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ABSTRACT

With the vastly growing need for secure communication, quantum key distribution (QKD) has been developed to
provide high security for communications against potential attacks from the fast-developing quantum computers.
Among different QKD protocols, continuous variable (CV-) QKD employing Gaussian modulated coherent states
has been promising for its complete security proof and its compatibility with current communication systems in
implementation with homodyne or heterodyne detection. Since satellite communication has been more and more
important in developing global communication networks, there have been concerns about the security in satellite
communication and how we should evaluate the security of CV-QKD in such scenarios. To better analyse the
secure key rate (SKR) in this case, in this invited paper we investigate the CV-QKD SKR lower bounds under
realistic assumptions over a satellite-to-satellite channel. We also investigate the eavesdropper's best strategy to
apply in these scenarios. We demonstrate that for these channel conditions with well-chosen carrier centre
frequency and receiver aperture size, based on channel parameters, we can optimize SKR correspondingly. The
proposed satellite-based QKD system provides high security level for the coming 5G and beyond networks, the
Internet of things, self-driving cars, and other fast-developing applications.
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1. INTRODUCTION

Theoretically quantum cryptography can ensure unconditional informational security in physical layer. In 1984
the first quantum key distribution (QKD) scheme was developed in [1] by Charles Bennett and Gilles Brassard
and its security is based on no-cloning theorem and one-time pad encryption. This was the starting point for discrete
variable QKD (DV-QKD) where single photons are transmitted, which puts forward rigorous conditions for
realistic implementations while providing security, and various protocols have since been proposed [10-12].

Nowadays people have been working to implement QKD in realistic application scenarios and thus continuous
variable QKD (CV-QKD) has become an attractive field thanks to its compatibility with existing communication
systems, e.g., protocols based on coherent laser light and heterodyne detection [2,3]. However, most security
analysis of QKD has assumed that the eavesdropper (Eve) has access to any operation that is allowed by physics
law, which is not the case under realistic circumstances. In our recent papers [4,5] we have shown the security
analysis of realistic secret key distillation scheme with certain restrictions to Eve's collecting ability by performing
achievable rate calculation. Such restrictions are widely applicable in communication systems, for example the
finite aperture size of Eve's receiver would limit her collection ability in wireless communication.

In recent years, since the work on satellite-to-ground QKD in 2017 [6], interests have been rising surrounding
free-space secret key distillation for satellites. However, various realistic scenarios including those with spy
satellites haven't been thoroughly studied from security point of view. Thus, in this invited paper we investigate
three typical scenarios where eavesdropper's (Eve's) collecting ability is considered. In Sec. 2, we introduce and
analyse the so-called "exclusion zone" scenario where Eve cannot eavesdrop without alerting the communicating
parties in certain region near the legitimate receiver (Bob). Then in Sec. 3.1 we study the scenario where Eve's
collecting ability is limited by the size of her aperture. In Sec. 3.2 we analyse the eavesdropper's (Eve's) optimal
positioning behind Bob's aperture. In these sections we provide lower bounds on achievable secure key rate (SKR)
without specifying the detection scheme for Bob. We show that an exclusion zone can mitigate the need for higher
centre frequency in transmission. We demonstrate that a constant secure key rate lower bound independent of
transmission distance can be achieved when Eve has a limited sized aperture and positions it in the same plane
with Bob. We also show that Eve’s position can be optimized especially when she is relatively close to Bob, which
suggests that simple strategies such as setting an exclusion zone around legitimate satellites can be very useful
against eavesdropping activity. It is demonstrated that significantly higher SKR lower bounds can be achieved
compared to traditional unrestricted Eve scenario.

2. EXCLUSION ZONE ANALYSIS

In this section we evaluate the first scenario as is illustrated in Fig. 1, where we assume that the area of transmitter
aperture is A, and the area of receiver aperture as A, with the area of so-called "exclusion zone" denoted as A,,.
The "exclusion zone" here means that Eve cannot collect photons in this zone without being noticed by Alice and
Bob. In satellite based secure communication, setting an "exclusion zone" is one of the most straightforward
methods to improve security as this effectively decreases Eve's collecting ability. Here we assume that Eve can
collect all photons outside of the exclusion zone.
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transmitting aperture (Alice) area is denoted as A, and center frequency (Hz) 10!

the receiving aperture (Bob) area is denoted as Ay, is. Ay,
is the exclusion zone area which is a circular area centred  Figure 2. SKR lower bound vs. centre frequency for
at Bob’s aperture. different exclusion zones and transmission distances.
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Here k denotes how much power Eve can collect from the part that isn't collected by Bob [4]. The Alice to Eve
transmissivity (14z) can be denoted as (1 - n(w))x(w) in Eq. (5). We can compute the Alice-to-exclusion zone
transmissivity (14g,) by assuming a virtual receiver covering the entire exclusion zone and substitutes A, with
Ay in Eq. (1) to get wggy in Eq. (3). Then Alice-to-Eve transmissivity (14z) can be computed as 1 — gy
assuming Eve covers everywhere outside of the exclusion zone, calculated in Eq. (5).

Also, we use the black body radiation function for noise frequency dependence:
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where 71, is the mean photon number per mode for the thermal noise, h = 6.626x1073* m?kg/s is the Planck
constant, k = 1.38064852x1072% m’kg/(Ks?) is the Boltzmann constant, T = 3K is the estimated space
temperature, and f is the centre frequency in Hz that we use in transmission.

