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ABSTRACT 

With the vastly growing need for secure communication, quantum key distribution (QKD) has been developed to 

provide high security for communications against potential attacks from the fast-developing quantum computers. 

Among different QKD protocols, continuous variable (CV-) QKD employing Gaussian modulated coherent states 

has been promising for its complete security proof and its compatibility with current communication systems in 

implementation with homodyne or heterodyne detection. Since satellite communication has been more and more 

important in developing global communication networks, there have been concerns about the security in satellite 

communication and how we should evaluate the security of CV-QKD in such scenarios. To better analyse the 

secure key rate (SKR) in this case, in this invited paper we investigate the CV-QKD SKR lower bounds under 

realistic assumptions over a satellite-to-satellite channel. We also investigate the eavesdropper's best strategy to 

apply in these scenarios. We demonstrate that for these channel conditions with well-chosen carrier centre 

frequency and receiver aperture size, based on channel parameters, we can optimize SKR correspondingly. The 

proposed satellite-based QKD system provides high security level for the coming 5G and beyond networks, the 

Internet of things, self-driving cars, and other fast-developing applications. 
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1. INTRODUCTION 

Theoretically quantum cryptography can ensure unconditional informational security in physical layer. In 1984 

the first quantum key distribution (QKD) scheme was developed in [1] by Charles Bennett and Gilles Brassard 

and its security is based on no-cloning theorem and one-time pad encryption. This was the starting point for discrete 

variable QKD (DV-QKD) where single photons are transmitted, which puts forward rigorous conditions for 

realistic implementations while providing security, and various protocols have since been proposed [10-12]. 

Nowadays people have been working to implement QKD in realistic application scenarios and thus continuous 

variable QKD (CV-QKD) has become an attractive field thanks to its compatibility with existing communication 

systems, e.g., protocols based on coherent laser light and heterodyne detection [2,3]. However, most security 

analysis of QKD has assumed that the eavesdropper (Eve) has access to any operation that is allowed by physics 

law, which is not the case under realistic circumstances. In our recent papers [4,5] we have shown the security 

analysis of realistic secret key distillation scheme with certain restrictions to Eve's collecting ability by performing 

achievable rate calculation. Such restrictions are widely applicable in communication systems, for example the 

finite aperture size of Eve's receiver would limit her collection ability in wireless communication. 

In recent years, since the work on satellite-to-ground QKD in 2017 [6], interests have been rising surrounding 

free-space secret key distillation for satellites. However, various realistic scenarios including those with spy 

satellites haven't been thoroughly studied from security point of view. Thus, in this invited paper we investigate 

three typical scenarios where eavesdropper's (Eve's) collecting ability is considered. In Sec. 2, we introduce and 

analyse the so-called "exclusion zone" scenario where Eve cannot eavesdrop without alerting the communicating 

parties in certain region near the legitimate receiver (Bob). Then in Sec. 3.1 we study the scenario where Eve's 

collecting ability is limited by the size of her aperture. In Sec. 3.2 we analyse the eavesdropper's (Eve's) optimal 

positioning behind Bob's aperture. In these sections we provide lower bounds on achievable secure key rate (SKR) 

without specifying the detection scheme for Bob. We show that an exclusion zone can mitigate the need for higher 

centre frequency in transmission. We demonstrate that a constant secure key rate lower bound independent of 

transmission distance can be achieved when Eve has a limited sized aperture and positions it in the same plane 

with Bob. We also show that Eve’s position can be optimized especially when she is relatively close to Bob, which 

suggests that simple strategies such as setting an exclusion zone around legitimate satellites can be very useful 

against eavesdropping activity. It is demonstrated that significantly higher SKR lower bounds can be achieved 

compared to traditional unrestricted Eve scenario. 

2. EXCLUSION ZONE ANALYSIS 

In this section we evaluate the first scenario as is illustrated in Fig. 1, where we assume that the area of transmitter 

aperture is 𝐴𝑎 and the area of receiver aperture as 𝐴𝑏 with the area of so-called "exclusion zone" denoted as 𝐴𝑒𝑥. 

