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Abstract

Soft robot arms remain challenging to model effectively. The arm’s primary deformation

is bending, coupled with extension or compression, but the strains experienced can be high,

the materials are generally nonlinear, and the deformations are large. Existing work has

focused on models intended to improve control, which rely on empirical characterization of

each arm design, post-manufacturing. This article presents a quasi-static model based on

Euler-Bernoulli beam theory that generalizes across a broad set of arm designs. The model is

implemented for fluid-driven soft arms constructed with McKibben actuators. Actuators are

treated as active materials, and their force is characterized as a nonlinear function of pressure

and uniaxial strain. The model is validated for multiple soft arms under external loads, and

further use is demonstrated through an investigation of the soft arms’ loaded workspace.

Higher load capacities are shown to be concentrated at the arms’ midlines. Distal taper

is examined in an example arm design, and is shown to improve range of motion and load

resistance when compared to a constant width arm. The model can be used to evaluate

variations on the number and arrangement of actuators in an arm, and it is proposed as a

first order design and analysis method for soft robot arms.
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1. Introduction

Soft robotics is motivated by the idea that incorporating a degree of biological softness

allows robots to be more adaptable, more robust and more effective. A robotic fish with

a soft tail can mimic natural swimming [1], a soft gripper can gently handle fragile reef

samples [2] and a soft robot arm can grasp by conforming to an object [3]. Soft robot

arms aim to perform reaching and manipulation tasks, but they trade traditional robot

arms’ high loads and precision for inherent safety and adaptability through conformance.

Existing soft robot arms are capable of bending, contraction, extension, or combinations of

the these deformations. Each arm’s deformation mode, passive compliance, range of motion

and applied force are functions of its actuator type and their arrangement.

The workings of soft arms have been established at a high level: contract or extend indi-

vidual actuators to deform the arm (Figure 1). Qualitative relations between specific design

and performance variables (e.g., width vs. passive compliance) can be intuited using existing

mechanics models, but the fundamental mechanics of soft arms (e.g., strains experienced,

deformation patterns, limiting factors) remain unexplored. There exist no quantitative de-

sign rules for soft robot arms that address the interconnections between compliance, force

and range of motion.

The softness of soft robots, necessary for compliance and gentle interactions, complicates

development of models that can be used to provide design guidance. Soft arms are commonly

constructed from nonlinear materials (e.g., elastomers), experience large strains and undergo

geometrically nonlinear deformations. Bending, the soft equivalent to traditional rotary

joints, receives the most focus. However, existing static and dynamic bending models are

limited by narrow applicability, because they rely on experimentally fit parameters that

are determined after the arm is built. Using the same parameters under different loading

conditions that vary from those tested causes enough inaccuracy to invalidate model use

[4]. These parameters have not been demonstrated to generalize across designs. Simple

models have been used to predict deformations or aid design of individual actuators [5, 6],

despite similar complexities, and there is an opportunity for models that accomplish the
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Figure 1: A spatial soft arm. The arm consists of six McKibben actuators equally distributed around a

circle. Pressurizing actuators on one side of the arm causes a bend. The bend curvature and direction are

determined by the actuators selected and the pressures applied.

same function for soft arms. This article presents a quasi-static bending model derived

from a geometrically exact Euler-Bernoulli formulation. This model is generalizable across

designs, and it can predict the impact of design changes without constructing and testing

an arm, because actuator reaction forces were characterized independently from any soft

arm. The model was validated and used to analyze the relationship between arm width and

loaded workspace shape, as well as the effect of distal taper on arm performance.

Soft arms have been driven by tendons, shape memory alloys (SMA) or pneumatic ac-

tuators [3, 7, 8]. Soft pneumatic actuators employ stiffness asymmetry to turn inflation

into a desired motion, whether through fiber reinforcements [6], cross section [9] or mate-

rial [10]. These actuators may contract, extend, twist, bend or some combination thereof.

Pneumatic actuators are popular because they are made from predominantly soft materials,

are moderately fast and are cheap and impact resistant [11]. Tendon-driven arms require

a stiff backbone, and SMA actuators are comparatively slow [12]. Pneumatically actuated

soft arms are the focus of this manuscript, and the potential for expanding the model to

other actuator types is discussed in Section 6.

Although individual bending actuators exist, soft arms tend to be constructed by com-
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bining contracting or extending actuators to form bending units. The detailed design of

each arm is different, but most soft arms follow a standard schema. Longitudinal actuators

are arranged in parallel, either in a plane to bend left or right (Figure 2) or distributed

evenly around a circle to bend in any direction (Figure 1) [3, 13–18]. Arms constructed with

contracting actuators bend toward the pressurized actuators, while arms constructed with

extending actuators bend away. Multiple bending units can be connected serially in order

to increase the number of degrees of freedom.

Modeling efforts for robot soft arms have focused on kinematics and dynamics for model-

based control, rather than modeling to aid design. Kinematic models use sensor input (e.g.,

actuator length) to geometrically relate known deformations to arm shape [19, 20]. These

models are well suited to arms where actuators’ lengths are simple to measure in situ, and

for closed loop control, but the models do not predict the results of design changes such

as altering the arm’s width. Dynamic models have been formulated with Euler-Langrage

equations, but these models simplify stiffness parameters to constant values experimentally

fit for each arm [4, 15, 21]. Experimental stiffnesses improve accuracy and solution speed,

which is beneficial for model-based control but invalidates model use for design. Recent

models have used Cosserat rod theory to add shear and torsion to the arm’s kinematic

representation, but these models were either derived for cable-driven arms, which have a

simpler actuation force profile [22], or use linear elastic material models that do not model

the fundamental behavior of pneumatic actuators [23].

Static or quasi-static modeling efforts have made more progress toward generalizability.

Classical bending models are limited to small strains and deformations, but they can be

extended to geometrically exact (i.e., large deformation) if closed-form solutions are not

required. Euler-Bernounlli formulations have been developed for bending actuators, but

the formulations rely on linear elastic materials and do not extend to the complexity of

actuators in arms [10, 24]. Static models developed for cable-driven and shape memory

alloy arms also rely on material models that do not generalize to the more complex case

of soft pneumatic actuation [7, 25]. Static models of pneumatically-driven soft arms have

used simplified actuator models [26], which limit their accuracy, and have assumed that the
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neutral axis lies at the arm’s midline [17].

Soft bending arms are mechanically similar to beams with active elements that change

length and stiffness through self-stress applied during pressurization. Euler-Bernoulli beam

theory requires a planar cross section, but many arm designs incorporate reinforcing plates

that limit perpendicular shear [4, 14]. Linear elastic material constants used in balance laws

can be replaced by actuator force characterizations. Prior work derived an Euler-Bernoulli

model for soft bending arms, which was generalizable across designs but excluded external

loads [27].

This manuscript extends the previous model to include external loads, which requires

a more thorough actuator characterization and nonconstant curvature kinematics. The

developed model is the first validated, generalizable model of fluid-driven soft arms. The

contributions of this work are:

• A model for soft arm bending that generalizes across designs, and can be used to

examine the comparative load capacity and curvature of design variants prior to arm

manufacture.

• Model validation for load-free and loaded planar and spatial arms.

• Closed form relations for curvature and bend direction for structurally minimal un-

loaded arms.

• Analysis of how external loads affect soft arms’ workspace.

Section 2 defines the arm design schema and presents the details of the validation test

arm. The extended model is presented in Section 3, and further details on actuator char-

acterization are given in Appendix A. The model is validated for planar and spatial arms

in Section 4. The effect of segment width and arm distal taper on applied force and range

of motion is analyzed in Section 5. Section 6 concluded with comments on the model’s

potential and limitations, as well as future work.
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Figure 2: (a) A two segment planar soft arm that demonstrates the modular architecture. McKibben

actuators are non-permanently attached to plates via entrapped keys. The plates determine segment width.

The keys are shown on a lone actuator in (b). Plates and keys were 3D printed with polylactic acid filament.

Keys were attached to actuators with Momentive RTV157.

2. Soft Arm Design

The soft arms are constructed from longitudinal pneumatic actuators connected by rigid

plates (Figure 2). Similar arms can be constructed from contracting or extending pneumatic

actuators, but the model was validated with arms composed of contracting McKibben actu-

ators. The actuators consisted of a polyester plastic braided sheath (McMaster #9284K2)

over an EcoFlex 00-30 elastomeric tube. Each actuator was initially 7 mm in diameter and

230 mm long. The sheath expands radially and contracts in length when inflated.

