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A B S T R A C T   

Despite ample research on nanoparticles, their environmental toxicity is still debatable. The lack of consensus is 
due in part to the challenge of comparing studies because of variability in parameters like test organism, test 
medium, and duration of experiment. However, the unit used to compare the toxicology of nanoparticles is one 
variable that experimentalists can control. Traditionally, mass per volume is the most common unit used to make 
comparisons, but there is growing evidence that alternative units such as surface area per volume or particles per 
volume may provide a better and more mechanistic measure of toxicity. Herein, we propose and test a meta- 
analytic framework to study the effect of units on nanotoxicology using data from the NanoE-Tox database, a 
freely available database containing 1518 toxicology values from 224 published articles of which 42 records met 
our basic inclusion criteria. These data were augmented with more recent data published over the past five years 
as archived by the Web of Science citation index. An additional 27 records from 1676 papers met the inclusion 
criteria and were also included in the analysis. The meta-analysis framework measures the degree of hetero
geneity for each of three units (grams/L, particles/L, surface area/L) grouped by the type of test organism, 
particle chemistry, and manner in which a nanoparticle’s size was measured (e.g., nominal particle size reported 
by the manufacturer vs. measurement of size for particles suspended in the liquid medium used in a subsequent 
toxicity experiment). The result of the meta-analysis reveals that surface area per volume reduces the hetero
geneity in the Ag crustacean subgroup when nanoparticle size was measured in the test medium, and the ZnO 
crustacean subgroup when nanoparticle size was measured out the test medium and may therefore be a more 
appropriate estimate of the toxicity of soluble nanoparticles. No subgroups in our analysis showed a reduction in 
heterogeneity for particles per volume in either soluble or insoluble nanoparticles. The lack of conclusion on 
insoluble nanoparticles was not due to a limitation of our meta-analysis but rather highlights a critical deficiency 
in the primary literature. The majority of published studies fail to report common measures of error that are 
essential for further analysis (i.e. error of the measured nanoparticle size and/or interoperable error of the 
measured half-maximal concentration of the toxic endpoint). If future nanotoxicity studies report such error, as 
they should, then the framework of our meta-analysis could be used more broadly to provide a simple, statis
tically rigorous way to assess the role of units on the toxicity of nanoparticles.   

1. Introduction 

Nanomaterials are poised to be the defining technology of the next 
several decades with uses in batteries, drug delivery, photovoltaic cells, 
and wastewater treatment (Saunders and Turner 2008; Qu et al. 2013; 
Blanco et al. 2015; Caballero-Guzman and Nowack 2016; Chen et al. 
2016). Despite potential applications, there is legitimate concern about 
the environmental and health implications of nanomaterials, particu
larly when these particles enter the environment after their intended use 

(Klaine et al. 2008; Elsaesser and Howard 2012; von der Kammer et al. 
2012; Schrurs and Lison 2012; Bundschuh et al. 2016; Salieri et al. 
2018). As evidence of this, 1676 articles on nanotoxicology have been 
published between January 2015 and April 2020 (Web of Science, key 
word search). Despite this research, there is little consensus as to the 
degree of harm that nanomaterials pose to humans or the environment 
(Alkilany et al. 2016; Steinhäuser and Sayre 2017; Arvidsson 2018; 
Bundschuh et al. 2018). 

The lack of agreement is due in part to the fact that toxicity studies 
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use different test mediums, different test organisms, and various dura
tions of exposure. Comparisons in nanotoxicology are more difficult 
because researchers also use different methods to characterize the 
nanoparticle itself (Reidy et al. 2013; Hua et al. 2016; Jemec et al. 2016; 
Keller et al. 2017). There is, however, one universal factor that can be 
controlled and could lead to greater consensus on nanotoxicity: the unit 
used to express the dose. Toxicity results are typically reported as mass 
per volume (MPV, g/L). This dose, while commonly used, may be bio
chemically inappropriate. MPV notation treats nanoparticles as a 
collection of atoms or molecules instead of a distinct chemical entity, 
and this may lead to erroneous comparisons as illustrated in Fig. 1. 

Indeed, editors of toxicology journals as well as the International 
Organization for Economic Co-operation and Development (OECD 
2017; Kraegeloh 2018) have recently called on researchers to determine 
the ideal way to dose nanoparticles. Studies on individual test organisms 
demonstrate the value of alternative dosing metrics like surface area for 
soluble metal particles and carbon nanoparticles or number of particles 
for insoluble metal particles (Kennedy et al. 2015; Mottier et al. 2016; 
Lagier et al. 2017). But, this work is largely limited to individual studies 
rather than systematic review, with the only other broader attempt for 
aquatic nanoparticles being the use of equi-response curves that show 
volume to be the best metric followed by surface area (Hua et al. 2016). 
Perhaps it is time to question the basic assumption that environmental 
toxicity should be measured as MPV instead of particles/L or surface 
area/L. 

Herein, we sought to capture a wider survey of the literature to 
determine if the effect seen at the level of a single report is more uni
versal. A meta-analysis was conducted to assess whether nanotoxicity 
measurements are affected by the choice of unit (mass, number of par
ticles, or surface area per volume). We hypothesized that surface area 
per volume (SAPV) would be the ideal unit to describe the toxicity of 
soluble (e.g. Ag, ZnO, CuO) or otherwise surface active particles (e.g. 
TiO2); whereas particles per volume (PPV) would be the ideal dose unit 
for insoluble particles (e.g., CeO2). The optimal ‘unit of choice’ (e.g., 
MPV, SAPV, PPV) was identified based on a reduction in the dataset’s 
heterogeneity as measured by the H and Q statistics, which are standard, 
unitless heterogeneity metrics in meta-analysis. 

Our meta-analysis utilized a large number of studies captured by the 
NanoE-Tox database (Juganson et al. 2015) plus papers from an addi
tional search of Web of Science articles published in the past five years. 

A clear signal was observed for Ag and ZnO nanoparticles tested on 
crustaceans. For these soluble nanoparticles, our analysis revealed that 
SAPV was the best predictor of nanotoxicity. No subgroups in our 
analysis showed a preference for PPV. This was due in part to the 
stringent inclusion criteria used in our meta-analysis. Non-soluble par
ticle chemistries expected to show a preference for PPV were “filtered 
out” because the source publications failed to report error in size and 
concentration. Nonetheless, our meta-analysis provides a statistically 
rigorous description and simple framework for assessing the role of units 
in nanotoxicity. As more studies are published with acceptable reporting 
of error, this approach will allow robust consideration of whether non- 
mass per volume units should be considered, which is a valuable asset 
for the design of studies in environmental nanotoxicity. Furthermore, 
this meta-analysis approach may be transferrable to other environ
mental health fields to evaluate, for example, whether surface area is the 
most relevant dose metric for acute (or chronic) nanoparticle lung 
toxicity, which has already been suggested in a retrospective analysis of 
animal studies (Schmid and Stoeger 2016). 

2. Methods 

Data for the meta-analysis was initially drawn from the NanoE-Tox 
database, which contains 1518 individual records where a record is 
defined as a row in the database (Juganson et al. 2015). Each record 
therefore represents one reported measurement of nanoparticle toxicity 
from one of the 224 different studies in the database. Since the NanoE- 
Tox database was last updated in 2015, the same NanoE-Tox search 
criteria was repeated using Web of Science on May 1, 2020 (minus 
‘carbon nanoparticle’ as it was not of interest in the current meta- 
analysis). This yielded 1676 papers which were manually filtered, 
along with the NanoE-Tox studies, according to the inclusion criteria 
outlined below. 

