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ABSTRACT

Graph neural networks (GNNs) have shown great power in model-
ing graph structured data. However, similar to other machine learn-
ing models, GNNs may make predictions biased on protected sensi-
tive attributes, e.g., skin color and gender. Because machine learning
algorithms including GNNs are trained to reflect the distribution
of the training data which often contains historical bias towards
sensitive attributes. In addition, the discrimination in GNNs can be
magnified by graph structures and the message-passing mechanism.
As a result, the applications of GNNs in sensitive domains such as
crime rate prediction would be largely limited. Though extensive
studies of fair classification have been conducted on i.i.d data, meth-
ods to address the problem of discrimination on non-i.i.d data are
rather limited. Furthermore, the practical scenario of sparse anno-
tations in sensitive attributes is rarely considered in existing works.
Therefore, we study the novel and important problem of learning
fair GNNs with limited sensitive attribute information. FairGNN is
proposed to eliminate the bias of GNNs whilst maintaining high
node classification accuracy by leveraging graph structures and
limited sensitive information. Our theoretical analysis shows that
FairGNN can ensure the fairness of GNNs under mild conditions
given limited nodes with known sensitive attributes. Extensive ex-
periments on real-world datasets also demonstrate the effectiveness
of FairGNN in debiasing and keeping high accuracy.
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1 INTRODUCTION

Graph neural networks (GNNSs) [5, 17, 24, 44] have achieved re-
markable performance on various domains such as knowledge
graph [16, 46], social media mining [17], nature language pro-
cessing [24, 49], and recommendation system [2, 50]. Generally,
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message-passing process is adopted in GNNs [17, 24], where infor-
mation from neighbors is aggregated for every node in each layer.
This process enriches node representations, and preserves both
node feature characteristics and topological structures.

Despite the success in modeling graph data, GNNs trained on
graphs may inherit the societal bias in data, which limits the adop-
tion of GNNs in many real-world applications. First, extensive stud-
ies [3, 7, 10] have revealed that historical data may include patterns
of previous discrimination and societal bias. Machine learning mod-
els trained on such data can inherit the bias on sensitive attributes
such as ages, genders, skin color, and regions [3, 10], which im-
plies that GNNs could also exhibit the bias. Second, the topology of
graphs and the message-passing of GNNs could magnify the bias.
Generally, in graphs such as social networks, nodes of similar sensi-
tive attributes are more likely to connect to each other than nodes
of different sensitive attributes [9, 36]. For example, young people
tend to build friendship with people of similar age on the social
network [9]. This makes the aggregation of neighbors’ features in
GNN have similar representations for nodes of similar sensitive
information while different representations for nodes of different
sensitive features, leading to severe bias in decision making, i.e.,
the predictions are highly correlated with the sensitive attributes
of the nodes. Our preliminary experiments in Sec. 3.5 indicate that
GNNs have a larger bias due to the adoption of graph structure
than models which only use node attributes, which verifies our
intuition. The bias would largely limit the wide adoption of GNNs
in domains such as ranking of job applicants [32] and crime rate
prediction [40]. Thus, it is important to investigate fair GNNs.

However, developing fair GNNs is a non-trivial task. First, to
achieve fairness, we need to obtain abundant nodes with known
sensitive attributes so that we can either revise the data or regular-
ize the model; whereas people are unwilling to share their sensitive
information in the real-world, and resulting in inadequate nodes
with sensitive attributes known for fair model learning. For example,
only 14% teen users public their complete profiles on Facebook [30].
The lacking of sensitive information challenges many existing work
on fair models [3, 7, 28, 29]. Second, though extensive efforts have
been made to establish fair models by revising features [20, 21, 55],
disentanglement [7, 29], adversarial debiasing [3, 11] and fairness
constraints [51, 52], they are overwhelmingly dedicated to inde-
pendently and identically distributed (i.i.d) data, which cannot be
directly applied on graph data for the absence of simultaneous con-
sideration of the bias from node attributes and graph structures.
Recently, [4, 36] aim to learn fair node representations from graphs.
These methods merely deal with plain graphs without any node
attributes, and focus on fair node representations instead of fair
node classifications.
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Therefore, in this paper, we study a novel problem of learning
fair graph neural networks with limited sensitive information. In
essence, we need to solve two challenges: (i) how to overcome the
shortage of sensitive attributes for eliminating discrimination; and
(ii) how to ensure the fairness of the GNN classifier. In an attempt to
address these challenges, we propose a novel framework named as
FairGNN for fair node classification. A GNN sensitive attribute esti-
mator is adopted in FairGNN to predict plenty of sensitive attributes
with noise for fair classification. Inspired by existing works of fair
classification on i.i.d data with adversarial learning [3, 11, 31, 54],
we deploy an adversary to ensure the GNN classifier make pre-
dictions independent with the estimated sensitive attributes. To
further stabilize the training process and performance in fairness,
we introduce a fairness constraint to make the predictions invariant
with the estimated sensitive attributes. Our main contributions are:

e We study a novel problem of fair graph neutral networks
learning with limited sensitive information;

o A new framework, FairGNN, is proposed to settle the short-
age of sensitive attributes for adversarial debiasing and fair-
ness constraint by estimating users’ sensitive attributes;

e We conduct theoretical analysis showing fairness achieves at
the global minimum even with estimated sensitive attributes;

o Extensive experiments on different datasets demonstrate the
effectiveness of our methods in eliminating discrimination
while keeping high accuracy of GNNs.

