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REPRESENTATION OF INTEGERS BY SPARSE

BINARY FORMS

SHABNAM AKHTARI AND PALOMA BENGOECHEA

Abstract. We will give new upper bounds for the number of solutions to
the inequalities of the shape |F (x, y)| ≤ h, where F (x, y) is a sparse binary
form, with integer coefficients, and h is a sufficiently small integer in terms of
the discriminant of the binary form F . Our bounds depend on the number of
non-vanishing coefficients of F (x, y). When F is “really sparse”, we establish
a sharp upper bound for the number of solutions that is linear in terms of
the number of non-vanishing coefficients. This work will provide affirmative
answers to a number of conjectures posed by Mueller and Schmidt in [Trans.
Amer. Math. Soc. 303 (1987), pp. 241–255], [Acta Math. 160 (1988), pp.
207–247], in special but important cases.

1. Introduction and statements of the results

Let F (x, y) be a binary form of degree n ≥ 3 with integer coefficients which is
irreducible over the rationals. Let h be a positive integer. By a classical result of
Thue in [22], we know that the inequality

(1) 1 ≤ |F (x, y)| ≤ h

has at most finitely many solutions in integers x and y. Such inequalities are called
Thue’s inequalities.

We will give upper bounds for the number of solutions to Thue’s inequalities
|F (x, y)| ≤ h, where F (x, y) is a sparse polynomial, and h is sufficiently small
in terms of the absolute value of the discriminant of F . Our bounds depend on
the number of non-vanishing coefficients of the form F . To state our results more
precisely, let us suppose that F (x, y) is a form of degree n ≥ 3 which has no more
than s+ 1 nonzero coefficients, so that

(2) F (x, y) =
s∑

i=0

aix
niyn−ni

with 0 = n0 < n1 < . . . ns−1 < ns = n. We refer to such forms as sparse forms or
fewnomials.
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1688 SHABNAM AKHTARI AND PALOMA BENGOECHEA

Definition of primitive solutions. A pair (x, y) ∈ Z2 is called a primitive solu-
tion to inequality (1) if it satisfies the inequality and gcd(x, y) = 1.

We note that by this definition (±1, 0) and (0,±1) are primitive, but, for exam-
ple, if z $= ±1, the possible solution (z, 0) is not considered primitive. Suppose that
(x1, y1) is a solution to the inequality (1), then there exists an integer t $= 0 such
that (x1, y1) = (tx2, ty2) and (x2, y2) is a primitive solution of (1).

Throughout this manuscript, by A % B we mean A is bounded above by B
up to an explicit constant that does not depend on any of the quantities n, s, h.
Similarly, we say A = O(B) if A ≤ κB, for an absolute constant κ. The following
are our main theorems.

Theorem 1.1. Let F (x, y) ∈ Z[x, y] be an irreducible binary form with s+1 nonzero
coefficients, degree n > s, and discriminant D. Let h be an integer with

(3) 0 < h <
|D|

1
8(n−1)

(3n800 log2 n)n/2(ns)2s+n
.

Let N (F, n, s, h) be the number of primitive solutions to the inequality

1 ≤ |F (x, y)| ≤ h.

(i) We have

N (F, n, s, h) % s log smin(1,
1

log n− log s
).

(ii) Moreover, if n ≥ s2, we have

N (F, n, s, h) % s.

Theorem 1.2. Let F (x, y) ∈ Z[x, y] be an irreducible binary form with s+1 nonzero
coefficients, degree n > s, and discriminant D. Let h be an integer with

(4) 0 < h <
|D|

1
4(n−1)

10n n
n

4(n−1)
.

Let N (F, n, s, h) be the number of primitive solutions to the inequality

1 ≤ |F (x, y)| ≤ h.

We have
N (F, n, s, h) %

√
ns.

The assumptions (3) and (4) are quite strong, and are indeed helpful in our
improvement of the previous bounds. Generally one cannot expect that a binary
form of degree n has such a large discriminant. However, by a result of Birch
and Merriman in [4], for a fixed degree n only finitely many equivalence classes of
irreducible binary forms of degree n have bounded discriminant (see also [8]). So
our results, while stated for a strong condition on the discriminant, namely (3) or
(4), hold for almost all binary forms of a given degree.

In [17] Mueller and Schmidt obtained the upper bound

(5) N (F, n, s, h) % s2h2/n(1 + log h1/n),

for every positive integer h. They could remove the logarithmic factor if n ≥ 4s.
One of our contributions is to remove the dependency on h for sufficiently small
values of h. When h is large, one naturally expects the factor h2/n to appear (see
[11, 24], for example). After the statement of Theorem 1 in [17], which contains
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the bound (5), the authors conjecture that the factor s2 should be replaced by s (a
conjecture originally due to Siegel). Our Theorem 1.1 verifies this conjecture in case
s2 < n and h is small. Theorem 1.1 also improves the factor s2 in (5) significantly,
namely by a quantity smaller than s log s, again for small h.

Schmidt in [18] showed, for every positive integer h, that

(6) N (F, n, s, h) % (ns)1/2h2/n(1 + log h1/n).

He conjectured that the logarithmic factor is unnecessary. In [23] Thunder replaced
the factor (1 + log h1/n) in the above bound by (1 + log log h/ log d). Using an
effective result of Evertse and Győry in [8] on bounds for the height of binary
forms in terms of their discriminant, Thunder reasons that Schmidt’s conjecture on
unnecessariness of log h1/n holds “essentially”. Here we will remove the dependence
on h in the upper bound (6), for sufficiently small h.

The problem of counting the number of solutions to Thue’s inequalities 1 ≤
|F (x, y)| ≤ h for small integers h has been considered previously, for example, in
[1,9,21], where upper bounds are of the shape c0n, where n is the degree of F and
c0 is an explicit constant. We aim for similar studies for fewnomials F . Mueller in
[15] and Mueller and Schmidt in [16] established bounds for the number of solutions
of |F (x, y)| ≤ h for binomial and trinomial forms F . These bounds are independent
of h and n, provided that h is small in terms of H(F ), the maximum of absolute
values of the coefficients of F . Based on their works on binomials and trinomials,
Mueller and Schmidt conjectured in [17], provided that h ≤ H1− s

n−ρ, that the
number of primitive solutions of (1) is ≤ c(s, ρ), where c(s, ρ) depends on s and ρ
only. To us it feels more natural to compare the size of h with the discriminant (our
methods are in sympathy with our intuition!). Our results in Theorems 1.1 and 1.2
are under the assumption that the integer h is bounded in terms of the absolute
discriminant. The height and the discriminant of a binary form are connected, and
our results can be stated for h bounded above by H. However, they do not imply
the exact exponent of H conjectured by Mueller and Schmidt.