The choice to use combined datasets is not without its drawbacks as 
choices are made during data entry that may be different and/or 
incompatible with the choices made by Juganson et al. (2015). For 
example, in the 1676 reviewed papers published since 2015, several 
authors provided multiple characterizations of the nanoparticle in the 
test medium at several time points during the experiment. When faced 
with the choice of which characterization to use, we chose size measured 
at the earliest time point and favored size determined with transmission 
electron microscopy (TEM) over the dynamic light scattering when both 
were reported. 

Data were processed using two different sets of inclusion criteria. The 
first, called the summary effect case, used strict inclusion criteria to 
calculate a more rigorous mean value of the dataset through error 
propagation. Four requirements had to be met: (i) metallic nanoparticle 
toxicity measurement in aquatic media; (ii) report the lethal concen
tration (LC50) or effective concentration (EC50) with mortality 
descriptor, namely, mortality, immobility, or luminesce and provide 
standard deviation of the toxic concentration; (iii) report the size and 
standard deviation of the nanoparticle; and (iv) particle shape reported 
as spherical or approximately spherical. Data that met these specifica
tions were converted to the derived units, PPV expressed in particles/L 
and SAPV expressed in m2/L, using Eqs. (1) and (3) respectively, shown 
in Table 1. The error in concentration and size was propagated ac
cording to in Eqs. (2) and (4) of Table 1. 

The second set of criteria, called the dispersion effect case analysis, 
was created with three purposes: (i) to assess the effect of the four in
clusion criteria on the summary effect case means, (ii) to increase data 
for the analysis, and (iii) to assess the effect of the units based on a 
change in heterogeneity, which is not possible due to error propagation 
in the summary effect case. To create the dispersion effect case, we 
relaxed the last two criteria (i.e., reported error in size and spherical 
shape) of the summary effect case analysis. The dispersion effect case 
still requires that nanoparticle size be provided but because error is no 
longer propagated, the reported size error is not required. Therefore, in 

Fig. 1. Schematic drawing demonstrating the relationship between concen
tration (1 g/L) and size (10 vs. 20 nm particles). While both beakers have the 
same mass of Ag per volume, the 10 nm beaker has eight times as many par
ticles as the 20 nm beaker and two times the total surface area. The effect seen 
here is somewhat extreme due to the sizes chosen, but a systematic error is 
introduced no matter the size because radii and mass concentration determine 
the derived units’ concentrations. As a more general rule when comparing two 
particles of the same chemistry, the relative particle number scales as a function 
of r2

3/r1
3 and total surface area scales as a function of r2/r1. 
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the case of the dispersion effect case, data were weighted based solely on 
concentration error converted to the derived units. Additionally, shape 
descriptors such as ‘not applicable’ (N/A in the NanoE-Tox database) 
and irregular were included in the dispersion effects analysis. MPV was 
converted to SAPV and PPV using Eqs. (1) and (3) in Table 1 as above 
with the assumption that all particles were spherical, and the reported 
size corresponded to diameter. For SAPV and PPV, the relative standard 
deviation of MPV was used to calculate the derived units’ standard 
deviation. 

Data from the NanoE-Tox database was filtered according to the 
inclusion criteria using MATLAB2017a while the literature search was 
filtered as it was manually entered. Both datasets had their units con
verted in MATLAB2017a and were subsequently exported to R (version 
3.4.3) for further analysis. The meta-analysis utilized the ‘metafor’ 
(version 2.0–0) package to calculate the mean effects and the hetero
geneity statistics using the restricted maximum likelihood method under 
the random effects assumptions which presumes each study is drawn 
from a distribution of effects that share the same mean, resulting in a 
basic accounting for the differences between studies. The ‘metafor’ 
package was also used to run the meta-regression calculations using the 
moderators, organic coating, and time of exposure (Viechtbauer 2010). 
The regression models were assessed based on whether Akaike Infor
mation Criteria corrected for small sample size (AICc) and Bayesian 
Information Criteria (BIC), relative measures of the quality of the sta
tistical model, decreased compared to the simple mean values and 
whether a high R2 value indicated a suitable fit. 

The data were broken up into subgroups based on three qualifiers: 
the particle chemistry used in the experiment (e.g., Ag, CuO, etc.), the 
organism type (e.g., crustaceans, bacteria, etc.) used in the test, and 
whether the size of the nanoparticle was measured in the test medium 
(ITM) or out of the test medium (OTM). The definitions of ITM vs. OTM 
are based on a distinction made in the NanoE-Tox database. ITM refers 
to the size of the particle as measured in the test medium (e.g., liquid 
buffer) at the beginning of an experiment before addition of the test 
organism. This size was generally measured by dynamic light scattering 
or nanoparticle tracking analysis. OTM size is a bit more nebulous 
because it refers to the size of the material before it is placed in the test 
medium. This may be the nominal size listed by the manufacturer, size 
determined by TEM, or in a few instances the size of a particle in ul
trapure water as determined by light scattering. The analysis was run for 
all subgroups that contained more than four records in the subgroup. 

3. Results 

3.1. Summary effect case 

3.1.1. Description of data included in analysis 
The summary effect case study was conducted by applying the 

following inclusion criteria to peer-reviewed publications: metallic 
nanoparticle, LC50 or EC50 values reported with standard deviation, 
nanoparticle size reported with standard deviation, and spherical par
ticle shape (see Methods). After applying this relatively stringent 
criteria, only 42 records from four separate publications remained from 
the NanoE-Tox dataset. An additional 27 records from eight separate 
publications were added from a manually curated data set generated by 
using Web of Science to search for terms from the original NanoE-Tox 
database. 

These records were then divided into subgroups based on the type of 
organism tested, the chemistry of the particle tested, and whether the 
size of the particle was measured in the test medium (ITM) or out of the 
medium (OTM). ITM refers to measurement of the size of particles that 
were suspended in the same liquid media that was used in the toxicity 
experiment; whereas OTM generally refers to the nominal size provided 
by the manufacturer of the particle. A total of 14 subgroups were 
generated with these summary effect inclusion criteria, namely: Ag/ 
crustacean/OTM, Ag/zebrafish/OTM, CuO/crustacean/OTM, CuO/ 
rotifer/OTM, TiO2/algae/OTM, TiO2/crustacean/OTM, ZnO/crusta
cean/OTM, Ag/bacteria/ITM, Ag/crustacean/ITM, CuO/crustacean/ 
ITM, CuO/rotifer/ITM, TiO2/crustacean/ITM, ZnO/bacteria/ITM, and 
ZnO/crustacean /ITM. 

Of the 14 subgroups, the following seven contained greater than four 
records, a requirement for inclusion in the analysis: Ag/crustacean/ 
OTM, Ag/zebrafish/OTM, CuO/crustacean/OTM, TiO2/algae/OTM, 
Ag/bacteria/ITM, Ag/crustacean/ITM, and ZnO/bacteria/ITM (see 
Table 2). Of the seven excluded groups, five had only one record in the 
dataset, while two subgroups had two (CuO/crustacean/ITM) or three 
(ZnO/Crustacean/OTM) records. 

3.1.2. Calculated means 
Numerical results of the summary effects analysis are shown in 

Table 2. These results are also visually summarized as forest plots in 
Fig. 2 and Fig. S1. Forest plots show the mean and calculated 95% 
confidence interval for each record as well as the meta-analytic mean 
and its 95% confidence interval. Overall, Fig. 2 demonstrates that the 
records across all the units (MPV, PPV, SAPV) are relatively well clus
tered on a logarithmic scale with the visual clustering increasing in the 
derived units. Fig. S1 shows a similar trend though to a lesser degree due 
to a smaller number of records in the subgroup and many of the sub
groups are dominated by a single study. 