The rest of the paper is organized as follows. In Sec. 2, we re-
view related work. In Sec. 3, we conduct preliminary analysis to
understand the bias issue of GNNs. In Sec. 4, we give the details of
FairGNN. In Sec. 5, we conduct experiments to show the effective-
ness of FairGNN. In Sec. 6, we conclude with future work.

2 RELATED WORK

In this section, we will review related work including graph neural
networks and fairness in machine learning.

2.1 Graph Neural Networks

Graph neural networks (GNNs), which generalize neural networks
for graph structured data, have shown great success for various
applications [16, 39, 42, 43, 49, 50, 56]. Generally, GNNs can be
categorized into two categories, i.e., spectral-based [5, 8, 19, 24, 25]
and spatial-based [6, 17, 44, 50]. Spectral-based GNNs define graph
convolution based on spectral graph theory, which is first explored
by Bruna et al. [5]. Since then, more spectral-based methods are
developed for further improvements and extensions [8, 19, 24, 25].
Graph Convolutional Network (GCN) [24] is a particularly pop-
ular method which simplifies the convolutional operation on the
graph. Spatial-based graph convolution directly updates the node
representation by aggregating its neighborhoods’ representations
[13,17, 33, 50]. Velickovi¢ et al. [44] introduce the self-attention into
the aggregation of spatial graph convolution by assigning higher
weights to the more important nodes in graph attention network
(GAT). Various spatial methods are proposed to solve the scalability
issue of GCN [6, 17]. For example, a neighbor sampling method to
train GNN with nodes in mini-batch instead of the whole graph is
developed in GraphSAGE [17]. Moreover, spatial-based methods
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have already been successfully deployed to deal with extremely
large industrial datasets [50].

The essential idea of GNNss is to propagate the information of
nodes through the graph to get better representations. However,
people tend to build relationships with those sharing the same
sensitive attributes. Then, representations in GNNs are nearly prop-
agated within the subgroup, which highly increases the risk of
discrimination towards sensitive attributes. Despite the risk of dis-
crimination in GNNs, there is no existing work to address this
problem. Thus, we study the novel problem of learning fair GNNs
to eliminate the potential discrimination.

2.2 Fairness in Machine Learning

Many works have been conducted to deal with the bias in the train-
ing data to achieve fairness in machine learning [3, 10, 18, 20, 21,
28, 55]. Based on which stage of the machine learning training
process is revised, algorithms could be split into three categories:
the pre-processing approaches, the in-processing approaches, and
the post-processing approaches. The pre-processing approaches
are applied before training machine learning models. They could
reduce the bias by modifying the training data through correct-
ing labels [20, 55], revising attributes of data [12, 21], generating
non-discriminatory labeled data [38, 47, 48], and obtaining fair data
representations [3, 7, 11, 28, 29, 53]. The in-processing approaches
are designed to revise the training of the state-of-the-art models.
Typically the machine learning models are trained with additional
regularization terms or a new objective function. [10, 22, 52, 54]. Fi-
nally, the post-processing approaches directly change the predictive
labels to ensure fairness [18, 35]. Recently, several works explore
the learning of fair graph embeddings for recommendation [4, 36].
Fairwalk [36] modifies the random walk procedure of node2vec
[15] to obtain a more diverse network neighborhood representa-
tions. The sensitive attributes of all the nodes are required in the
sampling procedure of FairWalk. Bose and Hamilton [4] propose
to add discriminators to eliminate the sensitive information in the
graph embeddings. Similar to Fairwalk, the training process of the
discriminators is in need of the sensitive attributes of all the nodes.

Our work is inherently different from existing works: (i) we focus
on learning fair GNNs for node classification instead of fair graph
embeddings; (ii) we address the problem that only a limited number
of nodes are provided with sensitive attributes in practice.

3 PRELIMINARIES ANALYSIS

In this section, we first conduct preliminary analysis on real-world
datasets to show that GNNs could exhibit more serve bias due to the
graph structure and the message-passing. Sequentially, We formally
give the problem definition of fair node classification.

3.1 Notations

We use G = (V, E,X) to denote an attributed graph, where V =
{v1,...,oN} is the set of N nodes, & C V X V is the set of edges,
and X = {x1,..,xn} is the set of node features. A € RN*N jg
the adjacency matrix of the graph G, where A;; = 1 if nodes v;
and v; are connected; otherwise, A;j = 0. In the semi-supervised
setting, part of nodes v € Vj are provided with labels y, € Y,
where Vy C V denotes nodes with labels, and Y is the set of
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Table 1: The statistics of datasets.

Dataset Pokec-z Pokec-n  NBA
# of nodes 67,797 66,569 403

# of node attributes 59 59 39

# of edges 882,765 729,129 16,570
Size of Vp, 500 500 100
Size of Vs 200 200 50
Group ratio 1.84 2.46 2.77

# of inter-group edges 39,804 31,515 4,401
# of intra-group edges 842,961 697,614 12,169

labels. Sensitive attributes of training nodes are required to achieve
fairness of machine learning algorithms. In our setting, only a small
set of nodes Vs C V are provided with the sensitive attribute
s € {0, 1}. The set of provided sensitive attributes is denoted by S.

3.2 Datasets

For the purpose of this study, we collect and sample datasets from
Pokec and NBA. The details are described as below.

Pokec [41]: It is the most popular social network in Slovakia,
which is very similar to Facebook and Twitter. This dataset con-
tains anonymized data of the whole social network in 2012. User
profiles of Pokec contain gender, age, hobbies, interest, education,
working field and etc. The original Pokec dataset contains millions
of users. Based on the provinces that users belong to, we sampled
two datasets named as: Pokec-z and Pokec-n. Both Pokec-z and
Pokec-n consist of users belonging to two major regions of the cor-
responding provinces. We treat the region as the sensitive attribute.
The classification task is to predict the working field of the users.