The actuators were joined to the rigid plates via a previously-developed modular key

system [28]. The keys were permanently bonded to the actuators with RTV157, and non-
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permanently entrapped within cutouts in the plates. The rotational stiffness of the bonded

joint and the entrapped joint is high, such that the joint cannot pivot freely. The plates define

actuator spacing and arrangement, and also enforce cross section planarity and increase the

arm’s buckling load. Arms were constructed with either planar architectures (bending left

or right in a single plane) or spatial architectures (bending in any direction by pressurizing

two actuators in specific proportions). Segments were connected by screws between plates.

Five planar segment widths were evaluated: 20 mm, 30 mm, 40 mm, 50 mm and 60 mm.

The model was also validated for a two segment planar arm, with a 60 mm base width and

a 30 mm tip width, and a single-segment spatial arm with a 40 mm diameter. The spatial

arm had six actuators spaced evenly around the circular perimeter. Multisegment spatial

arms were not considered as part of this initial validation and analysis effort.

The longitudinal-actuator arm design is representative of a broader class of soft robot

arms. Similar designs connect longitudinal actuators to rigid plates [4, 14], or replace plates

with ties around or chemical bonds between bundled actuators [3, 29]. While the presented

model generalizes across arms designs, each actuator design must be characterized in order

to be used.

3. Bending Model

The model considers arms composed of N parallel pneumatic actuators, a subset of which

are pressurized. Actuator arrangement is known, as are external loads, and the model de-

termines the arm’s deformed shape. The formulation describes arm shape with shear-free

curvatures at the arm’s neutral axis, like Euler-Bernoulli beams, and the formulation is

geometrically exact (i.e., it does not restrict deflections to one dimension). Solutions must

be determined numerically, but the model can accommodate high strains and large defor-

mations. While the model can be formulated as coupled, nonlinear differential equations,

similar to existing rod theory [30], it is presented as a set of equilibrium equations that are

discretized along arm length and solved numerically.
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3.1. Segment model derivation

The segment model replaces linear elastic constitutive relations (σ = Eε) used in Euler-

Bernoulli beam models with discrete, summed actuator forces. A soft actuator’s reaction

force depends on pressure, P , and strain, ε, and throughout the model derivation this force is

abstracted as a general relation F = F (P, ε). Soft arms use pneumatic actuators as primary

movers and support structures, and actuator reaction force models must be equally holistic.

Actuator models typically focus on the actuation region, which for McKibben actuators is

the set of strains and pressures that produce a tensile force at a contraction strain [5, 31, 32].

No physical limitation keeps actuators within the actuation region, and certain combinations

of self-stress and external load can strain actuators beyond it. This complexity is hidden by

the abstracted relation F (P, ε), but the model requires a characterization that is continuous

and accurate across the relevant strain and pressure domains. Actuator characterizations

are discussed in Section 3.2, and the characterization functions are provided in Appendix A.

The segment model’s assumptions are:

1. The initially planar cross section remains planar. Shear normal to the neutral axis is

neglected, and strains are assumed to be linear through the cross section.

2. Actuators’ forces act as point loads. Each actuator’s reaction force at a given point

is represented as a point load applied at the actuator cross section’s center. Actuator

strain is assumed to be perfectly uniaxial.

3. Actuators behave identically along their length. End effects and local disturbances near

keys are neglected. The characterization F (P, ε) applies regardless of length.

4. The arm bends in one plane and loads are applied within that plane. The orientation of

the plane may be initially unknown, and is determined through moment equilibrium,

which is selected to be evaluated at the arm’s base. Planar arms follow this assumption

inherently, whereas spatial arm bend direction is modeled by a single angle.

5. Arm deformation is quasi-static and history independent. Hysteresis, viscoelasticity

and dynamics are neglected.

The model is presented for a single segment of a spatial arm (Figure 3) under a tip load
8



Q . The arm cross section consists of N identical actuators, and pressurizing two actuators

provides directional control. Pressurized actuators need not be adjacent. The arm is assumed

to bend in a single plane, at an angle θb from a reference plane. The angle θb depends on the

actuators selected and pressures applied. The derivation steps are to (1) establish kinematics,

(2) determine reaction forces and (3) apply equilibrium relations.

Kinematics. The arm segment is modeled kinematically using the same assumptions as

Euler-Bernoulli beam theory, which is equivalent to a shear-free, torsion-free, planar Cosserat

(a)

(c)

(b)

(d)

Figure 3: Notation definition. (a) The arm exists within a Cartesian coordinate system and bends within

a single plane rotated by θb from the x − z plane. (b) The bend within the rotated plane x′ − z′ can be

described by either a neutral axis height h(s) and curvature κNA(s), or a base curvature κc(s) and base

curve stretch λc(s). (c) Each point along the arm has an internal reaction with a normal component (qn(s)),

tangent component (qt(s)) and moment (qm(s)). (d) The cross section forces and moments at each point s

are determined by each actuator’s distance from the neutral axis and arm midline. The neutral axis height,

h(s), is illustrative as negative, which reflects many of the validation case results.
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rod. The planar cross-sections remain planar and rigid throughout deformations of the

structure, per the shear-free assumption. Curvature lies in a single plane, which assumes

that the shapes the segments assume under the applied loads (pure forces at the end of

the arm, and the corresponding force-moment couples induced at the interfaces between

segments) are close enough to planar deformations that out-of-plane effects can be neglected.

The arm is straight in the segment’s neutral configuration (no external load and no

pressure to the actuators), and its cross-sections can be parameterized by their distance s

from the base of the segment in this configuration. There is a frame {ex, ey, ez}(s) at the

center of each cross section, for which ez is normal to the cross section, ex points to Actuator

1, and ey is in the cross section at right angles to ex. The frame at the proximal end of the

segment (s = 0) provides an xyz frame for describing the geometry of the entire segment (see

Figure 3). Each actuator passes through the cross-sections at a location ai =
[
aix aiy 0

]T
.

There are two methods of describing the segment’s deformed shape. Euler-Bernoulli

beam theory traditionally describes deformations using the curvature and location of the

beam’s neutral axis, or set of cross sectional locations with zero strain. Other formulations,

like Cosserat rod theory, use curvature and stretch of a base curve. Both formulations are

developed in this manuscript. The neutral axis formulation is presented in Appendix B, and

the base curve formulation is presented in this section.

The base curve formulation describes the segment’s deformed shape by three quantities:

the bend plane of the “base curve" of the segment (the curve running through the centers of

the cross-sections), the base curve’s stretch and the base curve’s curvature:

1. The bend plane x′−z′ is rotated from the x−z plane at the proximal end of the segment

by an angle θb around the z axis. The bend axis y′ is the orthogonal complement to

the bend plane.

2. The stretch λc(s) is a geometric (proportional) expression of the extension (λc > 1) or

compression (λc < 1) of the base curve, and corresponds to the speed at which a point

moving along the deformed curve at ṡ = 1 travels as measured in the x′ − z′ frame.

Stretch λc(s) is related to the strain εc in the base curve as λc = 1 + εc.
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3. The curvature κc(s) is the rate at which the tangent vector to the base curve rotates

as a point moves along the curve at unit speed as measured in the ambient space, or

within the world, and its inverse is the local radius of curvature of the base curve. A

closely-related quantity is the s-curvature, κs, where

κs = κc(s)λc(s) =
dθ

ds
, (1)

which is the rate at which the tangent vector rotates as a point moves along the curve

at unit ṡ speed.

The locus of the base curve in the bend plane and its tangent, for a given stretch and

s-curvature, can be generated as the solution to
z′

x′

θ

 (s) =

∫ s

0


cos θ(S) − sin θ(S) 0

sin θ(S) cos θ(S) 0

0 0 1



λc(S)

0

κs(S)

 dS, (2)

in which the third row integrates κs to find the tangent orientation at each point along the

curve, and the first two rows use this tangent orientation to direct a translational flow at

speed λc.

