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Abstract— Medical image analysis and classification, using
machine learning, particularly Convolutional Neural
Networks, have demonstrated a great deal of success.
Research into mammography image classification tended to
focus on either binary outcome (malignancy or benign) or
nominal (unordered) classification for multiclass labels [1].
The industry standard metric for radiologist’s classification
of mammography images is a rating scale called BI-RADS
(Breast Imaging Reporting and Data System), where values
1 through 5 are a distinct progression of assessment that are
intended to denote higher risk of a malignancy, based on the
characteristics of anomalies within an image [1][2][3]. The
development of a classifier that predicts BI-RADS 1-5,
would provide radiologists with an objective second opinion
on image anomalies. In this paper, we applied a novel Deep
Learning method called OHPLall (Ordinal Hyperplane
Loss - all centroids), which was specifically designed for
data with ordinal classes, to the predictions of BI-RADS
scales on mammography images. Our experimental study
demonstrated promising results generated by OHPLall and
great potential of using OHPLall models as a supplemental
diagnostic tool.

Keywords—ordinal hyperplane loss, ordinal classification,
deep learning, machine learning, mammography, BI-RADS

I. INTRODUCTION

The American Cancer Society reports that, in 2017, over
300,000 people in the United States were diagnosed with breast
cancer and over 40,000 people died from the disease. Due to
improvements in treatment and early detection, the death rates
that are attributed to breast cancer have declined 39% from
1989 to 2015 [1]. Developing a mammography image BI-
RADS classifier that provide radiologists with an additional
tool for early detection of breast cancer may help save 1,000’s
of lives per year [2].

Much of the work in mammography classification focuses on
a single binary outcome (malignant-benign) or take the
approach that used to analyze “multi-class” label data, where a
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label with N different classes is recode into an Nx1 vector of N-
1 0°s and a single value of 1. The first would require an over-
simplification of the BI-RADS classification problem, while
the second doesn’t include the ordering information of the BI-
RADS labels/classes [3].

A third approach uses “Ordinal Regression” which is
essentially modification of the multi-class DNN approach [9].
In this approach, a single Deep Neural Network is used to
predict the classes. Their approach is very similar to a multi-
label classification problem using a DNN, where multiple
outputs are estimated with all elements of the output layer being
the value from a sigmoid function. To set up the analysis for &
ordinal classes, the label value for each record is recoded into a
k-1 length vector. For a given class value, ‘a,” all index values
of the vector with position value (using the standard 0 index
value for the 1% position in the vector) that are less than ‘a’
minus the minimum ordinal value are coded with a 1. All other
values are coded with a zero [9].

The three ordinal class case, with ordinal values ‘1°, 2’ and
‘3, is illustrated below (Table 1). For the three-class problem,
the neural network essentially estimates two binary models.
The first output predicts the likelihood that the label is greater
than ‘1°, and the second predicts the likelihood that the label is
greater than ‘2. Once the algorithm converges or reaches a
predefined stopping point, a classification rule, typically
whether or not the value is greater than 0.5, converts each
output vector into a binary array that is similar to the one used
for training. Ordinal classes are assigned based on which
encoded vector that the binary output matches. If the first
position is zero then the record is assigned the value of the
minimum label [4].

Table 1 Ordinal Regression Three Class Label Encoding

Label Vector
1 [0,0]
2 [1,0]
3 [1,1]

It should be noted that, while the vast majority of class
predictions will conform to one of the vector values of the



encoded ordinal classes, it is possible for vector values that do
not conform to exist. In the three-class problem, it is possible
that a prediction of ‘[0, 1] results from applying the resulting
model to a data record (either in the training set, a test or
validation set or to completely new data). It is left to the analyst
to determine how to classify these nonconforming results.

In [5], we introduced a novel loss function called Ordinal
Hyperplane Loss (OHPL) that was specifically for ordinal
classification. OHPL first uses a set of parallel hyperplanes to
represent samples in a feature space. Then each class can be
represented using the centroid of all the hyperplanes that belong
to this class (denoted as Hyperplane Centroid). Based on the
definition of Hyperplane Centroid, OHPL further quantifies
both the discrepancy between the ordering of hyperplane
centroids in the feature space and the given ordinal relationship
among the classes, and the relative closeness of each sample
towards the Hyperplane Centroids of the classes that this sample
doesn’t belong to. We further developed a deep learning
strategy called OHPLNet that learns to map data from its
original feature space to an optimal feature space where the
Ordinal Hyperplane Loss is minimized. In [5], experimental
studies showed that OHPLNet consistently outperforms other
ordinal classification methods on multiple data sets.

