the
parameters © of the variable and temporal attention modules and
the classifier network can be jointly learned by optimizing the
following objective function:
1% 2
min - > L(Xi,yi;0) + a0 Q)

i=1

where ||®||% is the Frobenius norm on the weights to alleviate over-
fitting and « is a scalar that control the effect of the regularization
term. In this study, £ is chosen to be the cross entropy loss function.
The resulting objective function is smooth and differentiable allow-
ing the objective function to be minimized using standard gradient
back propagation update of the model parameters. We used the
Adam optimizer [29] to train the model and the hyperparameters
are set to their default values.

Explainability of LAXCAT. LAXCAT is designed to accurately
classify MTS data and also facilitate instance-level explanation of
the predicted class label. Given an input sequence, we can extract
two attention measures from the model, namely temporal attention
scores and variable attention scores. As shown in Figure 3, a sum-
mary of the importance of each variable in each interval is given

by the product of the two attention scores,
JointAttiy = aj, X By

®)

fori=1,...,P,t = 1,...,1. These results can then be compared
against domain knowledge or used to guide further experiments.

! Although here we focus on classifying MTS data, the LAXCAT framework can be
readily applied to forecasting and other related tasks by choosing an appropriate f(-)
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Table 1: A summary of the datasets.

Dataset ‘ # Var. (P) # Time Points  # Classes  # Samples
PM2.5 w/ 8 24 6 1013
PM2.5 w/o 7 24 6 1013
Seizure 23 1025 2 272
Motor Task 15 641 2 405

5 EXPERIMENTS AND RESULTS

We proceed to describe our experiments aimed at evaluating the
performance LAXCAT in terms of the accuracy of MTS classification
as well as the explainability of the resulting classifications.

5.1 Datasets

We used three publicly available real-world multivariate time series
data sets and a summary of the data sets is provided in Table 1.

e PM2.5 data set [35] contains hourly PM2.5 value and the asso-
ciated meteorological measurements in Beijing. Given the mea-
surements on one day, the task is to predict the PM2.5 level on
the next day at 8 am, during the peak commute. The PM2.5 value
is categorized into six levels according to the United States Envi-
ronmental Protection Agency standard, i.e., good, moderate, un-
healthy for sensitive, unhealthy, very unhealthy, and hazardous.
We arranged this data set into two versions, the first one contains
PM2.5 recordings as one of the covariates, called PM2.5 w/, and
the second one excludes PM2.5 recordings, denoted as PM2.5
w/o. Aside from PM2.5 values, the meteorological variables in-
clude dew point, temperature, pressure, wind direction, wind
speed, hours of snow and hours of rain. We keep the measure-
ments for weekdays and exclude the measurements for weekends
yielding a data set of 1013 MTS instances in total.

e Seizure data set [22, 50] consists of electroencephalogram (EEG)
recordings from pediatric subjects with intractable seizures col-
lected at the Children’s Hospital Boston. EEG signals at 23 posi-
tions, as shown in Figure 4(a), according to the international 10-20
system, were recorded at 256 samples per second with 16-bit reso-
lution. Each instance is a four second recording containing either
seizure attack period or non-seizure period.

e Movement data set [22, 48] consists of EEG recordings of sub-
jects opening and closing left or right fist. EEG signals were
recorded at 160 samples per second and 15 electrode locations
were used in this study, covering the central-parietal, frontal and
occipital regions as shown in Figure 4(b). Each instance contains
4 second recordings and the subjects were at rest state during the
first two seconds and performed the fist movement during the
latter two seconds. The task is to distinguish between left and
right fist movement based on the 15-channel EEG recordings.

5.2 Baseline Methods and Evaluation Setup

We compare the classification performance of LAXCAT with repre-
sentative and state-of-the-art baselines:

e kKNN-DTW [19, 40] is the dynamic time warping (DTW) dis-
tance measure combined with k-nearest neighbor (kNN) classi-
fier. DTW provides a similarity score between two time series
by warping the time axes of the sequences to achieve alignment.
The classification phase is carried out by kNN classifier.
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Figure 4: Variable and EEG location correspondence.

LR is the logistic regression classifier. For multivariate time series
input, we concatenate all variables and the input to the LR model
is a multivariate vector.

