
COXETER GROUPS AND MERIDIONAL RANK OF LINKS

SEBASTIAN BAADER, RYAN BLAIR AND ALEXANDRA KJUCHUKOVA

Abstract. We prove the meridional rank conjecture for twisted links and arborescent
links associated to bipartite trees with even weights. These links are substantial gen-
eralizations of pretzels and two-bridge links, respectively. Lower bounds on meridional
rank are obtained via Coxeter quotients of the groups of link complements. Match-
ing upper bounds on bridge number are found using the Wirtinger numbers of link
diagrams, a combinatorial tool developed by the authors.

1. Introduction

The meridional rank µ of a link L in S3 is the minimal number of meridians of L needed
to generate π1(S

3 \L). It is an immediate consequence of the Wirtinger presentation for
π1(S

3 \L) in a suitable diagram that µ(L) is bounded above by the bridge number β(L).
The meridional rank conjecture asks whether the equality µ(L) = β(L) holds. This
question originates with Cappell and Shaneson’s work on the Smith Conjecture [10] and
is given as problem 1.11 in [18].

Boileau and Zimmermann [8] showed that µ = 2 implies β = 2. The equality β = µ has
been established in various special cases, such as Montesinos links [7], torus links [22],
and others whose complements satisfy certain geometric conditions [21, 12, 5, 6, 2].

We prove the meridional rank conjecture for two new classes, twisted links and arbores-
cent links associated with bipartite trees with even weights. We also explicitly compute
the bridge numbers of all links in these classes.

To define twisted links, let D be a diagram of a link L, admitting no reducing Reidemeis-
ter moves of type I and II, and let F be one of the two surfaces with boundary L obtained
from a checkerboard coloring of the regions in the plane determined by D. We regard the
surface F as a union of disks and twisted bands, whose combinatorics we store in a plane
graph Γ ⊂ R2 with weighted edges. We say the surface F is twisted if every band has at
least one full twist, and if the plane dual graph Γ∗ ⊂ R2 of Γ has no multiple edges. A link
is twisted if it admits a diagram which determines a twisted surface via a checkerboard
coloring. Figure 4, a pretzel knot, is an example of a twisted diagram.

Theorem 1. The meridional rank conjecture holds for twisted links. The bridge number
of a twisted link is equal to the number of planar regions in the complement of the
projection of a twisted surface.

The class of arborescent links generalizes both two-bridge links and Montesinos links.
They are defined by plumbing twisted bands in a tree-like pattern. More precisely, an
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arborescent link is associated to a plane tree T ⊂ R2 with weighted vertices. The vertices
are in one-to-one correspondence with embedded annuli; their integer weights indicate
the number of half-twists of the corresponding annuli. A precise definition of how the
annuli are to be plumbed together along the edges of T can be found in [16]. We will
only consider trees with even non-zero weights, a condition which implies that all the
bands involved are orientable, and that their union forms a minimal genus Seifert surface
of the corresponding link, see again [16]. For technical reasons, we will also restrict the
class of trees. A (plane) tree is called bipartite, if all the vertices of valency at least
three carry the same color with respect to any of the two bipartite colorings of that
tree. An example of a plane bipartite tree with even weights is shown in Figure 1.
The corresponding arborescent link is shown in Figure 2 (with some additional labels
for later use). The class of arborescent links associated with even weight bipartite trees
contains all two-bridge links. Indeed, the latter correspond to even weight trees “without
branches”, i.e. to trees homeomorphic to an interval, see [11]. On the other extreme, the
class of arborescent links associated with even weight bipartite trees also contains the
class of slalom divide links defined by A’Campo [1]. In fact, these links are obtained by
plumbing positive Hopf bands along bipartite trees. In our setting, this means that all
weights are two. This follows from the visualisation algorithms for divide links described
in [24] and [17].
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Figure 1. Bipartite tree with even weights.

Theorem 2. The meridional rank conjecture holds for arborescent links associated with
bipartite trees with non-zero even weights. The bridge number of such a link is equal to
the number of leaves of the underlying tree.

We prove Theorems 1 and 2 by obtaining an upper bound on the bridge number β(L)
and a matching lower bound on the meridional rank µ(L), from a suitable diagram. The
lower bound on µ arises from a Coxeter quotient of π1(S

3 \ L) mapping meridians to
reflections; see Proposition 1. The upper bound on β comes from the Wirtinger number
ω of a link diagram D; see Section 3. The bridge number β(L) equals the minimum
value of ω(D) over all diagrams D of L [4, Theorem 1.3]. As we will see, if a link L
admits a diagram D and a Coxeter quotient of rank equal to ω(D), the meridional rank
conjecture holds for L. Our approach was inspired by a method for obtaining Coxeter
and Artin quotients from knot diagrams introduced in [9].

Besides establishing the meridional rank conjecture for new classes of links, our technique
also recovers the result for pretzel links and, more generally, Montesinos links, in a new
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Figure 2. Arborescent knot.

way. We also remark that, for knots whose meridional rank is detected via Coxeter
quotients, meridional rank is seen to satisfy Schubert additivity under connected sum
without relying on equality with bridge number. Additivity of meridional rank under
connected sum, which is implied by the meridional rank conjecture, is an interesting
open question in its own right.