Recall from [4] that the lower bound for direct (K_,) and reverse (K._) reconciliation respectively in a pure loss
wiretap channel without transmitting power constraints are given by:
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In Fig. 2 we plot the SKR lower bound versus the transmission centre frequency. Here solid curves denote that
no exclusion zone is set (7, = 13,), while the dashed curve is with 7, = 1, + 2m. As we can see in Fig. 2, the
SKR lower bound increases with increasing frequency assuming that there is no restriction on Eve's aperture size.
From the solid curves in Fig. 2 we can conclude that although choosing a higher frequency can always result in
higher SKR, this can pose potential challenges to the system design as we need much higher frequency for longer
transmission distance. This downside can be mitigated by enlarging the exclusion zone as it effectively decreases
Eve's receiving ability, relaxing the need for higher frequency as is illustrated in Fig. 2 with dashed curves.
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3. LIMITED APERTURE SIZE ANALYSIS

In this section, different from Sec. 2, we assume limited aperture size for Eve and investigate her strategies in
eavesdropping. First, we investigate the straightforward case where her aperture is in the same plane as Bob’s in
Sec. 3.1. Then we present the case where Eve can move her aperture around behind Bob in Sec. 3.2.
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A, and A4, are the transmitting aperture (Alice) area and transmission distance (m)

the receiving aperture (Bob) area respectively. The

eavesdropper (Eve) aperture area is A, which is placed in Figure 4. SKR lower bounds vs. distance. Unrestricted
the same plane as Bob's aperture. Eve's case [4] is also included for comparison purpose.

When Eve’s aperture is in the same plane with Bob’s, it is easy to see that Eve’s optimal strategy is to place her
aperture tangential to Bob’s, as is illustrated in Fig. 3. Here we assume that Gaussian beam with a total power of
Piotar 18 transmitted without turbulence and we calculated Bob and Eve’s received power (Pg,p and Pgye)
respectively. Then we can calculate n and k as below and apply the methods in [4] to give the lower bounds:
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In Fig. 4 we plot the SKR lower bounds versus transmission distance with centre wavelength A = 1550nm,
Gaussian beam waist W, = 1, = 1, = 5cm. From Fig. 4 we can see that a constant rate can be obtained which
doesn't change with increasing transmission distance. The channel condition is close to a pure loss channel (n, =
0) in space (T = 3K) at this wavelength where the SKR would drop to zero as distance goes to infinity assuming
that Eve has an infinite size aperture (unrestricted case in Fig. 4). However, the SKR goes to a non-zero constant
value as distance goes to infinity if we assume limited aperture size for Eve. This is because when distance is large,
the collected power of Bob and Eve will be approximately proportional to their aperture size, which we define as
m here:
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where 145 and 145 refer to Alice-to-Bob and Alice-to-Eve transmissivity, respectively.
Relating to Egs. (7) and (8), this would return a constant SKR lower bound as 7,45 goes to zero (transmission
distance L goes to infinity):
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3.2 Eve is behind Bob with dynamic positioning

In this section we investigate Eve's optimal positioning behind Bob’s aperture plane and give a lower bound on
SKR. An extension of this section’s results has been accepted to 2020 OSA Advanced Photonics Congress [9]. As
is illustrated in Fig. 5, we assume that A, is the area of transmitter aperture (Alice), 4, is the area of receiver
aperture (Bob), and A4, is the area of eavesdropper aperture (Eve). The transmission distance between Alice's
aperture plane and Bob's aperture plane is L,z and the distance between Bob's aperture plane and Eve's aperture
plane is Lgg. Here D is the distance between the centre of Eve's aperture and the beam propagation axis. Gaussian
beam is also assumed to be transmitted with beam waist equal to transmitter aperture radius. We will use D as
Eve's position since Gaussian beam is cylindrical symmetric along the propagation path.

As we can see in Fig. 6, the SKR doesn't increase when we increase the distance between Bob and Eve since
Eve adapts her position accordingly. Here we also include the scatter plots of Eve's optimal position Dy timq; as a
function of Lg;. We can see that Eve’s adapting her position only gives her advantages for a short distance after
Bob's aperture whereas her optimal position stays aligned with Alice and Bob when Ly is sufficiently large.
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Figure 5. Geometric setup when Eve is behind Bob W
with dynamic positioning. A,, 4, and A, are the
transmitting aperture (Alice) area the receiving 0 O D — I — 66 6000
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aperture (Bob) area and the eavesdropper (Eve) .
aperture area respectively. L,p is the transmission Bob-Eve distance (m)

distance between Alice and Bob. Ly is the distance Figure 6. SKR & Eve optimal position versus Lgg. Here the
between Bob’s aperture plane and Eve’s whereas D radius of Alice aperture, Bob aperture and Eve aperture are
is the distance between Eve’s aperture center and all set to 0.1m. Plots of beam wavefront at different Ly are
Alice-to-Bob line-of-sight transmission path. also provided. Here L, is taken as 1km.

4. CONCLUSIONS

In this paper, we have analysed SKR lower bounds for realistic free-space satellite-to-satellite communication
scenarios and studied their performance with respect to relevant channel parameters. In exclusion zone scenario,
by enlarging the exclusion zone area we can relax the need for high frequency in long distance transmission. In
limited-size aperture scenario, we found out that when Eve is in the same plane with Bob, we can get a distance
independent on SKR at a sufficiently large transmission distance if Bob's aperture is greater than or at least
comparable to Eve's. When Eve can optimize her position to gain advantages, simple approaches such as setting
an exclusion zone around Bob's receiver could be very effective to ensure higher security.
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