NBA: This is extended from a Kaggle dataset ! containing around
400 NBA basketball players. The performance statistics of players in
the 2016-2017 season and other various information e.g., nationality,
age, and salary are provided. To obtain the graph that links the NBA
players together, we collect the relationships of the NBA basketball
players on Twitter with its official crawling API 2. We binarize the
nationality to two categories, i.e., U.S. players and oversea players,
which is used as sensitive attribute. The classification task is to
predict whether the salary of the player is over median.

For all the datasets, we eliminate nodes without any links with
others. We randomly sample labels and sensitive attributes sep-
arately to get Vp and Vs. We randomly sample 25% and 50% of
nodes containing both sensitive attributes and labels in Pokec-z,
Pokec-n and NBA as validation sets and test sets. Note that the
validation sets and test sets have no overlap with V; and Vs. The
key statistics of the datasets are given in Table 1. Apart from the
basic statistics, we also report the ratio of the majority and minority
group and the number of edges linking the same group and different
groups. It is evident from the table that: (i) skew exists in sensitive
attributes; (ii) most of relationships are between users who share
the same sensitive attribute.

3.3 Preliminaries of Graph Neural Networks

Graph neural networks (GNNs) utilize the node attributes and edges
to learn a representation h, of the node v € V. The goal of learn-
ing representation in node classification is to predict the node v’s

!https://www.kaggle.com/noahgift/social-power-nba
Zhttps://developer.twitter.com/en
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Table 2: Results of models w/ and w/o utilizing graph.

[ Dataset | Metrics | MLP [ MLP-e [ GCN [ GAT ]

ACC (%) | 653+0.5 | 68.6+0.3 | 70.2+0.1 | 70.4 +0.1

Pokecy | AUC (%) | 713£03 | 74803 | 77.22£0.1 | 767 0.1
Asp (%) | 38+13 | 69+1.0 | 9911 | 91209
Ago (%) | 2.2 £0.7 4.0 1.5 9.1 0.6 8.4 0.6
ACC (%) | 63.140.4 | 663£0.6 | 70.520.2 | 703 £0.1
AUC (%) | 682403 | 724 0.6 | 751%0.2 | 75.1+0.2

Pokec-n
Asp (%) | 33206 |87£1.0 | 9.6+0.9 | 94207
Ao (%) | 71409 | 99406 | 12813 | 12015
ACC (%) | 63.6+0.9 | 66.1+1.1 | 71.2+0.5 | 71.9 1.1

NBA | AUC(%) | 73503 | 74412 | 783203 | 78.220.6
Asp (%) | 6015 | 10.9%1.9 | 7.9+13 | 102425
Apo (%) | 61+1.8 | 88+3.0 | 17.8+2.6 | 159 +4.0

label as y, = f(hy) . Current GNNs are neighborhood aggregation
approaches, which will update the representations of the nodes
with the representations of the neighborhood nodes. The repre-
sentations after k layers’ aggregation would capture the structural
information of the k-hop network neighborhoods. The updating
process of the k-th layer in GNN could be formulated as:

al® = AGGREGATE ™) ({h{* ™V . 4 € N(v)}),
h{®) = COMBINE® (n{F~1, a(®),

where hz(,k) is the representation vector of the node v € V at k-th
layer and N (v) is a set of neighborhoods of v.

3.4 Fairness Evaluation Metrics

In this subsection, we will present two definitions of fairness for
the binary label y € {0,1} and the sensitive attribute s € {0,1}.
7 € {0, 1} denotes the prediction of the classifier n: x — y.

Definition 3.1. (Statistical Parity [10]). Statistical parity requires
the predictions to be independent with the sensitive attribute s, i.e.,
§Ls. It could be formally written as:

P(gls = 0) = P(gls = 1). @)

Definition 3.2. (Equal Opportunity [18]). Equal opportunity re-
quires the probability of an instance in a positive class being as-
signed to a positive outcome should be equal for both subgroup
members. The property of equal opportunity is defined as:

P@G=1y=1s=0)=P@=1y=1s=1). (3)

The equal opportunity expects the classifier to give equal true
positive rates across the subgroups. According to [3, 29], we apply
the following metrics to quantitatively evaluate statistical parity
and equal opportunity:
Asp=I[P(§=1]s=0) - P(g =1|s = 1)],
Apo=|P(G=1ly=15=0)-P(G=1]y=15=1)|,
where the probabilities are evaluated on the test set.

4)
©)

3.5 Discrimination in Graph Neural Networks

Various machine learning algorithms such as logistic regression
[52], SVM [52], and MLP [11] have been reported to have discrimi-
nation. The features of the instances may contain proxy variables
of the sensitive attribute. It could result in biased predictions. For
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GNNs, edges in graph can bring linking bias, i.e., the misrepresen-
tation due to the connections of users [32]. It has been proven that
the embeddings of nodes within the connected component will be
closer after one aggregation in GCN [26, 45]. Since most of edges
are intra-group as Table 1 shows, embeddings of nodes sharing
the same sensitive attribute will be closer after k-layer information
aggregation. As a result, representations of the nodes may exhibit
bias. Intuitively, similar discrimination also exists in other GNNs
that aggregate information of neighborhoods.
To empirically demonstrate the existence of discrimination in
GNNs, we make comparisons between the following models:
e MLP: A multi-layer perception model trained on Vy.
e MLP-e: A MLP model utilizes graph structure by adding
embeddings learned by deepwalk to the features.
o GCN [24]: A state-of-the-art spectral graph neural network.
e GAT [44]: A spatial graph neural network which utilizes
attention to assign higher weights to more important edges.
For each model, we run the experiment 5 times. The classification
results and discrimination scores on the test set are reported in Table
2. From the table, we observe that (i) both performance of GCN
and GAT are much better than MLP, which is as expected because
GCN and GAT adopt both node attributes and the graph structure
for classification; (i) Compared with MLP, models utilizing graph
structure, i.e., GCN and GAT, perform significantly worse in terms
of fairness, which verifies that bias exists in GNNs and the graph
structure could further aggravate the discrimination.

