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ABSTRACT
Many applications, e.g., healthcare, education, call for effective
methods methods for constructing predictive models from high
dimensional time series data where the relationship between vari-
ables can be complex and vary over time. In such settings, the
underlying system undergoes a sequence of unobserved transitions
among a finite set of hidden states. Furthermore, the relationships
between the observed variables and their temporal dynamics may
depend on the hidden state of the system. To further complicate
matters, the hidden state sequences underlying the observed data
from different individuals may not be aligned relative to a common
frame of reference. Against this background, we consider the novel
problem of jointly learning the state-dependent inter-variable re-
lationships as well as the pattern of transitions between hidden
states from multi-variate time series data. To solve this problem,
we introduce the State-Regularized Vector Autoregressive Model
(SrVARM) which combines a state-regularized recurrent neural net-
work to learn the dynamics of transitions between discrete hidden
states with an augmented autoregressive model which models the
inter-variable dependencies in each state using a state-dependent
directed acyclic graph (DAG). We propose an efficient algorithm for
training SrVARM by leveraging a recently introduced reformula-
tion of the combinatorial problem of optimizing the DAG structure
with respect to a scoring function into a continuous optimization
problem. We report results of extensive experiments with simulated
data as well as a real-world benchmark that show that SrVARM
outperforms state-of-the-art baselines in recovering the unobserved
state transitions and discovering the state-dependent relationships
among variables.
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1 INTRODUCTION
Many practical applications, data from individuals (indexed by i) are
naturally modeled by a multi-variate time series Xi =

[
xi1, . . . , x

i
T
]

where xit ∈ RP is the P dimensional observation at time point t .
Collection of such multi-variate time series data from a set of N
individuals yields a data setX = {X1, . . . ,XN }. In many real-world
applications, the relationships among the variables can be complex,
and change with time. Of particular interest is the setting where
the data generating process undergoes a sequence of unobserved
transitions among a finite set of hidden states. The resulting data
set consists of data instances each of which takes the form of a
multi-variate time series.

For example, in a health case setting, such data may include
repeated measurements of physiological measurements, e.g., heart
rate, body temperature, blood pressure, etc., recorded from an indi-
vidual at different times. The temporal dynamics of these observed
variables can change as the individual goes through unobserved
transitions between unobserved (hidden) states e.g., stressed versus
relaxed. Similarly, in economics, the interactions among macroe-
conomic variables vary as a function of the state of the economy:
For example, the impacts of oil price on GDP growth are signif-
icantly different when the economy is in a high growth phase
versus a low growth phase [2]; Consumer behavior shows seasonal
patterns [24, 37]. In life sciences, the structure of the regulatory
relationships between genes can vary across the stages of the cell
cycle [27]. Coping with such applications calls for a formalism
wherein the data generating process undergoes transitions between
a finite number of hidden states; and the dependencies among vari-
ables are state-dependent (See Fig. 1). To further complicate matters,
the sequence of hidden state transitions across individuals in the
data set may not be aligned relative to a common frame of reference.

Against this background, we consider the novel problem of
jointly learning the state-dependent dependencies among variables
as well as the pattern of transitions between hidden states where
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Figure 1: A toy example of dynamic systems undergoing a se-
quence of transitions among a set of three states. The state
sequences of individual systems may not be aligned. The
observed variables in the system exhibit different relation-
ships at each state. (Best viewed in color.)

the hidden state transitions across different individuals are not
necessarily aligned relative to a common frame of reference.

The key contributions of the paper are as follows:
• We consider the novel problem of jointly learning the dy-
namics of transitions between a finite set of hidden states
and the state-dependent DAG-structured inter-variable de-
pendencies.

• We introduce SrVARM, a state-regularized autoregressive
model which combines a state-regularized recurrent neural
network to learn the dynamics of transitions between dis-
crete hidden states with an augmented autoregressive model
which models the state-dependent inter-variable dependen-
cies using state-dependent DAGs.

• We propose an efficient algorithm for training SrVARM by
leveraging a recently introduced reformulation of the com-
binatorial problem of optimizing the DAG structure with
respect to a scoring function into a continuous optimization
problem.

• We present results of extensive experiments on both syn-
thetic and real-world data sets and show that SrVARM out-
performs state-of-the-art baselines.

The rest of the paper is organized as follows. Section II summarizes
related work that sets the stage for SrVRAM framework developed
in this paper. Section III defines the problem of learning the pat-
tern of hidden state transitions and state-dependent relationships
between observed variables from MTS data; Section IV describes
the design of SrVARM and the associated learning algorithm in
detail. Section V describes experimental setup and results. Section
V concludes the paper with a brief summary and an outline of some
promising directions for further research.

2 RELATED WORK
In this section, we review related work on structure learning, which
include structure learning from static observational data, structure

learning from temporal data, and state space deep neural network
for time series learning.

2.1 Structure Learning from Static Data
Bayesian Networks (BN) (reviewed in [5, 10, 11, 14, 21, 30, 39, 40, 43,
55]) offer an attractive formalism for modeling the (static) depen-
dencies among random variables. The structure of BN is a directed
acyclic graph (DAG) wherein the nodes represent random variables
and directed links model direct dependencies between variables.
The semantics of BN ensure that each variable is conditionally in-
dependent of its non-descendents given its parents. This admits an
efficient factorization of the joint distribution of the variables as
a product of the probability distributions of each of the variables
conditioned on their parents. Bayesian network models have found
applications across a number of domains including biology [38], ge-
netics [52], economics [16], among others. Learning a BN involves
learning its DAG structure and its parameters (the probability dis-
tribution of each variable conditioned on its parents in the DAG).
Methods for learning BN structure from data fall into two broad
classes: score-basedmethods which use a scoring function to choose
a BN structure from a set of candidate structures and constraint-
basedmethods that use conditional independence tests against data
to rule out a subset of candidate structures. Because exhaustive
consideration of all possible DAG structures is computationally
intractable [4], most algorithms either restrict the set of possible
structures a priori (e.g., by assuming that each variable can directly
depend on no more than k other variables where k is much smaller
than the total number of variables) or by using heuristics, e.g.,
greedy hill-climbing with respect to a scoring function, to guide
the search. Recent work has led to efficient approaches to learning
the DAG structure of BNs by reformulating the NP-hard combina-
torial optimization problem [4] of finding an DAG structure that
optimally and parsimoniously models the dependency structure
present in the data as a continuous optimization [22, 53, 57].