2. Lower bounds on meridional rank

The rank of a group G is the minimal cardinality among all generating sets of G. The
meridional rank of a link L is clearly bounded below by the rank of its fundamental
group, thus by the rank of any quotient of the latter. However, this is not an effective
bound, since there is an abundance of links with rank two fundamental groups and
arbitrarily high meridional rank, for example torus links. This fact carries over to a
variety of groups with a geometric flavour: mapping class groups, symmetric groups and
finite irreducible Coxeter groups have rank two, but they are typically not generated by a
small number of standard generators, such as Dehn twists, transpositions and reflections,
respectively. We should thus expect much better lower bounds on the meridional rank
of links by considering quotients with a distinguished conjugacy class (on which the
meridians of the link are to be mapped), which does not admit a small number of
generators. We will apply this method to the class of Coxeter groups, and the conjugacy
class of reflections. Recall that the Coxeter group C(∆) associated with a finite simple
graph ∆ with weighted edges is the group whose generators are in bijection with the
vertices of ∆, subject to the following two types of relations:

(1) s2 = 1 for all generators s,

(2) (st)k = 1, for all pairs of generators s, t connected by an edge of weight k ∈ N.

Throughout this paper, we assume all edge weights to be at least two. Elements of a
Coxeter group G = C(Γ) conjugate to any of the generators are called reflections. We
refer to the number of vertices of the graph Γ as the rank r(C(Γ)). It equals the minimal
number of reflections needed to generate C(Γ), see for example Lemma 2.1 in [14]. Note
that there exist graphs Γ1 and Γ2 with different numbers of vertices and such that the
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groups C(Γ1) and C(Γ2) are isomorphic. In particular, the notions of reflection and rank
of a Coxeter group depend on a choice of generating set. We thus obtain the following
lower bound on the meridional rank of links.

Proposition 1. Let L be a link whose fundamental group surjects onto a Coxeter group
C(Γ), so that all meridians are mapped to reflections in C(Γ). Then

µ(L) ≥ r(C(Γ)).

Throughout the paper, we will consider Coxeter groups that arise as quotients of a
link group by sending all meridians to reflections. We refer to such groups as Coxeter
quotients of the corresponding link. They were introduced by Brunner, in the guise of
Artin quotients [9]; his construction was the starting point for our work.

The easiest examples of links admitting non-trivial Coxeter quotients are torus links of
type T (2,±n), i.e. closures of the 2-braid σ±n1 ∈ B2, where n ≥ 2 is a natural number.
We claim that the fundamental group of T (2,±n) surjects to the rank two Coxeter group
Dn generated by two reflections a, b satisfying the relation

(ab)n = 1.

The following diagram illustrates a consistent way of mapping the meridians of the
diagram associated with the closure of the braid σn1 ∈ B2 to reflections of Dn, for
n = 3.

abababa

ababa

aba

a

ababa

aba

a

b

Figure 3. Coloring a two-braid with reflections.

Here the orientation of the meridians does not matter since these are all mapped to re-
flections, which have order two. The labeling of the arcs is compatible with the Wirtinger
conjugation relation at each crossing:

((ab)ka)((ab)k−1a)((ab)ka)−1 = (ab)k+1a.

Moreover, the relation (ab)n = 1 insures that the meridians at the top of the braid
are mapped again to (ab)na = a and (ab)nb = b, respectively. Proposition 1 implies
that the meridional rank of two-bridge torus links is at least two, hence exactly two:
µ(L) = β(L) = 2. These examples are part of two larger families, pretzel links and
two-bridge links, whose meridional rank is detected by the rank of suitable Coxeter
quotients.

A twist region is a maximal string of bigon regions in the knot projection, arranged
end–to–end at their vertices. Pretzel links are defined via certain diagrams P (a1, a2, . . . , ak)
with k ≥ 3 vertical twist regions. The coefficients ai ∈ Z encode the number of crossings
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in each twist region, and their signs. The convention can be deduced from Figure 4,
which shows the pretzel knot P (−2, 3, 5).
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Figure 4. Pretzel knot P (−2, 3, 5).

Borrowing from the above discussion on two-bridge torus links, we deduce that pretzel
links of type P (a1, a2, . . . , ak) with all |ai| ≥ 2 admit a rank k Coxeter group quotient:
C(∆(a1, a2, . . . , ak)), where ∆(a1, a2, . . . , ak) denotes a cycle with k vertices, whose edges
are labeled |a1|, . . . , |ak|, in a cyclic way. This can be seen in Figure 4, where a certain
generating set of meridians of the pretzel knot P (−2, 3, 5) is mapped to the generators
a, b, c of a rank three Coxeter group, satisfying the relations (ab)2 = 1, (bc)3 = 1,
(ac)5 = 1. The lower bound on the meridional rank from Proposition 1, µ(L) ≥ k,
matches the bridge number again. Indeed, the standard diagram of the pretzel link
P (a1, a2, . . . , ak) has exactly k local maxima. Therefore, we have just reproved the
meridional rank conjecture for pretzel links with every |ai| ≥ 2. The original proof by
Boileau and Zieschang was based on 2-fold branched coverings [7].