However, in the formulation of OHPL that is described in [5],
the hyperplane centroid ordering is applied to the full training
set within each learning iteration, which makes this approach
difficult to scale to large data sets, especially in a computing
environment with limited computing resources. In one of our
experimental studies, we laid OHPLNet upon a simple CNN to
perform ordinal classification on medical images using a
computer with a NVIDIA 1080 Ti GPU that has 10 GB of GPU
memory. In this experiment, the maximum number of images
that can be processed in a training batch is 500. In order to apply
OHPL strategy to mammography image classification, we
proposed in this paper an enhanced OHPL version that is called
OHPLall. OHPLall is able to effectively assess the loss that is
caused by improper ordering of Hyperplane Centroids in the
feature space by using mini-batch of data that most likely only
contains small numbers of samples from a given class. Our
experimental results showed that the performance of
mammography image classification using OHPLall is promising
and better than ordinal regression.

The rest of the paper is organized as follows. In section 11, we
review the basic concepts of our OHPL. Then we briefly
describe OHPLNet, a deep learning strategy using OHPL in
section III. In section IV, our new development of the OHPLall
strategy is presented. We further applied OHPLall to ordinal
classification on mammography image in section V and
analyzed the experimental results in section VI. Finally, we
conclude our paper in section VII.

II. BAsic CONCEPTS OF OHPL

As the name implies that Ordinal Hyperplane Loss (OHPL)
uses ordered linear hyperplanes, as the basis for calculating the
loss for data distribution in a feature space. The loss function is
designed to utilize simple scalar distance calculations,
combined with a standard application of large margin loss. The

loss function enables the use of stochastic gradient descent, in
optimizing data transformations.

A linear hyperplane can be expressed as a simple
mathematical equation of the form: wlx + ¢ = OwTx + ¢ = 0,
where w w and xx are vector valued and c is a scalar constant.
A set of parallel hyperplanes of this form differ in their c
values. As a direct consequence, the ‘distance’ between two
parallel hyperplanes can be defined to be the absolute value of
the difference in their c values divided by |w|. Given w w, we
further denote the hyperplane that goes through the ith data
point x;x; can be defines as the set of points satisfying:

wix+¢ =0 (1)
then bring x; into (1), we have
wix;+ ¢, =0 (2a)
¢ =-wlx; (2)

further bring (2) into (1), we have the expression of the
hyperplane that goes through x;

wix—wlx; =0 (3)

Given the hyperplanes going through each data point in a
feature space, we can now represent a class in that feature space
by calculating its Hyperplane Centroid (HC). For instance,
the hyperplane centroid for the kth class, denoted as HC;, HCy,
can be expressed as

Given the definition in (4), all ordinal classes are represented
as a group of hyperplane centroids, which are parallel to each
other, in the feature space. Now we define OHPL, such that we
can quantify the loss in a data distribution that is produced by a

data transformationg(x) @(x)¢(x) with respect to a given
vector w w. According to the intuitive criteria of an optimal
data distribution that are described in section 3.1, OHPL
consists two components, namely Hyperplane Centroid Loss
and Hyperplane Point Loss. Hyperplane Centroid Loss reflects
the loss caused by non-optimal ordering of Hyperplane
Centroids per the ordinal relationship of the classes, while
Hyperplane Point Loss reflects the loss caused by non-optimal
relationship between individual data points and the hyperplane
centroids of their classes.

1) Hyperplane Centroid Loss(HCL)

Hyperplane Centroid Loss (HCL), the first component of
OHPL, ensures that the hyperplane centroids are properly
ordered, per the ordering of the classes. This ordering can be
expressed as a difference in adjacent HCs. If the adjacent HCs
are properly ordered, then the transitive property ensures that
all HC’s are properly ordered. Therefore, we require that the

HCs for adjacent classes k& and k+/ adhere to:
HCp,1— HC, > 6 HC, —HCyyy > 6, for 6 > 0. This
means, if HCp,,; is at least & from HC,



HCy,q is atleast 6 distance from HCy, then the ordering
is correct with sufficient distance between the adjacent classes.
Since the difference is unbounded from above, this formulation
doesn’t introduce a distance assumption. Given adjacent classes

k and k+1, and § > 0 § > 0,the Hyperplane Centroid Loss
contribution of HC, HCy relative to HC,,,;HCy,, is defined as:

k-1
HCL = Z max(HC; — HCiy1 + 8,0) (5)

i=1

2) Hyperplane-Point Loss (HPL)

The second component of OHPL is “Hyperplane-Point Loss”
(HPL). In calculating this loss component, individual data
points are compared to a specific set of Hyperplane Centroids,
to access the point’s contribution to the loss of the data
distribution. HPPL is actually, the sum of two analogous loss
functions, that work in different “directions” a la the
formulation of (5).