There is a growing body of work on the problem of learning
learning the structure of dependencies between variables in multi-
variate time series data [28, 31, 33, 50]. For example, Xu et al. [50]
propose an approach to modeling nonlinear relationships between
variables from temporal data through a low-rank approximation
based deep neural network; Pamfil et al. [31] model the relation-
ships between the variables in a multi-variate time series using a
structural vector autoregressive model [8] where the time-invariant
structure of the relationships between variables is modeled using
DAGs. However, such models are not sufficiently expressive to ac-
commodate the state-dependent structure of dependencies among
the variables of multi-variate time series data.

A recent breakthrough in learning BN structure from data has
been enabled by a smooth characterization of the acyclicity con-
straint of DAG [53]. It reformulates the combinatorial optimiza-
tion problem of choosing a DAG structure to optimize a scoring
function into a continuous optimization problem that can be effi-
ciently solved by standard numerical algorithms. Several studies
have exploited this result to propose novel methods for learning the
structure of BN. For example, Lachapelle et al. [22] extended the
results to model nonlinear relations between variables by means of
a neural network. In [57], a reinforcement learning approach was
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used jointly with the smooth characterization as a search strategy
to find the best scoring DAG. Yu et al. [51] proposed a graph neural
network based deep generative model to learn the DAG.

2.2 Structure Learning from Temporal Data
Dynamic Bayesian Networks (DBN) [7, 29, 31], a generalization of
(static) BN [30] offer an attractive formalism for learning probabilis-
tic models from multi-variate time series data, under the assump-
tion that the data are generated by a stationary process. Works
in [45, 46] propose multi-layer perceptron (MLP) and a long short-
term memory (LSTM) [15] deep learning framework to learn causal
graph. Xu et al. [50] present a deep neural network for scalable
causal graph learning through low-rank approximation and with-
out any predefined kernel or distribution assumptions. A recent
work [31] exploits the smooth acyclic characterization to tackle
structure learning from time-series data. However, these methods
learn static graph from time series data and cannot fully charac-
terize the changing dynamic. DBN have been generalized to the
non-stationary setting where the conditional dependence structure
of the underlying data generation process and hence the structure of
the BN is permitted to evolve over time [12, 35, 36, 42]. For example,
Robinson et al. [35] introduced nonstationary dynamic Bayesian
networks. Song et al. [42] proposed a kernel reweighted l-1 regular-
ized autoregressive procedure for learning time-varying dynamic
Bayesian Networks. Huang et al. [19] proposed CPF-SAEM,in a
sequential Monte Carlo sampling-based approach to learning the
time-varying inter-variable dependencies.

2.3 State Space Deep Neural Networks
State-space approaches offer an attractive approach to modeling
time series data [1, 13, 34, 41, 44, 48, 54]. Work in [34] introduce an
approach to probabilistic time series forecasting that combines state
space models with deep neural networks. Alaa et al. [1] develop
the attention-based state space deep neural network model to learn
accurate and interpretable structured representations for modeling
disease trajectories. SRLSTM [48] aims enhance the transparency
of leaw rned recurrent networks and their ability to model long-
range dependencies. However, none of these approaches adequately
address the problem of learning both the dynamics of transitions
between hidden states and state-dependent inter-variable depen-
dencies from time series data sets.

2.4 Research Gap to be Addressed
None of the existing methods address the problem of jointly learn-
ing the state-dependent dependencies among variables as well as
the pattern of transitions between hidden states in a setting where
the hidden state transitions across different individuals are not
necessarily aligned relative to a common frame of reference.

3 PROBLEM DEFINITION
Let X = {X1, . . . ,XN } denote a set of N multivariate time series
(MTS) data instances. We use Xi =

[
xi1, . . . , x

i
T
]
to denote the i-th

MTS data instance, where xit ∈ RP is the P dimensional observation
at time point t . In real-world applications, MTS observations can
be highly nonstationary and the relationships among MTS vari-
ables can be dynamic and change with time. We assume that the

underlying dynamical system or the MTS data generating process
undergoes a sequence of unobserved transitions among a finite
discrete set S of hidden states, and that the relationships between
variables for each state is modeled by a state-dependent DAG, i.e.,
As for state s . For example, suppose a number of physiological mea-
surements e.g., heart rate, body temperature, blood pressure, etc.,
are recorded from each individual at different time points. The re-
sulting time series constitutes an MTS data instance. The collection
of such MTS data instances, one per individual, for an MTS data set.
Each individual may transition through hidden states, e.g., relaxed
and stressed, over time. The relationships between the observed
variables may change as a function of the hidden system state. We
use sit ∈ {1, . . . , S} refer to the hidden state of individual i at time t .
In general, the unobserved state sequences of different individuals
are not aligned with respect to a common frame of reference. Thus,
sit is not necessarily equal to s jt . In each state, for example sit , the
structure of inter-variable dependencies is modeled by a DAG, or
equivalently, a state-dependent directed acyclic adjacency matrix
As it

. In light of the above, the problem of learning the pattern of
transitions between unobserved states and the state-dependent
DAGs that model the inter-variable dependencies from MTS data
can be formulated as follows:

Definition 3.1. Learning the Pattern of Hidden State Tran-
sitions and State-Specific Inter-Variable Dependencies from
MTS Data. Given a MTS data setX, learn a function that can simul-
taneously recovers theMTS instance-specific hidden state transition
sequence sit , where t = 1, . . . ,T − 1, i = 1, . . . ,N , and the state-
dependent inter-variable dependencies encoded by A1, . . . ,AS .