The "exclusion zone" here means that Eve cannot collect photons in this zone without being noticed by Alice and 

Bob. In satellite based secure communication, setting an "exclusion zone" is one of the most straightforward 

methods to improve security as this effectively decreases Eve's collecting ability. Here we assume that Eve can 

collect all photons outside of the exclusion zone.   



Figure 1. Exclusion zone scenario geometric setup. The 

Alice-to-Bob transmission distance is denoted as 𝐿. The 

transmitting aperture (Alice) area is denoted as 𝐴𝑎  and 

the receiving aperture (Bob) area is denoted as 𝐴𝑏 is. 𝐴𝑒𝑥 

is the exclusion zone area which is a circular area centred     Figure 2. SKR lower bound vs. centre frequency for   

at Bob’s aperture.                                                                     different exclusion zones and transmission distances. 

 

According to some similar analysis in [7,8], if the frequency used 𝜔  is restricted to 0 ≤ 𝜔 ≪ 𝜔0 =

2𝜋𝑐𝐿/√𝐴𝑎𝐴𝑏, then the Alice-to-Bob transmissivity 𝜂 at frequency 𝜔 is 𝜂(𝜔) = (
𝜔

𝜔0
)

2

≪ 1. Thus, we have:  

𝜔0 = 2𝜋 𝑐𝐿/√𝐴𝑎𝐴𝑏,                                                                           (1)  

𝜂(𝜔) = (
𝜔

𝜔0
)

2

,                                                                                         (2) 

𝜔0𝐸𝑥 = 2𝜋 𝑐𝐿/√𝐴𝑎𝐴𝑒𝑥,                                                                          (3) 

𝜂𝐴𝐸𝑥 = (
𝜔

𝜔0𝐸𝑥
)

2

,                                                                                      (4) 

𝜂𝐴𝐸 = 1 − 𝜂𝐴𝐸𝑥 = ( 1 − 𝜂(𝜔))𝜅(𝜔).                                                  (5) 

Here 𝜅 denotes how much power Eve can collect from the part that isn't collected by Bob [4]. The Alice to Eve 

transmissivity (𝜂𝐴𝐸) can be denoted as (1 − 𝜂(𝜔))𝜅(𝜔) in Eq. (5). We can compute the Alice-to-exclusion zone 

transmissivity (𝜂𝐴𝐸𝑥) by assuming a virtual receiver covering the entire exclusion zone and substitutes 𝐴𝑏 with 

𝐴𝑒𝑥  in Eq. (1) to get 𝜔0𝐸𝑥  in Eq. (3). Then Alice-to-Eve transmissivity (𝜂𝐴𝐸 ) can be computed as 1 − ηAEx 

assuming Eve covers everywhere outside of the exclusion zone, calculated in Eq. (5). 

Also, we use the black body radiation function for noise frequency dependence: 

𝑛𝑒 =
1

𝑒
ℎ𝑓
𝑘𝑇−1

.                                                                                         (6) 

where 𝑛𝑒  is the mean photon number per mode for the thermal noise, ℎ = 6.62610−34 m2kg/s is the Planck 

constant, 𝑘 = 1.3806485210−23  m2kg/(Ks2) is the Boltzmann constant, 𝑇 = 3𝐾  is the estimated space 

temperature, and 𝑓 is the centre frequency in Hz that we use in transmission. 