For the points, in a given class, if we “look” in the
“increasing” direction (direction of larger ordinal class value),
we only want the points that are higher than the HC for the point
to potentially contribute to the loss (those below will be
examined later). For points that are above their HC, but are
already sufficiently close to their HC, there isn’t much benefit
in drawing them closer, so we want their loss contribution to be
zero. Therefore, the HPL uses a margin to ensure that points
that do not contribute to loss are closer to their HC than the
midpoint between the HC. In Figure I, the circled points are
higher than the margin above its HC, so they contribute to the
total HPL value. Note that the dotted margin line/threshold is
closer to the HC, than to the adjacent HC.

Adjacent
Hyperplane
Centroid

Margin
Hyperplane Centroid

Figure 1. Computing HPL in Increasing Direction

Similarly, when we look in the decreasing direction, points
that are further from their HC than the margin, will contribute
to the HPL total. In Figure 2, the three circled points contribute
to HPL.

The two components of the HPL (an increasing and a
decreasing) that are summed to arrive at the total HPL.
Formally, given a dataset SS, let y to be the proportion of
distance between adjacent HCs, HC be the hyperplane centroid
that represents the class that x; €5 X; €S belongs to,
HC,,HC, is the higher hyperplane centroid that is adjacent to

HC, and HPL} HCL{ be the HPL for the pointx; € S x; € Sin
the increasing direction, then we have:

05<y<1.0
point margin = y(HC,, — HC)
HPL} = max((f(x;) — HC) — (HCy, — HC) + y(HC,, — HC),0)
= max (f(x;) —yHC — (1 = y)HC,4,0)
Similarly, in the decreasing direction,
HPL; = max (YHC — f(x;) + (1 —y)HC_,,0)

Then, the overall HPL will be the aggregation of (HPL* +
HPL™) over all data points in S.

HPL = Z HPL* + HPL~ (6)

X;ES
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Figure 2. Computing HPL in Decreasing Direction

3) Ordinal Hyperplane Loss (OHPL)

Finally, the Ordinal Hyperplane Loss (OHPL) is defined as
the weighted aggregation of HCL and HPL, as shown below,
where @ > 1 reflects the importance of HCL in OHPL with
respect to HPL.

OHPL = aHCL + HPL (7)

III. OHPLNET: THE DEEP LEARNING STRATEGY USING OHPL

Given the definition of OHPL, this section describes a deep
NN architecture for ordinal classification based on OHPL.
Figure 3 shows a simple deep neural network (DNN) model that

represents a non-linear transformation ¢ that maps input data
from their original space to a n-dimensional space. We further

add the last layer w'@(x)wT¢p(x) on the top of the

transformation ¢(x).¢p (). Then we use the weights of the last
layer, namely ww, to define m parallel hyperplanes to
represent m ordinal classes, such that the kth class will be
represented by the hyperplane whoes expression is shown in

(4).

Based on the hyperplane representations of the ordinal
classes, we can calculate the Ordinal Hyperplane Loss (OHPL)
based on the formula (7). Then the DNN can learn both an
optimal transformation ¢¢ and an optimal vector w by
minimizing the OHPL (recall that w determines the direction of



those parallel hyperplanes in the feature space that is mapped by
$.

input Non-Lin

%

In order to facilitate the application of OHPL deep learning
strategy on different types of data for ordinal classification, we
further brand this architecture as OHPLNet, a deep architecture
that users can directly apply to their ordinal classification
problems. Formally, an OHPL-Net contains two components.
The first component is called ¢ layers, which are fully
connected deep nets that represents a non-linear transformation
of the input data. The second component is called Hyperplane
layer, which is a one-layer one-output neuron network
representing the direction of Hyperplane Centroids. Again
OHPLNet uses OHPL to learn optimal ¢ and optimal parallel
hyperplanes. If users’ classification tasks involve unstructured
data, OHPLNet can be put upon those deep neuron architectures
that are built on specific unstructured data, such as
Convolutional Neuron Network (CNN) [6] [7] on image data as
shown in Figure 3 and Recurrent Neural Network (RNN) [8] on
text data as shown in Figure 4.

