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Abstract
Normally, peridynamic (PD) models for transient heat transfer converge, in the limit of the 
horizon size going to zero, to the solution of the corresponding PDE-based heat transfer. 
However, different ways of imposing local boundary conditions have been observed to lead 
to some interesting properties that may deliver the classical solution at a point in space 
and time from a series of PD solutions obtained with relatively large horizons. Here, we 
use analytical derivation of PD solutions to explain how approximations introduced by the 
one-point Gaussian discretization in space (the so-called “meshfree” PD method) and by 
specific implementations of boundary conditions lead to the intersection of m-convergence 
curves at the exact value of the corresponding classical model solution. This leads to a 
strategy of approximating the local solution better with a sequence of PD models that use 
relatively large horizons compared to a PD model that uses a small horizon. We analyze 
this property for transient heat conduction in homogeneous and heterogeneous bars. We 
find that material interfaces influence the intersection of m-convergence curves for tran-
sient heat conduction in a 1D heterogeneous bar.

Keywords  Peridynamics · Asymptotically compatible scheme · Nonlocal diffusion · 
Convergence · Transient diffusion · Boundary conditions

1  Introduction

Most heat transfer processes at the macro-scale can be well represented by a local model 
based on Fourier’s law. However, nonlocal effects are not negligible in low temperature 
environments, short-pulse-laser heating, heat transport with steep temperature gradients, 

 *	 Ziguang Chen 
	 zchen@hust.edu.cn

1	 Department of Engineering Mechanics, School of Aerospace Engineering, Huazhong University 
of Science and Technology, Wuhan 430074, China

2	 Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, 1037 Luoyu 
Road, Wuhan 430074, China

3	 Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, 
NE 68588‑0526, USA

http://orcid.org/0000-0002-5773-9469
http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01469-0&domain=pdf


	 Journal of Scientific Computing           (2021) 87:50 

1 3

   50   Page 2 of 22

and most heat transport processes at the micro- and nano-scales. Motivated by such effects, 
several nonlocal heat transfer theories have been proposed [1–8]. An area where the afore-
mentioned nonlocal models cannot be directly applied is the set of problems with disconti-
nuities in the system emerging, interacting, and evolving.

The peridynamic (PD) theory, originally introduced by Stewart Silling [9, 10], is 
increasingly gaining attention from both academia and industry. The PD formulation is an 
integro-differential-type model, based on nonlocal interactions between material points in a 
continuum. It allows spatial discontinuities to be treated as natural parts of the solution pro-
cess, which is particularly well suited for dealing with cracks and damage in solid mechan-
ics, especially in situations where the crack path is not known in advance [11]. Driven by 
nonlocal diffusion problems, Gerstle et  al. [12], Bobaru and Duangpanya [13], extended 
the ideas of Silling to diffusion, and formulated a PD model for transient heat conduction 
in bodies with evolving discontinuities [14]. These models use the bond-based version of 
peridynamics. Generic forms of PD diffusion models have recently been analyzed mathe-
matically as well [15, 16]. Recently, state-based peridynamic heat conduction models have 
been introduced to consider the non-Fourier heat transfer and nonlocal effects [17], or cou-
pled thermomechanics problems [18]. The limitation of a fixed Poisson’s ratio is the main 
reason for the state-based extension of bond-based PD theory in mechanical problems. Dif-
fusion problems are single-parameter problems, and have no such limitation. In this paper, 
we focus on the convergence behavior of bond-based PD model of transient heat diffusion.

In our previous work [19, 20], we analyzed the convergence behavior of the PD numeri-
cal solution with the one-point Gaussian spatial integration method (or the “meshfree” PD 
discretization) for transient diffusion and elasticity. The one-point Gauss quadrature is the 
preferred method for discretizing PD models because it leads to a meshfree model, very 
well suited for capturing the evolution of fracture and damage (or other types of disconti-
nuities) in a material (see e.g. [14] and [21]). The results in [19, 20] showed that only the 
integrand from the constructive approach, leads to results that converge to the classical 
solution in the limit of the horizon going to zero when the relative grid-density m (the ratio 
between the horizon size and grid spacing) is kept constant (the so-called “ �-convergence”) 
[13]. In the case of transient diffusion, �-convergence to the classical solution was observed 
to be monotonic (as the horizon decreases, the difference between the nonlocal solution 
and the classical one decreases monotonically), based on observations at several points in 
space and time [19]. We also noticed that due to the finite speed of wave propagation and 
wave dispersion, �-convergence for dynamic elasticity is not monotonic, in general [20]. 
These behaviors observed for the one-point Gaussian quadrature may be more general and 
persist for other types of discretization, but this remains to be seen.