4 STATE-REGULARIZED VECTOR
AUTOREGRESSIVE MODEL

We now proceed to introduce the proposed State Regularized Vector
Autoregressive Model (SrVARM). The schematic of an SrVARM is
shown in Fig. 2. The key idea behind SrVARM is to use a recurrent
neural network to learn from a given MTS data set, the dynamics
of transitions among hidden states and learn the state-dependent
DAGs represented by acyclic autoregressive matrices that encode
state-dependent inter-variable relationships. Next, we describe each
component of SrVARM in detail.

4.1 State-Regularized Recurrent Network
We restrict the underlying dynamical system to undergo a sequence
of discrete state transitions to better understand the extracted re-
sults as well as to control the complexity of the model to minimize
chance of over-fitting the MTS data. We adopt a state-regularized
recurrent neural network [48] to model the transitions among hid-
den states in S . We regularize the recurrent network to ensure that
it approximates a model with transitions between discrete states.
In what follows, to minimize notational clutter, we omit the MTS
data instance index i .

Given MTS data instances, a recurrent function f (·, ·) takes cur-
rent observation xt and the previous hidden state vector ht−1 as
inputs and outputs an intermediate latent representation ut

ut = f (ht−1, xt ) (1)
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Figure 2: SrVARM model framework. The framework consists of a state-regularized recurrent unit and a dynamic vector au-
toregressive model. The state-regularized recurrent unit is used to model the transitions between discrete hidden states. The
augmented dynamic autoregressive model learns state-dependent inter-variable dependencies subject to an acyclic constraint
and encodes the relations in state-dependent DAG structures.

We use a long short-term memory network (LSTM) [15] to re-
alize f (·, ·). The model maintains S hidden state encodings C =
c1, . . . , cS . Note that the intermediate latent representation ut cap-
tures the temporal dynamics of the MTS sequence. To the next state
indicator st is obtained from ut by comparing ut with the state
encodings c1, . . . , cS and computing a state proximity score αst
between ut and each cs ∈ C.

αst = ⟨ut , cs⟩ (2)

where s = 1, . . . , S and ⟨·, ·⟩ is the vector inner product. Ideally, in
order for the recurrent network to mimic a finite state machine,
the hidden state vector ht should assume values from {c1, . . . , cS }.
The assignment of ht is obtained by selecting the state encoding
corresponding to the maximum state proximity score, i.e.

st = arд max
s ′t=1, ...,S

αs ′t (3)

and let ht = cst . Because the argmax function renders the model
not end-to-end differentiable, we approximate the assignment of ht
as follows: Given the state proximity scoresα t = [α1t , . . . ,αSt ], we
apply a softmax operation to normalize the scores into a probability
distribution given by:

α̂st =
exp (αst /τ )∑S

s ′=1 exp (αs ′t /τ )
(4)

where τ is a temperature hyperparameter used to anneal the proba-
bilistic state transition behavior. The lower the τ , the more closely
the normalized scores α̂ t = [α̂1t , . . . , α̂St ] approximate a one-hot
encoding. With the normalized proximity scores, the assignment
of hidden state vector is given by:

ht =
S∑
s=1

α̂st cs (5)

Note that, although the temperature hyperparameter τ accen-
tuates the differences in the proximity scores, it does not quite
approximate one-hot encoding of states. To see this, consider a
scenario where the proximity scores for two states are equal, i.e.
α1 = α2. In this case, we end up with α̂1 = α̂2 regardless of the
value of τ . We need to ensure that the recurrent neural network
indeed models transitions between a finite set of distinct discrete
states. We observe that the entropy of the normalized proximity
scores should be zero when the uncertainty associated with the
system state approaches zero. Based on this observation, we apply
a regularizerization to the normalized proximity scores as follows:

E(α̂ t ) = −

S∑
st=1

α̂st log(α̂st ) (6)

The regularizer forces the state proximity scores towards zero en-
tropy (one-hot) encodings of states thus forcing the the recurrent
network to approximate a finite state machine.
Incorporating Prior Knowledge.We observe that while the true
pattern of transitions between hidden states is generally unknown,
domain knowledge may suggest the relative frequencies of occu-
pancy of each state. For example, we may expect a "normal" state
to be more frequent than an "abnormal" state. When such prior
knowledge is available, it is possible to leverage it to improve the
accuracy of the learned transitions between hidden states. Suppose
the ideal state distribution is given by z = [z1, . . . , zS ]. We can
define a state frequency regularizer based on a Kullback-Leibler
(KL) divergence between z and the hidden state distribution P(s) as
follows:

P(s) =
T−1∑
t=1

α̂st /(T − 1), s = 1, . . . , S (7)
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With the estimated hidden state distribution, the state frequency
regularizer is given by:

KL({α̂ t } , z) =
S∑
s=1

P(s) log
P(s)

zs
(8)

where {α̂ t } is the collection of α̂ t , t = 1, . . . ,T − 1.
In summary, the state regularized recurrent network learns the

state transition function between the hidden state. The determin-
istic hidden state vector ht of the recurrent network is given by
Eq. (5) and the state indicator st is obtained by identifying the state
with the largest normalized proximity score.