Figure 3: OHPLNet
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Figure 3. OHPLNet upon CNN for Image Ordinal Classification
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Figure 4. OHPLNet upon RNN for Sequential Data Ordinal
Classification

IV. FURTHER DEVELOPMENT OF OHPLALL

The initial work on OHPL provided a meaningful
improvement over the best ordinal classifiers that are available
today [5], but the methodology had some concerns that needed
to be addressed. All of the benchmark data sets were relatively
small in size, so the initial algorithm design was able to use the
entire dataset, for calculating the hyperplane centroids for each

batch submission. Since the design for that part of the algorithm
used straightforward matrix operations on structured data, the
conceptual investigation could be conducted without concern for
that the standard benchmark datasets were too large to run in a
single pass. To apply the OHPL strategy to large dataset,
algorithmic changes were going to be required. Possible
directions of changes include 1) incorporating efficient matrix
multiplication that could be distributed to multiple computing
nodes; 2) developing effective mini-batch variant of OHPL such
that the loss caused by improper ordering of Hyperplane
Centroids in the feature space can be assessed using mini
batches of data that most likely only contains small amount of
samples from partial classes. In this development, we adopted
the second direction, not only because mini-batch based deep
neural nets have a solid history of providing improved
generalizability over large data set, but also the scalability
brought by mini-batch learning strategy is far less subject to the
restriction of computing powers. In order to develop mini-batch
variant of OHPL, we made the following changes on the HCL
estimation.

1) With the original OHPL that works on the whole data set,
class labels were used to calculate an integer “distance” between
adjacent hyperplane centroids. However, with mini-batch
strategy, not all class labels may appear in a mini batch. For
example, if the full dataset contained six distinct class labels,
‘0’-‘6’, but a mini-batch only contained records with values 2’
and ‘4’, then instead of requiring a minimum one-unit distance
between the respective hyperplane centroids, the threshold will
besetto (4 —2) * 6.

2) Instead of relying on the transitive property that the
original OHPL uses to calculate HCL based on adjacent
hyperplane centroids, we propose a new way to calculate the
HCL loss component in a mini-batch by comparing all classes
that were represent in the mini-batch to each the other classes
within the batch. The new formulation for HCL is shown in
equation (8).

HCL = Zmax(HCi —HG+(j—i)*6,0) (8)

i<j

Given that this new mini-batch strategy compares every pair
of classes that appear in a mini batch for HCL estimation
(instead of just comparing adjacent pairs in the original
formation of OHPL), we call this strategy OHPLall. The
complete OHPLall algorithm is given in Figure 5.



OHPLAII ALGORITHM

Hyper-Parameters: h — number of hidden layers
Iy —number of nodes per layer
a — prioritization weight for HCL
Ir —learning rate
& —minimum margin between adjacent hyperplane centroids
y— point margin proportion
bs — batch size
Input: Rescaled training data {{x,y }|i=1,...,.n}
Parameters h, I, e, Ir, {l, = 1,..h}
Begin:
Randomize weight (W) and bias (b) in each DNN node
While not converged do
OHPL =0, HPL=0, HCL =0
Select mini-batch and one hot encode mini-batch labels
Feed mini-batch through selected ANN
From ANN Output, Caleulate HCL:
Calculate hyperplane centroid for each class
For each pair of hyperplane centroids HC and HG; (i<j)
HCL += max(HCf =HG+(—i)* 5,0)
From ANN Output, Calculate HPL:
For each point x; in the mini-batch
Let HC be the hyperplane centroid of the class that x; belongs to
HC 4 is the higher hyperplane centroid adjacent to HC in the mini-batch
HC_y is the lower hyperplane centroid adjacent to HC in the mini-batch
HPLY = max (f (x;) = YHC — (1 = ¥)HC44,0)
HPL; = max (yHC — f(x;) + (1 —y)HC_4,0)
HPL+= HPL} + HPL]
OHPL = HPL + a*HCL
Calculate Stochastic Gradient Descent (SGD)
Update W and b via SGD and Ir
End: Output W and b

Figure 5. OHPLall Algorithm

V. MAMMOGRAPHY IMAGES CLASSIFICATION USING OHPLALL

Radiologists use the first six categories, of the seven-point
BI-RADS (Breast Imaging Reporting and Data System) rating
system to classify mammography images. The seventh
category is used for images that are of breasts with a known
malignancy, that was confirmed via a biopsy. The zero category
is used, for images where classification is uncertain and
additional information is required. Categories one through six
are a sequence of ordinal classes [2].