The shear-free assumption implies that the cross-sections are arranged along the base

curve such that their ez(s) axes are aligned tangent to the base curve. The arm is torsion-

free, which means this alignment is achieved by rotating each cross-section frame around the

y′-axis by θ(s). The orientation R(s) of the cross-section frames relative to the xyz frame at

the proximal end of the segment is the composition of the bend-plane and bending rotations,

R(s)ex ey ez

 =

Rz(θb)
cos θb − sin θb 0

sin θb cos θb 0

0 0 1


Ry(θ(s))

cos θ(s) 0 sin θ(s)

0 1 0

− sin θ(s) 0 cos θ(s)

, (3)

from which the location of the ith actuator in cross section s can be calculated relative to

the segment’s proximal frame by rotating its position vector ai from the {ex, ey, ez}(s) basis
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of the cross section to the xyz coordinates and adding this vector to the position of the base

curve at s,

~ai,xyz = Rz(θb)


x′(s)

y′(s)

z′(s)

+R(s)


aix

aiy

0

 . (4)

The cross-section frames are all rotated around the y′-axis relative to the segment’s

proximal frame, which means the bend plane angle θb also identifies a rotation from the

{ex, ey, ez} cross-section bases into a set of {en, eb, et} normal-binormal-tangent bases for

the cross sections. This property allows the strains in the actuators to be calculated by

using the bend plane rotation angle θb to determine the actuator positions within, and

perpendicular to, the bend plane. The actuator position vectors are first rotated into the

{en, eb, et} bases, 
a′in

a′ib

0

 = R−1z (θb)


aix

aiy

0

 . (5)

The normal component of this actuator position, a′in, describes the distance between the

base curve and the actuator in the bend plane. Invoking the constraint that cross-sections

remain rigid, the velocity of a frame moving along the curve at unit s-velocity with a lateral

offset from the base curve of a′in is
λi(s)

0

κs,i(s)

 =


1 0 −a′in
0 1 0

0 0 1



λ(s)

0

κs(s)

 , (6)

which resolves to an actuator strain of

λi(s) = λc(s)− a′inκs(s). (7)

Finally, the strain in the actuator can be recovered by subtracting 1 from the stretch,

εi(s) = λi(s)− 1. (8)
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Internal reactions. The arm segment’s internal reactions must be equilibrium with the ex-

ternal loads at every point along s. A general load Q is limited to twist-free loads entirely

within the bend plane, but it can consist of combination of an in-plane bending moment

Qm and force Qf . The internal reaction forces, qt(s), and moments, qm(s), are determined

along the base curve, within the êt − ên coordinate system (Figure 3(b), (c)).

The base curve’s tangent vector in the normal-binormal-tangent bases is given by

êt(s) = (cos θ(s), sin θ(s)), (9)

where θ is the tangent angle of the base curve and is found using Equation 2. The tangential

force balance is

Qf · êt(s) + qt(s) = 0. (10)

The reaction force’s normal component, qn(s), is shown in Figure 3(c), but it is neglected in

this formulation; Euler-Bernoulli beam theory assumes infinite shear stiffness and therefore

a shear force does not change the predicted deformation. The moment balance is

rm ×Qf + qm(s) +Qm = 0, (11)

where rm is the lever arm from the point of interest to the loading point, given by

rm(s) = (z′c(L)− z′(s), x′c(L)− x′(s)). (12)

Equations 10-12 demonstrate the process of finding reaction forces and moments for a

tip load. Reaction forces caused by distributed loads can be found using a similar process,

by expanding Equations 10 and 11 to include the additional loads. Point loads not at the tip

can similarly be accommodated by modifying the lever arm rm distance in Equation 12 to

the location of the load. The internal reactions qt and qm from multiple discrete load cases

(e.g., a tip load and a distributed gravity load) can be calculated independently, given an

arm configuration, and summed. Solved displacements from discrete load cases, however,

can not be superimposed. Superposition of displacements is allowed in small deformation

Euler-Bernoulli beam theory, but large deformations are expected when modeling soft arms.
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Cross section equilibrium. A segment’s internal reaction forces are produced by the aggregate

of the actuator forces. The actuators are modeled as discrete point loads and their total

force is summed at each point along s. The tangential actuator force is

qt(s) =
i=N∑
i=1

Fi(ε(s), Pi), (13)

where i indicates the contribution from the ith actuator. The actuator moment sum, within

the bend plane and taken about the base curve, is

qm(s) =
i=N∑
i=1

Fi(ε(s), Pi)~ai · ên, (14)

where ~ai ·ên is equivalent to a′in in Equation 5. An additional equilibrium equation is required

to fully define the system. Load cases are limited to those that occur within the bend plane,

and the arm is assumed to bend in a single plane. There is no internal reaction in the

perpendicular plane, and the moments from each actuator must sum to zero. The second

moment balance, taken perpendicular to the bend plane, is

i=N∑
i=1

Fi(ε(0), Pi)~ai · êb = 0, (15)

where ~ai · êb is equivalent to a′ib from Equation 5. This second moment balance is not a

function of s, because the arm is assumed to bend in one plane, and is selected to be evaluated

at s = 0. The perpendicular plane moment balance may not be zero at other points along the

backbone, but this residual is neglected by the single-bend-plane assumption. The validity

of this assumption is verified during spatial arm testing (Section 4.4).

The model is solved numerically by discretizing the simulated arm into j sections, and

driving residuals of the three equilibrium equations (Equations (13), (14) and (15)) to zero.

Validation efforts solved the segment model in MATLAB with fsolve.

3.2. Actuator characterization

The segment model simplifies actuators to uniaxial elements and defines their input state

as uniaxial strain, ε, and pressure, P . The output state is force, F . An actuator force char-

acterization F (ε, P ) that covers all feasible strain-pressure combinations is required to solve.
14



Figure 4: The actuator force characterization. (a) The strain-pressure region for a McKibben actuator.

McKibben actuators have a tensile reaction force in actuation region (contraction under pressure) and the

pressurized extension region (externally forced extension under pressure), which is shown as red. Pressurized

compression has a compressive reaction force, which is shown as blue. (b) The empirical force function for

the actuators used in the validation effort.

Each actuator in a soft arm performs the dual role of primary mover and support struc-

ture. Unpressurized actuators provide passive support. Pressurized actuators can induce

deformation, but they can also be pushed or pulled beyond the actuator’s stroke limits by

internal loads. The segment model requires that the actuator characterization be able to

predict the force for all probable combinations of strain and pressure, in order to replace a

material constitutive relation.

The strain-pressure input space for a McKibben actuator can be divided into three
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regions (Figure 4): actuation, pressurized compression and pressurized extension. McKibben

actuators contract when pressurized, and their actuation region is defined as the region

in which they produce a tensile force at a contraction strain. Actuation and pressurized

compression are divided by the free contraction line, P (εFC). The actuator produces zero

force along this line, and the line represents the pressure required to overcome the energy

spent deforming the elastomeric tube and plastic sheath. Pressurized compression occurs

when the pressure is insufficient to provide that energy at a given strain. The actuation and

pressurized extension regions are separated by the zero strain line. Pressurized extension

can only occur if the actuator is subjected to an opposing load higher than the blocked force

(force at zero strain for a given pressure). Passive extension and compression lie along the

base of the pressurized regions.

An actuator characterization can be formed by modeling each region, but the segment

model requires that the characterization be continuous at the region boundaries. Physical

models, while more likely to generalize across actuator designs, focus on capturing core me-

chanics, and because the core mechanics vary from region to region, simple physical models

are unlikely to match at region boundaries. This article uses empirical characterizations

with forms selected to guarantee consistency at region boundaries [33]. These characteri-

zations were developed from force-pressure-strain data collected in each region and are not

extrapolated beyond the tested strains and pressures. The empirical force function is plotted

for the strain-pressure space in Figure 4. The fit forms, coefficients and testing details are

discussed in Appendix A.

3.3. Segment model special cases

There are three segment model simplifications of note: (1) the planar case, (2) constant

curvature and (3) structurally minimal unloaded arms. First, the segment model is simplified

in the planar case (where actuators lie in one plane) by noting that the bend angle θb = C ≡ 0

regardless of actuator pressurized. An arm with only two actuators in each segment is

inherently planar. An arm with more actuators can act as a planar arm by pressurizing

actuators in groups. The planar validation arms have four actuators per segment, grouped
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in two sets, with one set on each side of the segment (Figure 2). Each group is pressurized

together. Planar arms are studied extensively in this manuscript because they demonstrate

many of the same mechanics as spatial arms in a more controllable setting.