A very special and interesting type of fewnomials are binomials. In [20], Siegel
showed that the equation 0 < |axn − byn| ≤ c has at most one primitive solution
in positive integers x and y if

|ab|
n
2 −1 ≥ 4



n
∏

p|n

p
1

p−1




n

c2n−2.

We note that the size of c is compared to the discriminant, and not the height, of the
binomial in Siegel’s work. Also in [6] Evertse extended the hypergeometric method
of Siegel to give striking bounds for the number of solutions to Thue equation
axn − byn = c. These ideas have recently been generalized in [2] for a larger family
of Thue’s inequalities which include binomial inequalities. In a breakthrough work
[3], Bennett used a sophisticated combination of analytic methods, including the
approximation tools from [6, 20], to show that the equation axn − byn = 1, with a
and b positive, has at most one solution in positive integers x, y. This is a sharp
result, as the equation (a + 1)xn − ayn = 1 has precisely one solution (1, 1) in
positive integers, for every positive integer a.

We will closely follow two fundamental works [17, 18] of Mueller-Schmidt and
Schmidt. These two papers introduce different approximation methods and result
in two different types of upper bounds, which are of the shapes stated in our
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Theorems 1.1 and 1.2. In order to discuss how we use these ideas more clearly,
we organize this article in two main parts. Part I explores some ideas in [17] and [5]
further and establishes the desired bounds in Theorem 1.1. Part II focuses on some
extensions of results in [18] and contains the proof of Theorem 1.2. In both parts
having the integer h bounded by a function of discriminant is absolutely crucial
in our application of approximation methods of [17, 18]. Particularly in Part I,
using the fact that the height of a binary form can also be bounded in terms of its
absolute discriminant, which is invariant up to GL2(Z) actions allows us to work
with a given fewnomial and use some ideas from [5]. Simply put, we control the size
of all quantities that show up in classical approximation methods by the absolute
value of the discriminant.

We use two very important Lemmas established by Mueller and Schmidt, and
recorded here as Propositions 4.6 and 5.1. Their paper [17] includes an interesting
discussion of the Newton polygon and its applications to the distribution of the
roots of polynomials with only s + 1 roots. It turns out that the roots of such
polynomial are located in not more than s fairly narrow annuli centered at the
origin. This analysis is essential in establishing the extremely useful fact that every
solution (x, y) of the Thue’s inequality gives a good rational approximation x

y to a
root of the fewnomial that belongs to a small subset of the set of all roots. The
number of elements in this subset is estimated by s, as opposed to the general case,
where one has to take into account all n roots of a binary form of degree n.

In our proofs in Part I (where we ultimately prove Theorem 1.1), we will need
to assume that n > 10s. This assumption does not alter the statement of Theorem
1.1, because technically if n ≤ 10s, the form F (x, y) is not sparse and we can
use a result of the first author for general Thue’s inequalities in [1], where the
upper bound c0n is established for the number of solutions of Thue’s inequality
|F (x, y)| ≤ h of degree n, and under the assumption (3). This way if n ≤ 10s, we
obtain the bound c1s for the number of primitive solutions to our inequality, where
c1 = 10 c0 is an explicit constant.

This manuscript is organized as follows. After recalling some basic facts and
useful theorems in Section 2, we will divide the article to two general parts. Part
I includes Sections 3, 4, 5, and is devoted to the proof of Theorem 1.1. Part II
includes Sections 6, 7, and is devoted to the proof of Theorem 1.2. In both parts
we estimate the number of solutions to our inequalities by splitting them in three
or two subsets respectively: small, medium and large solutions for Part I, and small
and large solutions for Part II. The definition of small and large will differ in Parts
I and II. We will give these definitions and other notation in Sections 3 and 6. The
estimation of the number of large solutions is not treated in details here, as some
good bounds for the number of large solutions of Thue’s inequalities have been
established in [18] and [17]. We will define the size of solutions in a way that we
can use corresponding previous results.

2. Preliminaries

2.1. Discriminant, height, and Mahler measure. For a binary form G(x, y)
that factors over C as

n∏

i=1

(αix− βiy),
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the discriminant D(G) of G is given by

D(G) =
∏

i<j

(αiβj − αjβi)
2.

Therefore, if we write

G(x, y) = c(X − γ1y) . . . (x− γny),

we have
D(G) = c2(n−1)

∏

i<j

(γi − γj)
2.

The Mahler measure M(G) of the form G(x, y) = c(X − γ1y) . . . (x − γny) is
defined by

M(G) = |c|
n∏

i=1

max(1, |γi|).

Mahler [13] showed

(7) M(G) ≥
(
|D|
nn

) 1
2n−2

,

where D is the discriminant of G.
Let G(x, y) = anxn + an−1xn−1y + . . .+ a1xyn−1 + a0yn. The (naive) height of

G, denoted by H(G), is defined by

(8) H(G) = max (|an|, |an−1|, . . . , |a0|) .

We have

(9)

(
n

(n/2)

)−1

H(G) ≤ M(G) ≤ (n+ 1)1/2H(G).

A proof of this fact can be found in [12].

2.2. GL2(Z) actions and equivalent forms. Let

A =

(
a b
c d

)

and define the binary form FA by

FA(x, y) = F (ax+ by, cx+ dy).

We say that two binary forms F and G are equivalent if G = ±FA for some
A ∈ GL2(Z).

Observe that for any 2× 2 matrix A with integer entries

(10) D(FA) = (detA)n(n−1)D(F ).

For A ∈ GL2(Z), we have that FA−1(ax + by, cx + dy) = ±F (x, y) and
gcd(ax + by, cx + dy) = 1 if and only if gcd(x, y) = 1. Therefore, the number
of solutions (and the number of primitive solutions) to Thue’s inequalities does
not change if we replace the binary form with an equivalent form. Moreover the
discriminants of two equivalent forms are equal. However, GL2(Z)-actions do not
preserve the fact that F has no more than s+1 non zero coefficients. Also GL2(Z)-
actions do not preserve the height. So the counting problem for forms of the kind
(2) does change.
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To estimate the number of solutions to Thue’s inequalities with fewnomials,
Schmidt formulates in [18] a condition that is invariant under GL2(Z) actions.
Following Schmidt, we define a class C(t) of forms of degree n as follows.

Definition of C(t). The set of forms F (x, y) of degree n with integer coefficients,
and irreducible over Q, such that for any reals u, v $= 0, 0, the form

(11) uFx + vFy

has at most t real zeros.
Note that for n > 0, the irreducibility of F implies that the form (11) of degree

n− 1 is not identically zero. Also for F ∈ C(t), the derivative f ′(z) = Fx(z, 1) has
fewer than t real zeros. The following is Lemma 2 of [18].