We now briefly turn to two-bridge knots, to which our method also applies. By using
the calculus of continued fractions, one can see that two-bridge knots are determined by
a rational number α/β with relatively prime odd integers α, β such that −α < β < α,
see [11]. The fundamental group of the knot L(α/β) admits a presentation with two
generators x, y and one relation of the form wx = yw, where

w = x∗y∗ · · ·x∗y∗

is a word of even length α − 1 and each star stands for a sign ±1, determined by the
fraction α/β. This is taken from [19]. Setting x2 = y2 = 1 reduces the relation wx = yw
to the Coxeter relation (xy)α = 1. The special case α/β = n/1 for odd n corresponds
to the torus knots of type T (2, n) discussed previously. We conclude that all non-trivial
two-bridge knots admit a Coxeter quotient of rank two. We can visualize these Coxeter
quotients as a labeling of the strands of a diagram of a two-bridge knot by elements in the
corresponding Coxeter group. Since every rational tangle diagram can be completed to
a two-bridge knot by attaching a trivial tangle, then every rational tangle diagram has a
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labeling by elements of a rank two Coxeter group. Moreover, the strands of the rational
tangle that are incident to the boundary of the tangle receive labels in the generating
set {x, y} and the labels of these strands are cyclically ordered around the boundary of
the tangle according to the pattern xxyy. We call such a labeling a rank 2 (Coxeter)
labeling of a rational tangle.

It is known that the only links with meridional rank two are two-bridge links [8]. We do
not know whether this can be seen by considering the maximal rank among all Coxeter
quotients of a link. In fact, we do not even know whether all non-trivial knots admit
non-cyclic Coxeter quotients.

3. Upper bounds on bridge number

Let D be a diagram of a link L. To obtain the desired upper bound on the bridge number
of L, we will use the Wirtinger number, ω(D), introduced in [4]. The Wirtinger number
is an integer associated to a knot diagram. It can be determined via a combinatorial
procedure for coloring the diagram, as recalled below. It formalizes the idea of finding the
minimal number of Wirtinger generators in D sufficient to generate the group π1(S

3−L)
by only using “iterated Wirtinger relations” in D.

Denote by n the crossing number of D and think of D as the union of n strands, or
closed arcs in the plane. Two strands are adjacent if they are the under-strands at some
crossing in D. Denote the set of strands in D by S(D). We say that D is partially
colored if we have fixed a function f : S(D) → {0, 1} such that A := {s|f(s) = 1} 6= ∅.
Given such a function f , we refer to the elements of S(D) on which f evaluates to 1 as
the colored strands of D, and we refer to A as a partial coloring of D. Given two partial
colorings A1 and A2 of the same diagram D, we say A2 can be obtained from A1 via a
coloring move on D, denoted A1 → A2, if the following conditions are satisfied:

(1) A1 ⊂ A2 and A2 \A1 = {sj} for some strand sj ∈ S(D);

(2) sj is adjacent to si at some crossing c in D with over-strand sk, where si, sk ∈ A1.

The move A1 → A2 reflects the fact that if a subgroup H ⊂ π1(S
3 − K,x0) contains

the Wirtinger generators corresponding to all strands in A1, then H also contains the
generator corresponding to sj ; this is seen by applying the Wirtinger relation at c.

We say D is k-colorable if1 there exists a subset A0 of S(D) with k elements and a
sequence of n−k coloring moves A0 → A1 → . . . → An−k on D such that An−k = S(D).
That is, after performing the sequence of coloring moves, every strand in D is colored.
It follows that the meridians of the strands in A0 generate the link group via iterated
application of the Wirtinger relations in D. We refer to the elements of A0 as the seed
strands of the coloring sequence or, simply, the seeds. The smallest integer k such that
D is k-colorable is the Wirtinger number of D, denoted ω(D).

1We have slightly simplified the original definition of k-colorability, which makes use of k different
colors. Multiple colors are needed in the proof of the Main Theorem of [4], but they are of no help to us
here. The modified definition has no effect on the value of ω(D).
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It is easy to come up with examples which demonstrate that ω(D) depends on the choice
of diagram so is not a link invariant. In fact, the Wirtinger number can be arbitrarily
large for sufficiently complicated diagrams of the unknot [3]. We are naturally more
interested in minimizing the value of ω(D) over all diagrams D of a given link L since,
by definition

ω(D) ≥ µ(L).

Definition 1. Let L ⊂ S3 be a link. The Wirtinger number of L, denoted ω(L), is the
minimal value of ω(D) over all diagrams D of L.

It is straight-forward to see that ω(L) satisfies the inequalities

β(L) ≥ ω(L) ≥ µ(L).

In fact, the first inequality is never strict.

Theorem 3. [4, Theorem 1.3] Let L ⊂ S3 be a link. The Wirtinger number and the
bridge number of L are equal.

Therefore, given a diagram D of a link L, we have

(1) ω(D) ≥ ω(L) = β(L) ≥ µ(L).

We will prove Theorems 1 and 2 by using Coxeter quotients to show that, for links
covered by these theorems, ω(D) is also a lower bound for the meridional rank.

4. Meridional rank conjecture for twisted links

Let L be a twisted link with diagram D bounding a twisted surface F . In order to find
the desired bounds on µ(L) and β(L), it proves useful to retract the spanning surface F
to a graph as in [9]. Since the boundary of a disk in F contains multiple arcs in the knot
diagram which represent different Wirtinger generators, it is convenient that the vertices
of the resulting graphs be disks of non-zero radius, rather than points. We therefore work
with fat-vertex graphs, which are planar graphs whose vertices are replaced by disjoint
closed disks of small positive radius. These disks are the fat vertices. The boundary of
each vertex is partitioned by the endpoints of incident edges into a finite collection of
disjoint arcs. A fat-vertex graph is weighted if an integer is assigned to each edge.