Second, the segment model reduces to a constant curvature model when the arm is under

negligible external load. The arm may be self-stressed, caused by pressurized actuators

acting on unpressurized actuators, but the absence of external loads means that the sum of

the internal reaction forces and moments (Equations (13)-(15)) are identical and zero along

s. If the arm cross section and actuator are also identical along s, the constraining equations

predict the same curvature and base curve stretch (or neutral axis height) at every point.

Third, the segment model can be further simplified for unloaded planar arms with two

actuators and unloaded spatial arms with three actuators. These arms are termed struc-

turally minimal in this manuscript, which means that they contain the minimal number of

actuators required to access their maximum degrees of freedom. Structurally minimal arms

have a sufficiently simple strain state to allow a closed form solution. Consider a planar arm

with two actuators separated by a distance 2R. The arm is under no load, which reduces

the model to two equilibrium equations that are identical along s:

F1 + F2 = 0, (16)

F1R− F2R = 0. (17)

Regardless of pressure in either actuator, the only solution to Equations (16) and (17) is

F1 = F2 = 0. (18)

The free contraction line is the only location in the actuator’s strain-pressure space with

zero force (the line is labeled in Figure 4(a)). Along this line, all pressure work is used to

deform the actuator, which results in the maximum contraction possible for a given pressure.

The contraction strain increases monotonically with pressure and is given by εFC = εFC(P ),

where εFC is positive in extension and negative in contraction. εFC(P ) may be found by

inverting the free contraction line fit P (εFC) or, if used only in the special cases, by refitting

the characterization data with pressure as the independent variable. Satisfying Equation
17



(18) requires that each pressurized actuator be contracted maximally and each unpressurized

actuator have zero strain. If only one actuator is pressurized, the arm bends in the direction

of that actuator, while the opposing actuator is unstrained, which gives a neutral axis height

of

h = −R. (19)

The unpressurized actuator experiences no length change, while the pressurized actuator

contracts maximally to εFC(P ). The stretch changes linearly through the cross section,

which gives a base curve stretch of

λc = 1 +
εFC(P )

2
. (20)

The base curve’s curvature is

κc =
−εFC(P )

(2 + εFC(P ))R
, (21)

which is calculated by solving Equation (7) for the actuator along the neutral axis, where

i = 1 and a′in = −R. Planar arms with n actuators pressurized together on each side do not

change the model’s solution. Each force F is replaced by nF and the coefficient n cancels.

Unloaded spatial arms composed of three actuators are also structurally minimal, and

the methodology used in the planar case can applied. Let each actuator be at distance ~ai

from the cross section center (Figure 3(d)). Without loss of generality, assume the bend

direction is such that Actuator 1 and 2 lie above the base curve and Actuator 3 lies below

it. The force and moment equilibrium relations from Equations (13)-(15) become

F1 + F2 + F3 = 0, (22)

F1~a1 · n̂+ F2~a2 · n̂+ F3~a3 · n̂ = 0, (23)

F1~a1 · b̂+ F2~a2 · b̂+ F3~a3 · b̂ = 0. (24)

It can be shown through substitution, assuming no actuator lies on top of another and the

actuators are not all in one line, that

F1 = F2 = F3 = 0, (25)
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regardless of exact arrangement. The only possible solution is for each pressurized actuator

to be contracted maximally and each unpressurized actuator to have zero strain.

The neutral axis height and bend direction for the three actuator segment can be de-

termined geometrically given that the strain in each actuator, εi, is determined by the free

contraction line εFC(Pi). Assuming two actuators are pressurized, the neutral axis lies along

the unpressurized actuator, which must be on the opposite side of the arm as the curvature

direction. The neutral axis location for three actuators equally spaced around a circle with

radius R, of which Actuator 1 and 3 are pressurized, is

h = ~a2 · ên, (26)

where ên = (cos θb, sin θb). The bend direction must lie between the two actuators. If

Actuator 1 and 3 are pressurized, the bend direction is

θb = tan−1
[√

3
εFC(P1) + εFC(P3)

εFC(P1)− εFC(P3)

]
− π

3
. (27)

The neutral axis curvature κNA is

κ =
−εFC(P1)

~a1 · ên − ~a2 · ên
, (28)

and the base curve’s curvature can be calculated using Equation (7), by noting that λ2 = 1

and λ1 = 1 − εFC(P1). Despite actuator complexity and arm nonlinearity, bend curvature

and direction can be calculated explicitly. Spatial arms with more than three actuators do

not follow this closed form solution, because the actuator resultant forces are not necessarily

identical and zero.

4. Model Validation and Analysis

This section validates the model for planar and spatial arms. The model was validated

for five single segment planar arms (with widths of 20 mm, 30 mm, 40 mm, 50 mm and

60 mm), a two segment planar arm and a single segment spatial arm.
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4.1. Validation test methods

Planar and spatial arms were tested by applying a constant load while pressurizing

selected actuators. Actuator pressures were measured using Honeywell TruStability 30 PSI

(200 kPa) pressure sensors, which have a resolution of 0.2 kPa and an accuracy of ±0.55 kPa.

Each arm’s deformed state was measured throughout the experiment with an OptiTrack

motion capture system. Planar arms had two OptiTrack markers mounted on each plate,

directly above the actuators, in order to capture the plate’s position and orientation (Figure

5(a)). Spatial arms had three markers mounted on the base plate and two markers mounted

on all other plates (Figure 5(b)).

Loads were applied to arms by connected weights to the arm tips via string. Planar arms

Figure 5: Validation experiments. (a) The planar arm test set-up, shown with a multisegment planar arm.

A suspended weight was connected to the arm tip via a line run over a pulley. (b) Markers and the load

attachment point for a spatial arm. There were two lines of six OptiTrack markers separated by 120◦ and

an additional marker at the base.
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load lines were run under a pulley that was vertically aligned with the arm tip, and over

a second, higher, pulley. The weight at the end of the line was suspended against gravity,

which provided a constant force throughout the experiment. The planar test platform was

lubricated with WD-40 prior to testing. Spatial arms were tested upright, with lines short

enough to not touch the test platform during testing.

4.2. Planar single segment validation

The planar single segment validation tests were conducted on segments with widths of

20 mm, 30 mm, 40 mm, 50 mm and 60 mm. Each segment was otherwise nominally identical

and conformed to the design presented in Section 2. Segments were tested at loads ranging

from 0 N to 1.57 N, depending on segment width. The planar model was solved for selected

cases with a tip force magnitude |Qf | equal to the experimental force, and the moment

Qm = 0. The load’s direction vector changes slightly as the load is lifted and the arm tip

moves, which was included in the model by defining the Qf vector to be from the arm tip

to the pulley. Figure 6 compares the model and experiment for five widths and three forces

(45 cases total). Three pressures are compared within each force-width case.

Three trends between design variables and segment behavior are apparent from the

results displayed in Figure 6. First, the load-free range of motion decreases as segment

width increases (see the first column of Figure 6). Equation (21), the model’s planar load-

free special case, matches this trend and predicts an inverse relationship between segment

width and curvature for equivalent actuator strains. Second, the passive stiffness increases

with segment width. Consider the 0 kPa comparisons in the second column of Figure 6.

Each segment was unpressurized and subjected to the same force, but smaller widths were

deflected further. Third, the arm’s ability to resist loads increases with width. The labeled

forces in the third row of Figure 6 were the loads that caused a deflection of approximately

-5 cm from the arm’s initial midline, at a pressure of 80 kPa. The force the segments can

resist increases monotonically with width.

The model’s accuracy was quantified with an average distance error (Table 1). The error

metric is an average of the distance between the model prediction and the experiment at
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Figure 6: Comparison of experimentally measured arm centerline (dotted lines) and model results (solid

lines) for five widths and three loads. Single segment planar arms were loaded at their tips, pulled left and

pressurized to bend right while under load. Experimental results are the average of at least three trials.

Each force-width case compares three pressures: 0 kPa (black), 40 kPa (blue) and 80 kPa (red). Segment

width increases top to bottom and is given by the labels at the left of each row. The force applied increases

left to right and is given by the labels at the top of each column. The first two columns have a constant

force, while the third row is the force to achieve an approximately -5 cm deflection from the midline. The

force values for the third column are given within each force-width case plot.
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Table 1: Whole length average distance error (mm) for planar segments.