LSTM [27] is the long short-term memory recurrent neural net-
work. An LSTM network with one hidden layer is adopted to
learn an encoding from multivariate time series data and the clas-
sification phase is carried out by a feed forward neural network.
DARNN [46] is a dual attention RNN model. It uses an encoder-
decoder structure where the encoder is applied to learn attentions
and the decoder is adopted for prediction task.

IMV-LSTM [24] is the interpretable multivariate LSTM model. It
explores the structure of LSTM networks to learn variable-wise
hidden states. With hidden states, a mixture attention mechanism
is exploited to model the generative process of the target.

We implemented the proposed model and deep learning baseline
methods with PyTorch. We used the Adam optimizer [29] to train
the networks with default parameter settings and the mini-batch
size is 40. The number of filters in the feature extraction step is
chosen from {8, 16,32}. The kernel size L is selected from {2, 3,5},
{16,32,64}, {16,32, 64} in PM2.5, Seizure, Motor Task respectively,
and the stride size is set to 50% of kernel size. For the number of hid-
den nodes in the classifier feed forward network, we conduct grid
search over {8, 16,32}. The coefficient for the regularization term is
chosen from {0.001, 0.01, 0.1}. In the case of the kNN-DTW method,
k is set to 1, yielding an one nearest neighbor classifier. In the case
of the LSTM baseline, the number of hidden nodes is selected from
{8,16,32, 64}. For IMV-LSTM, we implemented IMV-Tensor as it
was reported to perform better [24]. The parameter selection for
the baseline methods DARNN and IMV-LSTM follows the guide-
lines provided in the respective papers. We train the models using
70% of the samples, and 15% of the samples are for validation. The
remaining 15% are used as test set. We repeat the experiment five
times and report the average performance.

5.3 Performance of LAXCAT

Classification Accuracy. We compared LAXCAT with the base-
line methods on MTS classification using the different benchmark
data sets described above and report the results in Table 2. The
results of our experiments show that deep learning-based methods
outperform the other two simple baseline methods, INN-DTW and
LR. LR mostly outperforms INN-DTW with the only exception on
Seizure data set. Among the deep learning based methods, those
equipped with an attention mechanism achieve better classification
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accuracy than the canonical LSTM model. Among the attention
based deep neural network models, LAXCAT outperforms the other
two attention based deep neural network baselines. We further note
that, in the case of the two PM2.5 data sets, perhaps not surprisingly,
all models consistently make better future PM2.5 value predictions
when past PM2.5 value recordings are included as an input .
Time Complexity. We also compare the computational complex-
ity of deep learning based methods in terms of run-time per training
iteration and run-time per testing iteration. As reported in Table 3,
the LSTM baseline does not include any attention mechanism to
track variable and temporal importance and hence takes the least
amount of run-time in each training and test iteration across all the
data sets. Among the attention based deep neural network models,
LAXCAT has the shortest run-time. The difference in execution
time between LAXCAT and the two baselines is quite substantial
in the case of Seizure and Motor Task data sets, due to the lengths
of the time series in question: Each sequence in Seizure data set
contains 1025 sampling points while sequences in Motor Task con-
tain 641 sampling points. DARNN and IMV-LSTM evaluate time
point-based attention, which places a greater computational burden
compared to the time interval-based attention in LAXCAT . We fur-
ther note in contrast to LSTM based methods which are inherently
sequential, many aspects of LAXCAT are parallelizable.

5.4 Explaining the LAXCAT Predictions

We proceed to describe several case studies designed to evaluate
the effectiveness of LAXCAT in producing useful explanations of
its classification. For qualitative analysis, we report the meaningful
variables and time intervals identified by the attention mechanism
and compare them with domain findings in related literature. To
quantitatively assess the effectiveness of the allocation of attention,
we define the attention allocation measure (AAM)

Amount of attention allocated correctly

AAM = x100%  (9)

This measure is only applied to the cases where a solid understand-
ing of important variable and time interval is present.