Lemma 2.1. Suppose F (x, y) is irreducible of degree n, and has s+1 non-vanishing
coefficients. Then F (x, y) ∈ C(4s− 2).

In Part II, we will consider inequalities of the shape |F (x, y)| ≤ h, for forms
F ∈ C(4s− 2).

3. Part I: Strategy, outline and definitions

Let x = (x, y). We define

|x| = max(|x|, |y|), 〈x〉 = min(|x|, |y|).

In order to establish our upper bounds in Theorem 1.1, we measure the size of
possible solutions (x, y) of our inequality by the size of 〈x〉 and |x|.

Definition. Relative to two quantities YS , YL, which will be defined below in (15)
and (16), we call a solution (x, y) ∈ Z2

small if 0 < 〈x〉 ≤ YS ,

medium if |x| ≤ YL and 〈x〉 > YS ,

large if |x| > YL.

We choose the constants below to be consistent with Mueller and Schmidt’s work
[17]. Let

(12) R = n800 log2 n.

From (3), we have

(13) 0 < h ≤ |D|
1

8(n−1)

(3R)n/2(ns)2s+n
.

Put

C = Rh(2H
√

n(n+ 1))n.

Pick numbers a, b with 0 < a < b < 1 and let

(14) λ =
2

(1− b)
√
2/(n+ a2)

.

Note that if a, b were chosen sufficiently small, then

n− λ = n− (
√

2n+ 2a2/(1− b)) > 0.
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Definitions of YS and YL. We define

(15) YS =
(
(e6s)nR2sh

) 1
n−2s ,

and

(16) YL = (2C)1/(n−λ)(4(H(n+ 1)1/2en/2))λ/((n−λ)a2).

By (13), we have

(3R)n/2h ≤ |D|
1

8(n−1)

(ns)2s+n
,

which, together with (7) and (9), implies

(17) YL % H2.

Proposition 3.1. The number of primitive small solutions of (1) with F a fewno-
mial, defined in (2), and h satisfying (13) is no greater than 12s+ 16.

Proposition 3.2. Let Nm(F, n, s, h) be the number of primitive medium solutions
of (1) with F a fewnomial, defined in (2), h satisfying (13), and n > 10s. We have

Nm(F, n, s, h) % s log smin(1,
1

log n− log s
).

Moreover, if n ≥ s2, we have

Nm(F, n, s, h) % s.

Our assumption n > 10s in Proposition 3.2 is to make our approximation meth-
ods work more smoothly. If n ≤ 10s then a much sharper version of Theorem 1.1
will be implied by the first author’s previous work [1] on general Thue’s inequalities.

Proposition 3.3. Let Nl(F, n, s, h) be the number of primitive large solutions of
(1) with F a fewnomial, defined in (2), and h satisfying (13). We have Nl(F, n, s, h)
% s.

Our definitions of R, C, λ, YS and YL are the same as in [17]. Therefore,
Proposition 3.3 follows directly from [17, Prop. 1, p.211]. We prove Propositions
3.1 and 3.2 in Sections 4 and 5, respectively.

4. Small solutions (I), the proof of Proposition 3.1

In this section, we estimate the number of primitive solutions x = (x, y) to (1)
with F a fewnomial, defined in (2), for which 0 ≤ 〈x〉 ≤ YS with h bounded by
(13). We will present a number of lemmas, some variations of which have been
established by others in the past. The ideas of our proofs can be found in Chapter
III of Schmidt’s book [19].

We first give a bound for the number of solutions such that 0 ≤ y ≤ YS . We
estimate the number of solutions with 0 ≤ x ≤ YS similarly. We will regard (x, y)
and (−x,−y) as one solution, and can assume y ≥ 0, if we need to.

Definition of the minimal solution. Suppose that there is at least one solution
to (1) with 0 ≤ y ≤ YS and choose (x0, y0) to be a solution with minimal y ≥ 0
(if there is no small solution then Proposition 3.1 is proven). There might be more
than one solution with minimal non-negative y to the Thue’s inequality. We fix one
of them for our entire argument in this section, and will denote it by x0 = (x0, y0)
and call it the minimal solution.
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Definition of Li(x, y). For the binary form

F (x, y) = an(x− α1y) . . . (x− αny),

we define Li(x, y) = x− αiy, for i = 1, . . . , n.
Let x1 = (x1, y1) and x2 = (x2, y2). We define

(18) D(x1,x2) = x1y2 − x2y1.

Lemma 4.1. Suppose x = (x, y) ∈ Z2, with gcd(x, y) $= 0 and x $= x0, satisfies
|F (x, y)| ≤ h. We have

Li(x0, y0)

Li(x, y)
− Lj(x0, y0)

Lj(x, y)
= (βj − βi)D(x,x0),

where β1,. . . , βn depend on (x, y) and are such that the form

J(u,w) = F (x, y)(u− β1w) . . . (u− βnw)

is equivalent to F .

Proof. This is Lemma 5 of [7], Lemma 4 of [21] and Lemma 3 of [5]. !
Lemma 4.2. For each i = 1, . . . , n, among the primitive solutions (x, y) of (1)
with 0 < y ≤ YS , there is at most one such that |Li(x, y)| < 1/(2YS).

Proof. Suppose that (x, y) and (x̃, ỹ) are two of such distinct solutions with y ≤ ỹ.
Then

1

ỹy
≤

∣∣∣∣
x̃

ỹ
− x

y

∣∣∣∣ ≤
∣∣∣∣
x̃

ỹ
− αi

∣∣∣∣+
∣∣∣∣
x

y
− αi

∣∣∣∣ <
1

yYS
,

so that ỹ > YS , which contradicts the assumption above. !
Suppose, without loss of generality, that

(19) |L1(x0, y0)| = min
1≤i≤n

(|Li(x0, y0)|).

Note that, since |F (x0, y0)| ≤ h,

(20) |L1(x0, y0)| ≤ h1/n.

By Lemma 4.2, there might exist a unique primitive solution (x∗, y∗) such that
0 < y∗ ≤ YS and

|L1(x
∗, y∗)| < 1

2YS
.

We define the set

(21) A = {(x0, y0), (x
∗, y∗)}.

We note that 1 ≤ |A| ≤ 2.
By Lemma 4.2, for any solution (x, y) $= (x∗, y∗) with 0 < y ≤ YS , we have

(22) |L1(x, y)| ≥
1

2YS
.