Given L, D and F as above, we obtain from F a weighted fat-vertex graph in the obvious
way: view each disk of F as a fat vertex and retract each twisted band of F to its core
edge, weighted by the number of (signed) half-twists of the band. We call this graph the
fat-vertex graph associated to D and, from here on, denote it by Γ. Also denote the dual
weighted graph by Γ∗, where each edge of Γ∗ inherits the weight of the corresponding
edge of Γ. For reasons that will become imminently apparent, we call the weighted graph
Γ∗ the Coxeter graph associated to D. We suppress the choice of checkerboard coloring
in this terminology and, in the case where D is a twisted diagram, we are of course using
the checkerboard coloring which detects this property.
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The surface F is twisted if and only if all weights of Γ are at least 2 in absolute value
and Γ∗ is a simple graph; L is then a twisted link. Under this assumption, Brunner [9]
shows that π1(S

3\L) surjects to the Coxeter group C(Γ∗) defined by the weighted graph
Γ∗. Thereby, meridians of the boundaries of fat vertices are mapped to a generating set
of reflections in C(Γ∗). Applying Proposition 1, we conclude that the meridional rank
of L is bounded below by the rank of the Coxeter group determined by the graph Γ∗.
This proves:

Lemma 1. Let L be a twisted link with associated Coxeter graph Γ∗. The merdional
rank of L is bounded below by the number of vertices in Γ∗.

The next proposition, established later in this section, allows us to prove Theorem 1.

Proposition 2. Let L be a twisted link with associated Coxeter graph Γ∗. The bridge
number of L is bounded above by the number of vertices in Γ∗.

Proof of Theorem 1. Let L be a twisted link and let Γ∗ be the Coxeter graph associated
to a twisted diagram of L. Denote by v the number of vertices of Γ∗. Combining
Lemma 1 and Proposition 2, we obtain

v ≥ β(L) ≥ µ(L) ≥ v.
That is, the meridional rank conjecture holds for twisted link and the bridge number of
L is equal to the number of vertices in Γ∗ or, equivalently, to the number of regions in
the planar complement of a twisted surface for L. �

In light of Theorem 1, it is natural to ask which knots admit twisted diagrams. Prime
twisted knots with at least 2 twist regions and at least 7 half-twists per region are
hypebolic [15]. By results of Lackenby [20], the volume of such a knot is also bounded
above by a constant of the bridge number. Hence, hyperbolic knots with high volume
yet small bridge number are not covered by our theorem. However, our methods do
allow us to establish the meridional rank conjecture for certain hyperbolic knots of fixed
bridge number and arbitrarily high volume, e.g. two-bridge knots, as mentioned in the
last paragraph of Section 2. More generally, Theorem 1 extends to a large class of links
obtained from twisted links by replacing twist regions by rational tangles. For example,
in Figure 4 we can replace the last twist region by a rational tangle, say the one found at
the very right of Figure 2, retaining the a, c labels. This would preserve both the upper
and lower bounds we found. The analogous construction can be performed in many
situations, extending the proof of the meridional rank conjecture to the resulting knots.
However, in general, replacing a twist region by a rational tangle does not preserve the
Wirtinger number of a diagram.

4.1. Proof of Proposition 2. For the remainder of this section, assume that L is a
twisted link with twisted diagram D. Denote the fat-vertex graph and Coxeter graph
associated to D by Γ and Γ∗, respectively. We will obtain the desired bound on β(L)
by the technique recalled in Section 3. It will be useful to be able to perform coloring
moves not only on D but directly on Γ.
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Definition 2. Let Γ be a fat-vertex graph and denote by E the set of edges of Γ. A
segment of Γ is either an element of E or a connected arc contained in ∂(v)\{∂e|e ∈ E},
where v is a fat vertex.

Denote by S the set of segments of a fat-vertex graph Γ. We say that Γ is partially
colored if we have fixed a function f : S → {0, 1} such that A := {s|f(s) = 1} 6= ∅.
As before, refer to A as a partial coloring of Γ and to the elements of A as the colored
segments. Given two subsets A1 ⊂ A2 ⊂ S with A2\A1 = {s} a single segment, we allow
a coloring move A1 → A2 if one of the following holds:

(1) s is an edge of Γ and both segments adjacent to the same vertex of s are in A1.

(2) s is an arc in the boundary of a fat vertex of Γ and s is incident to an edge in A1.

Case (1) in which a coloring move is allowed on Γ is motivated by the following obser-
vation. Let Γ be a fat-vertex graph obtained from a link diagram and spanning surface.
An edge e of Γ denotes a twist region in the link diagram. The meridians of the two
arcs incident to the same vertex of e generate all meridians of strands contained in the
corresponding twist region, via iterated Wirtinger relations, compare Figure 3. Case
(2) is motivated by the fact that the meridians of arcs in a twist region generate the
meridians of arcs incident to a twist region.