As a result from the observed monotonic �-convergence, an interesting behavior of the 
peridynamic numerical solutions for transient diffusion problems was discovered in [13, 
19]: when two “m-convergence”(taking m to go to infinity for a fixed horizon size � ) inter-
sect, the temperature value at the intersection point is also the value of the exact classical 
solution, when a particular way of implementing the local boundary conditions in a PD 
model is employed [19]. The crossing of m-convergence curves with the classical solution 
was attributed to the “competition” among the way boundary conditions are imposed, the 
peridynamic surface effect, and nonlocality [19].

In a PD simulation, the horizon size is never zero, but one can analyze �-convergence, 
in which separate PD simulations are performed using smaller and smaller horizon sizes. 
The reason for the intersecting point of the m-convergence curves (obtained for different 
horizon sizes) being the classical solution is as follows: for the cases discussed in [19] 
(1D transient heat diffusion, subject to Dirichlet boundary conditions imposed on the end 
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nodes only), for a given horizon size, when the horizon factor is small, the numerical error 
introduced by the boundary conditions implementation is large; this leads to, for example, 
temperature values (at a point in time and space) below the corresponding ones from the 
classical solution; when the horizon factor m increases (tends to infinity, for m-convergence 
tests), the difference between the PD solution and the classical solution is dominated by the 
nonlocality and the surface effect (when imposing Dirichlet boundary conditions on the 
end nodes only); this tend to lead to temperature values above the corresponding ones from 
the classical solution. In this transition, the m-convergence curves have to cross each other 
at the same point and the temperature value at that intersection point has to be the classi-
cal value, because otherwise would contradict the monotonic �-convergence property. In 
other words, under certain conditions, to be explored in the present work, there is a certain 
m-value for which the solution at a certain point in time and space of the nonlocal problem 
(even with a large horizon size!) exactly matches the classical value [19].

The conclusion that �-convergence is monotonic in the case of transient diffusion [19], 
was reached based on numerical tests. Recently, we have shown how to obtain analytical 
solutions to the peridynamic models for transient diffusion in 1D and simple 2D domains 
[22]. Here, we use such analytical solutions to provide a thorough explanation for the pre-
viously observed �-convergence behavior. We discuss how different methods for imposing 
local boundary conditions affect the crossing of the m-convergence curves at the classical 
location, and provide requirements that need to be satisfied to have monotonic �-conver-
gence to the classical solution and the intersection of the m-convergence curves.

This intersection of m-convergence curves at the classical solution value opens the pos-
sibility of computing exact classical solutions (at a certain point and time) by solving a 
set of corresponding nonlocal models with “large” horizons. Normally, local solutions are 
approximated by nonlocal models in the limit of horizon going to zero. This is interest-
ing in and of itself, and it could even be made practical if, for certain cases, the nonlocal 
solutions end up being cheaper to compute than computing the local solution. Note that, in 
general, this works the other way around: nonlocal computations are more expensive than 
corresponding local ones. Indeed, finding a good approximation of a local model with a 
corresponding nonlocal one, usually requires a very small nonlocal region (horizon size) 
and, therefore, a very fine (therefore expensive) discretization. This is the �-convergence 
result [13]. The intersection of m-convergence curves, however, points to the possibility of 
using PD solutions with large horizons (and, thus, relatively coarse spatial discretizations) 
to deliver the exact solution of the local model, at a specific point in time and space. In this 
paper, we investigate how the intersection property of the m-convergence curves is affected 
by the time-step size and the location where the solution is computed at. In addition, while 
the convergence behavior of the nonlocal model to the classical model has been investi-
gated in [13, 14, 19] only for the homogeneous domain case, here we also consider the 
case of a heterogeneous bar and the influence of material interfaces on recovering the exact 
solution of the local model based on computing several corresponding nonlocal models 
with relatively large horizon sizes.