Despite the clustering, when looking down a column in Fig. 2 (or 
Fig. S1), several subgroups contain at least one consistent outlier. We 
initially thought that the meta-regression could account for these out
liers by using moderators of time or organic coating. However, this 
analysis was not particularly informative for summary effects because 
there was insufficient variability in most subgroups with respect to time 
or coating. For example, Table S1 shows TiO2/algae/OTM is dependent 
upon exposure time, as are ZnO/bacteria/ITM and Ag/bacteria/ITM. 
But this yields no new insight as all records in each subgroup were 
drawn from a single study that moderated time but not the coating 
(Mallevre et al. 2014; Ozkaleli and Erdem 2018). Similarly, a strong 
relationship with coating was found for the Ag/zebrafish/OTM sub
group. But closer examination of raw data revealed only two coatings, 
one from each paper, in the dataset indicating the relationship could just 
as easily be explained by other study-level differences. Despite the 
strong R2 for the time moderator of the Ag/zebrafish/OTM subgroup, it 
is likely spurious as is the coating moderator for the Ag/crustacean/ITM 
subgroup, and both time and coating for the CuO/crustacean/OTM 
subgroup. This inference is supported by the increasing AICc value since 
it is designed to penalize statistical model fit to small datasets, which is 
likely occurring in each case. 

The only subgroup with sufficiently diverse data to exhibit a rela
tionship with either variable (time or coating) is Ag/crustacean/OTM. In 
this case, the low R2 value indicates that time is a poor moderating factor 
for this subgroup, and coating (despite the high R2 value) has an 

Table 1 
Equations used to calculate the derived unit doses of particles per liter and 
surface area per liter for the summary effects analysis and dispersion effects 
analysis as well as the formulas used to propagate error in the dispersion effects 
analysis. ρmetal is the density of the particle, rparticle is the particle’s radius, C and 
σ are the concentration and standard deviation of the concentration in g/L, 
particle/L or SA/L.  

Equation # Equation 

1 
Cparticle

(
particles

LH2O

)

=
massmetal

LH2O
*

1
ρmetal

*
particle

(
4
3

π
(
rparticle

)3
)

2 
σparticle = Cparticle*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
σmass

Cmass

)2
+

(

3
σradius

rpart

)2
√

3 
CSurface Area

(
m2

LH2O

)

=
massmetal

LH2O
*

1
ρmetal

*
3

rparticle  
4 

σSurface Area = CSurface Area*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
σmass

Cmass

)2
+

(
σradius

rpart

)2
√
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inconsistent signal for AICc and BIC in the derived units, though it does 
have a strong signal in the MPV case (see Table S1). Despite statistics 
showing some relationship with the proposed moderating variables, the 
outliers could also be explained as small datasets from different studies 
(e.g., see Fig. 2 Ag/crustacean/OTM). 

The means of the summary effect analysis represent a statistically 
rigorous estimate of the toxicity of nanoparticles because of the unbi
ased inclusion criteria and strict accounting of error in the measured 
nanoparticle concentration. Despite this rigor, the summary effects 
analysis cannot be used to assess the hypothesis that the derived units of 
PPV or SAPV are better than MPV because the size error is propagated. 
The two chosen statistics, H and Q (described in detail in the Supple
mental Information) used to assess heterogeneity in the analysis, both 
include a term normalized by the study level variation. This normali
zation allows for comparison across units, but due to the propagation of 
the size error, the study level error increases greatly for derived units, 
which in turn decreases heterogeneity. Therefore, any observed 
decrease in H or Q cannot be attributed solely to changing units. Instead, 
it is attributed to the increase in the study level variation. 

The TiO2/algae/OTM column in Fig. 2 highlights the effect of error 
propagation nicely. In the MPV panel there are eight datapoints with 
little to no overlap in the 95% confidence intervals. In the SAPV case, 
where, as Table 1 shows, error is propagated by adding the size error to 
the concentration error, each record’s 95% confidence interval begins to 
overlap. For PPV, where error in size is multiplied by nine before being 
added to the concentration error, the 95% confidence intervals almost 
all overlap. This visual change is borne out by the heterogeneity statis
tics where H drops from 5843.42 in the MPV case to 41.42 in the SAPV 
case to 5.57 in the PPV case. Q shows a similar drop from 9574 in the 
MPV case to 265 and 39 for SAPV and PPV, respectively. Therefore, to 
assess the effect of units, the dispersion effect analysis must be used. The 
dispersion effect does not propagate size error thereby producing a less 
accurate mean but clearer picture of the role of units in the data’s 

heterogeneity. 

3.2. Dispersion effect case 

Loosening the restrictions of the summary effect analysis successfully 
increased the number of records to 114 unique measurements from 16 
different studies sorted into 18 different subgroups. Of the 18 subgroups, 
10 had more than four records required for calculation of the mean ef
fect. These results are reported in Table 3 and visually summarized in 
Fig. 3. Forest plots for all subgroups and units can be found in Fig. 4 and 
Figs. S2 and S3. Surprisingly, the relaxation of the restrictions did not 
increase the number of records for four of the seven subgroups from the 
summary effect analysis. Only CuO/crustacean/OTM, Ag/crustacean/ 
ITM and Ag/bacteria/ITM exhibited an increase in records by 16, 20 and 
6 records respectively. This illustrates the effect of increasing data when 
error is not propagated on the final result as well as the effect of the lack 
of proper error propagation. 

3.2.1. Comparing dispersion and summary effect analysis 
Fig. 5 shows the mean values and prediction interval for each sub

group (with more than 4 records) for the summary versus the dispersion 
subgroups. For the four subgroups that exhibited no increase in records 
(Ag/zebrafish/OTM, Ag/crustacean/OTM, TiO2/algae/OTM, and ZnO/ 
bacteria/ITM), the means for the MPV units were the same, as expected 
because there was no change in weighting. The mean values for the PPV 
and SAPV also remained constant across the two case analyses for the 
subgroups with no record changes. 

This goes against expectations from a theoretical perspective, as one 
would expect each record’s weight to change when error was not 
propagated in the dispersion effects and therefore the mean to change in 
response. For the TiO2/algae/OTM and ZnO/bacteria/ITM subgroups 
the lack of change is attributed to all of the records having the same size 
assigned to them and therefore the relative weighting remains the same. 

Table 2 
Mean LC50 or EC50 toxic effects in log units as calculated by the meta-analysis on the summary effects dataset broken out by (i) whether the size of the nanoparticle was 
measured in or out of the liquid medium used in the toxicology test, (ii) the chemistry of the particle, and (iii) the organism type included in the study. The columns 
report the meta-analytic mean and standard error, the prediction interval is the expected range where 95% of future results will fall, T2 is the between studies variance, 
H and Q are relative measures of heterogeneity. Also cited are the studies included in the analysis and the number of records in the category (n). g/L = grams per liter; 
part/L = particles per liter; SA/L = surface area per liter in units of m2/L.     