4.2 Learning the Structure of State-Dependent
Inter-Variable Dependencies

Recall that in SrVARM, the state-dependent structure of inter-
variable dependencies is modeled by state-dependent DAGs, or
equivalently, state-dependent directed acyclic adjacency matrices.
Now we turn to the problem of learning such state-dependent
directed acyclic matrices. Given an inferred system state st , the
progression of the MTS data can be modeled using

x̂t+1 =Wst xt (9)

whereWst is the autoregressive matrix associated with the state st .
We note that whenWst encodes the DAG structure of the inter-

variable relationships, there arises a "source-node vanishing" prob-
lem in Eq. (9): The variables in x̂t+1 that correspond to the source
nodes inWst will always be zero since there are no incoming ar-
rows into the source nodes. Because a DAG must have at least one
source node, this introduces an undesirable bias as we seek to learn
the DAG structure by minimizing the difference between x̂t+1 and
xt+1.

To alleviate the problem, we devised an augmented autoregres-
sive model by dividing the autoregressive matrix into two com-
ponents,Wst = Ast + Dst , where Ast encodes the inter-variable
relationships andDst models intra-variable time-lagged effects. The
first component ofWst , namely Ast , can be obtained from the state
encoding cst as follows:

Ast = дA(cst ) (10)

where дA(·) is a graph generator function which is realized using
a feed-forward neural network which produces an intermediate
output of dimension RP

2
, followed by a reshape operation to yield

an autoregressive matrix Ast ∈ RP×P . The second componentWst ,
namely, Dst , because it encodes intra-variable time-lagged effects,
is a diagonal matrix with nonzero entries only along its diagonal
which can be obtained from the state encoding as follows:

Dst = дD (cst ) (11)

where дD (·) is a graph generator function realized using a feed-
forward neural network which generates an intermediate output
of dimension RP , and follows by an operation to turn the vector
into a diagonal matrix of RP×P . In this study, both graph generator
networks, дA(·) and дD (·), are realized by a one-hidden-layer feed-
forward neural network. However, the framework admits more
complex graph generators.

In order to encode state-dependent inter-variable relationships
usingAst ’s, we leverage a smooth characterization of acyclic DAGs [53]

Figure 3: Enforcing acyclicity constraint on graph gener-
ation process. The acyclic constraint is evaluated on the
graphs generated from state encodings cs ’s.

to enforce acyclicity constraints on the graph generator дA(·). The
graph is acyclic if its adjacency matrix A ∈ RP×P satisfies:

tr(eA◦A) − P = 0 (12)

where ◦ is the Hadamard product and tr(·) is the matrix trace.
As shown in Fig 3, the penalty is applied to the adjacency matri-
ces, A1, . . . ,AS , associated with the corresponding state encodings,
c1, . . . , cS . Because the penalty is non-negative [53], i.e. tr(eA◦A) −
P ≥ 0, the acyclicity constraints for all state-specific adjacent ma-
trices can be combined to yield:

S∑
s=1

[
tr
(
eAs◦As

)
− P

]
= 0 (13)

Thus, SrVARM exploits the smooth acyclicity constraints to learn
the dynamic autoregressive model that encodes state-dependent
DAG-structured inter-variable relationships.

4.3 Objective Function of SrVARM
We now proceed to describe our algorithm for training SrVARM to
recover the pattern of transitions among hidden states as well as
state-dependent structure of inter-variable dependencies from an
MTS data set. The optimization problem to be solved is given by:

min
Ω

N∑
i=1

T−1∑
t=1

[


xit+1 −Ws it
xit



2 + λ1E(α̂ i

t )

]
+ λ2KL({α̂

i
t ′}, z)

s.t. h(Ω) =
S∑
s=1

[tr
(
eAs◦As

)
− P] = 0

(14)

where Ω represents all of the model parameters to be learned in-
cluding c1, . . . , cS and the parameters of the recurrent network for
modeling hidden state transitions and the graph generator networks.
In what follows, we assume a one-step-ahead vector autoregressive
model without contemporaneous effects. It is straightforward to ex-
tend the framework to use multi-step-ahead vector autoregressive
model and/or contemporaneous effects.

4.4 A Training Algorithm
Eq.(14) specifies a constrained optimization problem. Hence, the
standard backpropagation algorithm which performs an uncon-
strained optimization of neural network parameters cannot be di-
rectly used to train SrVARM. Hence, following [53], we adopt the
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augmented Lagrangian method and approximate Eq.(14) by an un-
constrained problem given by:

D(γ ) = min
Ω

Lρ (Ω,γ )

Lρ (Ω,γ ) = E(Ω) +
ρ

2
|h(Ω)|2 + γh(Ω)

(15)

where

E(Ω) =
N∑
i=1

T−1∑
t=1

[


xit+1 −Ws it
xit



2 + λ1E(α̂ i

t )

]
+ λ2KL({α̂

i
t ′}, z)

(16)

The resulting optimization problem does not have a closed-form
solution for deep neural networks with non-linear activation func-
tions. Hence, we solve the resulting optimization problem by itera-
tively solving the primal problem Ω∗

γ = arдminΩ Lρ (Ω,γ ), using
gradient descent, and the dual problem, γ = γ + ρh(Ω∗

γ ), using
gradient ascent. At each primal update step, we evaluate the primal
function and the gradients with respect to model parameters and
update the parameters using gradient descent for a given number of
iterations. Then, we perform gradient ascent for the dual problem.

In addition, during the primal update step, an early stopping
criterion is periodically checked to monitor the current best model
parameters that minimize E(Ω) on a validation set and decrements
a patience tolerance if the performance improvement over the pe-
riod has not exceeded a pre-specified threshold. Once the patience
tolerance, ptol has been reached, the training phase is terminated
and the best model parameters are retrieved. The patience toler-
ance countdown begins when the first set of model parameters
that satisfy the acyclicity threshold, ϵDAG , are found. Once the
countdown begins, the performance is considered to be improved
when: (1) h(Ω) < ϵDAG ; and (2) E(Ω) on validation set is decreased
by at least a percentage threshold, δ , from the previous best value.
Algorithm 1 summarizes the SrVARM training procedure.