By Lemma 4.1 and (22),

(23)
|Li(x0, y0)|
|Li(x, y)|

≥ |β1 − βi||D(x,x0)|− 2YS |L1(x0, y0)|,

where D is defined in (18). For the complex conjugate β̄1 of β1, we also have

|Li(x0, y0)|
|Li(x, y)|

≥ |β̄1 − βi||D(x,x0)|− 2YS |L1(x0, y0)|.
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Hence
|Li(x0, y0)|
|Li(x, y)|

≥ |Re(β1)− βi||D(x,x0)|− 2YS |L1(x0, y0)|,

where Re(β1) is the real part of β1. Now we choose an integer m = m(x, y), with
|Re(β1)−m| ≤ 1/2, and we obtain

(24)
|Li(x0, y0)|
|Li(x, y)|

≥
(
|m− βi|−

1

2

)
|D(x,x0)|− 2YS |L1(x0, y0)|,

for i = 1, . . . , n.

Definition of the sets Xi. Let Xi be the set of solutions (x, y) $∈ A with 1 ≤ y ≤
YS and |Li(x, y)| ≤ 1

2y , where 1 ≤ i ≤ n.
We note that if αi and αj are complex conjugates then Xi = Xj .

Lemma 4.3. Suppose (x1, y1) and (x2, y2) are two distinct solutions in Xi, with
0 < y1 ≤ y2 . Then

y2
y1

≥ 1

2YS + 7/3
max(1, |βi(x1, y1)−m(x1, y1)|).

Proof. We follow the proof of Lemma 4 of [5]. We have that

1 ≤ |y2x1 − y1x2| ≤ y1|Li(x2, y2)|+ y2 |Li(x1, y1)|(25)

≤ y1
2y2

+ y2 |Li(x1, y1)|

≤ 1

2
+ y2 |Li(x1, y1)| .

Therefore,

y2 ≥ 1

2 |Li(x1, y1)|
.

Combining this with (24), we get

(26)
y2
y1

≥ 1

2

(
|m− βi|−

1

2

) |D(x1,x0)|
y1|Li(x0, y0)|

− YS |L1(x0, y0)|
y1|Li(x0, y0)|

,

where βi = βi(x1, y1) are introduced in Lemma 4.1, m = m(x1, y1) is an integer
satisfying |Re(β1)−m| ≤ 1/2, with β1 = β1(x1, y1).

Now, by (19), we have that |L1(x0, y0)| ≤ |Li(x0, y0)| and

|D(x1,x0)|
y1|Li(x0, y0)|

=

∣∣∣∣
x1

y1
− x0

y0

∣∣∣∣
∣∣∣∣
x0

y0
− αi

∣∣∣∣
≥

∣∣∣∣
x1

y1
− x0

y0

∣∣∣∣
∣∣∣∣
x0

y0
− x1

y1

∣∣∣∣+
1

2y21

≥ 1

1 +
1

2y21

∣∣∣∣
x0

y0
− x1

y1

∣∣∣∣

≥ 2

3
,(27)

where the last inequality is because

∣∣∣∣
x0

y0
− x1

y1

∣∣∣∣ ≥
1

y0y1
and

1

2y21

∣∣∣∣
x0

y0
− x1

y1

∣∣∣∣
≤ y0

2y1
≤ 1

2
.

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1696 SHABNAM AKHTARI AND PALOMA BENGOECHEA

Therefore, by (26) and (27), we have

y2
y1

≥ max
(
1,
(
|m− βi|−

1

2

)1
3
− YS

)
≥ max

(
1,

2

3
(|m− βi|

) 1
7
3 + 2YS

,

where in the second inequality we used that max(1, ζ
2 − a) ≥ 1

2a+2 max(1, ζ) with

ζ = 2
3 |m− βi| and a = 1

6 + YS . !
Lemma 4.4. Suppose (x, y) ∈ Z2, and (x, y) $∈ A, with 0 < y ≤ YS and gcd(x, y) =
1, satisfies |F (x, y)| ≤ h and |Li(x, y)| > 1

2y . Then

|m(x, y)− βi(x, y)| ≤
7

2
+ 2h1/n YS .

Proof. By (24), we have

|m− βi| ≤
( |Li(x0, y0)|

|Li(x, y)|
+ 2YS |L1(x0, y0)|

) 1

|D(x,x0)|
+

1

2
.

Since

∣∣∣∣
x

y
− x0

y0

∣∣∣∣ ≥
1

yy0
and we are assuming |Li(x, y)| > 1

2y , we have

|Li(x0, y0)|
|Li(x, y)||D(x,x0)|

≤

∣∣∣∣αi −
x

y

∣∣∣∣+
∣∣∣∣
x

y
− x0

y0

∣∣∣∣

y2
∣∣∣∣αi −

x

y

∣∣∣∣

∣∣∣∣
x

y
− x0

y0

∣∣∣∣
≤ 1

y2
∣∣∣∣
x

y
− x0

y0

∣∣∣∣
+

1

y2
∣∣∣∣αi −

x

y

∣∣∣∣
≤ 3.

Therefore, using also that |L1(x0, y0)| ≤ h1/n, by (20), and since |D(x,x0)| ≥ 1,
we conclude that

|m− βi| ≤
7

2
+ 2h1/nYS .

!
Let (x1, y1) ∈ Z2 be a fixed solution to the inequality |F (x, y)| ≤ h. The form

J(u,w) = F (x1, y1)(u− β1w) . . . (u− βnw)

is equivalent to F by Lemma 4.1. Therefore the form

Ĵ(u,w) = F (x1, y1)(u− (β1 −m)w) . . . (u− (βn −m)w),

which is the translation of J by m = m(x1, y1) ∈ Z, is also equivalent to F . Hence
by (7),

(28)
n∏

i=1

max(1, |βi(x1, y1)−m(x1, y1)|) ≥
M(Ĵ)

|F (x1, y1)|
≥ |D|

1
2n−2

hnn
.

Definition of X. For each set Xi, (i = 1, . . . , n) that is not empty, let (x(i), y(i)) ∈
Xi be the element with the largest value of y. Let X be the set of solutions of
|F (x, y)| ≤ h that are not in A and with 1 ≤ y ≤ YS except the elements (x(1), y(1)),
. . . , (x(n), y(n)).

In order to estimate the number of elements in X, and in view of (28), we will
give an upper bound for the product

n∏

i=1

max(1, |βi(x1, y1)−m(x1, y1)|),

for every (x1, y1) ∈ X.
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Lemma 4.5. For any fixed i ∈ {1, . . . , n}, we have
∏

(x,y)∈X

max (1, |βi(x, y)−m(x, y)|)
YS(2YS + 7/2)

≤ 1.(29)

Proof. Suppose that the set Xi is non-empty. We index the elements of Xi as

(x(i)
1 , y(i)1 ), . . . , (x(i)

v , y(i)v ),

so that y(i)1 ≤ . . . ≤ y(i)v (note that (x(i)
v , y(i)v ) = (x(i), y(i))). By Lemma 4.3,

(30)
1

2YS + 7/2
max

(
1,
∣∣∣βi(x

(i)
k , y(i)k )−m(x(i)

k , y(i)k )
∣∣∣
)
≤

y(i)k+1

y(i)k

for k = 1 . . . , v − 1. Therefore,

(31)
∏

(x,y)∈X
⋂

Xi

1

2YS + 7/2
max (1, |βi(x, y)−m(x, y)|) ≤ YS .