3.6 Problem definition

Our preliminary analysis verifies that GNNs have severe bias issue.
Thus, it is important to develop fair GNNs. Following existing work
of fair models [3, 12, 29, 47], we focus on the binary class and binary
sensitive attribute setting, i.e., both y and s can either be 0 or 1.
We leave the extension to multi-class and multi-sensitive attribute
setting as a future work. With the notations given in Section 3.1,
the fair GNN problem is formally defined as:

PrOBLEM 1. Given a graph G = (V, E,X), small labeled node set
Vi € V with the corresponding labels in Y, and a small set of nodes
Vs € V with corresponding sensitive attributes in S, learn a fair
GNN for fair node classification, i.e.,

f(6.Y.8) - Y (6)

where f is the function we aim to learn and Y is the set of predicted
labels for unlabeled nodes. Y should maintain high accuracy whilst
satisfying the fairness criteria such as statistical parity.

4 METHODOLOGY

In this section, we give the details of FairGNN. An illustration of
the proposed framework is shown in Figure 1, which is composed
of a GNN classifier fg, a GCN based sensitive attribute estimator
fe and an adversary fs. The classifier fg takes G as input for
node classification. The sensitive attribute estimator fg is to predict
the sensitive attributes for nodes whose sensitive attributes are
unknown, which paves us a way to adopt adversarial learning to
learn fair node representations and to regularize the predictions
of fg. Specifically, the adversary fu aims to predict the known or
estimated sensitive attributes by fg from the node representation
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Cl
Eligle

: GNN classifier f; I

Figure 1: The overall framework of FairGNN.

learned by fg; while fg aims to learn fair node representations
that can fool the adversary f4 to make wrong predictions. We
theoretically prove that under mild conditions, such minmax game
can guarantee that learned representations are fair. In addition to
make the representations fair, we directly add a regularizer on the
predictions of fg to guarantee that fg gives fair predictions. Next,
we introduce each component in detail along with theoretical proof.

4.1 The GNN Classifier fg

The GNN classifier fg takes G as input and predicts node labels. The
proposed framework FairGNN is flexible. Any GNNs that follow
the structure of Eq.(1) can be used such as GCN [24] and GAT [44].
Let fék) denote the operation of aggregating and combining the
information of node v and its k-hop neighborhoods through k
layers’ iterations in GNN classifier fg. For a GNN with K layers,
the representation of node v of the final layer could be written as:

K K
ho = 5 (xa Ny, ™
where NU(K) represents the K-hop neighborhoods of v. To get the gy,
i.e., the prediction of node v, a linear classification layer is applied
to hy as:

®)
where w € R? is the weights of the linear classification layer and
o is the sigmoid function. The loss function for training fg is

Qv =o(hy - w),

. 1 . .
min Lo =——— " [yologfio + (1-yo) log (1= do)], (9)
b9 |(VL| veV]
L
where [V | denotes the size of V., 0 represents the parameters
of fg and y, is the groundtruth label of node v.

4.2 Adversarial Debiasing with Estimator fg

The GNN classifier fg can make biased predictions because the
learned representations of fg exhibit bias due to the node features,
graph structure and aggregation mechanism of GNN. One way to
make fg fair is to eliminate the bias of the final layer represen-
tations h,. Recently, adversarial debiasing has been proven to be
effective in alleviating the bias of representations [3, 11, 27, 31]. In
the general process of adversarial debiasing, an adversary is used to
predict sensitive attributes from the representations of the classifier;
while the classifier is trained to learn representations to make the
adversary unable to predict the sensitive attributes while keep high
accuracy in the classification task. Such process requires abundant
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data samples with known sensitive attributes so that we can judge if
the adversary can make accurate predictions or not.

However, in practice people are reluctant to share their sensitive
attributes, which leads to small size V5. Lacking of data with labeled
sensitive attributes would result in poor improvement in fairness
even with adversarial debiasing. Though we have limited nodes
with sensitive attributes, i.e., small Vs, generally, nodes with similar
sensitive attributes are more likely connected to each other, which
makes it possible to accurately predict the sensitive attributes for
nodes in V — Vs using the graph G and Vs. Thus, we deploy a
graph convolutional network fg : G — S to estimate the sensitive
attribute of node whose sensitive attribute is unavailable. The large
amount of estimated sensitive attributes would greatly benefit the
adversarial debiasing. Note that it is important to use two separate
GNN s for node label prediction and sensitive attribute prediction
because we aim to learn fair representations h, for fg ie., h, does
not contain the sensitive information. The objective function of
training fg is

1
min Lp = ——— solog sy + (1 —sp)log (1-35,)], (10
nin Lp =~ Zv[ glo+ (1-s0) log (1-3)], (10)

where $, is the predicted sensitive attribute of node v € Vs by fg
and O is the set of parameters of fE.