5 EXPERIMENTS AND RESULTS
We now proceed to describe the results of experiments with both
synthetic as well as real-world data that are designed to evaluate
the effectiveness of the proposed SrVARM framework for learn-
ing the pattern of transitions between hidden states and the state-
dependent structure of inter-variable dependencies from MTS data.
We aim to answer the following questions:

• Can SrVARM successfully recover the pattern of transitions
among hidden states?

• How effectively does SrVARM learn the state-dependent
DAGs that model the relations between observed variables?

• How does each component of SrVARM contribute to its per-
formance?

5.1 Baseline Methods
To the best of our knowledge, this paper is the first to address
the problem of simultaneously learning the pattern of transitions
between discrete hidden states and the state-dependent structure of
dependencies between observed variables from MTS data. Hence,
we compare SrVARM with several representative baseline methods
for learning the structure of dependencies and/or the pattern of
transitions among hidden states:

Algorithm 1: Training algorithm of SrVARM
Input: Multi-variate time series data, training set XT and

validation set XV
Parameter :Maximum Lagrangian iteration nLaд , primal

update iteration np , examine period k ,
improvement threshold δ , DAG improvement
threshold σ , maximum quadratic penalty
coefficient ρmax

Output: Model parameters Ω
1 Initialize ρ = 1,γ = 0, stop = False,hold = ∞;
2 while nLaд not exceeded do
3 it = 1;

/* Primal update step */

4 while it ≤ np do
5 Forward pass to evaluate Lρ (Ωit−1,γ ) on XT ;
6 Backward pass to compute gradients and update

Ωit ;
7 if it%k = 0 then
8 Evaluate E(Ωit ) on XV ;
9 stop = earlyStop(E(Ωit ),h(Ωit ));

/* "earlyStop" implements early stopping test */

10 end
11 if stop then
12 Terminate training
13 end
14 it = it + 1;
15 end
16 if h(Ωit ) > σ · hold and ρ < ρmax then
17 ρ = ρ × 10
18 end
19 hold = h(Ωit );

/* Dual update step */

20 γ = γ + ρh(Ωit )

21 end
22 Ω = load best parameter set;

• SCGL [50], a deep neural network-based graph learning method.
It explores nonlinear Granger causality on both temporal and
inter-variable relations without assuming any predefined kernel
or distributional assumptions. It exploits low-rank approximation
to ensure scalability. It is designed to learn a single static graph
from MTS data.

• DNT-static [31], a state-of-the-art score-based structure learn-
ing algorithm that recovers (static) DAG structured dependencies
between observed variables from MTS data by exploiting the
smooth acyclicity constraint.

• DNT-vary, a direct extension of DNT-static to accommodate
the learning time-varying relationships among observed vari-
ables from MTS data. It assumes that the hidden state transitions
underlying the MTS data instances from different individuals
are aligned relative to a common frame of reference. It learns
time-varying DAGs applying DNT-static at each time point.
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• CPF-SAEM [19], an algorithm for discovering DAG-structured
dependencies using a nonlinear state-space model in the non-
stationary setting. The state-space model estimation performed
by a stochastic approximation of expectation maximization aided
by conditional particle filers with ancestor sampling. The CPF-
SAEM learns a DAG for each time point. CPF-SAEM does not
restrict the hidden states to be discrete.

• SRLSTM [48], a state-regularized LSTM network that models the
transitions among hidden states to enhance the interpretability of
recurrent neural networks learned from temporal data. The SRL-
STM models only the transitions between discrete hidden states
transition and not the state-dependent structure of relationships
among variables.

The DNT baselines are implemented with SciPy [47] using the
L-BFGS-B [56] to solve the constrained optimization problem. CPF-
SAEM is implemented in MATLAB and is made publicly available
by the authors of [19]1. The SCGL, SRLSTM, and SrVARM are imple-
mentedwith PyTorch [32] and trainedwith the Adam optimizer [20]
using the default parameter settings.

5.2 Evaluation Using Simulated Data
We evaluated the performance of SrVARM using experiments on
simulated MTS data, where the underlying pattern of transitions be-
tween hidden states as well as the state-dependent DAG-structured
dependencies between observed variables is known.

5.2.1 Simulated Data. We assume that the data generating pro-
cess can be modeled using four hidden states , i.e. s ∈ {1, 2, 3, 4},
each with a state-specific DAG structure encoded by an autore-
gressive matrix As . State transitions are encoded by the sequence[
si1, . . . , s

i
T−1

]
, where sit is the state indicator for MTS data instance

i at time point t . If the sequence of hidden state transitions are
aligned relative to a common frame of reference and the state tran-
sition pattern is state-invariant, each MTS data sample is produced
by an identical pattern of transitions between hidden states, we
can set sit = s

j
t , for all individuals i, j , and for all t . We refer to such

a simulated data set as a static pattern data set. In contrast, when
the state transition sequences from different individuals are not
aligned relative to a common frame of reference, sit and s

j
t are not

necessarily identical. We consider four types of transition patterns,
one of which is randomly chosen for each MTS data instance. We
refer to the resulting simulated data set as a dynamic pattern data
set. Table 1 shows the state transition patterns for static pattern
data set and the four dynamic pattern data sets.

To construct each state-dependent autoregressivematrix, we first
generate unweighted DAGs for each state and then sample random
weights for the edges. For the set of source nodes common in all
state-dependent DAGs, the observed variable values are modeled
using predefined functions, including linear, sine, cosine, logarithm.
The observed values for the rest of the variables are generated
based on the corresponding sequence of hidden states and the
state-dependent autoregressive matrices as follows: the following

1Implementation shared by the authors: https://github.com/Biwei-Huang/Causal-
discovery-and-forecasting-in-nonstationary-environments

Table 1: State transition patterns for static pattern and dy-
namic pattern data sets.