Table 2 BI-RADS Category Scale [2]

Category Definition

0 Additional imaging evaluation and/or comparison to
prior mammograms is needed.

1 Negative

2 Benign (non-cancerous) finding

3 Probably benign finding — Follow-up in a short time
frame is suggested

4 Suspicious abnormality — Biopsy should be considered
Highly suggestive of malignancy — Appropriate action

5
should be taken

6 Known biopsy-proven malignancy — Appropriate action

should be taken

While the BI-RADS rating scale has seven classes, only six
of the classes (1-6) are ordered (see Table ). In addition, a rating
of 6 is only used when the results of a biopsy of the abnormality

confirms a malignancy. As such, it wouldn’t be used at the time
when the radiologist was reading the images.

Table 3: CBIS-DDSM Annotations [9] [10]

Relation
Annotation  to Scan  Definition/Values
Event
Side Prior to  Left or right breast
Vie Prior t CC - craniocaudal
W T MLO - mediolateral oblique
Density . . .
Rating Prior to  Breast density rating
Calcification (2 annotations) —
Abnormality After Type and distribution
Type Mass (2 annotations) — shape and
margin
Assessment After BI-RADS rating (0, 2-5)
After Image Bemgn Without Callback
Patholo Assessment Benign
a gy Malignant

The Cancer Imaging Archive (TCIA) contains a database of
mammography images, called CBIS-DDSM (Curated Breast
Imaging Subset of DDSM). The database contains over 2,600
images selected and annotated by trained mammographers
(Table 3 shows the format of the annotation). Released in 1997,
they remain a valid source of curated mammography data for
public research into mammography classification [10] [11].
Several studies, analyzing the CBIS-DDSM data, were
published in the past year or two, reporting a variety of
classification algorithms, that demonstrate good success in
using DNN’s [12] [13]. The goal of this research is to analyze
mammography images from the CBIS-DDSM database that
have been classified by radiologists, to build an image
classification model using OHPLall to predict BI-RADS
categories two through five. The CBIS-DDSM database
contains three types of images, which differ by size:

1. Full mammography images
Images that are cropped for standardization for use
in computer-aided diagnosis and detection (CADx
and CADe, respectively). Regions of interest are at
the centroid of the image.

3. Regions of Interest (ROI) images are smaller
images that focus more directly on the
abnormality.

The ROI scans vary in size from 70 pixels to 3,000 pixels but
are heavily skewed to under 1,000 pixels per side. Due to their
relatively small size, these images are better choices for
analysis on a desktop or laptop. Therefore, in this experimental
study, we used the ROI images. The ROI images have two
perspectives (Mediolateral Oblique or MLO and Craniocaudal
or CC). Both perspectives were used in this research. Images



are also split into Calcification and Mass subsets. For this
analysis, the Calcification images are used.

For images larger than 1,024 pixels per row or column, the
image outer regions are cropped to result in a maximum pixel
size of 1,024 in each dimension. Images that are smaller than
1,024 pixels in their rows or columns are zero padded on the
outer edges (equally on both dimensions). After pre-processing,
we havel,423 images of 1,024x1,024 pixels with a BI-RADS
rating of 2-5 in the training set. The database comes with an
independently selected testing set. We use 306 of them with BI-
RADS rating of 2-5 as our testing set.

Since BI-RADS rating (the class labels for predicting) is
supposed to strongly associated with the incidents of a
malignant abnormality, assessing the model results, in terms of
malignancy rates, should be an interesting and useful analysis.
If a model performs below expectations, but provides an
appropriate distribution of malignancy cases, it may be even
more useful, as a diagnostic tool, to supplement a radiologist’s
findings. In Table , we see that for the training set, BI-RADS 2
and 5 have expected incidence rates for malignancy. BI-RADS
3 and 4 are likely not the desired distribution. For the test set,
the images seem to almost be randomly assigned in terms of
malignancy incidence. This test set will be a meaningful
challenge in terms of evaluating malignancy rates in the
resulting classifiers.