With fg, we could get the estimation of the sensitive attributes
S, of the nodes u € (V = Vs). We use S to denote the set of
sensitive attributes by combining S and Sy ie, S = SuUS,.
During the training process, for each node v € V, the adversary fy
tries to predict v’s sensitive attribute §, given the representation
hy as fa(hy); while fg aims to learn node representation h, that
makes the adversary fy4 unable to distinguish which sensitive group
the node v belong to. This min max game can be written as

min néax La= Eth(h|§=1) [log(fa(h))]
7 ‘A

g
+ Epp(n|s=0) [log(1 — fa(h))],

where h ~ p(h|§ = 1) means sampling a node with sensitive at-
tribute as 1 from G. 64 is the parameters of f4.

Theoretical Analysis. Since the size of Vs is small, the estima-
tion of sensitive attributes will introduce nonnegligible noise. The
noise of the sensitive attributes may influence the adversarial debi-
asing. Thus, we conduct theoretical analysis to show that sensitive
attributes containing noise could help to achieve statistical parity
under mild conditions. Next, we give the details of the proof.

PROPOSITION 4.1. The global minimum of Eq.(11) is achieved if
and only if p(h|$ = 1) = p(h|$ = 0), where s € S and h is final layer
representation learned by the K-layer GNN classifier fg.

ProoF. According to Proposition 1. in [14], the optimal adver-

ok _ p(h|s=1)
sary is fi(h) = SER=Depm=0

Eq.(11) could be reformulated as minimizing this function:

Then the min max game in

. ) phl$=1)
C* = En~p(hjs=1) [ log p(hl§=1)+phls= 0)]
A p(h|s = 0) (12)
+Enp(hjs=o) [ log ph|§=1)+phls= 0)]

= —log(4) +2- JSD(p(hl$ = 1)||p(hl$ = 0).
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The Jensen-Shannon divergence between two distributions is non-
negative, and become zero if the two distributions are equal. Thus,
only if p(h|$ = 1) = p(hl$ = 0), the objective function C* will reach
the minimum, which completes our proof. O

THEOREM 4.2. Let j denote the prediction of fg. Suppose:
(1) The estimated sensitive attribute $ andh are independent condi-
tioned on true sensitive attributes, i.e., p($, h|s) = p(§|s)p(h]s);
2) p(s=1§=1) # p(s =1]§=0).
If Eq.(11) reaches the global minimum, the GNN classifier fg will
achieve statistical parity, i.e., p(g|s = 0) = p(g|s = 1).

Proor. Under the assumption that p($, h|s) = p($|s)p(hls), we
could obtain p(h|s,§) = p(hl|s). From Proposition 4.1, we have
p(h|$ = 1) = p(h|s = 0) when the algorithm converges, which is
equivalent to s p(h,s|$ = 1) = Y p(h,s|S = 0). Together with
p(hls, §) = p(hls), we arrive at

D p(hls)p(sls =1) = > p(hls)p(sls = 0) (13)
Reordering the terms in Eq.(13), we can get
plhls=1) _ p(s=0[s=1) ~ p(s = 0i = 0)
p(hls=0)  p(s=1§=0)-p(s=1[s=1)
_U-p(s=18=1) -0 -p(s=1[=0) (14)

p(s=18=0)-p(s=1[§=1)
=1
Eq.(14) shows that at the global minimum p(h|s = 1) = p(h|s = 1)
under the assumption p(s = 1|§ = 1) # p(s = 1|§ = 0). Since
7y = o(h - w), we could get p(g|s = 1) = p(g|s = 0). Thus, the
statistical parity is achieved when Eq.(11) converges. O

In our proof, two assumptions are made. For the first assumption,
since we use f to predict the sensitive attributes § and fg to get the
latent representation h, and fg and fg doesn’t share any parameters,
it is generally true that § is independent with the representation h,
ie., p(Shls) = p(S|s)p(hls). As for the second assumption, it will
be satisfied when we have a reasonable estimator fg, i.e., fg doesn’t
give random predictions.

4.3 Covariance Constraint

The instability of the training process of adversarial learning is
well known [1]. In adversarial debiasing, failure to coverage may
result in a classifier with discrimination. To alleviate this issue,
we add a covariance constraint [51, 52] on the output of fg to
help the model achieve fairness. The covariance constraint has
been explored in [51, 52] by minimizing the absolute covariance
between users’ sensitive attributes and the signed distance from the
users’ features to the decision boundary for fair linear classifiers. In
our problem, only a small portion of users’ sensitive attributes are
known and the decision boundary of GNN is hard to obtain. Thus,
we propose to minimize the absolute covariance between the noisy
sensitive attribute § € S and prediction g as

Lr =|Cov($, )| = [E[(S - E($)) (G - E@)]I,
where | - | indicates the absolute value.

Theoretical Analysis. Since L is the absolute value of covari-
ance between ¢ and §, L = 0, i.e., the global minimum of Lg, is

(15)
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Algorithm 1 Training Algorithm of FairGNN.

Input: G =(V,5,X),Y,S, aand f.
Output: fg, fa,and fg
1: Initialize fg by optimizing Eq.(10) w.r.t 0
2: repeat
3:  Obtain the estimated sensitive attributes with fg
4 Optimize the GNN classifier parameters 6, the adversary
parameters 64, and the estimator parameters 0 by Eq.(17).
5: until convergence
6: return fg, fa, and fg

the prerequisite that § and § are independent. Thus, we will show
that Lg = 0 is the prerequisite of the statistical parity under mild
assumption with the following theorem.