Static Pattern Dynamic Pattern

State
Transition

Pattern
{1, 1, 1, 2, 2, 3, 3, 4, 4, 4


1, 1, 1, 2, 2, 3, 3, 4, 4, 4
2, 2, 1, 1, 1, 3, 3, 4, 4, 4
1, 1, 1, 3, 3, 2, 2, 4, 4, 4
1, 1, 1, 2, 2, 4, 4, 4, 3, 3

Table 2: Summary of the simulated data sets.

Static Syn1 Syn2 Syn3

N 500 2000 5000
T 11 11 11
P 5 10 20

Dynamic Syn1_d Syn2_d Syn3_d

N 500 2000 5000
T 11 11 11
P 5 10 20

formula,
xit,p = wp (t) + ϵ,p ∈ source nodes

xit,p′ = As it−1

[
p′, :

]
xit−1 + ϵ,p

′ < source nodes
(17)

where xit,p is the p-th variable observed at time t , wp (·) is the
predefined function for the corresponding source node,As it [p

′, :] is
the p′−th row of the autoregressive matrix, and ϵ is Gaussian noise.
In our experiments, the parameters are set as follows: length of the
temporal data T = 11, number of variables P varies from 5, 10, to
20, and number of instances N ranges from 500, 2000, and 5000. A
summary of the simulated datasets is listed in Table 2, where static
pattern dataset 1 is labeled as "Syn1" and dynamic pattern dataset
1 is labeled as "Syn1_d" and so on.

5.2.2 Experiments with Simulated Data. We proceed to pro-
vide details of parameter settings of the proposed model for ex-
periments on the simulated data sets. The dimensionality of the
state encoding cs , denoted by dcs , is selected from {4, 8, 16} for
experiments on Syn1 and Syn1_d, from {8, 16, 32} for experiments
on Syn2 and Syn2_d, and from {16, 32, 64} for experiments on Syn3
and Syn3_d, respectively. The number of hidden nodes of the graph
generator networks of дA(·) and дD (·) are set to be equal and cho-
sen from dcs × {10, 20} on Syn1 and Syn1_d, dcs × {20, 40} on Syn2
and Syn2_d, and dcs × {40, 80} on Syn3 and Syn3_d, respectively.
The coefficient for the one-hot distribution regularizer λ1 is set
to 0.1, and that for the state frequency regularization is selected
from {0.1, 1}. Each experiment is repeated 5 times and the perfor-
mance averaged over the 5 runs is reported along with its standard
deviation.

5.2.3 Recovering the Hidden State Transition Pattern. To
assess the effectiveness of different methods in recovering the
patterns of transitions between hidden states, we define a mea-
sure of discrepancy between the actual and the learned hidden
state sequences ACCT rans = 1

N (T−1)
∑N
i=1

∑T−1
t=1 1(s

i
t , ŝ

i
t ), where

1(a,b) = 1 if a = b or 0 otherwise, and si , ŝit are the ground truth
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Table 3: State transition pattern recovery performance eval-
uated in terms of ACCT rans . The higher the value, the better
the performance.

Syn1 Syn2 Syn3

SCGL 0.26 ± 0.05 0.20 ± 0.00 0.28 ± 0.04
DNT-static 0.22 ± 0.04 0.26 ± 0.05 0.24 ± 0.05
DNT-vary 0.30 ± 0.10 0.24 ± 0.05 0.36 ± 0.15
CPF-SAEM 0.26 ± 0.02 0.25 ± 0.00 0.28 ± 0.00

SRLSTM 0.63 ± 0.07 0.56 ± 0.05 0.63 ± 0.08
SrVARM 0.80 ± 0.17 0.78 ± 0.11 0.76 ± 0.05

Syn1_d Syn2_d Syn3_d

SCGL 0.22 ± 0.04 0.20 ± 0.00 0.30 ± 0.00
DNT-static 0.30 ± 0.00 0.26 ± 0.05 0.28 ± 0.04
DNT-vary 0.26 ± 0.08 0.26 ± 0.05 0.30 ± 0.09
CPF-SAEM 0.30 ± 0.01 0.24 ± 0.00 0.29 ± 0.00

SRLSTM 0.75 ± 0.08 0.58 ± 0.08 0.64 ± 0.07
SrVARM 0.92 ± 0.07 0.68 ± 0.18 0.73 ± 0.09

state indicator and the estimated state indicator, respectively, for
MTS instance i at time t . For SRLSTM and SrVARM, the hidden
state transitions are naturally obtained from the outputs of the
algorithms. For other methods, including SCGL, DNT-static, DNT-
vary, and CPF-SAEM, they require post-processing to obtain state
indicators. To be specific, the hidden state indicator is obtained by
comparing the learned autoregressive matrices to the ground truth
state-specific autoregressive matrices and selecting the state that
yields the minimal mean square error between the two.

From the results summarized in Table 3 we observe that:

• When the state transition pattern static, the methods that
learn a single global graph fail to recover the pattern of
transitions between hidden states.

• When the state transition pattern is dynamic, the gap be-
tween DNT-vary and DNT-static becomes indistinguishable
because of the lack of alignment of hidden state transitions
across the different MTS data instances.

• SRLSTM and SrVARM explicitly model discrete hidden state
transitions and outperform the other models under both
static and dynamic settings.

• SrVARM outperforms all other baseline methods.