Force 20 mm 30 mm 40 mm 50 mm 60 mm

0 N 10.6 8.1 4.2 3.2 3.3

0.67 N 11.0 9.4 17.3 26.6 29.1

Highest 9.6 8.0 16.1 28.1 33.1

Table 2: Average tip distance error (mm) for planar segments.

Force 20 mm 30 mm 40 mm 50 mm 60 mm

0 N 20.4 6.6 4.2 4.5 5.0

0.67 N 17.6 32.0 46.7 26.6 57.1

Highest 9.7 25.3 46.0 28.1 58.7

six points evenly spaced along the segment length, for the three pressures compared within

a force-width case. The distance error naturally increases along the length, because the

arm behaves like a kinematic chain. Small differences in curvatures can magnify position

differences down the length, and the highest error is expected at the tip. Table 2 presents

the same average distance error computed only for the segment tips, which is the equivalent

to end effector error.

Three additional sources of model error are worth note: friction, an observed hysteresis

and the neglected arm shear stiffness and actuator bending stiffness. All planar single

segment simulations were solved without including friction between the test platform and

the arm. The error caused by friction is most visible in the first column of Figure 6, where

the arm is modeled as load-free but experiences some friction. The difference between the

model and the experiment is a combination of friction and unmodeled bending stiffness, and

both factors affect the narrowest arms the most, which reach the highest curvatures and

produce the least force. The total error establishes a maximum error due to friction, and in

the narrowest arm tested (20 mm), the maximum tip error is 20 mm.

The second source of error is an observed hysteresis in the pressure-position response.

Validation tests were conducted by pressurizing from 0 kPa to approximately 90 kPa, at
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least three times for each force-width case, and the arm’s deformed state was recorded during

inflation and deflation. Figure 6 compares the model to the average centerline position, while

Figure 7 plots the range of measured states for the 20 mm, 40 mm and 60 mm segments

when subjected to a 0.67 N tip load. The range is most varied at 40 kPa in every case, and

measurements were noted to cluster near the two extremes: the left-most state came from

inflation and the right-most state came from deflation.

The observed lag between the pressure input and deformation may be a hysteresis caused

by a combination of internal (material) and external friction, but it may also be a dynamic

phenomenon. The model is quasi-static, but motion of the physical arm requires an acceler-

ation, induced by the force imbalance from pressurization. Arm force, and thus acceleration,

is low at low pressures and at high strains, which occur at the start and end of the tested

motions. The inflation and deflation rate may exceed these accelerations, creating a lag

at the motion’s start. External friction and material damping dissipate momentum, which

may eliminate the lag at the motion’s end. The quasi-static and hysteresis-free assumptions

simplify the model and decrease solution time, but predicting the observed lag would require

that the model be extend to include hysteresis and dynamic effects. The range of results

is small at high and low pressures, verifying that the model is suitable for predicting arm

capabilities that are not affected by the mid-motion variance (e.g., maximum reach with a

load applied).

The third source of potential error is the actuator’s bending and shear stiffnesses, which

are assumed to be zero and infinite, respectively. The actuators are highly compliant, and

their bending stiffness is low, but at high pressures and curvatures the unmodeled bending

stiffness is a likely cause of error. Thin arms that reach high curvatures are most affected

(e.g., the 20 mm arm under no load in Figure 6). An effective bending stiffness can be

included in an Euler-Bernoulli model, but that stiffness must be characterized across the

actuator’s strain-pressure domain.

Euler-Bernoulli beam theory neglects shearing deformations by assuming that the cross

section is planar and perpendicular to the arm’s base curve. Physical soft arms can shear,

which causes the model to overpredict arm reach under high loads. The increasing model
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Figure 7: Variation in arm segment position for three force-width cases. The force applied in each case is

0.67 N, and results are plotted for widths of (a) 20 mm, (b) 40 mm and (c) 60 mm. Each plot contains the

outermost measurements (left and right) for three given pressures. Measurements for each case were drawn

from at least three trials, and data was collected during inflation and deflation.

error, as load and width increase, is attributed predominantly to neglected shearing defor-

mations. The second column of Figure 6 demonstrates the affect of width on shearing and

bending deformations, given the same number and arrangement of actuators. The arm’s

shear stiffness is similar across widths, because the amount of material in the arm is in-

dependent of width, while the bending stiffness increases with actuator separation. Larger

widths bend less, and the load case is closer to a pure shear. Shear error is a fundamental

limitation of Euler-Bernoulli beam models, and the segment model overestimates stiffness

of shear-affected arms (see comparisons of the 60 mm arm in Figure 6). Wider arms are

not universally shear-affected; the likely shear error increases when the shear stiffness is low

compared to the shear load, and wider arms with more actuators are expected to have lower

shear errors.

Other beam and rod models can include shear (e.g., Timoshenko beam theory). Although

models with shear are more complex to formulate and solve, the more significant limitation

is that they require actuator characterizations that predict shear stiffness as a function of

strain and pressure. The shear-free model is most accurate at small widths and low loads

compared to the arm’s shear stiffness, and it is least accurate when wide arms are subjected

to high loads (Figure 6).
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Figure 8: Comparison of model (solid lines) and experiment (shaded regions) for a two segment planar soft

arm at pressures of 0 kPa (gray), 40 kPa (blue) and 80 kPa (red). A leftward tip load was applied to the arm,

and both arm segments were pressurized to bend right. Each shaded region represents the range of measured

arm shapes for that pressure, taken from at least four trials. Deformed shape was measured during inflation

and deflation to capture the dynamic range. (a) The arm was load free, and modeled without friction. (b)

The arm was load free, but the model was computed with a friction load. (c) The arm was subjected to a

0.88 N tip load and modeled with the tip load but no friction. (d) The arm was subjected to a 0.88 N tip

load and modeled with the tip load and a friction load.

4.3. Planar multisegment validation

The model was validated on one planar arm with two segments (Figure 2). The 60 mm

(base) and 30 mm (tip) wide single segments were combined to form an arm 0.47 m long.

The arm was tested in the same set-up as the planar single segments, with a modified load

placement to keep the load approximately perpendicular to the arm’s initial centerline. Both

segments were pressurized equally and in the direction opposing the load. Figure 8(a) and
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(c) compare measured and predicted deformed shape for the arm with no tip load and a

0.88 N tip load. The expected shape is captured, though the tip error is visibly higher when

loaded. The longer arm’s higher tip error is expected, because the length increases the total

friction and the accumulated shear angle error.

The deformed shape was also compared to a model prediction that included friction,

in order to evaluate how much tip error may be caused by friction. Sliding friction is

inherently related to velocity, and is not straightforward to include in a quasi-static model.

A first order estimate of friction was obtained by aggregating the friction moment along

an initially straight arm and applying an equivalent tip load. The friction torque can be

estimated by

Tfric =

∫ L

0

µ
mg

L
`d`, (29)

which results in an equivalent force of

Fequiv. =
µmg

2
. (30)

The model only applies when the force the arm can apply at a particular point is higher than

the friction force, because motion is required to encounter friction. The arm had a mass of

120 g and the friction coefficient was selected as µ = 0.3 based on accepted values for sliding

plastic. Figure 8(b) and (d) compare the model results when friction is included. The model

without friction had an error of 61.5 mm from the averaged measured tip position at 80 kPa

with a 0.88 N tip load. That error dropped to 24.2 mm when friction was modeled.

4.4. Spatial single segment validation

The spatial form of the model was validated on a 40 mm diameter single segment spatial

arm (Figure 1). Spatial arms can be operated by pressurizing a single actuator, with a

discrete number of possible directions, or by pressurizing two actuators simultaneously, which

lets the arm bend in any direction. Direction is controlled through actuator selection and

the proportion of pressure in each actuator. The model was validated with single and dual

actuator tests, with and without a tip load.
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Figure 9: Comparison of the model (solid lines) and experiment (shaded regions) for a spatial arm with

one actuator pressurized. A downward tip load was applied to the arm, and one actuator was pressurized.

Experimental results are plotted as a range, extracted from at least four trials. (a) Arm shape comparison

for Case I: No tip load is applied, but the arm is loaded with its own weight. (b) Arm shape comparison

for Case II: A tip load of 0.29 N is applied downward, along the gravity vector. The arm is additionally

loaded with its own weight. (c) Bend direction comparison for Case I and II, plotted in degrees. Actuator 1

is pressurized in both cases. The model-predicted direction for Case I and II are identical and zero. Colors

in (c) indicate Case I or II, not specific pressures.