Mean Standard 
Error 

Prediction 
Interval 

T2 

Estimate 
H Q Studies Included in Analysis 

Size Measured Outside 
of the Test Medium 

Ag Zebrafish (n 
= 7) 

g/L −4.36 0.08 0.59 0.21 81.54 474 Ribeiro et al. (2014); Boehme et al. (2015) 
part/ 
L 

12.19 0.32 1.99 0.70 3.40 28 

SA/L −2.85 0.15 1.02 0.37 5.96 46 
Ag Crustacean 

(n = 31) 
g/L −4.45 0.10 1.19 0.57 727.04 18,611 Blinova et al. (2013); Ribeiro et al. (2014);  

Silva et al. (2014); Ulm et al. (2015);  
Borase et al. (2019) 

part/ 
L 

12.56 0.19 2.03 0.97 8.22 248 

SA/L −2.77 0.12 1.31 0.63 14.58 353 
TiO2 Algae (n =

8) 
g/L −1.81 0.18 1.32 0.51 5843.42 9574 Ozkaleli and Erdem (2018) 
part/ 
L 

14.02 0.18 1.22 0.46 5.57 39 

SA/L −0.53 0.18 1.31 0.50 41.42 265 
CuO Crustacean 

(n = 4) 
g/L −2.35 0.49 4.75 0.99 854.35 1071 Kim et al. (2017); Rotini et al. (2018) 
part/ 
L 

12.52 0.24 1.47 0.25 1.36 3 

SA/L −1.36 0.35 3.23 0.67 22.50 60 
Size Measured Inside 

of the Test Medium 
ZnO bacteria (n 

= 5) 
g/L −1.07 0.04 0.29 0.08 183.64 281 Mallevre et al. (2014) 
part/ 
L 

12.72 0.04 0.28 0.08 6.68 20 

SA/L −0.29 0.04 0.29 0.08 38.27 66 
Ag bacteria (n 

= 12) 
g/L −2.12 0.11 0.90 0.39 222.22 501 Mallevre et al. (2014) 
part/ 
L 

12.52 0.28 2.21 0.95 187.12 2259 

SA/L −1.23 0.14 1.15 0.50 145.02 1324 
Ag Crustacean 

(n = 4) 
g/L −5.53 0.31 2.96 0.61 775.53 782 Silva et al. (2014); Ulm et al. (2015) 
part/ 
L 

11.27 0.31 2.74 0.56 18.71 39 

SA/L −3.98 0.24 2.25 0.46 59.07 80  
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A similar explanation is attributed to the Ag/zebrafish/OTM subgroup, 
where only two studies were represented, but six of the seven records 
came from the same study causing a small change in the mean and 
prediction interval. For the Ag/crustacean/OTM data, where five studies 
are represented, the lack of change is odd but there is some slight 
variation indicating that weighting of each record changed but not 
enough to greatly alter the mean value (see Table 3). 

For the three subgroups that exhibited a change in the number of 
records (CuO/crustacean/OTM, Ag/crustacean/ITM and Ag/bacteria/ 
ITM), the means of the dispersion effect were within the prediction in
terval of the summary effects. Furthermore, the additional data served to 
reduce the prediction intervals of both the MPV mean and the derived 
units. The one exception to this trend is the PPV case for CuO/crusta
cean/OTM, which had an increase in prediction interval, and the 
dispersion effects mean fell outside of the boundaries of the prediction 
interval. While the derived units in the dispersion effects case appears to 
have greater precision than the summary effects case, the dispersion 
effects case is less accurate. This is confirmed by an observed increase in 
heterogeneity indicated by the H statistic. 

Conversely, the MPV means are more accurate than their summary 
effects counterparts because both H and prediction interval decreased 
with the added data. We do not consider Q for the data with increased 
number of records because Q is highly dependent on the number of 

studies, a problem the H statistic was developed to solve (Higgins and 
Thompson 2002). Another indication that the derived unit means in the 
dispersion case are less precise comes from the dispersion effects case 
where no data was added and both measures of heterogeneity, H and Q 
show at least an order of magnitude increase compared to the summary 
effects case analysis for the derived units (Table 3). Of course, this in
crease was expected because error propagation artificially deflated the 
heterogeneity. 

3.2.2. Assessing heterogeneity differences between units 
Our hypothesis, mentioned in the Introduction, predicts that there 

will be a decrease in heterogeneity for SAPV with respect to soluble and 
surface-active particles; whereas PPV will show a decrease in hetero
geneity for non-soluble particles. This analysis was limited to subgroups 
with more than eight records, the minimum number of records recom
mended for a reliable computation of the H statistic (Higgins and 
Thompson 2002). Seven subgroups met these criteria: ZnO/crustacean/ 
OTM, Ag/crustacean/OTM, Ag/bacteria/OTM, TiO2/algae/OTM, CuO/ 
crustacean/OTM, Ag/crustacean/ITM and Ag/bacteria/ITM. 

As seen in Table 3, Ag/crustacean/ITM and ZnO/crustacean/OTM 
showed a reduction in heterogeneity for the SAPV by 39.2 and 6.1% in H 
and 24.5% and 2.2% in Q respectively. For the other subgroups, two 
failed to show any signal (Ag/bacteria/OTM, TiO2/algae/OTM). The 

Fig. 2. Forest plots of the summary effects analysis for each combination of particle, organism, and chemistry as defined by the three units: grams per volume (MPV), 
particles per volume (PPV), and surface area per volume (SAPV). OTM = the size of the nanoparticle was measured out of the test medium. ITM = nanoparticle size 
determined in the test medium. Each point represents the mean and the calculated 95% CI for each record. The black diamond (located at the bottom of each panel) is 
centered on the mean value from the meta-analysis where the width is the 95% CI values for the mean. The different colors in the silver crustacean column represent 
the data source. The Ag Zebrafish OTM column contains records from Blinova et al. (2013) represented by yellow upward-pointing triangles, Ribeiro et al. (2014) 
represnted by green circles, Silva et al. (2014) represented by blue squares, Ulm et al. (2015) represented by pink downward-pointing triangles, Borase et al. (2019) 
represented by orange right-pointing triangles. All data in the Ag-bacteria column come from Mallevre et al. (2014) represented by green downward-pointing tri
angles. All data in the TiO2-algae-OTM column comes from Ozkaleli and Erdem (2018) represented by yellow left-pointing triangles. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 
Mean LC50 or EC50 toxic effects in log units as calculated by the meta-analysis on the dispersion effects dataset broken out by (i) whether the size of the nanoparticle was 
measured in or out of the liquid medium used in the toxicology test, (ii) the chemistry of the particle, and (iii) the organism type included in the study. The columns 
report the meta-analytic mean and standard error, the prediction interval is the expected range where 95% of future results will fall, T2 is the between studies variance. 
Also shown are the relative measures of heterogeneity (H and Q) as well as their percent change for the mass per volume (g/L) case. The final column cites the studies 
included in the analysis, where n, shown in the first column, is the number of records in the category. g/L = grams per liter; part/L = particles per liter; SA/L = surface 
area per liter in units of m2/L; N/A = not applicable (undefined).     