Recall from [4] that the lower bound for direct (𝐾→) and reverse (𝐾←) reconciliation respectively in a pure loss 

wiretap channel without transmitting power constraints are given by:  

lim
𝜇→∞

𝐾→ ≥ log2
𝜂

𝜅(1−𝜂)
,                                                                               (7) 

lim
𝜇→∞

𝐾← ≥ log2
1

𝜅(1−𝜂)
− (g (

1−𝜂

𝜂
) − g (

(1−𝜂)𝜅

𝜂
)).                                     (8) 

In Fig. 2 we plot the SKR lower bound versus the transmission centre frequency. Here solid curves denote that 

no exclusion zone is set (𝑟𝑒𝑥 = 𝑟𝑏), while the dashed curve is with 𝑟𝑒𝑥 = 𝑟𝑏 + 2m. As we can see in Fig. 2, the 

SKR lower bound increases with increasing frequency assuming that there is no restriction on Eve's aperture size. 

From the solid curves in Fig. 2 we can conclude that although choosing a higher frequency can always result in 

higher SKR, this can pose potential challenges to the system design as we need much higher frequency for longer 

transmission distance. This downside can be mitigated by enlarging the exclusion zone as it effectively decreases 

Eve's receiving ability, relaxing the need for higher frequency as is illustrated in Fig. 2 with dashed curves. 

3. LIMITED APERTURE SIZE ANALYSIS 

In this section, different from Sec. 2, we assume limited aperture size for Eve and investigate her strategies in 

eavesdropping. First, we investigate the straightforward case where her aperture is in the same plane as Bob’s in 

Sec. 3.1. Then we present the case where Eve can move her aperture around behind Bob in Sec. 3.2. 



3.1 Eve is in the same plane as Bob 

Figure 3. Limited-size aperture scenario geometric setup. 

𝐴𝑎 and 𝐴𝑏 are the transmitting aperture (Alice) area and 

the receiving aperture (Bob) area respectively. The 

eavesdropper (Eve) aperture area is 𝐴𝑒 which is placed in  Figure 4. SKR lower bounds vs. distance. Unrestricted 

the same plane as Bob's aperture.                                          Eve's case [4] is also included for comparison purpose. 

                                                                        

When Eve’s aperture is in the same plane with Bob’s, it is easy to see that Eve’s optimal strategy is to place her 

aperture tangential to Bob’s, as is illustrated in Fig. 3. Here we assume that Gaussian beam with a total power of 

𝑃𝑡𝑜𝑡𝑎𝑙  is transmitted without turbulence and we calculated Bob and Eve’s received power ( 𝑃𝐵𝑜𝑏  and 𝑃𝐸𝑣𝑒 ) 

respectively. Then we can calculate 𝜂 and 𝜅 as below and apply the methods in [4] to give the lower bounds: 

𝜂 =
𝑃𝐵𝑜𝑏

𝑃𝑡𝑜𝑡𝑎𝑙
,                                                                                (9) 

𝜅 =
𝑃𝐸𝑣𝑒

(1−𝜂)𝑃𝑡𝑜𝑡𝑎𝑙
.                                                                      (10) 

In Fig. 4 we plot the SKR lower bounds versus transmission distance with centre wavelength 𝜆 = 1550nm, 

Gaussian beam waist 𝑊0 = 𝑟𝑏 = 𝑟𝑎 = 5cm. From Fig. 4 we can see that a constant rate can be obtained which 

doesn't change with increasing transmission distance. The channel condition is close to a pure loss channel (𝑛𝑒 ≈
0) in space (𝑇 ≈ 3K) at this wavelength where the SKR would drop to zero as distance goes to infinity assuming 

that Eve has an infinite size aperture (unrestricted case in Fig. 4). However, the SKR goes to a non-zero constant 

value as distance goes to infinity if we assume limited aperture size for Eve. This is because when distance is large, 

the collected power of Bob and Eve will be approximately proportional to their aperture size, which we define as 

𝑚 here: 

lim
𝐿→∞

𝑃𝐸𝑣𝑒

𝑃𝐵𝑜𝑏
= lim

𝐿→∞

𝜂𝐴𝐸

𝜂𝐴𝐵
=

𝐴𝑒

𝐴𝑏
= (

𝑟𝑒

𝑟𝑏
)

2

= 𝑚,                                        (11) 

𝜂𝐴𝐸 = (1 − 𝜂𝐴𝐵)κ.                                                                (12), 

where 𝜂𝐴𝐵 and 𝜂𝐴𝐸 refer to Alice-to-Bob and Alice-to-Eve transmissivity, respectively.  