The spatial arm was tested vertically and upright. Tests with loads applied had a 30 g

suspended mass connected to the arm tip, which is equivalent to a 0.29 N tip load directed

downward. The model prediction also included a distributed gravity load from the arm’s 62 g

mass, which was applied evenly over its 0.235 m length. Figure 9 compares the experimental

result and model prediction for single actuator use. Actuator 1 was pressurized in all cases

(see Figure 3 for actuator numbering).

Model shape error was quantified with the same distance metric as the planar segments

and is given in Table 3. The errors were, in general, lower than the planar comparisons, which

is likely due to the lack of friction and reduced shear from the lower loads. The relatively

high error at 0 kPa is most likely due to the arm’s low stiffness when unpressurized, which

means the physical arm is most sensitive to bending and neglected shearing deformations

under and off-center load. There are multiple numerically-viable equilibrium points for a
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Table 3: Average distance error (mm) for spatial arm.

Tip, Tip, Arm, Arm,

Pressure 0 N 0.29 N 0 N 0.29 N

0 kPa 7.9 31.0 3.1 13.0

40 kPa 16.0 13.0 6.5 5.5

80 kPa 25.0 4.3 11.0 2.2

downward load on an unpressurized arm: pure compression or through a combination of

compression and bending, by assuming the load is not initially aligned with the arm center.

The deformation in the second case underpredicted because shear is excluded. The pure

compression equilibrium requires that the downward load remain perfectly aligned with

the arm’s central axis, and generates only axial compression. Figure 9 shows only the

combined bending and compression equilibrium point; the pure compression equilibrium

point is visually close to the bending equilibrium point, and is omitted for clarity.

Two equilibrium points presents the possibility of buckling, in this case from column

loading to beam bending. However, sudden deformations at critical loads were not observed

during testing. Each test arm inevitably had small imperfections that imparted a slight

initial curvature (on the order of 0.1 to 1 1/m) and all loads, regardless of magnitude, increased

this curvature.

The single-actuator bend direction prediction shown in Figure 9(c) matches the exper-

imental results poorly for pressures under 20 kPa, but matches the experiment well for

higher pressures. This discrepancy is likely caused by the physical’s arms initial curvature,

exacerbated by direction sensitivity in the near-straight configuration. During testing, the

arm was allowed to “fall” to its preferred equilibrium. The unloaded arm had a slight initial

curvature due to manufacturing imperfections that likely favored the most compliant actua-

tor, while the loaded arm’s initial direction varied more randomly. Even small deformations

in the near-straight configuration can result in large changes in the bend direction. Each

arm reoriented to Actuator 1’s direction upon pressurization, but the intermediate measure-

ments can be considered a dynamic event. The loaded arm reached steady state faster, but
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Table 4: Evaluation of the bend plane fit quality.

Case Load R2 RMSE (mm)

Single actuator 0 N 0.995 0.57

Single actuator 0.29 N 0.999 0.69

Dual actuator 0 N 0.999 0.78

Dual actuator 0.29 N 0.984 0.98

a quasi-static model cannot evaluate whether the speed was caused by the load. The loaded

arm had an average direction of 0.51◦ at steady state, and the unloaded arm had an average

direction of −2.7◦, compared to the model’s prediction of 0◦ for both.

The second set of validation tests focused on dual actuator pressurization, which can pro-

duce continuous direction change. The dual-actuator tests pressurized Actuator 1 followed

by Actuator 5, but otherwise followed the same procedure as single-actuator tests. The ex-

periment and model prediction are compared in Figure 10. The direction and pressure plots

are taken from continuous actions, and the measured pressure profiles were used as model

inputs. The root mean squared error between model-predicted direction and experiment

was 6.3◦ for the case without a tip load and 17◦ for the case with a tip load. The angle

offsets may come from manufacturing imperfections in the arm, while the larger deviations

(e.g., at Index 0) are more likely to be caused by dynamic events.

The spatial validation test results were used to verify the single bend plane assumption.

Bend planes were identified from the x − y coordinates of the arm’s OptiTrack markers.

A line was fit to each set of markers, and the bend direction was calculated from slope in

the xy-plane. The single plane assumption was verified by evaluating the fits’ coefficient of

determination (R2) and RSME (see Table 4). The values presented are the minimum R2

and the maximum RMSE.

5. Workspaces under Load

The final results section demonstrates one method of using the segment model to explore

soft arm mechanics. This section analyzes the workspace of planar soft arms, which is the set
30
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Figure 10: Comparison of the model (solid lines) and experiment (dotted lines) for a spatial arm with two

actuators pressurized. Tip loads were applied downward, and two actuator were pressurized to continuously

change arm direction. The plotted results were extracted from one trial. The two pressure profiles are

plotted and matched to the bend direction by an index on the x-axis. Curvature results were extracted for

labeled indices A1, A2, B1 and B2. (a) No tip load is applied, but the arm is loaded with its own weight.

(b) The arm is loaded with its own weight and a tip load of 0.29 N is applied downward, along the gravity

vector.

of reachable points. The validation results demonstrated indirectly that load and segment

width change the arm’s range of motion, but the segment model can analyze workspace

directly.
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Consider a single segment planar arm with width w that is otherwise identical in design

and length to the validation planar arms. The arm is represented by a base curve, and

the most commonly adopted kinematic model is a piecewise constant curvature. The seg-

ment model predicts constant curvature for unloaded arms, but the model does not support

assumptions of zero stretch along the base curve – even for unloaded arm. An unloaded

planar arm’s neutral axis lies along the actuator opposite the bend (Equation (19)), and the

resulting base curve stretch can be calculated with Equations (B.1) and (21). Figure 11(a)

compares the tip paths of a 30 mm wide, unloaded planar segment with and without stretch

modeled.

Let the same 30 mm planar segment be loaded perpendicular to its tip. Figure 11(b)

compares the model-predicted tip path for an assisting load (positive, pulling in the direction

of curvature) and an opposing load (negative, pulling against curvature). The opposing load

causes the base curve to shorten more and bend less, while the assisting load causes it to

bend more and shorten less. The tendency to shorten under opposing loads can be explained

by considering the forces acting within the cross section. Moving an opposing load requires

the pressurized actuator to exert a higher force. That higher force must be in equilibrium

with the unpressurized actuators, which are compressed until their reaction force is sufficient.

Increasing the magnitude of the opposing load pulls the arm tip back to the centerline

(Figure 11(c), plotted only for actuator pressures of 100 kPa). Average curvature is reduced

and the effective length shortens, but the arm shape is more complex at higher loads. An

arm’s maximum load and maximum reach always occur at the highest achievable pressure,

Pmax, which is 100 kPa for the actuators used in validation tests. Load and reach are

inversely related, and both are affected by segment width. Load and reach comparisons are

complicated by arm shortening, because the set of reachable x−y positions at load F are not

the set of reachable x− y positions at 2F . A comparative parameter S is defined as the arc

length path, measured outward from x = 0, of the set of tip positions possible at Pmax (see

Figure 11(c)). The load at each point along S is the maximum load that can be resisted at

that point. Figure 11(d) plots the relationship between S and the corresponding maximum

load for five segment widths. This plot represents the loaded workspace of a single segment
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planar arm. Maximum load does increase with segment width, but the reach over which

loads can be applied narrows. All five widths can apply a load of 0.5 N, but the 20 mm

segment can apply that load out to a reach of 0.23 m, while the 60 mm segment can only
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Figure 11: Model-predicted workspace of a 0.235 m long single planar segment. Blue lines in (a)-(c) are arm

shapes, and blue dots are tip positions. (a) Comparison of unloaded, 30 mm wide segment’s tip path if stretch

(in this case, compressive) is neglected, versus the model-predicted tip path, which includes stretch. The

path was computed for pressures from 0 to 100 kPa in either the left or right actuator. (b) Comparison of the

model-predicted path for a loaded segment with an assisting load (positive) and an opposing load (negative).