Total amount of attention

5.4.1 Case Study I: Synthetic Data. To thoroughly examine the
attention mechanism, we constructed a synthetic data set that re-
flects concrete prior knowledge regarding the key variables and
the time intervals that determine class labels. This synthetic data

(2)
1

set consists of 3 time series variables, i.e. X, = cos(2xt) + ¢,

th) = sin (2rt) + €, and th) = exp (¢) + €, where € is Gaussian

noise and ¢ takes value from a vector of 50 linearly equally spaced
points between 0 and 1. To generate two classes, we randomly

select half of the instances and manipulate the first variable XY)
by adding a square wave signal to the raw sequence. The square
wave is controlled by three random variables, the starting point, the
length, and the magnitude of the square wave. We treat instances
with square wave as positive and that without square wave as neg-
ative. For the synthetic data, we define correct attention allocation
as the attention assigned to variable 1 within the interval of the
square wave. The AAM scores on the synthetic data are reported
in Table 4. From the table, we observe that LAXCAT outperforms
DARNN and IMV-LSTM, suggesting that LAXCAT can better iden-
tify important variables and the relevant time intervals. We give
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Table 2: Classification results (Accuracyz+std) of different algorithms on the four data sets

Dataset ‘ INN-DTW LR LSTM DARNN IMV-LSTM Proposed

PM2.5 w/ 36.05 £3.24 3829 +0.86 4040+ 189 41.19+2.89 48.16+3.30 50.66+ 4.58
PM2.5 w/o | 30.39 £3.85 3592 +2.11 37.06+3.04 3898+543 39.34+440 45.53+6.20
Seizure 53.66 + 7.72 52.20 +5.88 70.24 +2.67 71.31+2.78 72.19+2.78 76.59 +4.08
Movement | 53.44 + 5.13 71.80 £8.31 7532 +3.26 83.28+1.37 84.09+1.12 87.21+1.37

Table 3: Run-time (per iteration in seconds) comparison.
Dataset ‘ PM2.5w/ Seizure Movement

LSTM (Train) 0.5 4 2.8
DARNN (Train) 4.8 430 218
IMV-LSTM (Train) 33 430 150
Ours (Train) 1.4 4.5 3.5
LSTM (Test) 0.001 0.01 0.01
DARNN (Test) |  0.08 24 13
IMV-LSTM (Test) 0.06 20 4.3
Ours (Test) 0.02 0.03 0.03
—Var. WM {002 —Var. 1 002
Var. 3 —Var 2 Var. 3 ||——Var. 2
Var. 3 » Var. 3 »

0 10 2 By ) EY

(a) Positive Sample (b) Negative Sample

Figure 5: Positive and negative synthetic examples are
drawn in solid lines and the heat maps of the attention al-
location are depicted in the background. The attention for
variable 1 is located in the top row, variable 2 in the center

row, and variable 3 in the bottom row. (Best viewed in color)
Table 4: AAM score on Synthetic data and Motor Task.
Dataset | DARNN IMV-LSTM _ Ours

5.42% 7.91% 10.93%
19.91% 22.08% 24.17%

Synthetic
Motor Task

an illustration of positive instance and negative instance with the
attention allocation by LAXCAT in Figure 5. We observe that the
proposed model distributes most of its attention to variable 1, and
specifically, in the interval that covers the location of the square
wave in both positive and negative class instances.

5.4.2  Case Study Il: PM2.5. PM2.5 value is the concentration of
particles with a diameter of 2.5 micrometers or less suspended
in air. Studies have found a close link between exposure to fine
particles and premature death from heart and lung disease [18].
We report the attention learning results in Figure 6. Variable-wise
speaking, as shown in Figure 6, when past PM2.5 recordings are
available for future prediction, IMV-LSTM ranks PM2.5 as the most
important variable, and the LAXCAT method ranks it as the second
most important variable. DARNN consistently selects dew point,
snow, and rain as important predictive variables. When PM2.5
value is not available, wind speed, wind direction and pressure are
high ranked by IMV-LSTM, which is consistent with that reported
in [24]. LAXCAT attends to wind direction and wind speed besides
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Figure 6: Average attention allocation on the PM25 datasets.
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Figure 7: Important channels and time intervals identified
by LAXCAT on the Movement data set. The darker the color,
the more attention allocated at the location.