The paper is organized as follows: we first revisit the convergence behavior for the PD 
model for transient heat transfer in 1D and, using some new analytical solutions for the 
nonlocal model, we explain the influence of the way local boundary conditions are imposed 
on the monotonicity of �-convergence of PD models to the classical model; in Sect. 3, we 
discuss how �-convergence monotonicity affects the intersecting property for the m-conver-
gence curves; in Sect. 4 we study the dependence of the intersecting point m-value on the 
particular location in time and space where the solution is computed and show the advan-
tage of using the strategy of computing several PD models with large horizons to obtain the 
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exact solution of the local model; in Sect. 5 we test the intersecting m-convergence curves 
strategy for transient heat transfer in a heterogeneous bar. Conclusions and future work are 
presented in Sect. 6. Since heat transfer and mass diffusion problems are mathematically 
identical, the results in this paper apply directly to mass diffusion problems as well.

2 � Monotonicity of ı‑Convergence for PD Models of Transient Diffusion 
in 1D

We first review the PD model for heat transfer in a 1D studied in [13, 19]. Then, using the 
analytical solution obtained via separation of variables for the PD model, recently intro-
duced in [22], we analyze monotonicity of �-convergence (of PD solutions to the classical 
one) in terms of horizon size, for the mirror-type implementation of the Dirichlet boundary 
conditions. This will help us explain the observed behavior for the m-convergence curves 
and the dependence of the intersection point of the m-convergence curves on the particular 
way local boundary conditions are enforced, the horizon size, and the time step size.

Diffusion phenomenon have been described via parabolic-type PDEs, and such mod-
els have an infinite propagation speed of heat [23], or via hyperbolic-type PDEs, which 
lead to a finite propagation speed of heat. For instance, the propagation speeds correspond-
ing to the diffusion equations in [24] and [25] have as limits the sound speed and light 
speed, respectively. In this paper, we focus on the most common diffusion equation, the 
parabolic-type.

We first revisit the convergence behavior of 1D PD transient diffusion in a homogeneous 
bar, with Dirichlet boundary conditions imposed via mirror-type option. The PD diffusion 
model has the following form:

where T(x, t) is the temperature (or concentration in the mathematically-equivalent mass 
transfer problems) at point x at time t. The region of nonlocal interactions for point x, Hx, is 
called the horizon region of material point x. The thermal bond between x and x̂ is charac-
terized by a diffusivity-like quantity k(||x̂ − x||) , sometimes refer to as the “micro- diffusiv-
ity” [13, 14]. The integrand is usually taken to be of the form [13, 26–28]:

where δ is the horizon size (in 1D, δ is half the length of the interval H
x
 ; in 2D, δ is the 

radius of the disk H
x
 centered at x, for a circular choice of the horizon region). Here n is an 

integer, normally selected to be 0, 1, or 2 (see [13, 14, 28]).
Reference [19] showed that, when the one-point Gauss quadrature is applied, only the 

integrand from the constructive approach with n = 2, leads to results that converge to the 
classical solution in the limit of the horizon going to zero when the relative grid-density m 
is kept constant. In the rest of the paper we focus on the integrand with n = 2.

The micro-diffusivity function k(||x̂ − x||) can have different profiles, leading to differ-
ent horizon-scale response, but similar macro-scale behavior. Two popular choices are the 
“constant” micro-diffusivity (independent of the bond length) and the linear (also called 
“triangular”) micro-diffusivity. Although here, for simplicity, we only use the constant 

(1)
�T(x, t)

�t
= ∫ H

x

Jn
(
x̂, x, t

)
dV

x̂

(2)Jn
�
�x, x, t

�
=

�
k
�‖�x − x‖� T(�x,t)−T(x,t)

‖�x−x‖n , ‖�x − x‖ ≤ 𝛿

0, ‖�x − x‖ > 𝛿
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profile, similar results and conclusions should be obtained with the linear (or other profile) 
micro-diffusivity. With the linear micro-diffusivity, the PD solution converges to the classic 
solution faster, as shown in [19]. For the “constant” micro-diffusivity, we have:

By matching the PD solution with the classical one for the case of a linear temperature 
profile, one obtains the following results: k0 =