Mean Standard 
Error 

Prediction 
Interval 

T2 

estimate 
H Q H Percent 

Change 
Q Percent 
Change 

Studies Included in Analysis 

Size Measured 
Outside of 
the Test 
Medium 

ZnO bacteria 
(n = 5) 

g/L −1.07 0.04 0.29 0.08 13.55 281 N/A N/A Mallevre et al. (2014) 
part/ 
L 

14.59 0.04 0.29 0.08 13.55 281 0 0 

SA/L 0.34 0.04 0.29 0.08 13.55 281 0 0 
ZnO 

crustacean 
(n = 17) 

g/L −2.67 0.10 0.89 0.41 7.47 1291 N/A N/A Blinova et al. (2010); Kim et al. 
(2017) part/ 

L 
12.54 0.13 1.20 0.54 9.99 1282 −0.7 33.7 

SA/L −1.44 0.10 0.87 0.40 7.31 1212 −6.1 −2.2 
Ag bacteria 

(n = 18) 
g/L −2.08 0.08 0.74 0.34 10.83 554 N/A N/A Mallevre et al. (2014);  

Mallevre et al. (2016) part/ 
L 

14.65 0.08 0.74 0.34 10.83 554 0 0 

SA/L −0.50 0.08 0.74 0.34 10.83 554 0 0 
Ag zebrafish 

(n = 7) 
g/L −4.36 0.08 0.59 0.21 9.03 474 N/A N/A Ribeiro et al. (2014); Boehme 

et al. (2015) part/ 
L 

12.13 0.27 1.97 0.72 30.06 5724 1107.5 232.8 

SA/L −2.86 0.14 1.05 0.38 15.97 1567 230.5 76.9 
Ag 

crustacean 
(n = 31) 

g/L −4.45 0.10 1.19 0.57 26.96 18,611 N/A N/A Blinova et al. (2013); Ribeiro 
et al. (2014); Silva et al. 

(2014); Ulm et al. (2015);  
Borase et al. (2019) 

part/ 
L 

12.54 0.19 2.19 1.05 49.67 113,077 507.6 84.2 

SA/L −2.78 0.12 1.42 0.68 32.15 34,025 82.8 19.2 
TiO2 algae 

(n = 8) 
g/L −1.81 0.18 1.32 0.51 76.44 9574 N/A N/A Ozkaleli and Erdem (2018) 
part/ 
L 

14.02 0.18 1.32 0.51 76.44 9574 0 0 

SA/L −0.53 0.18 1.32 0.51 76.44 9574 0 0 
CuO 

crustacean 
(n = 20) 

g/L −1.62 0.20 1.95 0.90 26.19 6431 N/A N/A Heinlaan et al. (2008); Blinova 
et al. (2010); Manusadžianas 

et al. (2012); Kim et al. (2017); 
Rotini et al. (2018) 

part/ 
L 

14.29 0.26 2.49 1.16 33.52 23,856 270.9 28.0 

SA/L −0.13 0.23 2.16 1.00 29.04 9667 50.3 10.9 
Size Measured 

Inside of the 
Test Medium 

ZnO bacteria 
(n = 5) 

g/L −1.07 0.04 0.29 0.08 13.55 281 N/A N/A Mallevre et al. (2014) 
part/ 
L 

12.72 0.04 0.29 0.08 13.55 281 0 0 

SA/L −0.29 0.04 0.29 0.08 13.55 281 0 0 
Ag bacteria 

(n = 18) 
g/L −2.08 0.08 0.74 0.34 10.83 554 N/A N/A Mallevre et al. (2014);  

Mallevre et al. (2016) part/ 
L 

12.58 0.20 1.83 0.84 26.74 9054 1534.2 146.8 

SA/L −1.19 0.11 0.97 0.45 14.24 2010 262.9 31.4 
Ag 

crustacean 
(n = 24) 

g/L −4.46 0.13 1.28 0.61 23.84 9115 N/A N/A Blinova et al. (2013); Silva 
et al. (2014); Ulm et al. (2015) part/ 

L 
10.53 0.15 1.51 0.71 28.08 36,069 295.7 17.8 

SA/L −3.46 0.10 0.97 0.46 17.99 5540 −39.2 −24.5  

Fig. 3. Dispersion effects means and prediction interval for each subgroup in the dispersions effects analysis, blue squares represent the MPV data in units of log(g/ 
L), yellow triangles represent SAPV units in log(m2/L), and red circles represent the PPV units in log(particles/L). Error bars are present for all subgroups any missing 
are because they are too small to be seen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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lack of change is attributable to the aforementioned lack of variation of 
size within the records in these two subgroups. In the case of the TiO2/ 
algae/OTM subgroup, all the records come from a single paper Ozkaleli 
and Erdem (2018), which varied the test medium and time but not the 
primary particle size. The CuO/crustacean/OTM did not show a pref
erence for SAPV units as indicated by increases in Q (by 50.3%) and H 
(by 10.9%). However, this subgroup suffers from similar problems to the 
Ag/bacteria/OTM and TiO2/algae/OTM, the nanoparticle size is too 
homogenous. Of the 20 records in these studies, 16 are reported as 30 
nm, an additional 2 records are listed as 31.3 nm and the two remaining 
records are listed as 118 nm. As a result, the records are too similar for a 
clear signal to be seen. As MPV is converted to SAPV, the 118 nm par
ticles studied by Rotini et al. (2018) (pink, right pointing triangle) move 
from a more central position to a more outlying position as seen in Fig. 4. 
This increases the heterogeneity because the remaining 30 nm particles 
remain fixed in their relative positions. 

The Ag/bacteria subgroup are an interesting case study as the ITM 
and OTM versions contain the same 18 nanotoxicology tests. The two 
papers in these subgroups used the same particles, varying exposure 
time and the liquid media used in the toxicity tests. As a result of using 
the same particles, the Ag/bacteria/OTM subgroup showed no reduction 

Fig. 4. Forest plots of the dispersion effects analysis for each combination of particle, organism, and chemistry as defined by the three units: grams per volume 
(MPV), particles per volume (PPV), and surface area per volume (SAPV). OTM = the size of the nanoparticle was measured out of the test medium. ITM = nano
particle size determined in the test medium. Each point represents the mean and calculated 95% CI for each record. The black diamond (at bottom of each panel) is 
centered on the mean value from the meta-analysis where the width is the 95% CI values for the mean. The different colors correspond to the different sources of 
data. The Ag-crustacean-OTM column contains records from Blinova et al. (2013) represented by yellow upward-pointing triangles, Ribeiro et al. (2014) represented 
by green circles, Silva et al. (2014) represented by blue squares, Ulm et al. (2015) represented by a pink downward-pointing triangles, Borase et al. (2019) rep
resented by orange right-pointing triangles. The Ag-bacteria-ITM column contains records from Mallevre et al. (2014) represented by a green downward-pointing 
triangle and Mallevre et al. (2016) represented by blue circles. The CuO-crustacean-OTM column contains records from Heinlaan et al. (2008) represented by a 
blue left-pointing triangle, Blinova et al. (2010) represented by orange downward-pointing triangles, Manusadžianas et al. (2012) represented by green squares, Kim 
et al. (2017) represented by yellow circles and Rotini et al. (2018) represented by pink right-pointing triangles. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Comparison of the summary effect (blue) and dispersion effect (red) 
analysis on the mean and 95% prediction intervals of each shared subgroup. 
Asterisks represent the MPV data in units of log(g/L), squares represent SAPV 
units in log(m2/L), triangles represent the PPV units in log(particles/L). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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in heterogeneity for either the derived units, because the OTM size was 
the same for all records (i.e. 15 nm). Meanwhile the Ag/bacteria/ITM 
case shows that derived units increase heterogeneity in both SAPV and 
PPV. When looking at the forest plots of Fig. 4, we see that there are 
several clear outliers across the dataset, which correspond to toxicity 
reported at t = 0 and in ‘crude wastewater’ which skew the data, though 
even with the t = 0 records removed no reduction in heterogeneity is 
observed compared to MPV (Mallevre et al. 2014; Mallevre et al. 2016). 