Relating to Eqs. (7) and (8), this would return a constant SKR lower bound as 𝜂𝐴𝐵 goes to zero (transmission 

distance 𝐿 goes to infinity):  

lim
𝜇→∞,𝐿→∞

𝐾→ ≥ − log2 𝑚,                                                                    (13) 

lim
𝜇→∞,𝐿→∞

𝐾← ≥ − log2 ((
𝑚

1+𝑚
)

1+𝑚

𝑒).                                                (14) 

3.2 Eve is behind Bob with dynamic positioning  

In this section we investigate Eve's optimal positioning behind Bob’s aperture plane and give a lower bound on 

SKR. An extension of this section’s results has been accepted to 2020 OSA Advanced Photonics Congress [9]. As 

is illustrated in Fig. 5, we assume that 𝐴𝑎 is the area of transmitter aperture (Alice), 𝐴𝑏 is the area of receiver 

aperture (Bob), and 𝐴𝑒  is the area of eavesdropper aperture (Eve). The transmission distance between Alice's 

aperture plane and Bob's aperture plane is 𝐿𝐴𝐵 and the distance between Bob's aperture plane and Eve's aperture 

plane is 𝐿𝐵𝐸. Here D is the distance between the centre of Eve's aperture and the beam propagation axis. Gaussian 

beam is also assumed to be transmitted with beam waist equal to transmitter aperture radius. We will use 𝐷 as 

Eve's position since Gaussian beam is cylindrical symmetric along the propagation path. 

As we can see in Fig. 6, the SKR doesn't increase when we increase the distance between Bob and Eve since 

Eve adapts her position accordingly. Here we also include the scatter plots of Eve's optimal position 𝐷𝑜𝑝𝑡𝑖𝑚𝑎𝑙 as a 

function of 𝐿𝐵𝐸. We can see that Eve’s adapting her position only gives her advantages for a short distance after 

Bob's aperture whereas her optimal position stays aligned with Alice and Bob when 𝐿𝐵𝐸 is sufficiently large. 



Figure 5. Geometric setup when Eve is behind Bob 

with dynamic positioning. 𝐴𝑎 , 𝐴𝑏  and 𝐴𝑒  are the 

transmitting aperture (Alice) area the receiving 

aperture (Bob) area and the eavesdropper (Eve) 

aperture area respectively. 𝐿𝐴𝐵 is the transmission 

distance between Alice and Bob. 𝐿𝐵𝐸 is the distance    Figure 6. SKR & Eve optimal position versus 𝐿𝐵𝐸. Here the 

between Bob’s aperture plane and Eve’s whereas 𝐷    radius of Alice aperture, Bob aperture and Eve aperture are 

is the distance between Eve’s aperture center and        all set to 0.1m. Plots of beam wavefront at different 𝐿𝐵𝐸 are 

Alice-to-Bob line-of-sight transmission path.              also provided. Here 𝐿𝐴𝐵 is taken as 1km. 

                                                                    

4. CONCLUSIONS 

In this paper, we have analysed SKR lower bounds for realistic free-space satellite-to-satellite communication 

scenarios and studied their performance with respect to relevant channel parameters. In exclusion zone scenario, 

by enlarging the exclusion zone area we can relax the need for high frequency in long distance transmission. In 

limited-size aperture scenario, we found out that when Eve is in the same plane with Bob, we can get a distance 

independent on SKR at a sufficiently large transmission distance if Bob's aperture is greater than or at least 

comparable to Eve's. When Eve can optimize her position to gain advantages, simple approaches such as setting 

an exclusion zone around Bob's receiver could be very effective to ensure higher security. 
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