Given a fat-vertex graph Γ, denote the set of its segments by S(Γ), the set of its edges
by e(Γ) and the number of elements in S(Γ) by m. We say Γ is k-colorable if there
exists a k-element subset A0 of S(Γ)\e(Γ) and a sequence of m − k coloring moves
A0 → A1 → . . . → Am−k on Γ as defined above such that Am−k = S(D), that is, at
the end of the coloring process every segment of Γ is colored. We refer to the elements
of A0 as the seed segments or seeds. When Γ is the fat-vertex graph associated to a link
diagram D, the seed segments correspond to meridional elements of L that generate the
group π1(S

3\L) via iterated application of the Wirtinger relations in D. The minimum
value of k such that Γ is k-colorable is the Wirtinger number of Γ, denoted ω(Γ). The
following is immediate.

Lemma 2. Let D be a link diagram and Γ its associated fat-vertex graph. The inequality
ω(Γ) ≥ ω(D) holds.

To complete the proof of Proposition 2, we need one last ingredient, namely that a fat-
vertex graph Γ can be colored starting from as many seed segments as the number of
vertices in Γ∗.

Lemma 3. Let Γ be a connected fat-vertex graph associated to a reduced link diagram
D. The Wirtinger number of Γ is bounded above by the number of vertices in the dual
graph Γ∗.

But first:

Lemma 4. Let Γ be a connected finite plane graph with no loops, no separating vertices
and no separating edges. Then either Γ is a cycle or it contains a subgraph T (not
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necessarily an induced one) that is homeomorphic to the theta graph, that is, the graph
with two vertices connected by three parallel edges.

Proof. This time we denote by Γ∗ the plane dual graph of Γ where we omit the vertex
corresponding to the unbounded region. The assumptions on Γ imply that Γ∗ is con-
nected. If Γ∗ is a single point, the absence of separating vertices implies that Γ is a
cycle. When Γ∗ has at least two vertices, Γ contains two adjacent plane regions sharing
one or several edges. The union of all the edges adjacent to these two regions contains
an embedded theta graph. �

Proof of Lemma 3. Since D is reduced, it contains no nugatory crossings. Therefore,
the graph Γ has no leaves and no disconnecting edges. Indeed, a leaf in a fat-vertex
graph corresponds to a region in a link diagram which can be removed by a sequence of
Reidemeister I moves. Similarly, disconnecting vertices and edges correspond to nugatory
crossings and connected sums. Nugatory crossings are not allowed in reduced diagrams.
Secondly, it is enough to consider twisted diagrams of links whose components are prime,
since both bridge number and Coxeter rank satisfy suitable additivity properties. Given
a connected sum of links L = L1#L2, the inequality

β(L1) + β(L2)− 1 ≥ β(L)

is immediate. It is in fact equality [23, 13], though we do not rely on this result. In
addition, if the graph Γ is obtained by identifying a vertex in Γ1 with one in Γ2, a vertex
count gives the following relation among the ranks of the corresponding Coxeter groups:

r(C(Γ)) = r(C(Γ1)) + r(C(Γ2))− 1.

Therefore, if we denote the twisted links determined by these graphs by L := L(Γ),
L1 := L(Γ1) and L2 := L(Γ2), by Proposition 1, these links satisfy

µ(L) ≥ µ(L1)) + µ(L2)− 1.

Hence, if the equality β = µ holds for each of L1 and L2, it also holds for the connected
sum L1#L2, seen as follows:

β(L1) + β(L2)− 1 ≥ β(L) ≥ µ(L) ≥ µ(L1) + µ(L2)− 1 = β(L1) + β(L2)− 1.

We will thus assume that Γ has no disconnecting vertices.

In sum, we may prove the Lemma by an induction argument on connected fat-vertex
graphs which are 1-connected, 1-edge-connected and have no vertices of valency one.
Denote the set of such graphs by G. We will show that any element of G can be obtained
from the graph G0 containing a single fat-vertex and no edges by a finite sequence of
the following operations:

(1) adding a self-loop to an existing vertex;

(2) subdividing an edge into 2 edges;

(3) adding an edge between two existing vertices.
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To verify that these operations suffice to construct all elements of G from G0, define
the complexity of a graph G ∈ G to be the integer |v(G)| + |e(G)|, the total number
of edges and fat-vertices in G. Note that each of the operations (1)-(3) increases this
complexity. To see that any G ∈ G can be constructed from G0 by a finite sequence of
these operations, we show that given G ∈ G, G 6= G0, one can undo one of the operations
(1)-(3) and remain within G.

If G ∈ G with |v(G)| + |e(G)| > 1 has a loop l, we undo operation (1) on this loop.
The resulting graph, G′, is connected. To see that G′ has no leaves, we only need to
consider the vertex v incident to the loop l, since no other vertex changes valency due
to the removal of l. Suppose that v is a leaf in G′. This implies that v had valency
three in G and was incident only to l and one other edge e. It follows that e was a
disconnecting edge in G, a contradiction. Note also that removing a self-loop can not
create disconnecting edges or vertices. Therefore, G′ ∈ G.

Now suppose that G does not have a loop but has a degree-2 vertex v, incident to edges
e1 and e2. In this case, undo operation (2) at v, producing a new edge e. The resulting
graph, G′, is connected. It has no leaves or disconnecting vertices since G had none.
If e is a disconnecting edge in G′, then e1 was one in G. If removing some other edge
in G′ would disconnect the graph, then removing the same edge would disconnect G.
Therefore, G′ ∈ G.