K

�
 in 1D; k0 =

4K

��
2 in 2D; and k0 =

9K

2��3
 in 

3D. K is the material diffusivity.
Similar to [19], we consider the example of heat transfer in a 1D homogeneous bar, 

subject to Dirichlet boundary conditions. In this problem, the length of the bar L is 10 cm, 
and thermal diffusivity K = 10 cm2/s. The initial temperature imposed on the bar is T(x, 
0) = 100 °C, (0 < x < L). We apply the local-type boundary condition by keeping the bound-
ary temperature T(0, t) = T(L, t) = 0. The classical diffusion model of this problem is:

where Tc(x, t) is the exact solution to this local boundary value problem. Using separation 
of variables, for example, Tc is found to be [29]:

where �o = 100 °C and ki =
i�

L
 . Figure 1 shows the exact classical solutions to the 1D heat 

transient problem in the bar, at two time instances: 0.1 s and 0.5 s.
There can be several PD forms (Eq. 1) corresponding to the PDE-based formulation in 

Eq.  (4), depending on the peridynamic kernel one chooses. Moreover, the imposition of 
local boundary conditions in PD can also take different forms. For example, to impose the 
local (Dirichlet) boundary condition in the PD model, three possible options are shown in 
Fig. 2, the first two belonging to the class of “fictitious nodes methods”: mirror-type (tem-
perature field in the fictitious domain is related by mirror symmetry to the corresponding 

(3)k
�‖x̂ − x‖� = k0

(4)

⎧⎪⎨⎪⎩

𝜕Tc(x,t)

𝜕t
= K∇2Tc(x, t)

Tc(x, 0) = 100oC, 0 < x < L

Tc(0, t) = Tc(L, t) = 0oC, t > 0

(5)Tc(x, t) =

∞∑
i=1,3,5…

4�o

i�
sin ki x exp

(
−Kki

2t
)

Fig. 1   The exact classical solu-
tion for the temperature distribu-
tion in a 1D homogeneous bar 
subject to Dirichlet boundary 
conditions, at two different times
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domain in the bar, see Fig. 2a), naïve-type (temperature field in the fictitious layer is con-
stant and equal to the value of the local Dirichlet condition, see Fig. 2b), and inner-type 
(temperature field in a finite layer inside the domain is fixed to be the local boundary tem-
perature, see Fig. 2c). While there is a single problem defined by the PD equation and the 
local boundary conditions we aim to enforce, these different implementations of such con-
ditions could correspond, in general, to slightly different nonlocal problems: the PD equa-
tion and different associated nonlocal boundary conditions (or “volume constraints”). This 
means that for a fixed horizon, taking m to go to infinity (m-convergence) in solving the PD 
equation with the local B.C. imposed using one of the options above could reach slightly 
different nonlocal solutions.

We recently showed that the PD equation (Eq. (1)) with the mirror-type boundary con-
ditions has an analytical solution in 1D and in simple domains in 2D ([22]). The PD exact 
solution for the problem shown in Eq. (4) is [22]:

Fig. 2   Three types of imposing 
Dirichlet boundary conditions in 
a 1D PD model: a mirror-type, b 
naïve-type, and c inner-type

A

B

C
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where

and Si is the sine integral function, defined as Si(x) = ∫ x

0

sinz

z
dz . As shown in Fig. 3a, the 

nonlocal factor, A
(
km�

)
 , approaches 1 when � goes to zero, which confirms that the PD 

solution Tpd(x, t) converges to the classical solution when the horizon goes to zero.
In [19], based on numerical tests, it was observed that at certain points in space and 

time �-convergence can be monotonic (the PD solution, at a point in time and space, for 
a smaller horizon is closer to the classical solution than for a larger horizon) in the case 
of transient diffusion. To more fully understand that behavior, we compute the deriva-
tive of the analytical PD solution with respect to the horizon size. When the derivative 
is positive, �-convergence is monotonic and happens from above (values larger than the 
classical value), while when the derivative is negative, it is still monotonic but happens 
from below.

Taking the derivative with respect to the horizon size in Eq. (6), we obtain:

(6)Tpd(x, t) =

∞∑
i=1,3,5…

4�o

i�
sin ki x exp

(
−KA

(
ki�

)
ki
2t
)

(7)A
(
ki�

)
=

2
[
Si
(
ki�

)
+

cos(ki�)−1
ki�

]

ki�

A B

C D

Fig. 3   The dependency of the “nonlocal factor” and other parameters in the analytical PD solution on ki�
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where

Figure 3c shows B
(
ki�

)
 is always negative for any non-zero horizon size ( ki > 0 ). The 

monotonicity of �-convergence requires the derivative (Eq. 8) to not change sign for any 
horizon size.