Loads were applied left and perpendicular to the segment tip and the right actuator was pressurized. (c)

Comparison of deformed shapes for a 30 mm wide segment with opposing loads applied left and perpendicular

to the segment tip. The right actuator was pressurized to 100 kPa. (d) Maximum load a segment with a

particular width may hold at a point S along its tip path (defined in (c)). Results are mirrored left and

right, representing pressurizing either the left or right actuator.
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Figure 12: The workspaces of multisegment soft arms in obstacle free environments. The analyzed arms

have four segments, each of which is 0.125 m long. The shaded regions represent the unloaded workspace,

while the lines are deflected arm shapes for the labeled loads, assuming maximum pressure in each actuator.

(a) Results for a constant-cross-section arm, with a width of 40!mm. (b) Results for a tapered-cross-section

arm, with widths of 50 mm-40mm-30mm-20mm from base to tip.

apply it out to 0.09 m.

Increasing the number of segments in an arm changes the workspace from a line to a

two dimensional region. The shaded region in Figure 12(a) shows the workspace of an un-

loaded soft arm with four segments. The analyzed arm had a constant, 40 mm wide, cross

section, with four actuators in each segment and a total length of 0.5 m. The workspace

was generated by solving the model for 10000 sets of random actuation pressures, assuming

Pmax =100 kPa. Figure 12(a) also plots the tip location for the maximally actuated arm

under opposing loads applied perpendicular to the arm tip. Each line represents the maxi-

mum extent of the arm’s reach while carrying that load, and the behavior follows the trend

established in Figure 11(d).
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The practical implications of the results in Figure 11 and 12 is that, first, the extremes of

the reachable space (the pointed tips in Figure 12) are least suited to forceful manipulation,

and, second, that load capacities are directional. Consider an opposing load that starts at

the workspace centerline and is carried left or right. The higher the load’s magnitude, the

shorter the distance the arm can move the load. The unloaded workspace edges have no

load capacity, which means that actions such as reaching left, contacting an object partway

through the workspace and pushing it to the edge of the unloaded workspace are not possible.

However, load capacity is directional. An arm bent left to its maximum reach has a high

load capacity when moving right. If the same opposing load starts on the opposite side of the

workspace (e.g., if moving left, it starts in the right quadrant), the arm can move the object

across the workspace centerline and into the adjacent quadrant, resulting in a much longer

stroke. Stroke direction and soft arm placement relative to the load must be considered in

order to maximize an arm’s ability to perform a given task. This large variation in loaded

workspace size is fundamental to the soft arms studied in this manuscript, and is inherently

different from jointed, motor driven robot arms.

The same analysis was repeated for a tapered arm (Figure 12(b)). The analyzed arm

had the same length, number of segments and number of actuators, but the segments had

widths of 50 mm, 40 mm, 30 mm and 20 mm, from the base to the tip. The internal moment

in tip-loaded arms is highest at the base and zero at the tip. Tapered arms more closely

match this profile, and have the most geometric stiffness where the moment is highest. The

tapered arm’s unloaded workspace is larger than the workspace of the constant-cross-section

arm, and the tapered arm resists higher loads. However, the fundamental arm behavior is

unchanged, and the extremes of the workspace are still significantly weaker than areas near

the midline.

6. Conclusion

Soft robotics currently lacks quantitative design guidance and specific tools for simulation-

based design. Designs are improved through iterative prototypes, qualitative analysis and

intuition, which is a time-consuming process that is poorly suited to identifying true op-
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timums, analyzing fundamental mechanics or diagnosing limiting factors. Existing models

focus on control and have not shown an ability to predict the result of design changes. This

manuscript presented a soft robot arm model that is generalizable across form factors and

intended to be used for design. The model’s generalizability means it can be used to evaluate

design changes, prior to manufacturing an arm. The model was validated for planar and

spatial arms, and it demonstrated an ability to predict the results of design changes, within

the limits imposed by the model’s assumptions. The model can predict internal stresses

(caused by actuation) and external loads (e.g., gravity, friction, tip loads). The model was

used to evaluate the loaded workspace of planar soft arms constructed with contracting ac-

tuator, which demonstrated that such arms are more powerful when pulling toward their

initial midline.

This manuscript identified arm behaviors that are relevant to ancillary pursuits in devel-

oping and using soft robot arms. Soft arms under load were shown to have a nonconstant

curvature and to compress under load, even if the loads were not inherently compressive.

The most common soft arm kinematic model is piecewise constant curvature (PCC), which

is only capable of capturing the deformed shape if each segment is modeled as multiple

kinematic links with known curvatures and stretches. Further, any inverse kinematic model

must be subject to compatibility constraints. An inverse kinematic model typically relates

the desired tip position to a set of curvatures in each PCC segment, but without a compat-

ibility constraint, there exists no guarantee that the soft arm can reach the required states.

The development of a compatibility constraint that can be computed quickly is an open,

and significant, challenge.

There are three limitations with the current model that are potential paths for future

work. First, loads are currently limited to the bend plane. This limitation can be removed

by extending the formulation from a beam to a more general rod theory. Rod theory re-

quires a more extensive characterization of stiffnesses, but it may improve model capability.

Second, the model is quasi-static, but it can be extended to a more complex dynamic for-

mulation, in order to capture transient events, by characterizing the kinetic energy of the

actuators and arm plates. The final model limitation is the exclusion of shear deformation
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and bending stiffness. Bending stiffness can be included in the current formulation, but

requires characterization of that stiffness across the strain-pressure domain. Shear can be

included in beam models, such as in Timoshenko beam theory, assuming sufficient compu-

tational power and the relevant actuator shear stiffness characterizations. Future research

may examine arm measurement techniques that accurately capture the shear strain, though

measurement of highly deformable bodies remains challenging and requires equipment not

standard to robotics laboratories. However, an alternative research direction is to consider

whether shear is necessary, or desired, in soft arms. Shearing limited the stroke and force of

the tested soft arms, and alternate designs with less shear may improve performance.

The ability to design capable robots to specific criteria is critical to soft robotics. While

the inherent safety and compliance of soft robots shows clear potential, that potential has

yet to be converted to functional, broadly capable soft robots. Acknowledged challenges

remain in artificial muscle development, control and planning, but the potential of existing

actuators to produce capable soft robot is unquantified, because no tools exist to quantify

it. The model and analysis presented in this manuscript quantify some capabilities of soft

arms constructed with McKibben actuators. The segment model is not limited to McKibben

actuators, and can be used to evaluate arms constructed from other actuator types, once

those actuators have been characterized. The model, coupled with a library of actuator

characterizations, can be used to quantitatively and methodically address questions of soft

arm capability.
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Appendix A. Actuator Characterization

The actuator force characterization was produced experimentally, by measuring force for

a large number of strain-pressure combinations in each region of the strain-pressure space

(Figure 4). Tests were completed on a Mark-10 ESM 1500 motorized test stand with a 50 N

load cell (model MR03-10). The test stand has a position resolution of 0.02 mm, and the

load cell has an accuracy of 0.075 N and resolution of 0.02 N. Pressure was measured with

a Honeywell TruStability 30 psi (200 kPa) pressure sensor read through an Arduino. The

pressure sensor had a resolution of 0.2 kPa and an accuracy of ±0.55 kPa.

Strain-pressure regions with a tensile reaction force (even in the strain was nominally

compressive) were tested on single actuators with keys attached. Actuators were connected

to the test stand at the bottom, near the pressure inlet, and were connected to the load cell

at the top. Five samples were tested to capture the range of forces possible due to actuator

variance.

Strain-pressure regions with a compressive reaction force were tested as part of an arm.

The arm had four actuators equally distributed around a circle. The bottom plate of the

arm was connected to the test stand, and a small platen was used to compress the top

plate. Pressures that resulted in tensile loads pulled the arm away from the platen, which

meant that forces only registered when compressive. Testing compressive regions in an arm

prevented actuator column buckling during testing. Actuator column buckling in the arm is

prevented during use by the reinforcing plates, and the plates were used for the same purpose
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during testing. Smooth rods were placed around the plates to further guarantee that the

arm did not buckle during testing. Eight samples were used in total during compression

testing, grouped into three sets of four.

The fit forms used are purely experimental, and are not proven to follow physical trends

in actuator behavior beyond the tested region. The forms were developed in prior work and

are guaranteed to be self-consistent at region boundaries [33]. The coefficients specific to

the actuators used in validation were developed as part of this work. The coefficients are

given in Table A.5 along with an a root mean squared error for the fit.