Finally, assume that G contains neither a loop nor a degree-two vertex. Since G ∈ G and
has no loops, it satisfies the hypotheses of Lemma 4. Since G has no degree-two vertex,
it is not a cycle. Therefore, G contains an embedded theta graph θ consisting of three
paths γ1, γ2, γ3 connecting two vertices v, w of G. Choose three edges e1, e2, e3 of G with
ei ⊂ γi. Let G′ be the graph obtained from G by removing the edge e1 and all edges
connected to e1 by a chain of vertices of valency two, thereby undoing operation (3),
after possibly undoing multiple operations of type (2). It is clear that G′ is connected
and has no leaves. Furthermore, if some vertex in G′ is disconnecting, the same vertex
is seen to be disconnecting in G. What requires a check is that G′ has no disconnecting
edges. Assume there is an edge e in G′ such that G′\e is disconnected. Let a and b be
two vertices in different components of G′\e. By assumption, e is not a disconnecting
edge in G, so there is a path γ in G such that γ connects a to b and does not contain e.
If γ does not meet the chain of edges G \G′, then γ is also a path in G′, contradiction.
If γ meets that chain, then we may replace each connected component of γ ∩ (G \G′) by
a point (if it does not traverse the entire chain) or by an arc in the subgraph θ passing
through γ2 or γ3, avoiding the chain G \G′. We thus obtain a path in G′ connecting a
to b, contradiction. This shows that G′ ∈ G.

Now let Γ ∈ G be as in the statement of the Lemma and denote by k the number of
vertices in Γ∗. We will show inductively that Γ is k-colorable.

Let Γ = G0, the graph consisting of a single fat-vertex. In this case, Γ∗ has one vertex,
so k = 1. It is clear that Γ is 1-colorable: choose the only segment of Γ as the seed.
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Now assume Γ1 ∈ G is k1-colorable, where k1 is the number of vertices in Γ∗1, and let
Γ ∈ G be obtained from Γ1 ∈ G by one of the operations (1)-(3). We will show that Γ
is k-colorable, where k denotes the number of vertices in Γ∗.

By assumption, there exists a coloring sequence A0 → A1 → · · · → An for Γ1, where
each Ai is a set of segments in Γ′. Moreover, A0 has k1 elements, and Ai+1\Ai contains
exactly one element. Order the set of segments S(Γ1) as s1, s2, . . . , sk1 , sk1+1, . . . sk1+n,
where {s1, . . . , sk1} are the elements of A0, taken in any order, and for m > k1, sm is the
segment colored when the (m− k1)-th coloring move is performed. At the risk of minor
ambiguity, we will call this sequence of segments a coloring sequence for Γ1 as well, and
we will use it to produce the desired coloring sequence for Γ.

Case A. Suppose that Γ is obtained from Γ1 by subdividing an edge e ∈ S(Γ1) into two
edges e1, e2 ∈ S(Γ), both incident to a degree-two fat-vertex v in Γ. By construction,
the boundary of v contains two segments; denote them a and b. We see that

S(Γ) = {S(Γ1)\{e}} ∪ {e1, e2, a, b}.

We will produce a coloring sequence for Γ from the given coloring sequence s1, . . . , sk1 ,
. . . , sk1+n for Γ1. Since {s1, . . . , sk1} are seed segments and e is an edge, e appears after
sk1 in the sequence. Denote the position of e by r > k1 and rewrite:

s1, . . . , sk1 , . . . , sr−1, e, sr+1, . . . , sk1+n.

A valid coloring sequence for Γ is then

s1, . . . , sk1 , . . . , sr−1, e1, a, b, e2, sr+1, . . . , sk1+n.

Here, the seeds are {s1, . . . , sk1} and we have chosen notation so that e1 is the edge inci-
dent to segments contained in the boundary of fat-vertex which are among {s1, . . . , sr−1}.
It is clear that either e1 or e2 has this property since a coloring move was performed on
Γ1, coloring e from one of the two fat-vertices it is incident to. Once e1 is colored, a and
b can be colored in any order; this, in turn, allows us to color e2. All remaining coloring
moves in this sequence are valid because so were the analogous coloring moves on Γ1.

Thus, we have exhibited a coloring sequence for Γ starting with k seeds, where by
assumption k is the number of vertices in Γ∗1. Since Γ was obtained from Γ1 by adding
an edge and a vertex, Euler characteristic shows that Γ∗ has k vertices as well. Therefore,
the coloring sequence produced has the desired number of seeds.

Case B. Suppose that Γ is obtained from Γ1 by adding an edge e. Denote by a and b the
segments in Γ1 containing the endpoints of the new edge e. We consider operations (2)
and (3) simultaneously, that is, we allow for the possibility that a and b are the same
arc. If a and b are distinct, let a1, a2 denote the segments in Γ into which e subdivides
a and, similarly, let b1, b2 be the segments in Γ into which e subdivides b. We have

S(Γ) = {S(Γ1)\{a, b}} ∪ {a1, a2, e, b1, b2}.

In the case where a and b are the same arc, the endpoints of e subdivide a into arcs a1,
a2, and b2 and the new edges are {e, a1, a2, b2}. In what follows, assume that a1 and a2
are incident to the same vertex of e.
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Denote by s1, . . . , sk1 , . . . , sm a coloring sequence for Γ1 in which {s1, . . . , sk1} are the
seeds. From this, we will construct the desired coloring sequence for Γ. Since Γ is
obtained from Γ1 by adding an edge, by Euler characteristic we see that Γ∗ has k1 + 1
vertices, so we can use an extra seed when coloring Γ.