For any solution (x, y) ∈ X, with 1 ≤ y ≤ YS , that does not belong to Xi, by
Lemma 4.4, we have

(32)
max (1, |βi(x, y)−m(x, y)|)

2h1/nYS + 7/2
≤ 1.

This, together with (31), completes the proof of Lemma. !
Next we will use the following striking result from [17] to establish inequalities

similar to (29) for the solutions (x(i), y(i)) which, by definition, do not belong to X.

Proposition 4.6. Let F be a fewnomial, defined in (2). There is a set S of roots
αi of F (x, 1) with |S| ≤ 6s+ 4 such that for any real ζ,

min
α!∈S

|ζ − α%| ≤ R min
1≤i≤n

|ζ − αi|.

Proof. This is Lemma 7 of [17]. !
Let

S1 = S ∪ {α1},
where S is the set in Proposition 4.6, and α1 is the fixed root associated to the
minimal solution, for which the inequality (19) is satisfied. Proposition 4.6 implies
that

|S1| ≤ 6s+ 5.

Let S1 = {α1,α2, . . . ,αt}, with 1 ≤ t ≤ 6s+ 5.
Recall that we denote by (x(i), y(i)) the element in Xi with the largest value of

y. Suppose (x(i), y(i)) ∈ Xi\ {X1 ∪ . . . ∪ Xi−1}, for t < i ≤ n.
By Proposition 4.6, there exists ( ∈ {1, . . . , t} such that

∣∣∣Li(x
(i), y(i))

∣∣∣ ≥
∣∣L%(x(i), y(i))

∣∣
R

≥ 1

2y(i)R
,

where the last inequality is because (x(i), y(i)) $∈ X%. Combining this with (24), we
obtain

∣∣∣m(x(i), y(i))− βi(x
(i), y(i))

∣∣∣ ≤
2|Li(x0, y0)|y(i)R+ 2YS |L1(x0, y0)|

|D(x(i),x0)|
+

1

2
.
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Using (27) and |L1(x0, y0)| ≤ h1/n, we obtain
∣∣∣m(x(i), y(i))− βi(x

(i), y(i))
∣∣∣ ≤ 3R + 2h1/n YS +

1

2
.

This, together with (13) and (15), implies that
∣∣m(x(i), y(i))− βi(x(i), y(i))

∣∣
YS(2YS + 7/2)

(33)

≤
3R + 2h1/n YS +

1

2
YS(2YS + 7/2)

< |D|
1

4n(n−1) .

Definition of the set X+. Let X+ = X ∪
{
(x(i), y(i))

}
t<i≤n

.

By (28), (29), (33) and Lemma 4.4, we have that

(
|D|

1
2n−2

h [nYS(2YS + 7/2)]n

)|X+|

(34)

≤
∏

(x,y)∈X+

1

[YS(2YS + 7/2)]n

n∏

i=1

max(1, |βi(x1, y1)−m(x1, y1)|)

<
(
|D|

1
4n(n−1)

)n−t
.

By (13) and (15), we have

h [nYS(2YS + 7/2)]n < h(2n)n
(
YS

2 + 2YS

)n

< (2n)nh (YS + 1)2n = (2n)nh
((

(e6s)nR2sh
) 1

n−2s + 1
)2n

< (2n)nh1+ 2n
n−2s

((
(e6s)nR2s

) 1
n−2s + 1

)2n

< (2n)n
(

|D|
1

8(n−1))

(3R)n/2(ns)2s+n

)1+ 2n
n−2s((

(e6s)nR2s
) 1

n−2s + 1
)2n

.

Since we assumed 10s < n, we have the following inequalities for the exponents of
|D|, R, s in the last expression above.

1

8n(n− 1)

(
1 +

2n

n− 2s

)
<

1

8n(n− 1)

(
7

2

)
,

4ns

n− 2s
<

n

2

(
1 +

2n

n− 2s

)

and
2n2

n− 2s
< (2s+ n)

(
1 +

2n

n− 2s

)
.

Therefore,

(35) h [nYS(2YS + 7/2)]n < |D|
7

16(n−1) .
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By (34) and (35), we have

(
|D|

1
2n−2

|D|
7

16(n−1)

)|X+|

<
(
|D|

1
8n(n−1)

)n
.

Therefore,

|X+| <
1

4(n−1) log |D|
1

16(n−1) log |D|
= 4.

The solutions (x, y) with 0 < y ≤ YS are either in X+∪A (see (21) for definition)
or they are among possible (x(1), y(1)), . . . , (x(t), y(t)). Counting the solutions in
the set A, and by Proposition 4.6, we see that the total number of solutions with
0 ≤ y ≤ YS is no greater than 6s+ 6 + 3 + 3. The number of solutions of (1) such
that 0 ≤ x ≤ YS can be estimated in a similar way, by considering the form

F (x, y) = a0(y − γ1x) · . . . · (y − γny)

and putting Li(x, y) = y − γix. Here γ1, . . . , γn are the roots of the polynomial
F (1, y). We conclude that the number of solutions with 0 ≤ x ≤ YS is no greater
than 6s+ 12.

5. Medium solutions (I), proof of proposition 3.2

We divide the interval [YS , YL] into N + 1 subintervals, where YS and YL are
defined in (15) and (16) and N depends on s and is defined below. We will show
there are only few solutions (x, y) with y in each of these subintervals. In this
section we will assume n > 10s. We define a positive integer N = N(n, s) as
follows.

If n ≥ s2, we put N = 2.
If n < s2, we choose N ∈ N such that

(36) 10s1+
1
N ≤ n ≤ 10s1+

1
N−1 .

If n < s2, we have

(37) N ≤ log s

log n− log s
.

For ( = 1, . . . , N , we define

Y% = YSH
1

s1−(!−1)/N ,

where H the height of F , defined in (8). We put

Y0 = YS and YN+1 = YL.

We will use the following important result achieved in [17].