Passive compression and extension were tested in a direct analog to tensile and compres-

sive material testing. The passive compression results were fit to

FC = kC,1ε
4 + kC,2ε

3 + kC,3ε
2 + kC,4ε, (A.1)

and the passive extension results were fit to

FE = kE,1ε
3 + kE,2ε

2 + kE,3ε. (A.2)

The fits are compared to the experimental data in Figure A.13(a) and (b). The primary

driver of fit error is actuator variance.

The actuation region is defined as the region with contraction strains but a tensile re-

action force. The region was tested by pressurizing actuators at set strains. Each actuator

was tested in increments of 2 mm (approximately 1% strain) from nominal length until the

actuator stopped producing a tensile force for pressures under 100 kPa. This test regime

generally resulted in data for 30 strains. The force in the region was fit to

FAR(ε, P ) = kAR,1(kAR,2 + ε)2(P − PFC(ε)), (A.3)

where the free contraction pressure PFC was fit to

PFC = kFC,1ε
4 + kFC,2ε

3 + kFC,3ε
2 + kFC,4ε. (A.4)

The fits are compared to experimental data in Figure A.13(c) and (d). Only a subset of

tested strains are shown in Figure A.13 to avoid overcrowding the plot.
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Pressurized extension occurs when the tensile force applied to the actuator is greater

than the force that can be produced by the actuator at that pressure and zero strain. The

reaction force is a sum of passive extension and actuation. The region was tested using the

same method as the actuation region, but with strains increments of 0.5%. The region was

fit to

FPE = FE(ε) + kPE,1(kPE,B + kPE,2ε)
2P (1+kPE,3ε). (A.5)

where FE is given by Equation (A.2) and kPE,B is a boundary constraint derived by equating

force between the actuation region and pressurized extension at zero strain. The constraint

is

kPE,B =

√
kAR,1k2AR,2

kPE,1
. (A.6)

The fits are compared to experimental data in Figure A.13(f).

Pressurized compression occurs when the compressive load is higher than the actuation

region can support at a given pressure. The region is the most complex region to fit, because

it displays multiple distinct behaviors. The region begins under the free contraction line in

the strain-pressure space and extends left to the highest contraction strain tested. The

regions are divided by the limit strain, which is defined as the strain that Pmax = 100 kPa

produces zero force. The limit strain for the actuators used in this article is εlimit = −0.274.

Strains greater than εlimit, combined with pressures less than the free contraction pressure

for the given strain, were fit with

FPC−A = FC(ε), {P : 0 ≤ P ≤ Pcrit}, (A.7)

FPC−A = FC(ε)+

+ kPC−A,1(kPC−A,2 + ε)2(P − Pcrit), {P : P ≥ Pcrit}. (A.8)

FC is given by Equation (A.1), and Pcrit is a boundary compatibility constraint calculated

with

Pcrit =
FC

kPC−A,1(kPC−A,2 + ε)2
+ PFC(ε). (A.9)
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Table A.5: Actuator characterization fit coefficients and error.

Region (#) k#,1 k#,2 k#,3 k#,4 Error

C 265 321 126 21.9 0.14 N

E 9.00e4 836 62.6 - 0.82 N

AR 1.04 0.51 - - 0.63 N

FC 3.46e4 5.99e3 -1.03e3 -396 2.76 kPa

PE 1.96 -3.17 4.23 - 0.82 N

PC-A 0.637 0.453 - - 0.18 N

PC-B 3.70 - - - 0.23 N

The second region, PC-B, includes all strains less than εlimit. The reaction force is com-

pressive at every pressure less than Pmax. The reaction force in this region below Pcrit

is

FPC−B = FC(ε), {P : 0 ≤ P ≤ Pcrit}, (A.10)

in order to maintain continuity with FPC−A at the boundary. The force for pressures above

Pcrit was fit with

FPC−B = FC(ε) + kPC−B,B(−εcrit + ε)2(P − Pcrit) (A.11)

for {ε : εlimit ≥ ε ≤ εcrit}. The actuator behavior changes at the critical strain εcrit as the

sheath passes the neutral angle. The critical strain for the actuators used in this article was

εcrit = −0.303. The actuator acts as an extending actuator at strains less than εcrit, and the

force was modeled by

FPC−B = FC(ε)− kPC−B,1(−εcrit + ε)2(P − Pcrit). (A.12)

The boundary constraint between Region PC-A and PC-B is

kPC−B,B =
kPC−A,1(kPC−A,2 + εlimit)

2

(−εcrit + εlimit)2
. (A.13)

The fit is compared to the experimental results in Figure A.13(e).
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Figure A.13: Comparison of experimental measurements of actuator force and actuator fit predictions, for

each region and line in the strain-pressure space.
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Appendix B. Neutral Axis Formulation

This appendix describes a formulation of the model’s kinematics in terms of the neutral

axis. The validation results presented in Section 4 used this formulation, which gives a result

equivalent to the base curve formulation in Section 3. The neutral axis formulation describes

segment shape using a neutral axis curvature and height from the base curve, while the base

curve formulation use a base curvature and stretch. The neutral axis formulation does not

require a stretch, because the stretch is unity at this axis by definition. There is a singularity

in the neutral axis formulation when curvature changes direction, because the neutral axis

height passes from −∞ to ∞, or vice versa. This singularity can impede convergence of a

numerical solver, but can be accommodated by disallowing large neutral axis heights (> 1m

in this manuscript) in the solution guess.

The arm segment exists within a general coordinate system, which is chosen to be aligned

with Actuator 1 (Figure 3). A second coordinate system is established, rotated from the

first about the z-axis by the bend angle, θb. This new coordinate system, x′ − z′, aligns the

x-axis with the bend plane (Figure 3(a), (d)). A third, moving, coordinate system given by

ên, êt is attached to the arm’s base curve. ên is the unit normal vector to the base curve, êt

is the unit tangent vector.

The base curve and neutral axis lie within the x′−z′ plane (Figure 3(b)), and all curvature

occurs within this plane. The undeformed neutral axis is parameterized by s, which extends

to the actuator length L, and initially lies co-axial to the base curve. The arm’s deformation

is described by the curvature of the neutral axis (the inverse of bend radius r), κNA(s), and

its height from the base curve, h(s). By definition, the neutral axis does not experience

strain. The deformed neutral axis is not assumed, or required, to lie at the arm’s center, or

even within its cross section.

The x′ − z′ coordinates of the base curve are required in order to calculate the internal

reaction forces and moments from the applied load Q . The base curve’s curvature and

stretch, λc, can be determined from neutral axis’s curvature and height. The stretch along
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s is given by

λc(s) = 1 + h(s)κNA(s). (B.1)

The base curvature, κc, is offset from the neutral axis curvature by the neutral axis height:

1

κc
=

1

κNA
+ h(s). (B.2)

Determining the base curve’s x′−z′ coordinates from curvatures is simpler than for a general

curve, because the base curve is twist free and confined to one plane. Equation (2) simplifies

to z′
x′

 (s) =

∫ s

0

λc(S) cos θ(S)
λc(S) sin θ(S)

 dS. (B.3)

The strains experienced by each actuator, at each point along s, are also determined

kinematically. The strain is zero at the neutral axis and increases linearly with height above

or below the axis. The ith actuator’s absolute position vector is

~ai = (xi, yi), (B.4)

but the relative height above the neutral axis, Hi(s), varies with bend direction and along the

arm length. Actuator height in the bend plane can be determined with the scalar projection

of the actuator’s position vector onto unit vectors that align with axes of the rotated frame

x′ − y′. The unit vector that aligns with the x′-axis is

ên = (cos θb, sin θb), (B.5)

and the unit vector that aligns with the y′-axis is

êb = (− sin θb, cos θb). (B.6)

These unit vectors are calculated once per segment, because each segment bends in one

plane. The ith actuator’s height above the neutral axis is the difference between the neutral

axis location and the actuator’s absolute height projected into the bend plane (Figure 3(d)):

Hi(s) = h(s)− ~ai · ên. (B.7)
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Wi, the distance between the arm’s center and the ith actuator in the plane perpendicular

to the bend, is

Wi = ~ai · êb. (B.8)

Uniaxial strain induced by shear-free bending changes linearly through the cross section, at

a rate determined by the curvature. The strains at each actuator are

εi(s) = Hi(s)κNA(s). (B.9)
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