To see whether the time at which the solution is computed influences the sign of the 
derivative above, we look at large times, when the first term in the series becomes domi-
nant. The ratio of the absolute values between the second and first terms in Eq. (8) is:

Since |sin(3k1x)||sin(k1x)| ≤ 3 and 0 <
B(3k1𝛿)
B(k1𝛿)

≤ 3 (see Fig. 3d), we have:

where 0 < 9A
(
3k1𝛿

)
− A

(
k1𝛿

) ≤ 8 (see Fig.  3b). When t is large enough, e.g. 
t ≥ 10

Kk1
2(9A(3k1�)−A(k1�))

 , r is much smaller than 1 and the first term in Eq. (8) dominates the 
sum of the rest of the terms. Therefore, the following approximation holds: 

(8)
�Tpd(x, t)

��
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4�o

i�

(
−KB
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)
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3t
)
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)
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2t
)
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d
(
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)
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(
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(
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)
(
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)
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(
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(
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=
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)
sin

(
3k1x

)
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(
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(
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)
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|||B
(
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(
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(11)r ≤ 81 exp
(
−Kk1
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(
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(
3k1�

)
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(
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)))

(12)

𝜕Tpd(x, t)

𝜕𝛿
≈

4𝜃o

𝜋

(
−KB

(
𝜋

L
𝛿

)(
𝜋

L

)3

t

)
sin

(
𝜋x

L

)
exp

(
−KA

(
𝜋

L
𝛿

)(
𝜋

L

)2

t

)
> 0 for t

≥ 10

Kk1
2
(
9A

(
3k1𝛿

)
− A

(
k1𝛿

))

Fig. 4   Contour plots of derivative of Tpd(x, t) with respect to the horizon size � : a at x = 1.1875 cm, and b at 
x = 5.0 cm



Journal of Scientific Computing           (2021) 87:50 	

1 3

Page 9 of 22     50 

Therefore, we have theoretically shown that when t is sufficiently large, �-convergence 
is monotonic in the case of 1D transient diffusion with Dirichlet boundary conditions 
imposed via the fictitious node mirror-type method.

When t is close to the initial time, the sign of the derivative in Eq. (8) may depend on 
the horizon size and �-convergence may not be monotonic. In Fig. 4, we plot this deriva-
tive for two locations on the 1D bar: x = 1.1875 cm (close to where a Dirichlet condition 
is imposed), and x = 5.0 cm (the middle of the bar). These results confirm that when t is 
large, the derivative is positive (Eq. (12)). Figure 4 also reveals that at some time instant, 
the derivative may change sign when varying the horizon size, e.g., at x = 1.1875 cm, when 
t = 0.02 s (see Fig. 4a) or at x = 5.0 cm, when t = 0.42 s (see Fig. 4b).

In the discrete version, numerical and discretization errors may affect monotonicity 
of �-convergence of PD solutions to the classical one, and this is discussed next. In the 
next section, we also see how monotonicity of �-convergence leads to different intersec-
tion property of m-convergence curves in the PD numerical computations for transient heat 
transfer.

3 � The Intersection of m‑Convergence Curves at the Exact Classical 
Solution Value

To discretize the PD model for the 1D case, we use a uniform grid for a bar of length L, 
and, for the spatial integration, we employ the one-point Gauss quadrature rule (the mid-
point integration). Let the grid spacing be Δx . Non-uniform grids are possible in discretiz-
ing the PD equations (see [26, 30, 31]) but this is not pursued here. The nodes at the ends 
of the bar have the coordinates Δx∕2 and L − Δx∕2 , and all nodes have the same volume 
(length), Δx (see Fig. 2). More details on the numerical implementation are available in 
[19, 20, 32, 33].

We implement the three ways of imposing in the PD model the Dirichlet boundary con-
ditions shown in Fig. 2. We first consider the mirror type, for which the PD analytical solu-
tion is available (see last section). For the 1D case shown in the last section, we showed 
that the PD solution converges to the corresponding classical solution when the horizon 
size decays to zero, and that �-convergence may or may not be monotonic, depending on 
the time and location investigated (see Fig. 4). As shown in Fig. 4, for location x = 5.0 cm, 
the derivative of Tpd(x, t) with respect to the horizon size � is negative at t = 0.3 s, is positive 

A B C

Fig. 5   Relative differences between PD solutions and the classical one for m-convergence curves of numeri-
cal PD solutions at x = 5.0 cm with boundary conditions implemented with the mirror-type fictitious node 
method. a t = 0.3 s; b t = 0.42 s; c t = 0.5 s. Time step used is Δt = 5 × 10−5 s
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at t = 0.5 s, and at t = 0.42 s, is close to zero, with its sign changing even for small horizon 
sizes. These features explain the observed different intersection properties for the m-con-
vergence curves in the numerical PD solutions, as shown in Fig. 5.