A similar comparison is possible for Ag/crustacean, which has suf
ficient records to compare across the various liquid media. Here, we find 
that the Ag/crustacean/ITM subgroup shows a 39.2 and 24.5% reduc
tion in H and Q, respectively, for SAPV while the Ag/crustacean/OTM 
subgroup shows an 82.8 and 19.2% increase (Table 3). This striking 
dichotomy can be explained by looking at the forest plots for Ag/crus
tacean/OTM in Fig. 4. This shows data are well clustered for the MPV 
case. There is one strong outlier after units are converted to PPV and 
SAPV, while two additional records from the same study Silva et al. 
(2014) cluster together. If the three outlying records are removed, the 
remaining records show a 1.9% increase in H and 2.9% decrease in Q. 
This provides weak support for the hypothesis that SAPV is a better unit 
than MPV and evidence that the result may be data limited. 

The outcome of the dispersion case analysis does not provide any 
support for or against the second part of the hypothesis, that is, non- 
dissolvable particles are best described by PPV units. This is because 
no data on non-soluble particles other than one TiO2 subgroup met the 
inclusion criteria, though CeO2 and other TiO2 toxicity tests were also in 
the unfiltered dataset. Of the seven subgroups that are suitable for the 
dispersion analysis, two showed no change in PPV heterogeneity for 
reasons already described, and all of the other two subgroups showed an 
increase in the heterogeneity indicating that PPV is a less appropriate 
unit than MPV for generally dissolvable particles. 

3.2.3. Comparing ITM vs OTM 
Fig. 6 assesses the need for separating the data into subgroups based 

on the manner in which size is measured (i.e. measured in the test me
dium, ITM, or out of the test medium, OTM). This figure compares mean 
values for the dispersion effects analysis where each chemistry/organ
ism pair have size data for both ITM and OTM. As expected, the MPV 
mean values are nearly identical because the studies within each sub
group contain overlapping if not exactly the same records. The derived 
units are different with PPV OTM having 2 log units (particles/L) more 
particles than the ITM data, and OTM SAPV having 0.65 log (m2/L) 
more total surface area than ITM SAPV. These order of magnitude dif
ferences are substantial across the units and show that some consider
ation of where size is measured (i.e. in vs. out of test medium) is 
necessary. It is also worth noting that the prediction intervals for both 

methods overlap in several cases. This demonstrates the large range of 
concentration that is covered despite the fact that error was not prop
agated for the derived units in this analysis. 

4. Discussion 

There have been a number of recent calls (OECD (2017); Kraegeloh 
(2018)) to re-evaluate the ideal way to express the dose of nanoparticles 
in toxicology studies (e.g., grams per liter, surface area per liter, or 
number of particles per liter). Kennedy et al. (2015), for example, pro
posed that surface area is the best expression for dissolvable or photo
reactive metallic particles such as Ag, ZnO, or TiO2; whereas an 
expression of dose in terms of the number of particles would be best for 
insoluble particles such as CeO2 and Au. They tested their hypothesis by 
exposing two organisms, a fish (Pimephales promelas) and a crustacean 
(Ceriodaphnia dubia), to Ag particles of various size. They determined 
that for both organisms the ion release, related to total surface area, 
provided the best fit in dose response curves. 

The hypothesis of Kennedy et al. (2015) is supported by Warheit 
et al. (2007) who found that dose was better expressed in terms of 
surface reactivity for rat lungs dosed with different TiO2 and SiO2 
nanoparticles despite both particles being insoluble. For most particles, 
surface reactivity is directly proportional to size but for TiO2 the rela
tionship is more fraught as rutile and anatase are often found in com
bination in larger nanoparticles and contribute differently to the 
particle’s surface reactivity (Warheit 2010; Dobias and Bernier-Latmani 
2013). Schmid and Stoeger (2016) confirmed that surface area is the 
optimal dose metric for aerosol nanomaterials for a wide variety of 
materials, recommending researchers prefer surface area over other 
dose metrics. Outside of metallic nanoparticles there is evidence that 
alternative units may be appropriate. Mottier et al. (2016) tested a va
riety of carbon nanoparticles on amphibians in water and found that 
surface area was the best expression for carbon nanoparticle doses, 
which was subsequently verified in a follow-up publication by Lagier 
et al. (2017). 

While these past studies have shown evidence for alternative dosing 
metrics, each study has focused largely on individual tests. Here, we 
develop a new meta-analysis to help identify an optimal ‘unit of choice’ 
that is more broadly applicable to the toxicology of nanoparticles. This 
meta-analysis allows one to determine inter-study dispersion, account 
for the variation in data between studies, and provides a statistically 
rigorous yet simple framework for assessing the role of units in 
nanotoxicity. 

Fig. 6. Dispersion effects means and 95% prediction 
interval for each case that had paired ITM and OTM 
data. Blue are the OTM data points and magenta are 
the ITM data points. Asterisks represent the MPV data 
in units of log(g/L), squares represent SAPV units in 
log(m2/L), and triangles represent PPV units in log 
(particles/L). Error bars are actually shown for ZnO: 
bacteria but they are too small to see. (For interpre
tation of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   

R.M. Wheeler and S.K. Lower                                                                                                                                                                                                                



NanoImpact 21 (2021) 100277

9

4.1. Understanding the effect of units 

The overall results of our meta-analysis suggest that MPV (g/L) is not 
the best measure of toxicity and alternative units ought to be considered 
when analyzing the toxicity of nanoparticles. Specifically, our meta- 
analysis demonstrates that SAPV (m2/L) is the better measure of mor
tality for soluble particles like Ag and ZnO for crustaceans. This was 
based on the reductions in heterogeneity compared to MPV (see 
Table 3). While SAPV was a better descriptor for Ag/crustacean/ITM 
and ZnO/crustacean/OTM, most other groups of dissolvable particles 
failed to provide sufficiently diverse data to provide a statistically 
meaningful conclusion with regard to SAPV. This shortcoming was not 
due to the meta-analysis. Rather, the vast majority of peer reviewed 
publications could not be utilized in the meta-analysis because they fail 
to report basic measures of statistics regarding particle size and con
centration of putative nanotoxin (as discussed in more detail below). 

Our meta-analysis was unable to test whether PPV is the best unit for 
non-soluble nanoparticles because much of the available data for par
ticles like TiO2 and CeO2 failed to meet the inclusion requirements too 
(e.g., failed to report error in size measurements). We made no effort to 
exclude non-soluble particle chemistries from the dataset. The lack of a 
result for non-soluble particles indicates a clear knowledge gap in peer- 
reviewed publications and emphasizes the need for authors to thor
oughly report as much metadata as possible. 

The manner and medium (vacuum, air, liquid) in which particle size 
is measured are key caveats that should be addressed in future work. For 
example, size measurement performed by the experimentalist in the test 
medium (ITM) prior to adding the test organism differs from the nominal 
size reported by the manufacturer or the researcher’s own TEM mea
surement (out of the test medium, OTM). Fig. 6 shows there is a dif
ference in the mean derived units based on when and where size is 
determined. In our meta-analysis, we found no clear signal as to whether 
size measured ITM or OTM provide better results. From a perspective of 
reproducibility, OTM-size would be preferred because one would not 
need to make assumptions about size and shape when calculating the 
derived unit doses. However, it is unlikely that the OTM SAPV or PPV 
would be representative of actual exposure conditions. When exposed to 
environmental or physiological solutions, particles are known to 
aggregate and/or dissolve releasing ions that may interact with liquid 
components (e.g., culture medium) creating a plethora of different 
derivates among the original nanomaterial and its corona and therefore 
increasing the complexity of the system. 