5.2.4 Structure LearningPerformance. Following [53], we adopted
a widely used evaluation metric, the structural hamming distance,
denoted by ERRSHD , to evaluate the quality of the learned DAG
structures. The ERRSHD measures the number of edges that differ
between the learned DAG and the true DAG. This metric considers
both the presence or absence of edge between each pair of nodes as
well as the directionality of the edges, but not the weights associated
with the edges as specified by the respective adjacency matrices.
To obtain a more finegrained estimate of performance, we use the
mean squared error ERRMSE , between the estimated and the ac-
tual weighted adjacency matrices. For both metrics, the results are
obtained by averaging over all time points and MTS data instances.
For example, ERRMSE =

1
N (T−1)

∑N
i=1

∑T−1
t=1 ∥As it

− Âs it
∥2F . The

two metrics taken together provide a comprehensive evaluation of

Table 4: Graph learning performance as measured by
ERRSHD . The lower value, the better performance.

Syn1 Syn2 Syn3

SCGL 13.40 ± 0.89 74.50 ± 3.61 300.82 ± 8.56
DNT-static 8.48 ± 1.84 44.14 ± 1.40 185.70 ± 7.85
DNT-vary 6.96 ± 0.27 27.88 ± 3.69 80.68 ± 6.80
CPF-SAEM 9.83 ± 0.18 57.34 ± 0.65 152.69 ± 0.63

SrVARM 7.12 ± 0.72 18.64 ± 1.07 59.68 ± 1.43

Syn1_d Syn2_d Syn3_d

SCGL 14.30 ± 0.45 73.98 ± 2.04 295.70 ± 2.99
DNT-static 7.42 ± 1.94 44.02 ± 3.95 184.78 ± 4.87
DNT-vary 6.24 ± 0.45 32.46 ± 3.84 148.83 ± 12.92
CPF-SAEM 12.61 ± 0.10 53.67 ± 0.51 207.04 ± 0.85

SrVARM 5.96 ± 0.56 20.05 ± 1.49 60.58 ± 2.03

Table 5: Graph learning performance as measured by
ERRMSE . The lower value, the better performance.

Syn1 Syn2 Syn3

SCGL 2.21 ± 0.39 3.64 ± 0.53 6.16 ± 0.29
DNT-static 2.32 ± 1.01 13.36 ± 0.15 25.75 ± 0.32
DNT-vary 2.61 ± 0.30 7.93 ± 0.24 9.42 ± 0.36
CPF-SAEM 2.34 ± 0.26 10.75 ± 0.16 7.52 ± 0.09

SrVARM 1.65 ± 0.11 1.85 ± 0.12 4.11 ± 0.12

Syn1_d Syn2_d Syn3_d

SCGL 2.39 ± 0.43 3.78 ± 0.31 6.53 ± 0.24
DNT-static 3.49 ± 2.31 13.30 ± 0.28 25.75 ± 0.32
DNT-vary 2.82 ± 0.26 9.87 ± 0.26 20.98 ± 0.30
CPF-SAEM 4.81 ± 0.09 9.48 ± 0.15 17.67 ± 0.13

SrVARM 1.19 ± 0.08 2.04 ± 0.09 3.17 ± 0.09

Table 6: State transition monitoring performance on SDB.

SDB SRLSTM SrVARM

ACCT rans 0.61 ± 0.08 0.67 ± 0.04

performance on the task of learning the hidden state-dependent
structure of dependencies between observed variables.

The results of ERRSHD are presented in Table 4 and that of
ERRMSE are reported in Table 5. The results summarized in Table 4
show that SrVARM virtually outperforms all other methods in all
simulated datasets with respect to the number of directed edges
that are correctly recovered, with one exception: The performance
of SrVARM is slightly worse than that of DNT-vary on Syn1 with a
static pattern of state transitions. SrVARM outperforms all other
methods with respect to ERRMSE .

5.3 Evaluation on Real-world Data
We report a case study of the SrVARM on a real-world dataset,
hereafter referred to as the stress data base (SDB) [3]. SDB contains
non-EEG physiological signals used to infer the neurological sta-
tus of subjects when they are stressed as well as when they are
relaxed [49]. The physiological signals that are collected using non-
invasive wrist worn biosensors consist of 7 variables, including
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electrodermal activity (EDA), body temperature, heart rate (HR),
arterial oxygen level (SpO2), among others. The onset and end
times of each relax/stress state are subject-specific and the ground
truth time indices are provided. (Additional details regarding the
experimental and measurement setup are available in [3]). Note
that in the case of SDB, the hidden states that generate the observed
signals are known, making it possible for us to objectively evaluate
our methods.

To demonstrate the effectiveness of SrVARM in correctly iden-
tifying the pattern of state transitions from SDB data and report
the results in Table 6. We limit our comparisons to SRLSTM and
SrVARM, the two methods that outperform other baselines on simu-
lated data. SrVARM outperforms SRLSTM in recovering the hidden
state sequence from SDB. Fig. 4 shows a visual comparison of the
recovered sequence of state transitions against the ground truth
sequence from SDB on two participants. We note that SrVARM is
effective at recovering the transitions between relaxed state and
stressed states.

The state-dependent inter-variable relationships extracted by
SrVARM from SDB data are shown in Fig. 5. An edge denotes a
nonzero entry in the corresponding state-dependent autoregressive
matrix encoding the DAG-structured inter-variable relationships.
The thickness of each edge is proportional to the magnitude of its
weight in the autoregressive matrix. When the participants are in
relaxed state, the biological measurements are related by a sparsely
connected DAG. In contrast, in the stressed state, the same variables
are related by a more densely connected DAG. Specifically, we can
observe that variables "Accx " and "Accy ", representing accelerome-
ter readings recorded by a wrist worn sensor that are indicative of
physical activity, appear to impact the heart rate of the participants.
We further note that body temperature appears to impact heart rate
when the participants are in a stressed state, which is consistent
with the finding that body temperature is an independent determi-
nant of heart rate, causing an increase of approximately 10 beats
per minute per degree centigrade increase in temperature [6]. We
also note that body temperature appears to impact skin conduc-
tance (EDA), which is consistent with reports that increase in body
temperature could raise skin conductance level [9].