Since a and b are segments in Γ1, they appear in the coloring sequence as some si, sj
where, without loss of generality, i ≤ j. We can rewrite the sequence as

s1, . . . , si−1, a, si+1, . . . , sj−1, b, sj+1, . . . , sm.

Here, a is either a seed (if i ≤ k1) or becomes colored via a coloring move (if i > k1).
We consider both cases.

Case B1. If a is a seed, the labels a1 and a2 can be assigned arbitrarily to the segments
into which the new edge e subdivides a. A possible coloring sequence for Γ with k1 + 1
seeds will be:

s1, . . . , si−1, a1, a2, si+1, . . . , sk1 , e, b1, b2, sk1+1, . . . , ŝj . . . , sm.

(If a = b, omit b1.)

The seeds here are {s1, . . . , si−1, a1, a2, si+1, . . . , sk1}. Let us check that the sequence is
valid, that is, each segment which appears after sk1 is colored by a permitted coloring
move. The edge e can be colored since one of its vertices is incident to the two arcs
a1, a2, both of which precede e in the sequence. Next, b1, b2 can be colored since they
are incident to e. All remaining coloring moves are valid because so were the analogous
coloring moves on Γ1.

Case B2. If a was colored via a coloring move, it follows that there is an edge sl, l < i,
which shares an endpoint with a. To write down a coloring sequence in this case, say
a2 is the segment in Γ which shares an endpoint with sl after subdivision. With this
notation, a possible coloring sequence for Γ is

a1, s1, . . . , sk1 , . . . , si−1, a2, e, b1, b2, si+1, . . . , ŝj , . . . , sm

(Again, if a = b, omit b1.)

The k1 + 1 seeds here are {a1, s1, . . . , sk1}. Again, we need to verify that the coloring
moves performed are valid. By assumption, a2 is incident to the colored edge sl, l < i,
so a2 can be colored. Then, as in the previous case, the edge e can be colored since it
is incident to a1, and b1, b2 can be colored since they are incident to e. The remaining
coloring moves are valid because so were the analogous coloring moves on Γ1.

Therefore, any Γ ∈ G can be colored from as many seeds as the number of vertices
in Γ∗. �

Proposition 2 is now a simple consequence of the above results. Recall that L denotes a
link with reduced diagram D, associated fat-vertex graph Γ and Coxeter graph Γ∗. Let
v(Γ∗) be the number of vertices in this graph. Combining Equation 1 with Lemmas 2
and 3 gives

v(Γ∗) ≥ ω(Γ) ≥ ω(D) ≥ β(L).



14 SEBASTIAN BAADER, RYAN BLAIR AND ALEXANDRA KJUCHUKOVA

5. Meridional rank conjecture for bipartite arborescent links

The proof of Theorem 2 is again based on the existence of Coxeter quotients whose rank
matches the Wirtinger number in a suitable link diagram. We start by deriving an upper
bound on the bridge number of general arborescent links.

Proposition 3. Let L(T ) be an arborescent link associated with a plane tree T with
arbitrary weights. Then the bridge number of L(T ) is bounded above by the number of
leaves of T .

In view of Theorem 2, we may expect the bridge number of arborescent links to equal the
number of leaves in the underlying tree. However, this is false. The knot associated with
the even weight tree with four leaves shown in Figure 5 turns out to be a three-bridge
knot.

2

2

2

2

2 2

2

2

Figure 5. Non-bipartite tree with even weights defining a 3-bridge knot.

Incidentally, this is where our condition on trees originates from. The bipartite structure
of trees turns out to be essential in proving the existence of Coxeter quotients whose
rank is equal to the number of leaves.

Proof of Proposition 3. We will prove that the Wirtinger number of the natural arbores-
cent diagram of L(T ) is bounded above by the number n of leaves of T , by induction on
n. The base case – two leaves – is easy, since the family of links associated with even
weight trees with two leaves coincides with the class of two-bridge links [11].

Let T be a plane tree with n leaves. While there is no canonical link diagram associated
to T , there is a natural construction depending on an initial choice of branching point
in T . We highlight an essential property of this construction. A branch in T is a chain
of edges connecting a leaf to the first vertex of valency at least 3. The diagram is then
built from a single twisted band by successively adding n − 1 rational tangles, one for
each branch in T . The convention can be chosen so that the “rightmost” branch in
the tree corresponds to a rational tangle, labeled B in Figure 6, located in the bottom
right corner of the diagram. This rightmost branch is the one we add in the inductive
step, thereby increasing the number of leaves in T by one and simultaneously adding a
rational tangle to a diagram assumed colorable with n− 1 seeds.

We now show that the diagram of L(T ) is colorable with n seeds, one of which, say s0,
is at the bottom right of the diagram.
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B

s s
00

Figure 6. Bottom tangle B and seed

The key observation is that we can place a new seed s1 inside the tangle B, so that
the partial coloring defined by s0 and s1 propagates to the four outgoing strands of B.
This is illustrated in Figure 7, for a rational tangle of even and odd length (the sign and
number of crossings are irrelevant there). But now we are done, since we can remove the
tangle B, as shown on the right of Figure 6, which amounts to removing one branch of
the tree T , and use the induction hypothesis for trees with n− 1 leaves. This procedure
yields one seed per rational tangle, in addition to the initial seed s0, as seen in Figure 2.