Proposition 5.1. There is a set T of roots of F (x, 1) and a set T ∗ of roots of
F (1, y), both with cardinalities at most 6s+ 4, such that any solution (x, y) of (1)
with 〈x〉 ≥ YS either has

(38)

∣∣∣∣α− x

y

∣∣∣∣ <
R(ns)2

H(1/s)−(1/n)

(
(4e3s)nh

yn

)1/s
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with some α ∈ T , or has

(39)
∣∣∣α∗ − y

x

∣∣∣ <
R(ns)2

H(1/s)−(1/n)

(
(4e3s)nh

xn

)1/s

for some α∗ ∈ T ∗.

Proof. This is Lemma 17 of [17]. !
Let α ∈ T . For ( ∈ {0, . . . , N}, let (x1, y1), . . . , (xw! , yw!) be the primitive

solutions of our inequality, with Y% < yi ≤ Y%+1, satisfying (38) and ordered so that

Y% < y1 ≤ . . . ≤ yw! ≤ Y%+1.

By (38), we have that

1

yiyi+1
≤

∣∣∣∣
xi+1

yi+1
− xi

yi

∣∣∣∣ ≤
K

H(1/s)−(1/n)y
n
s
i

,

with
K = 2R(ns)2(4e3s)n/sh1/s.

Therefore, for solutions (x, y) with y ∈ [Y%, Y%+1], we have

(40) yi+1 ≥ K−1H
1
s−

1
n y

n
s −1
i ≥ K−1H

1
s−

1
nY

n
s −2

% yi.

First we will give an estimate for the number of primitive solutions in the first
subinterval [Y0, Y1]. We have Y0 = YS . By the definition (15) of YS , we have

(41) K−1Y
n
s −2

S ≥ 1.

For ( = 0, we have by (40) and (41) that yi+1≥H
1
s−

1
n yi, so yw0≥(H

1
s−

1
n)(w0−1)y1.

Therefore, we have
Y1 ≥ yw0 ≥ (H

1
s−

1
n )(w0−1)Y0,

and

w0 − 1 ≤
log Y1

Y0

( 1s − 1
n ) logH

≤ 10

9
,

since log Y1
Y0

= 1
s logH and n > 10s.

For 1 ≤ ( < N , by (40) and (41) we have that

yi+1 ≥ K−1H
1
s−

1
nY

n
s −2

S H
n/s−2

s1−(!−1)/N yi ≥ H
n

s2−(!−1)/N − 2

s1−(!−1)/N yi.

Therefore,

yw! ≥ H

(
n

s2−(!−1)/N − 2

s1−(!−1)/N

)
(w!−1)

y1,

and since Y% < y1 < yw! ≤ Y%+1, we have

w% − 1 ≤
log Y!+1

Y!

( n
s2−(!−1)/N − 2

s1−(!−1)/N ) logH
.

For ( < N , since log Y!+1

Y!
< 1

s1−!/N logH and n ≥ 10s1+1/N ,

w% − 1 ≤ 1
n

s1+1/N − 2
s1/N

< 1.

For ( = N , we have log Y%+1 = log YL % 2 logH, by (17), and therefore we get

wN − 1 % 2
n

s1+1/N − 2
s1/N

< 2.
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We conclude that the number of primitive medium solutions of (38) for each
α ∈ T is O(N). In a similar way, the number of primitive medium solutions of (39)
for each α∗ ∈ T ∗ is O(N). By Proposition 5.1, the number of primitive medium
solutions of (1) is O(N). We obtain Proposition 3.2, as by our definition we have
(37) for n < s2, and N = 2 when n ≥ s2.

6. Part II: Strategy, outline and definitions

We will consider binary forms F (x, y) ∈ C(4s− 2) (see (11), for definition). By
Lemma 2.1, our discussion for such forms implies Theorem 1.2.

Definition of normalized and reduced forms. Suppose 0 ≤ a ≤ b. The
number of primitive solutions to the inequality

a ≤ |F (x, y)| ≤ b

remains unchanged if we replace F by one of its GL2(Z)-equivalent forms. Moreover,
if the inequality a ≤ |F (x, y)| ≤ b has at least one primitive solution (x1, y1), there
is an A ∈ GL2(Z) with A−1(x1, y1)tr = (1, 0), so that

a ≤ |FA(1, 0)| ≤ b.

So in order to estimate the number of primitive solutions to the above inequality,
we may restrict our attention to normalized forms for which the leading coefficient
a0 has

a ≤ |a0| ≤ b.

We will say that a form F is reduced if it is normalized and has the smallest Mahler
measure among all normalized forms equivalent to F .

Schmidt worked with reduced forms to establish the results in [18], in particular,
his Lemma 4 is of special importance here (see our Lemma 7.1 and its implications).

Every primitive solution of the inequality 1 ≤ |F (x, y)| ≤ h is either a solution
of

(42) h1/2 < |F (x, y)| ≤ h

or

(43) 1 ≤ |F (x, y)| ≤ h1/2.

To obtain our desired bounds, we will need to assume that the form F in (42) is nor-
malized with respect to (a, b) = (h1/2, h) and the form F in (43) is normalized with
respect to (a, b) = (1, h1/2). We will have two equivalent, but not identical forms
in each of the inequalities. We will show that the number of primitive solutions to
each of these two inequalities is O(

√
ns), provided that h satisfies

(44) h <
|D|

1
4(n−1)

10n n
n

4(n−1)
.

From now on, we consider the inequality

(45) a ≤ |F (x, y)| ≤ b

and assume that F is reduced with respect to (a, b),

(46) b ≤ h,

and

(47)
b

a
≤ h1/2.
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These assumptions are necessary in our estimation of linear forms in Section 7.
Namely, the assumption (46) is important for our estimates in the proof of Lemma
7.2, and and the assumption (45) is essential for Lemma 7.1 to hold.

We denote by M the Mahler measure M(F ) of the reduced form F .
By (7), our assumption (44) implies

(48) h <
M1/2

10n
,

and

(49) M > 100nh2.

Similar to Schmidt’s work in [18], we define

(50) Q :=
M

h
≥ 100nh.

If (x, y) is a solution to our inequality, we will assume without loss of generality
that y > 0 (recall that we count (x′, y′) and (−x′,−y′) as one solution and we have
at most one primitive solution with y = 0). We take

Y ′
S = M2.

Definition of small and large solutions. We call a solution (x, y) ∈ Z2 small if
0 < y ≤ Y ′

S . We call a solution (x, y) ∈ Z2 large if Y ′
S < y.

We will prove the following in the remaining of the manuscript.

Proposition 6.1. Let N1(F, n, s, h) be the number of small solutions of 1≤ |F (x, y)|
≤ h, where F (x, y) ∈ C(4s−2) of degree n is reduced. Assume that h satisfies (44),
with (45) and (46). We have N1(F, n, s, h) %

√
ns.