5.4 Ablation Studies of SrVARM
We present results of ablation studies that examine the relative
contributions of some of the key design choices in SrVARM.

5.4.1 State Frequency Regularization. In this experiment, we
examine the impact of incorporating prior state frequency knowl-
edge by way of the state frequency regularization term in SrVARM.
We test the models with and without state frequency regularizer on
the imulated data set Syn1. The results shown in the left hand side
of Table 7 suggest that state frequency regularization improves the
performance of SrVARM as measured by its ability to recover the
pattern of transitions between hidden states.

5.4.2 Intra-variable Time-laggedEffect. We compare the struc-
ture learning performance of SrVARM variants with and without
inclusion of intra-variable time-lagged effect on the simulated data
set Syn1. The results displayed in the right hand side of Table 7
show SrVARM variant which includes intra-variable time-lagged

(a)

(b)

Figure 4: State transition modeling performance on SDB.
(Best viewed in color).

(a) Relax State (b) Stress State

Figure 5: State-dependent inter-variable relations in re-
laxed/stressed states learned from SDB. An edge denotes a
relationship between the connected variables and the thick-
ness of the edge is proportional to the magnitude of the
weight in the corresponding adjacency matrix.

Table 7: Effect of the regularization terms

Syn1 State Freq. Intra-variable
Time-lagged Effect

ACCT rans ERRSHD ERRMSE

Without 0.30 10.00 2.20
With 0.80 7.12 1.65

effects outperforms its counterpart that omits such effects. This
suggests that modeling the intra-variable time-lagged effects helps
alleviate the "source-node vanishing" which would otherwise de-
grade SrVARM’s ability to accurately learn the state-dependent
DAG-structured inter-variable relationships from MTS data.

5.5 Parameter Sensitivity Analyses
We conducted parameter sensitivity analyses to examine how the
choice of tunable parameters impact the performance of SrVARM.
Specifically, we considered the impact of dimensionality of the state

2278



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Tsung-Yu Hsieh, Yiwei Sun, Xianfeng Tang, Suhang Wang, and Vasant G. Honavar

(a) Syn1 ERRSHD (b) Syn1 ERRMSE (c) Syn1 ACCT rans

(d) Syn1_d ERRSHD (e) Syn1_d ERRMSE (f) Syn1_d ACCT rans

Figure 6: Parameter sensitivity analysis on the dimension
of state encoding and the number of hidden nodes in graph
generation network.

encodings cs , the hidden layer size of graph generation networks
дA(·) and дD (·) on the performance of SrVARM.

5.5.1 Dimension of cs and Size ofGraphGeneratorNetwork.
We varied the dimensionality of state encodings and the number
of hidden nodes in the graph generator networks. In each case, we
examine the performance of SrVARMs trained with on simulated
data sets Syn1 and Syn1_d with respect to their efficacy in recover-
ing the pattern of hidden state transitions and the state-dependent
structure of inter-variable dependencies. The dimensionality of
state encoding is chosen from {4, 8, 16}, and the hidden layer size
is chosen from {10, 20}. The hidden layer sizes of дA(·) and дD (·)
are set to be equal. From the results of of our comparisons summa-
rized in Fig. 6, it can be observed that the performance of SrVARM,
as measured by ERRSHD and ERRMSE , are rather stable to the
changes in the parameters. We conclude that SrVARM is relatively
insensitive to the choice of the dimensionality of state encodings
and the size of the hidden layer of the graph generator networks. In
contrast, the performance of SrVARM in recovering the pattern of
hidden state transitions appears to be more sensitive to the setting
of these parameters.

5.5.2 Number of States. We examined how the performance of
SrVARM on recovering the pattern of hidden state transitions is
affected by the choice of number of hidden states of SrVARM. We
varied the number of hidden states from 2 to 6 in increments of 2,
in our experiments with simulated data sets Syn1 and Syn1_d. The
results of these experiments summarized in Table 8 suggest, perhaps
not surprisingly, that SrVARM perform optimally in recovering the
pattern of hidden state transitions when the specified number of
states equal to the actual number of hidden states of the underlying
data generating process, which is 4 in the case of both the simulated
data sets Syn1 and Syn1_d. We also observe that the performance
with greater than the actual number of hidden states (S = 6) is
better compared that with less than the actual number of hidden
states (S = 2).

Table 8: Effect of the number of states.

ACCT rans S = 2 S = 4 S = 6

Syn1 0.40 0.80 0.50
Syn1_d 0.60 0.92 0.67

6 CONCLUSION
Many applications, e.g., healthcare, education, economics, life sci-
ences, call for effective methods methods for constructing pre-
dictive models from high dimensional time series data where the
relationship between variables can be complex, and driven by un-
observed transitions among hidden system states. To address the
needs of such applications, we introduced SrVARM, a novel State-
Regularized Autoregressive Model, for jointly learning the state-
dependent relationships among variables as well as the pattern of
transitions between hidden states from multi-variate time series
data. The results of our extensive experiments with simulated data
as well as a real-world benchmark that show that SrVARM out-
performs state-of-the-art baselines in recovering the unobserved
state transitions and discovering the state-dependent relationships
among variables.

Some promising directions for future research include extensions
of the SrVARM framework to explainable learning of predictive
models from time series data [18], functional data [17], longitudinal
data [23, 25, 26] - where the time interval between measurements
can be irregular for each individual and variable across individuals
and only a small subset of the variables are actually measured at
any given time, and the missing measurements are not missing at
random.
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