The real benefit of ITM-size is that it begins to account for particle 
aggregation. However, there are a few challenges for the use of ITM-size 
in the meta-analysis. For example, size would need to be determined as 

soon as particles were added to the test medium to minimize time for 
dissolution. Also, spherical shape would need to be assumed even in the 
case of aggregated particles. The effects of these assumptions are likely 
minimal on measures of heterogeneity, but they are expected to reduce 
utility of the calculated mean values. In either case, both ITM-size and 
OTM-size are imperfect measures of particle size because the size dis
tribution will change over time and nanoparticle, being meta-stable, 
may tend towards their ionic form requiring more sophisticated 
methods to determine actual exposure (Bondarenko et al. 2013; Reidy 
et al. 2013; Mallevre et al. 2014; Kim et al. 2017). The time to develop 
better characterization methods for nanoparticles is now when pre
dicted environmental concentrations of nanomaterials are orders of 
magnitude smaller than the mean toxic effects described here and have 
not yet been part of a largescale spill (Lazareva and Keller 2014; Garner 
et al. 2017). 

4.2. Comparison of the new meta-analysis results to published review 
articles 

Overall, the mean MPV values calculated in this meta-analysis 
compare favorably with reviews that summarize the existing nano
toxicology literature. The median estimates of Bondarenko et al. (2013) 
and Chen et al. (2015) shown in Fig. 7 and Table S2 generally fall within 
the prediction intervals of our meta-analysis’ estimate of mean toxic 
effect. Unfortunately, the prediction intervals cannot be compared to the 
spread of either study as their measured range was only reported 
pictorially. 

There are a couple key pieces of insight to be gleaned from Fig. 7. 
First, the ZnO/bacteria case is one of two examples where there is no 
overlap between the meta-analytic mean, and the medians of Bondar
enko et al. (2013) and Chen et al. (2015). Here, the meta-analytic mean 
was determined to be 0.76 log(g/L) lower than that of Bondarenko et al. 
(2013), but 0.55 log(g/L) higher than Chen et al. (2015). The differences 
between these mean values is likely due to the number and choice of 
records included in each of the estimates. The six records making up the 
ZnO/bacteria dataset in the meta-analysis are a subset of the 15 records 
of Bondarenko et al. (2013) dataset which itself is a subset of the 27 
records from Chen et al. (2015). Moreover, both Chen et al. (2015) and 
the NanoE-Tox database (used herein) drew on the work of Bondarenko 
et al. (2013) to form the basis of their dataset. Therefore, it is not sur
prising that our meta-analysis estimates that the true toxic effect value 
falls between the two extremes (Juganson et al. 2015). The lack of 
agreement highlights a weakness of the present meta-analysis because a 
few records from limited numbers of studies biases the mean values even 
though the data quality standards may be quite stringent. 

Fig. 7. Comparison of the g/L meta-analytic mean and prediction interval (black triangle) to the median values from Bondarenko et al. (2013) (blue circle) and Chen 
et al. (2015) (magenta square), and the mean and standard deviation values from Shin et al. (2018) (green triangle) for the subgroups in common with the meta- 
analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7 also illustrates the effect that “categorization” has on the 
dataset. Throughout this paper and published reviews, individual spe
cies are grouped together for the purpose of trying to make results more 
generalizable. However, which groupings are chosen can bias the data. 
For that reason, the largest appropriate subgroups were chosen for our 
meta-analysis. As an example of this approach, the Ag/Zebrafish sub
group in Fig. 7 is being compared to ‘Ag/fish’ subgroups in Bondarenko 
et al. (2013) and Chen et al. (2015), which partially explains the reason 
that their medians are not contained in the prediction interval. The 
choice was made to use the more specific name classifier because all data 
that met inclusion criteria were actually zebrafish and both subgroups 
were being used interchangeably in the NanoE-Tox database (Juganson 
et al. 2015). For another example, the NanoE-Tox database was found to 
use both crustacean and the more specific copepod category, which were 
combined into one crustacean category in our meta-analysis. 

Fig. 7 and Table S2 also present results from Shin et al. (2018), 
another review that also performed a meta-analysis, although it focused 
only on the crustacean species Daphnia magna, a common test organism. 
Their work produced several mean values for many different types of 
nanoparticles along with the calculated standard deviation, which is 
presented as error bars in Fig. 7. It is unclear how the studies were 
weighted, if at all. Once again, Shin et al. (2018) show good agreement 
with the work presented in this meta-analysis. Their standard deviation 
is similar to the prediction intervals presented in our meta-analysis. It is 
also worth highlighting that Shin et al. (2018) calculated mean Ag 
nanoparticle toxicity but broke those data points out by coating. As such, 
their mean and standard deviation for Ag are not presented in Fig. 7. 
However, their mean values range from −4.02 log(g/L) to −2.41 log(g/ 
L), which overlaps with our prediction interval of the Ag/crustacean 
though their estimates extend to much higher concentrations. 

4.3. Limitations and directions of future work 

The meta-analysis described in this paper provides a statistically 
rigorous yet simple approach to determine which units are best suited 
for expressing toxicity specifically for nanoparticles. An important lim
itation, and a critical point to highlight, is the lack of reliable data in 
peer-reviewed publications that can be input to this meta-analysis. The 
effect of units on mortality endpoints could be rigorously determined for 
only two subgroups (Ag/crustacean/ITM and ZnO/crustacean/OTM) 
even when using the largest, publicly available database with greater 
than 1500 records on nanoparticle toxicity, the NanoE-Tox database, 
combined with an up-to-date literature search. It is also important to 
highlight that, at present, the NanoE-Tox database is the only publicly 
available database of nanotoxicology data. When we looked for other 
databases we found that most are nothing more than a literature matrix, 
the database itself is no longer updated or it is lost behind dead links (e. 
g., Nanomaterial-Biological Interations Knowledgebase (2010); Inter
national Council on Nanotechnology (2014); Chen et al. (2015); Mai
mon and Browarnik (2018)). 

The conclusions possible with our meta-analysis are not limited by 
the quantity of data but the lack of standardization of data. This has less 
to do with the authors of databases like NanoE-Tox and more to do with 
the primary literature’s failure to report basic values like uncertainty in 
measurements of size and toxicity. The biggest limit on data inclusion, 
and a point where great strides can be taken, is ensuring that meaningful 
error descriptors are reported for (i) EC50 concentration and (ii) nano
particle size. 

One of the subtleties that was found as part of the meta-analysis was 
that many of the studies in the database reported the 95% confidence 
interval (95% CI) of EC50 but not the standard deviation, which is 
necessary because meta-analysis weights studies based on inverse vari
ance. Complicating matters, there are two methods used in the literature 
to calculate the 95% CI. The first is the simple t-statistic method taught 
in introductory statistics classes and produces a symmetrical interval; 
whereas the second method uses a bootstrapping approach 

recommended by the EPA, which calculates a nonsymmetrical 95% CI 
(Norberg-King 1993). In either case, standard deviation cannot be 
recovered, and otherwise quality studies had to be excluded from our 
analysis because error was not reported in an interoperable manner. 
Therefore, we recommend researchers report standard deviation along 
with the 95% confidence interval. 