THEOREM 4.3. Suppose that p($,h|s) = p($|s)p(hls), when fg
satisfies statistical parity, i.e. §Ls, § is independent with $ and L = 0.

Proor. Through p($, hls) = p(§]s)p(hls), we could get p(hls, $) =
p(hls). Then, p(g|s, ) = p(J|s) could be derived. When 7jLs, the
distribution p(7, §) would be:

p(3.9) = Y p(@l9p(.9) = D p@P(.9) = pHPB). (16

N N
Thus, 7 is independent with § when the statistical parity is achieved.
Then, we can get Lg = |Cov(5,9)| = |E(S, ) —EB)E(G)| =0. O

In the proof, we use the first assumption in Theorem 4.3, which
is generally valid as discussed previously.

4.4 Final Objective Function of FairGNN

We now have fg for label prediction, fg for sensitive attribute
estimation, fy with adversarial debiasing to force the node rep-
resentations learned by fg are fair, and covariance constraint to
further ensure that the prediction of fg is fair. Combining all these
together, the final objective function could be formulated as:

min max Lo+ Lg+aLr— fLa,
06,0 0a

(17)

where Qg, Of, and 6,4 are the parameters of classifier, estimator,
and adversary, respectively. @ and f are scalars to control the con-
tributions of the covariance constraint and adversarial debiasing.

4.5 An Training Algorithm of FairGNN

The training algorithm of FairGNN is presented in Algorithm 1. Spe-
cially, we first pretrain fg to ensure it meets the second assumption
in Theorem 4.2. Sequentially, we optimize the whole model with
Eq.(17) through the ADAM optimizer [23]. In the training process,
we replace the hard labels in £ 4 with soft labels, i.e., the probability
produced by fg, to stabilize the adversarial learning [37].

5 EXPERIMENTS

In this section, we conduct experiments to show the effectiveness
of FairGNN for fair node classification. In particular, we aim to
answer the following questions:
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¢ RQ1 Can the proposed FairGNN reduce the bias of GNNs
while maintaining high accuracy?

e RQ2 How do the sensitive attribute estimator, adversarial
loss, and covariance constraint affect FairGNN?

o RQ3IsFairGNN effective when different amount of sensitive
attributes or labels are provided in the training set?

We use the same datasets introduced in Sec. 3.2 for all the experi-
ments. Next, we will begin by introducing compared methods.

5.1 Compared Methods

We compare our proposed framework with GCN, GAT, and the
following representative and state-of-the-art methods for fair clas-
sification and fair graph embedding learning:

e ALFR [11]: This is a pre-processing method. A discriminator is
applied to remove the sensitive information in the representations
produced by a MLP-based autoencoder. Then, linear classifier is
trained on the debiased representations.

o ALFR-e: To utilize the graph structure information, ALFR-e con-
catenates the graph embeddings learned by deepwalk [34] with
the user features in the ALFR.

e Debias [54]: This is an in-processing fair classification method.
It directly applies an discriminator on the estimated probability
of classifier n : x — R. It would make the probability distribution
p(n(x)|s = 0) closer to p(n(x)|s = 1).

e Debias-e: Similar to the ALFR-e, we also add the deepwalk em-
beddings to the features used in Debias.

e FCGE [4]: FCGE is proposed to learn fair node embeddings in
graph without node features through edge prediction. The sensi-
tive information in the embeddings is filtered by discriminators.

ALFR and ALFR-e are trained with features of all the users V, labels
of Vp, and the sensitive attributes of Vs for fair classification. Debis
and Debias-e require the sensitive attributes of labeled nodes, which
is on contrary with our setting that Vy, could have no overlap with
Vs. Thus, we use the estimated labels of Vs, features of V[, and
labels of V} to train Debias and Debias-e. FCGE utilizes G, labels
of V, and sensitive attributes of Vs.

For FairGNN, we deploy a one hidden layer GCN for fg. The
hidden dimension is set as 128. We use a linear classifier for f4. To
verify that our framework is useful for various GNNs, we adopt
both GCN and GAT as the backbone of the FairGNN classifier fg,
which are named as FairGCN and FairGAT. In FairGCN, the GCN
classifier contains one hidden layer with dimension 128. The GAT
classifier in FairGAT also contains two layers in total. We set the
number of heads as 1. The dimensions of the GAT classifiers’ hidden
layer for Pokec-z, Pokec-n and NBA are 64, 64 and 32, respectively.

5.2 Fair Classification on Graph

To answer RQ1, we evaluate our proposed FairGNN in terms of fair-
ness and classification performance. Agp and A are used to show
the discrimination level, which are introduced in Section 3.4. The
smaller Agp and Agp are, the more fair the classifier is. Accuracy
(ACC) and ROC AUC score are used to evaluate the classification
performance. For all the models, we tune the hyperparameters on
the training set via cross validation. For FairGCN, we set & to 100
and f to 1. For FairGAT, « is 2 and f is 0.1. More details about hyper-
parameter selection will be discussed in Sec 5.5. All the experiments
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Table 3: The comparisons of our proposed methods with the baselines.