For n . 1, h satisfying (44), and our quantity Y ′
S = M2, we have

Y ′
S > (2h(2n

1
2M)n)

1
n−λ (4(Me

n
2 )

1
a2 )

λ
n−λ ,

where the right hand side is the quantity defined by Schmidt in [18, eq. 4.6] to
distinguish between small and large solutions, where a and λ are defined as in (14).
Therefore we may apply Schmidt’s upper bound for the number of large solutions
to our inequalities a ≤ |F (x, y)| ≤ b. We note here that in [18], no restriction on h
is assumed, however our assumption (44) results in having the above inequality for
Y ′
S hold.

Proposition 6.2. Let N2(F, n, s, h) be the number of large solutions of 1 ≤ |F (x, y)|
≤ h, where F (x, y) ∈ C(4s − 2) has degree n. Assume that h satisfies (44). We
have N2(F, n, s, h) %

√
ns.

Proof. This is proven in [18]. See the discussion in the beginning of page 247 of
[18], which results in Theorems 3 and 4 of [18]. !

We conclude this section by recalling the trivial but important fact that in in-
equalities (42) and (43) the discriminant D is fixed, but the Mahler measure (and
therefore the definition of small and large solutions) varies.
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7. Small solutions (II), proof of Proposition 6.1

We first give an upper bound for the number of solutions such that 0 < y ≤ Y ′
S .

7.1. Estimation of linear forms. Let 0 ≤ a ≤ b, with (45) and (46). Suppose
that F (x, y) belongs to the class C(4s− 2), is reduced and satisfies (50).

We have

F (x, y) = a0(x− α1y) . . . (x− αny),

where α1, . . . ,αn are the roots of the polynomial F (x, 1), and put

Li(x, y) = x− αiy

for i = 1, . . . , n. The following is Lemma 4 of [18]. We present its short proof here
to clarify the definition of Q in (50) and more importantly the importance of the
assumption b ≤ h.

Lemma 7.1. Suppose G(x, y) = b0(x− β1y) . . . (x− βny) is normalized and equiv-
alent to the reduced form F , with (45), (46) and (47), and let

(51) ηi = |βi −m|+ 1 (i = 1, . . . , n)

where m is an integer. Then

(52) η1 . . . ηn > Q,

where Q is given in in (50).

Proof. The form

Ĝ(x, y) = G(x+my, y) = b0

n∏

i=1

(x+ (m− βi)y)

is also normalized and equivalent to both G and F . Since F is reduced

M(F ) ≤ M(Ĝ) < |b0| η1 . . . ηn.

Our proof is complete, since G is reduced and |b0| ≤ h. !

Our next Lemma is a modified version of Lemma 5 of [18].

Lemma 7.2. Suppose (x0, y0) and (x, y) are linearly independent primitive integer
points that satisfy a ≤ |F (x, y)| ≤ b, with (45), (46) and (47). Then there are
numbers ψ1, . . . , ψn satisfying

(53) ψi = 0 or
1

2n
≤ ψi ≤ 1,

with

(54)
n∑

i=1

ψi ≥
1

2
,

such that

(55)

∣∣∣∣
Li(x0, y0)

Li(x, y)

∣∣∣∣ ≥
(
Qψi − 3

2
− h1/2n

)
|x0y − xy0| ,

for i ∈ {1, . . . , n}.
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Proof. Pick (x′, y′) ∈ Z2 with x′y − xy′ = 1, so that (x′, y′) and (x, y) form a basis
for Z2. We may write (x0, y0) = a(x, y) + b(x′, y′). Then

x0y − xy0 = b (x′y − xy′) = b.

Therefore,

(56)
Li(x0, y0)

Li(x, y)
= a+ (x0y − xy0)

Li(x′, y′)

Li(x, y)
= a− (x0y − xy0)βi,

for i ∈ {1, . . . , n}. (We define βi by the second equation above.) Set

G(v, w) := F (v(x, y) + w(x′, y′)) ,

so that G is equivalent to F , and G is normalized (recall that (x, y) and (x′, y′) are
fixed and x′y − xy′ = 1). We have

G(v, w) = a0

n∏

i=1

Li (v(x, y) + w(x′, y′))

= a0

n∏

i=1

(vLi(x, y) + wLi(x
′, y′))

= b0

n∏

i=1

(
v +

Li(x′, y′)

Li(x, y)
w

)

= b0

n∏

i=1

(v − βiw)

with b0 = F (x, y). Note that
∣∣∣∣
F (x0, y0)

F (x, y)

∣∣∣∣ ≤ h1/2.

We may assume that
∣∣∣∣
Ln(x0, y0)

Ln(x, y)

∣∣∣∣ = min
i

∣∣∣∣
Li(x0, y0)

Li(x, y)

∣∣∣∣ ,

so that ∣∣∣∣
Ln(x0, y0)

Ln(x, y)

∣∣∣∣ ≤ h
1
2n .

By (56), we have

(57) |a− (x0y − xy0)βn| ≤ h
1
2n ,

and

|a− (x0y − xy0)β| ≤ h
1
2n ,

where β is the real part of βn. Now let m be an integer with

|m− β| ≤ 1

2

and define η1, . . . , ηn by (51), so that (52) holds by Lemma 7.1. We define

η′i =






Q if ηi ≥ Q,
ηi if Q1/2n ≤ ηi < Q,
1 if ηi < Q1/2n.
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We note that since η1 . . . ηn > Q, we have, by the definition, that

(58) η′1 . . . η
′
n ≥ Q1/2.

Now we define the numbers ψi, for i ∈ {1, . . . , n}, as follows

η′i = Qψi .

Clearly ψi satisfy (53) and (54). By (56) and (57),
∣∣∣∣
Li(x0, y0)

Li(x, y)

∣∣∣∣ = |(β − βi)(x0y − xy0) + a− (x0y − xy0)β|

≥ |β − βi| |x0y − xy0|− h
1
2n ≥

(
|m− βi|−

1

2

)
|x0y − xy0|− h

1
2n

≥
(
|m− βi|−

1

2
− h

1
2n

)
|x0y − xy0|

=

(
ηi −

3

2
− h

1
2n

)
|x0y − xy0| .

Since ηi ≥ η′i = Qψi , the proof of the lemma is completed. !

The following is a modified version of Lemma 6 in [18]:

Lemma 7.3. Suppose (x, y) is primitive, with y > 0, a ≤ |F (x, y)| ≤ b, with (45),
(46) and (47). Then there are numbers ψi = ψi(x, y) (i = 1, . . . , n), which satisfy
(53) and (54), such that

(59) |Li(x, y)| <
1

Qψi/2y

for each i with ψi > 0.