To apply OHPLall strategy to this mammography ROI
images to predict BI-RADS, we lay a 4-layer OHPLNet on the
following CNN model as shown in Figure 6. For comparison,
we also use the same CNN model for Ordinal Regression that
is described in [4].

Table 4 Image Counts by BI-RADS Rating

BI-RADS Test Pct Number | Training Pct | Number
Rating | Images with of Images with of
Malignancy [ Images | Malignancy | Images
2 352% 62 0.2% 473
3 30.4% 81 35.5% 84
4 40.9% 115 39.9% 742
5 36.1% 48 98.5% 124
Total 38.2% 306 29.3% 1,423

Image Data
[

1 Channel In, 3x3 patch, 8 Channels Out, 2x2 Max Pool

v

[ 8 Channel In, 3x3 patch, 16 Channels Out, 2x2 Max Pool |
\ 16 Channel In, 3x3 P;tch, 32 Channel out |
\ 32 Channel In, 3x3 Patch, 32+channe|s Out, 4x4 Max Pool |
| |
| |
l l
{ |

32 Channel In, 3x3 P;tch, 64 Channel out
[)
64 Channel In, 3x3 Patch, 64 Channels Out, 4x4 Max Pool
)
64 Channel In, 3x3 Patch, 128 Channel out
128 Channel In, 3x3 Patch, 12; Channels Out, 4x4 Max Pool

v
‘ 128 Channel In, 3x3 Patch, 32 Channels Out, 2x2 Max Pool ‘
'
{ 32 Channel In, 3x3 Patch, 32 Channels Out, 2x2 Max Pool
7
| Flatten |

Figure 6. CNN model used in the experimental study

VI. EXPERIMENTAL RESULTS

Assessment of ordinal class labels is done using two
standard methodologies. Ordinal Class problems use Mean
Zero Error (MZE), instead of using traditional accuracy
(proportion of records that are correctly classified). MZE is the
simple ratio of the number of misclassified records and the total
number of records. Mean Absolute Error (MAE) is the other
key metric. In MAE is calculated by taking the sum of the
absolute differences between actual label value and the
predicted labels and dividing by the number of records. Two
classifiers that perform comparably on MZE may not do so on
MAE. In that case, the classifier with the lower MAE performs
better.

Twenty OHPLall models and twenty Ordinal Regression
models were generated through twenty executions for each. For
OHPall, the mean batch training error, for an epoch is a
reasonable metric to use for as a stopping criteria. As can be
seen, in Figure 7, mean batch error values that are below 0.5
results in low test set MZE and MAE. While higher mean batch
error values may have low test set MZE and MAE, they may
also have higher than desired test set MZE and MAE values.

0.8

R?=0.5032 -
07 . ° o'. LI T -
................ PR °
0.6 ey . . g
X xX X
05 <
x R? = 0.5553 *
0.4 X —
03
0.2
0.1
0
03 0.4 0.5 0.6 0.7 0.8 0.9
Mean Batch Training Error
x Test MZE @ Test MAE —Test MZE Trend - Test MAE Trend

Figure 7 Training Data Mean Batch Error

As can be seen in Table 7, Ordinal Regression MZE and
MAE are 25% and 43% higher, respectively, than OHPLall, on



the mean values of 20 executions of each algorithm (see Table
). In addition, the MAE values for Ordinal Regression had
double the standard deviation for MAE as OHPLall.

Table 5 OHPLall vs Ordinal Regression

MAE and MZE Results
Algorithm Metric MZE MAE
Mean 0.473 0.612
OHPLall
Std Dev 0.033 0.046
Ordinal Mean 0.595 0.877
Regression | Std Dev 0.041 0.099

In addition to assessing standard model performance
metrics, it is also worthwhile to assess class predictions relative
to biopsy results for the calcifications. For this evaluation, a
single well performing model for each algorithm is examined.
Table reports the MAE and MZE for the selected models. If a
model “struggles” to properly classify records within a given
BIRAD rating, it is likely to be desirable for the errors to occur
in the lower rating values and perform better in the higher
ratings leading to early treatment for a malignancy. Both
models perform poorly on BI-RADS ‘3’ and ‘5’ rated images.
From the table it is clear to see that Ordinal Regression does a
good job, with BI-RADS 2’ rated records, but performs poorly,
relative to OHPLall in the other three classes (to the point that
MAE for OHPLall is roughly equal to MZE for Ordinal
Regression).