We also found variability in the error descriptor for particle size, with 
particle size being reported in four different ways in the NanoE-Tox 
database. As an example, a “15 nm” particle could be reported as: 15 
nm, 15 ± 5 nm, 10–20 nm, or < 25 nm. Only one of these, 15 ± 5 nm, is 
sufficient for inclusion in the summary effects analysis while the 
dispersion case also allowed the 15 nm nominal size. The 15 ± 5 format 
is preferred because it offers both the actual size of the particle syn
thesized and the dispersion around the mean. This is important because 
no current synthesis method for metallic nanoparticle creates perfectly 
repeatable or monodisperse product and minute size differences can 
change the results of the analysis (Liu et al. 2010). 

Reporting size as <25 nm simply means a particle is in fact a nano
particle. It provides no estimate of the error in size. Reporting size as 
10–20 nm is deceiving because it can and has been assumed to be 
equivalent to 15 ± 5 nm, but it is not (Hua et al. 2016). After contacting 
several manufacturers who report size as 10–20 nm, we learned that this 
form indicates the mean particle size within the range and no dispersion 
about the mean can be assumed. It should be noted the manufacturers of 
these particles tend to be industrial producers, and the particles are not 
intended for scientific research. If these industrial sources are going to 
be used for nanoparticle research, the particles should have their actual 
size distribution quantified and reported as strongly advised in various 
guidelines (Thomas et al. 2013; Oksel et al. 2015; Marchese Robinson 
et al. 2016; Chen et al. 2017; OECD 2017). 

Others have written extensively on what data should be included 
outside of the measured toxic effect and their recommendations are 
echoed here. First, as Marchese Robinson et al. (2016) recognized, every 
researcher has their own theories about what properties are important 
and satisfying everyone is not feasible because as we gain more 
knowledge the “essential” data points will change. However, what is 
unlikely to change are the four agreed upon minimum nanoparticle 
properties that should be measured and reported in any nanotoxicology 
study: composition, shape, crystallinity, and initial size at manufacturer 
(Marchese Robinson et al. 2016). Based on our meta-analysis, we would 
modify this list by adding a fifth property, the error in initial size. We 
also encourage independent verification of the size of the particle (e.g., 
confirm size and error that is reported by the manufacturer). 

Based on the results presented herein, we recommend that future 
studies at least examine the effect of units (MPV vs. SAPV vs. PPV) on 
their own data, something that does not even require a meta-analysis. 
Future efforts could also use our meta-analytic framework to look at 
endpoints beyond mortality and place a greater emphasis on meta- 
regression to re-examine properties such as the coating on a particle, 
length of exposure, and expand to assess the effect of shape of the par
ticle, the method used to size the particle, and biological test species as 
these attributes are generally reported in publications. For example, one 
could perform meta-regression to assess the effect of test species, 
building on the study of Shin et al. (2018) on Daphnia magna, or deter
mine how shape, e.g., nano-needles vs. nano-spheres impacts toxicity 
building on Hua et al. (2016). Further, we recommend (i) researchers 
measure and report the error in nanoparticle size in the main text body 
and (ii) report error in toxicity measurement as both 95% confidence 
interval and as standard deviation. Following these recommendations 
will allow for greater data interoperability as the field advances. 
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Penttinen, O.-P., Kahru, A., 2013. Toxicity of two types of silver nanoparticles to 
aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. 
Pollut. Res. 20 (5), 3456–3463. https://doi.org/10.1007/s11356-012-1290-5. 
http://link.springer.com/10.1007/s11356-012-1290-5. (Accessed 29 June 2016). 

Boehme, S., Staerk, H.-J., Reemtsma, T., Kuehnel, D., 2015. Effect propagation after 
silver nanoparticle exposure in zebrafish (Danio rerio) embryos: a correlation to 
internal concentration and distribution patterns. Environ. Sci. 2 (6), 603–614. 
https://doi.org/10.1039/c5en00118h. 

Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., Kahru, A., 2013. 
Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test 
organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87 (7), 
1181–1200. https://doi.org/10.1007/s00204-013-1079-4. 

Borase, H.P., Patil, S.V., Singhal, R.S., 2019. Moina macrocopa as a non-target aquatic 
organism for assessment of ecotoxicity of silver nanoparticles: effect of size. 
Chemosphere. 219, 713–723. https://doi.org/10.1016/j.chemosphere.2018.12.031. 

Bundschuh, M., Seitz, F., Rosenfeldt, R.R., Schulz, R., 2016. Effects of nanoparticles in 
fresh waters: risks, mechanisms and interactions. Freshw. Biol. 61 (12), 2185–2196. 
https://doi.org/10.1111/fwb.12701. 

Bundschuh, M., Filser, J., Lüderwald, S., McKee, M.S., Metreveli, G., Schaumann, G.E., 
Schulz, R., Wagner, S., 2018. Nanoparticles in the environment: where do we come 
from, where do we go to? Environ. Sci. Eur. 30 (1), 6. https://doi.org/10.1186/ 
s12302-018-0132-6. 

Caballero-Guzman, A., Nowack, B., 2016. A critical review of engineered nanomaterial 
release data: are current data useful for material flow modeling? Environ. Pollut. 
213, 502–517. https://doi.org/10.1016/j.envpol.2016.02.028. 

Chen, G., Vijver, M.G., Peijnenburg, W.J.G.M., 2015. Summary and analysis of the 
currently existing literature data on metal-based nanoparticles published for selected 
aquatic organisms: applicability for toxicity prediction by (Q)SARs. Altern. Lab. 
Anim 43 (4), 221–240. https://doi.org/10.1177/026119291504300404. 

Chen, G., Roy, I., Yang, C., Prasad, P.N., 2016. Nanochemistry and nanomedicine for 
nanoparticle-based diagnostics and therapy. Chem. Rev. 116 (5), 2826–2885. 
https://doi.org/10.1021/acs.chemrev.5b00148. 

Chen, G., Peijnenburg, W., Xiao, Y., Vijver, M., 2017. Current knowledge on the use of 
computational toxicology in hazard assessment of metallic engineered 
nanomaterials. Int. J. Mol. Sci. 18 (7), 1504. https://doi.org/10.3390/ 
ijms18071504. 

Dobias, J., Bernier-Latmani, R., 2013. Silver release from silver nanoparticles in natural 
waters. Environ. Sci. Technol. 47 (9), 4140–4146. https://doi.org/10.1021/ 
es304023p. 

Elsaesser, A., Howard, C.V., 2012. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 64 
(2), 129–137. https://doi.org/10.1016/j.addr.2011.09.001. 

Garner, K.L., Suh, S., Keller, A.A., 2017. Assessing the risk of engineered nanomaterials in 
the environment: development and application of the nanoFate model. Environ. Sci. 
Technol. 51 (10), 5541–5551. https://doi.org/10.1021/acs.est.6b05279. 

Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.-C., Kahru, A., 2008. Toxicity of 
nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans 
Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71 (7), 1308–1316. 
https://doi.org/10.1016/j.chemosphere.2007.11.047. 

Higgins, J.P.T., Thompson, S.G., 2002. Quantifying heterogeneity in a meta-analysis. 
Stat. Med. 21 (11), 1539–1558. https://doi.org/10.1002/sim.1186. 

Hua, J., Vijver, M.G., Chen, G., Richardson, M.K., Peijnenburg, W.J.G.M., 2016. Dose 
metrics assessment for differently shaped and sized metal-based nanoparticles. 
Environ. Toxicol. Chem. 35 (10), 2466–2473. https://doi.org/10.1002/etc.3414. 

Jemec, A., Kahru, A., Potthoff, A., Drobne, D., Heinlaan, M., Böhme, S., Geppert, M., 
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