[ Dataset | Metrics [ GCN GAT [ ALFR ALFR-¢ Debias Debias-e  FCGE FairGCN  FairGAT
ACC (%) 70.2 0.1 70.4 +£0.1 65.4 +£0.3 68.0 £0.6 65.2 0.7 67.5 +£0.7 65.9 £0.2 70.0 £0.3 70.1 £0.1
Pokec-z AUC (%) 77.2 £0.1 76.7 £0.1 71.3 £0.3 74.0 £0.7 71.4 £0.6 74.2 £0.7 71.0 £0.2 76.7 £0.2 76.5 £0.2
Asp (%) 99 +1.1 9.1 0.9 2.8 £0.5 5.8 0.4 1.9 £0.6 4.7 £1.0 3.1+0.5 0.9 £0.5 0.5 +£0.3
Ago (%) 9.1 £0.6 8.4 +£0.6 1.1+0.4 2.8 +0.8 1.9 £0.4 3.0+1.4 1.7 £0.6 1.7 £0.2 0.8 £0.3
ACC (%) 70.5 £0.2 70.3 0.1 63.1 £0.6 66.2 £0.5 62.6 £0.9 65.6 £0.8 64.8 £0.5 70.1 £0.2 70.0 £0.2
Pokec-n AUC (%) 75.1 £0.2 75.1 £0.2 67.7 £0.5 71.9 £0.3 67.9 £0.7 71.7 £0.7 69.5 +0.4 74.9 £0.4 74.9 £0.4
Asp (%) 9.6 £0.9 9.4 £0.7 3.05 +0.5 4.1 £0.5 2.4 £0.7 3.6 £0.2 4.1+0.8 0.8 +0.2 0.6 0.3
Ago (%) 12.8 £1.3 12.0 £1.5 3.9 +0.6 4.6 £1.6 2.6 £1.0 4.4 £1.2 5.5+0.9 1.1 +£0.5 0.8 £0.2
ACC (%) 71.2 £0.5 71.9 1.1 64.3 +1.3 66.0 +0.4 63.1 +1.1 65.6 +2.4 66.0 +1.5 71.1 £1.0 71.5 +0.8
NBA AUC (%) 78.3 £0.3 78.2 £0.6 71.5 0.3 72.9 £1.0 71.3 £0.7 72.9 £1.2 73.6 £1.5 77.0 £0.3 77.5 £0.7
Asp (%) 7.9 +1.3 10.2 £2.5 2.3 +0.9 47 +1.8 2.5+1.5 5.3 +0.9 2.9 +1.0 1.0 £0.5 0.7 £0.5
Ago (%) 17.8 £2.6 15.9 +4.0 3.2 £1.5 4.7 £1.7 3.1+1.9 3.1+13 3.0 £1.2 1.2 +0.4 0.7 £0.3
are conducted 5 times. The mean and standard deviations for all 15| == raroxy  mm rarona 2| rarony  mm Faronwa
the models on the three datasets are reported in Table 3. From the o LGN FawONNC ~ o LGN arONNC
table, we make the following observations: . s
{10 077
e Compared with GCN and GAT, the general fair classification e 2
methods and graph embeddings learning method show poor <5 S 76
. . . . . ~
performance in classification even with the help of graph infor-
mation, while FairGCN and FairGAT perform very close to the ol imt ! 75
. . . . . . GCN GAT GCN GAT
based GNNs. This suggests the necessity of investigating fair
classification algorithms on GNNs for accurate predictions; (a) Asp (b) ROC AUC

e Under the condition of limited sensitive information, baselines
show obvious bias and the ones utilizing graph information are
even worse. On the contrary, our proposed models obtain Agp
and Ago that are close to 0, which indicates that the discrimina-
tion is basically eliminated; and

o FairGAT is slightly better than FairGCN in Fairness. This is rea-
sonable because the learnable edge coefficients in GAT could be
helpful to reduce the weights of the edges that bring bias.

These observations demonstrate the effectiveness of our proposed
framework in making fair and accurate predictions.

5.3 Ablation Study

To answer RQ2, we conduct ablation studies to understand the
impacts of fg, adversarial loss, and covariance constraint.

5.3.1 Impact of fg. In our proposed framework, a GCN estimator
is deployed to predict sensitive attributes for adversarial debiasing.
To show the importance of the GCN estimator, we analyze it from
two aspects. Firstly, to demonstrate the effectiveness of the noisy
sensitive attributes, we eliminate the estimator and only use the pro-
vided sensitive attributes S to get a variant denoted as FairGNN\E.
Secondly, to investigate how a weaker estimator would influence
the fair classification, we train a variant FairGNNy;p by using
MLP as the estimator. Hyperparameters of these variants are deter-
mined by cross validation with gird search. Specifically, we vary
a and f among {0.0001,0.001,0.1,1} and {1, 2,5, 10, 20, 50, 100}, re-
spectively. For each variant, the experiments are conducted 5 times.
The average performance of fairness in terms of Agp and node
classificaiton in terms of AUC on Pockec-z are presented in Fig. 2(a)
and (b), respectively. We only show the results on Pockec-z as we
have similar observations on the other datasets. From the figures,
we make the following observations:
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Figure 2: Comparisons between FairGNN and its variants.

e The Agp score of FairGNN\E is much larger than that of FairGNN.
which is because the provided sensitive attributes are inadequate.
This shows that fg plays an important role in FairGNN; and

e The performance of sensitive attribute prediction in terms of
AUC for MLP estimator is 0.69, which is much lower than that
of GCN estimator, which is 0.80. Though FairGNN 7 p adopts a
much weaker estimator than FairGNN, the performance in terms
of fairness is slightly worse than FairGNN. This aligns with our
theoretical analysis that fr doesn’t need to be very accurate.
However, the marginal differences still indicate that too much
noise in sensitive attributes may still slightly affect the fairness.