Table 6 Rating Level Assessment for OHPall Model
and Ordinal Regression Model

BI- OHPLall | OHPLall | Ord Reg | Ord Reg
RADS MZE MAE MZE MAE
2 0.408 0.732 0.211 0.338
3 0.696 0.739 0.739 0.826
4 0.324 0.386 0.574 0.767
5 0.750 0.944 0.889 1.417
Total 0.422 0.559 0.539 0.748

Per the BI-RADS definitions, it is expected that malignancy
rates would increase with BI-RADS score. The algorithm that
produces models that best meet this expectation would provide
higher quality predictions. As shown in Table 8, Ordinal
Regression predicted a significant shift in BI-RADS rating,
towards the low end of the scale, resulting in very good MZE
and MAE values for the ‘2’ class, but poor results for the other
classes. In addition, images classified as a ‘5’ by OHPLall have
over three times the Malignancy Rate (percent of images that
were ultimately classified as malignant) as Ordinal Regression.
Early identification of malignancy is critical in treating breast
cancer, so this skew towards lower values versus OHPLall is
less desirable for a model that is intended to be used as a
diagnostic tool.

Table 8 Malignant Counts (Ratio) for Both a High Performing
OHPLall Model and a High Performing Ordinal Regression Model

BL- Actual OHPLall Ord Reg
RADS Malignant Malignant Malignant
Counts (Ratio) Counts (Ratio) Counts (Ratio)

2 0 (0.0%) 7(12.5%) 44 (42.7%)
3 16 (69.6%) 28 (48.3%) 29 (35.8%
4 65 (36.9%) 69 (38.8%) 40(37.4%)
5 36 (100.0%) 13 (92.9%) 4(26.7%)

The image database also contained a number of images with
a BI-RADS classification of ‘0’. This class is designated as
“Additional imaging evaluation and/or comparison to prior
mammograms is needed”. While a specific rating value is not
available, the models can be assessed based on the malignancy
rates for the predicted classes. As was the case for the test
dataset, relative to OHPLall, Ordinal Regression shifts cases to
the lower end of the rating scale, as demonstrated in table 9.
This skew towards the lowest available BI-RADS class
includes a shift of nine malignant cases, to the ‘2’ class, giving
this Ordinal Regression a higher malignancy rate than the rates
for the other three classes. OHPLall classifies two malignant
cases into class 2’. OHPLall classifies over 2/3 malignant cases
into classes ‘4’ and ‘5°, while Ordinal Regression classifies just
over half of the malignant cases into class ‘4’ and no malignant
cases into class ‘5’. The OHPLall results are more consistent
with the overall definitions of the BI-RADS measurement
system.

Table 9 Results for ‘0’ Rated Cases

. . Ordinal
BI- | OHPLall 18[Hll')LalLt Rordm?‘l Regression
RADS | Counts ahgnan ceression Malignant
Counts Counts
Counts
2 2 2 15 9
3 14 8 15 7
4 42 16 40 17
5 13 7 1 0

In summary, for the classification of the available
mammography images into BI-RADS rating, a Convolutional
Neural Network that uses OHPLall loss provides better results
than a Convolutional Neural Networks that use Ordinal
Regression. Not only does it provide better overall results, but
in the critical secondary assessment OHPLall works well in
predicting images that have a malignancy into higher BI-RADS
classes.

VII. CONCLUSIONS

In this paper, we presented our continuous development of
OHPL, a loss function specifically designed for ordinal data
that enables deep learning to be applied for ordinal
classification, into a new enhanced version that is called
OHPLall. Instead of requiring the whole training datasets,
OHPLall uses mini batches to effectively assess the ordering of
the classes and the relative closeness of a sample towards its
own class in a feature space. Deep learning strategy using
OHPLall as the loss function is more scalable to large data sets
than the original OHPL.



We further applied OHPLall to mammography image BI-
RADS classification. Experimental results showed that
OHPLall outperformed the Ordinal Regression approach with
respect to MZE and MAE measures. By further analyzing the
model results in terms of malignancy rates in each BI-RADS
scale, we found that the predicted results generated by OHPLall
provided a more appropriate distribution of malignancy cases
among predicted BI-RADS scales than the results generated by
Ordinal Regression, which demonstrated a great potential of
using OHPLall as a supplemental tool in breast cancer
diagnosis.
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