Proof. We first note, by definition, that for i with ψi > 0, we have ψi ≥ 1
2n , and

by (50),

Qψi ≥ Q
1
2n > 3 + 2h1/2n.

Therefore,

Qψi − 3

2
− h1/2n ≥ 1

2
Qψi ≥ Qψi/2

since, by (50) again, Q ≥ 42n. We now apply Lemma 7.2 with (x0, y0) = (1, 0). !

7.2. Counting small solutions. We define Φi (i = 1, . . . , n) by

(60)






Φi = 0 when | Imαi| > 1,
M−Φi = | Imαi| when 0 < | Imαi| ≤ 1,
Φi = +∞ when αi is real.

Lemma 7.4. Let Y be the set of primitive integer points satisfying

a ≤ |F (x, y)| ≤ b,

with b
a ≤ h

1
2 , and 0 < y ≤ Y ′

S . Then for i = 1, . . . , n,

(61)
∑

x∈Y

ψi(x, y) < 10min(1,Φi)
logM

logQ
.
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Proof. We follow the proof of Lemma 7 in [18]. For a fixed i, let (x1, y1), . . . ,
(xν , yν) be the elements of Y with ψi > 0, ordered such that y1 ≤ . . . ≤ yν . By
(59), we have

|Imαi| ≤
∣∣∣∣αi −

xj

yj

∣∣∣∣ <
1

Qψi(xj ,yj)/2y2j
for j = 1, . . . , ν. First we conclude that |Imαi| ≤ 1, so that

(62) |Imαi| = M−Φi

(with M−∞ = 0). So we have

M−Φi <
1

Qψi(xj ,yj)/2y2j
.

Therefore, for every (xj , yj) ∈ Y, we have

(63) yj < MΦi/2, ψi(xj , yj) < 2
logM

logQ
Φi.

In particular,
yν ≤ Yi,

where

(64) Yi := min(Y ′
S ,M

Φi/2).

Now let us suppose that ν > 1 and 1 ≤ j < ν. We have
∣∣∣∣αi −

xj

yj

∣∣∣∣ <
1

Qψi(xj ,yj)/2y2j
,

and ∣∣∣∣αi −
xj+1

yj+1

∣∣∣∣ <
1

Qψi(xj+1,yj+1)/2y2j+1

.

So we have

1 ≤ |xjyj+1 − xj+1yj |

=

∣∣∣∣(yjyj+1)

(
xj

yj
− αi + αi −

xj+1

yj+1

)∣∣∣∣

<
yj+1

yjQψi(xj ,yj)/2
+

yj
yj+1Qψi(xj+1,yj+1)/2

<
yj+1

yjQψi(xj ,yj)/2
+

1

3
,

since yj

yj+1
≤ 1 and Qψi(xj+1,yj+1)/2 ≥ Q

1
4n > 3 by (50). Therefore, we obtain the

following gap principle.

yj+1 >
2

3
Qψi(xj ,yj)/2yj > Qψi(xj ,yj)/4yj (1 ≤ j < ν),

by using (50) once again.
Applying the above gap principle repeatedly, and by the definition of Yi in (64),

we have
Q

1
4 (ψi(x1,y1)+...+ψi(xν−1,yν−1)) < yν ≤ Yi

and consequently,
ν−1∑

j=1

ψi(xj , yj) < 4
log Yi

logQ
.
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For our choice of Y ′
S = M2,

log Y ′
S = 2 logM,

and therefore
ν−1∑

j=1

ψi(xj , yj) < 4min

(
2,

Φi

2

)
logM

logQ
≤ 8min (1,Φi)

logM

logQ
.

Now to estimate
∑ν

j=1 ψi(xj , yj), we only need to estimate ψi(xν , yν). By (53) and
(63), we have

ψi(xv, yv) ≤ min

(
1, 2Φi

logM

logQ

)
≤ 2min (1,Φi)

logM

logQ
.

So we conclude the assertion of the Lemma. !

Now we note that the number of small solutions to a ≤ |F (x, y)| ≤ b is equal to∑
x∈Y 1, and by (54) and (50), we have

∑

x∈Y

1 ≤ 2
n∑

i=1

∑

x∈Y

ψi

≤ 20
n∑

i=1

min (1,Φi)
logM

logQ

≤ 40
n∑

i=1

min (1,Φi) .

In the next subsection we will show that

(65)
n∑

i=1

min (1,Φi) %
√
sn

This will complete the proof of Proposition 6.1.

7.3. The clustering of roots with small imaginary parts. In order to utilize
a powerful result of Schmidt in [18], which will be stated in Proposition 7.5, we will
assume that n > 1700(log n)3. Otherwise, we have n ≤ 1700(log n)3 and therefore
in this case n % s, and the previously established bound O(n) for the number of
primitive solutions of general Thue’s inequalities (see [1], for example) will prove
Proposition 6.1.

Our goal now is to show (65), for n > 1700(log n)3. Our discussion is the same
as Section 9 of [18].

Proposition 7.5. Let f(z) be a polynomial of degree n with rational coefficients,
of Mahler height M(f) and without multiple roots. Suppose that f(x)f ′(x) has not
more than q − 1 real roots, where q ≥ 1. Suppose further that M(f) > e2n. Then
for φ in

(66) 1700n−1(log n)3 ≤ φ ≤ 1,

the number of roots x+ iy with imaginary part in 0 < y ≤ M(f)−φ does not exceed(
8nq
φ

)1/2
.

Proof. This is the Corollary in Section 9 of [18]. !
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Since F ∈ C(4s− 2), then f(z) = F (z, 1) has no more than 4s− 1 real zeros and
f ′(z) = Fx(z, 1) has no more than 4s−2 real zeros. So ff ′ has at most 8s−3 = q−1
real zeros, where we take

(67) q = 8s− 2.

We may suppose that Φ1 ≥ . . . ≥ Φn. The number of summands in

(68)
n∑

i=1

min(1,Φi)

with Φi ≥ 1 is the number of roots αi of F (x, 1) with |Imαi| ≤ M−1. By taking
φ = 1 in (66), the contribution of summands with Φi ≥ 1 in the sum (68) is

< (8nq)1/2 = 2
√
2nq.

Clearly the summands with Φi ≤ 1700n−1(log n)3 < 1 do not contribute.
The remaining summands have 1700n−1(log n)3 < Φi < 1. Since |Imαj | =

M−Φj ≤ M−Φi for j ≤ i, Proposition 7.5 yields i < (8nq/Φi)1/2, so Φi < 8nq/i2.
We conclude that these terms contribute

<
n∑

i=1

min(1, 8nq/i2) = [2
√

2nq] + 8nq
n∑

i=[
√
8nq]+1

1/i2

< 4
√
2nq + 1− 8q %

√
ns,

by (67).
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