�

s
0

s
0

s
1

s
1

Figure 7. Coloring rational tangles

The following proposition settles the proof of Theorem 2; together with Proposition 3, it
provides the desired equality between the bridge number of the link L(T ), its meridional
rank, and the number of leaves of the underlying even weight bipartite tree T .

Proposition 4. Let L(T ) be an arborescent link associated with a plane bipartite tree T
with non-zero even weights. Then the fundamental group of S3\L(T ) admits a Coxeter
group quotient whose rank is equal to the number of leaves of T . In particular, the
meridional rank of the link L(T ) is bounded below by the number of leaves of T .
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Proof. The proof is again by induction on the number of leaves of the tree T . Here
the case of two leaves is less obvious, since it amounts to proving that the fundamental
group of non-trivial two-bridge links admits a Coxeter group quotient of rank two. This
is just what we did in the last paragraph of Section 2. To be more precise, we only
dealt with the case of two-bridge knots there. The case of two component two-bridge
links is trivial, since their fundamental group admits Z2 as a quotient, thus the rank two
Coxeter group (Z/2Z)2.

Let T be a plane bipartite tree with non-zero even weights and n leaves. Every vertex
of T correponds to a twist region in the natural diagram of L(T ). These come in
two versions, horizontal and vertical, which alternate between adjacent vertices, as in
Figure 2. The bipartite condition on the tree T means that all vertices of valency at
least three correspond to the same type of twist region, say the horizontal one. We will
construct a Coxeter quotient G of rank n with the following additional property: For
all vertices of valency at least three, the meridians of the corresponding twist region are
sent to the same reflection in a generating set for G.

An example of such a quotient is defined by the labeling in Figure 2. The quotient
group there is the Coxeter group generated by the four reflections a, b, c, d satisfying the
Coxeter relations

(ab)4 = 1, (ac)3 = 1, (bc)2 = 1, (bd)4 = 1, (cd)5 = 1.

In that diagram, there are two twist regions carrying a single label (a and b); they
correspond to the two vertices of valency three.

For the inductive step, there are two cases to consider:

Case 1. A branch is added to the tree T , at a vertex v of valency at least three.
Suppose the arborescent link diagram associated with T admits a labeling by elements
of a rank n Coxeter group defining a rank n Coxeter quotient of the fundamental group.
Additionally, we suppose that the twist region of the vertex v carries a single label,
say a, and every other branch of T corresponds to a rational tangle with a rank 2
Coxeter labeling. Moreover, by induction we can assume that the labels incident to the
boundaries of these rational tangles are all taken from the generating set of the rank n
Coxeter group. Then, we can add a branch at v, i.e. we can add a rational tangle X with
a rank 2 labeling at the twist region of v, by introducing a label x, as shown in Figure 8.
Here, x denotes a new generator, which, together with the previous n generators, defines
a rank n+ 1 Coxeter quotient. The reflection x satisfies Coxeter relations with the two

A B

a

a b

b

A B X

a

a b x

cxb

c

c

c

Figure 8. Inserting a rational tangle, case 1.
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neighbouring generators (b and c, in the figure). These are determined by the rational
tangle X and its neighbour (B, in the figure).

Case 2. A branch is added to the tree T , at a vertex v of valency two.

Again, we suppose the arborescent link diagram associated with T admits a labeling by
elements of a rank n Coxeter group defining a rank n Coxeter quotient of the fundamental
group. Additionally, we suppose that the twist region of the vertex v carries a single
label, say a, and every other branch of T corresponds to a rational tangle with a rank
2 Coxeter labeling. Moreover, we assume that the labels incident to the boundaries of
these rational tangles are all taken from the generating set of the rank n Coxeter group.
However, this time we cannot suppose that the twist region of the vertex v carries a
single label. Rather, the twist region of the vertex v is part of a rational tangle B, as
shown at the top of Figure 9.

v

b

b

a

a

v X
x

b

b

b

b

a

aa x b

a

a

a

ba

a

Figure 9. Inserting a rational tangle, case 2.

For illustration purposes, we chose a tangle with six twist regions, three of which are
“horizontal” (the ones on the bottom line). The labeling of the arborescent link diagram
L(T ) associates Coxeter generators a and b to the four outgoing strands of the rank 2
labeled rational tangle B, satisfying a Coxeter relation determined by B. Now we insert
a rank 2 labeled rational tangle X at the twist region of the vertex v, and introduce
a new Coxeter generator x, as shown in Figure 9. The generator x satisfies Coxeter
relations with generators a and b, determined by the rational tangle X, and the rational
leftover tangle on the right of X. (For the explicit Coxeter relation, see again the last
paragraph of Section 2.) Finally, the original Coxeter relation between a and b is replaced
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by (ab)2 = 1, equivalently ab = ba. This is the only place where we use the condition
that all weights are even, i.e. that all twist regions have an even number of crossings2.

In both of the above cases, the number of leaves and the rank of the Coxeter quo-
tient simultaneously increase by one. With this observation, we conclude the proofs of
Proposition 4 and Theorem 2. �
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