PM2.5 value. According to [45], wind direction and speed are critical
factors that affect the amount of pollutant transport and dispersion
between Beijing and surrounding areas.

5.4.3 Case Study Ill: Movement Data. On the Movement data set,
we use EEG recordings to distinguish whether the subject is moving
the left or right hand. A subset of attention results are reported in
Figure 7. Extensive research has shown that the motor cortex is
involved in the planning, control, and execution of voluntary move-
ments [12, 44]. The motor cortex, located in the rear portion of the
frontal lobe, is closest to the locations of variables 1 to 7 in our em-
pirical analysis. In Figures 7(a)- 7(d), the heatmaps of accumulated
attention in the entire time period from 2 subjects are depicted. We
observe that most attention is distributed to the channels around
the central region, namely the C1, C3, C4, and Cg channels. On the
two left hand movement examples, i.e. Figure 7(a), 7(c), the pro-
posed model allocates attention to the right brain. On the contrary,
LAXCAT assigns most attention to the left brain during right hand
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Figure 8: Parameter analysis on the Movement data set.
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Table 5: Ablation study on variable (var.) attention and tem-
poral time-interval (temp.) attention.

| PM2.5w/ PM2.5w/o
LAXCAT 50.66 45.53
LAXCAT - var. attention 40.35 42.50
LAXCAT - temp. attention 41.67 41.71
LAXCAT - both attentions 40.26 38.68

movements as shown in Figure 7(b), 7(d). This observation is in line
with the current theory of contralateral brain function, which states
that the brain controls the opposite side of the body. For temporal
attention, as reported in Figure 7(e), LAXCAT puts most attention
to the time intervals later to the motor task onset. For qualitative
analysis, we define correct attention assignment as the attention
distributed to channels Cs, C3, C1, Cz, Ca, C4, Cg in the time period
after motor task onset. As reported in Table 4, LAXCAT assigns
about 24% of attention to the target zone as compared to around
20% for DARNN and 22% for IMV-LSTM.

5.5 Ablation Study

We also conducted an ablation study to examine the relative contri-
butions of variable attention and temporal attention in LAXCAT.
Specifically, we remove the variable attention module and obtain
local context embeddings by averaging the feature vectors in each
time interval (the second row in Table 5). Similarly, we remove the
temporal attention module and obtain summary embedding vector
by averaging over the context embedding vectors (the third row in
Table 5). Lastly, we remove both attention modules (the last row
of Table 5). We conclude that both variable and temporal attention
modules contribute to improved classification accuracy of LAXCAT.

5.6 Parameter Sensitivity Analysis

We investigated how the kernel size (interval length), number of
filters, and number of hidden nodes in the classifier neural network
affect classification accuracy. Due to space limitation, we only report
the results on the Movement data set, shown in Figure 8. The results
show no clear pattern as to how the numbers of filters and hidden
nodes affect the predictive performance. As for kernel size, 16 and 64
consistently yield better results than 32. When we set the kernel size
to 1 (corresponding to time point based temporal attention) while
fixing number of filters and hidden nodes to 8, the classification
accuracy falls to around 75%, which further underscores the benefits
of interval-based temporal attention.
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6 SUMMARY

We considered the problem of MTS classification, in settings where
besides achieving high accuracy, it is important to identify both the
key variables that drive the classification, and the time intervals
during which their values provide information that helps discrimi-
nate between the classes. We introduced LAXCAT, a novel, modular
architecture for explainable MTS classification. LAXCAT consists of
a convolution-based feature extraction along with a variable based
and a temporal interval based attention mechanism. LAXCAT is
trained to optimize classification accuracy while simultaneously
selecting variables and time intervals over which the pattern of
values they assume drive the classifier output. We present results
of extensive experiments with several benchmark data sets and
show that the proposed method outperforms the state-of-the-art
baseline methods for explainable MTS classification. The case stud-
ies demonstrate that the variables and time intervals identified by
LAXCAT are in line with available domain knowledge. Some direc-
tions for ongoing and future research include generalizations of the
LAXCAT framework to the settings with transfer learning [56, 68],
multi-modal [14] or multi-view [53, 66], sparsely and irregularly
observed [30, 33, 34], multi-scale [16], MTS data.
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