5.3.2  Impacts of the adversarial debiasing and covariance constraint.
To demonstrate the effects of the adversarial loss and covariance
constraint, we train two variants of FairGNN, i.e., FairGNN\A and
FairGNN\C, where FairGNN\A means FairGNN without the ad-
versarial loss, and FairGNN\C means FiarGNN without covariance
constraint. Similarly, for each variant, we run the experiment 5
times on Pokec-z and the average performances are shown in Fig-
ure 2. From the figure, we observe:

e The Agp scores for both FairGNN\C and FairGNN\A are much
smaller than that of GNNs in Figure 2, which shows that both
covariance constraint and adversarial debiasing can improve
fairness; and

e The Agp scores for both FairGNN\C and FairGNN\A are much
larger than that of FairGNN, which implies that using both co-
variance constraint and adversarial debiasing can achieve better
fairness. This is because they regularize the GNN from two dif-
ferent perspectives, i.e., adversarial debiasing regularizes on the
node representations while covariance cosntraint is directly on
the predictions for fair classification.
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Figure 4: Impacts of the size of V] to FairGAT.
5.4 Impacts of Sizes of Vs and V;

To answer RQ3, we study the impacts of the sizes of Vs and Vp
on FairGAT. We set @ = 0.1 and § = 2 based on cross validation.
We vary |[Vs| as {200, 600, 1000, 1400, 1800, 2200, 2600, 3000}. Each
experiment is conducted 5 times and the average results on Pokec-z
with comparison to FairGAT\E and ALFR-e are shown in Fig. 3.
From the figure, we observe that: (i) Generally, both FairGAT\E and
ALFR-e have high discrimination scores when |Vs| is small. They
need plenty of data with sensitive attributes to become effective.
FairGAT could get very low Agp even when |Vg| is as small as
200. This implies that FairGAT is insensitive to the size of data
with sensitive attributes, which is because we have fg to estimate
the sensitive attributes. Though extremely small |Vs| would lead
to a weak fg, we still have similar Agp score as that when Vs is
large. This verifies our theoretical analysis that we can achieve good
fairness with a reasonable fg; (ii) FairGAT\E and ALFR-e decrease
slightly in classification performance with the increasing of the size
of Vs, which is because more data with sensitive attribute would
lead to a stricter regularization. In the contrary, FairGAT keeps
high classification performance and even perform slightly better
with more sensitive attributes. This is because the size of sensitive
attributes S used for training FairGAT are fixed to the size of V,
and less noise in the estimation of the sensitive attributes is helpful
to better learn representations for classification.

Similarly, we vary |Vg| as {500, 1000, 1500, 2000} and each ex-
periment is run for 5 times. The average results on Pokec-z are
reported in Figure 4a. We only report the results on Pokec-z as we
have simialr observations on other datasets. From the figure, we ob-
serve that: FairGAT consistently shows effectiveness in eliminating
discrimination. The drop in classification performance is marginal.
This demonstrates that our proposed method could achieve fairness
while keep high accuracy in general scenarios which correspond
to various sizes of Vs and V}.

687

WSDM ’21, March 8-12, 2021, Virtual Event, Israel

-2
le!

(a) Asp (%) (b) ROC AUC (%)
Figure 5: Parameter sensitivity analysis.

5.5 Parameter Sensitivity

There are two important hyperparameters in our proposed model,
.d.e., & controlling the influence of the adversary to the GNN clas-
sifier, while 8 controlling the contribution of the covariance con-
straint to ensure fairness. To investigate the parameter sensitivity
and find the ranges that achieve high accuracy with low discrim-
ination score, we train FairGAT models on Pokec-z with various
hyperparameters. More specifically, we alter the values of « and
8 among {0.0001,0.001,0.01,0.1,1} and {1, 2, 5, 10, 20, 50, 100}. The
results are presented in Figure 5. From Figure 5 (b), we can find
that when a < 0.01 and f < 20 the classification performance is
almost unaffected. Once a and f are too large, the classifier’s per-
formance will decay rapidly. The impacts of the hyperparameters
to the discrimination score are presented in Figure 5 (a). When we
increase the value of @, Agp will firstly decrease as expected. Then,
it would increase when the value of « is too large. Because it would
be difficult to optimize the GNN classifier to the global minimum
when the contribution of the adversary is extremely high. As for
B, the discrimination score would consistently reduce when we
increase its value. Combining the two figures, we could determine
that when a € [0.001,0.01] and S € [5,20], the GNN classifier
achieves fairness and maintains high node classification accuracy.

6 CONCLUSION AND FUTURE WORK

In this paper, we study a novel problem of fair GNN learning with
limited sensitive information. We empirically demonstrate that
GNN s exhibit severe bias. We propose a novel and flexible frame-
work FairGNN which is able to significantly alleviate the bias issue
of GNNs meanwhile maintain high performance on node classifica-
tion. FairGNN adopts a sensitive attribute estimator to alleviate the
issue of lacking sensitive attribute information. With the estimated
sensitive attributes, FairGNN designs adversarial debiasing and
covariance constraint to regularize the GNN to have fair node rep-
resentations and predictions, respectively. We theoretically show
that FairGNN can reduce the bias. Experiment results on real-world
datasets demonstrate the effectiveness of the proposed framework
in terms of both fairness and classification performance. There
are several interesting directions which need further investigation.
First, we assume the provided sensitive attributes are clean. How-
ever, for some applications in social media, users might randomly
input sensitive attributes such as gender due to privacy concern.
Thus, we will extend FairGNN to deal with limited and inaccurate
sensitive information. Second, the experiments show that the edges
are possible to bring bias. Thus, we will also explore methods which
add/delete links in graphs to improve the fairness and classification
performance of FairGNN.
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