As can be observed from Figs. 5 and 6a, the PD numerical solution converges to 
the corresponding analytical nonlocal solution when m goes to infinity. In Fig.  6a, 
the analytical PD solution values are also shown. At t = 0.3 s (Fig. 5a), the exact PD 
solutions are below the classical one, consistent with the negative sign of �Tpd(x,t)

��
 . At 

t = 0.5 s (Fig. 5c), the exact PD solutions are above the classical one, consistent with 
the positive sign of �Tpd(x,t)

��
 . At t = 0.42 s (Fig. 5b), �Tpd(x,t)

��
 is close to zero, and its sign 

changes, depending on the horizon size, which means that the exact PD solution may 
be above or below the classical solution, and this is why the intersecting property 
of the m-curves may not happen. Note that at t = 0.5  s (Fig.  5c), the �-convergence 
for small m-values is monotonic, and approaches the classical value from below. 
This is induced by the discretization error, which likely “shifts” the zero level set in 
Fig. 4b to the right, making the derivative of the numerically obtained Tpd(x, t) nega-
tive. The convergence then is from below, instead of from above. As m increases, one 
approaches the exact nonlocal solutions, for which the convergence (at the specified 
time and place) is from above (see Fig.  4b). This switch of “direction” of conver-
gence, leads to the intersection of the m-curves, which, to preserve the monotonicity 
of �-convergence, need to all cross at the same m-value (for a certain time and space) 
and the corresponding temperature there has to be the exact classical value, otherwise 
we contradict �-convergence monotonicity.

In summary, the combination of numerical approximations, and �-convergence monoto-
nicity can lead to the intersecting m-convergence curves. The “right” combination happens 
relatively rarely for the fictitious-node method mirror-type style of imposing local bound-
ary conditions in the PD model, but is more common in the inner-type implementation 
of boundary conditions because the approximation error introduced by this approach of 
approximating the local boundary conditions is significantly “stronger” than the quadrature 
error in the mirror-type case. This is why, for the remained for the paper we use the inner-
type method.

Note that, because in all our computational tests we used an even number of nodes, 
there is no node in the middle of the bar. The value for that location is computed from the 
average of the values at the two nearest nodes. Because of this (see also Fig. 1), the com-
puted temperatures at the middle of the bar are smaller than the exact PD value, when m is 
small.

A B C

Fig. 6   m-convergence curves of PD model at x = 5.0 cm, t = 0.5 s, with different types of boundary condi-
tions: a mirror type, b naïve type, and c inner type. Time step used is Δt = 5 × 10−5 s
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For the inner-type implementation of Dirichlet boundary conditions (fixing end nodes’ 
temperatures, see Fig. 2c) in the PD model for transient heat diffusion problem, the behav-
ior of the m-convergence curves was discussed in our previous work (see [13, 19]). For a 
fixed horizon size, the PD solution converges with m going to infinity, but it may converge 
to a solution different from the ones obtained with the mirror-type or naïve-type boundary 
conditions shown in Fig. 2a, b (see comment in paragraph above Eq. 6). If we let m to go to 
infinity and the horizon size to go to zero, the solution converges to the exact local solution 
for all three ways of implementing the local boundary conditions (see [19] and Fig. 6). The 
convergence behavior for a general steady-state diffusion equation was also demonstrated 
in [34].

To understand how the time step influences the behavior of m-convergence, we first 
observe that, although the parabolic-type diffusion equation induces an infinite propagation 
speed of perturbations [23] (boundary conditions are felt instantly over the entire domain at 
all times), in the discrete version, the propagation is limited by time step ( Δt ) and the hori-
zon size ( � ) in the PD formulation. Over one time step, a node can only affect the nodes in 
its family (within a distance of � ). In the PD computations, the boundary condition infor-
mation “propagates” at the finite speed �∕Δt . This effect is a computational error induced 
by the computational time step. In dynamic elasticity problems, for elastic wave speeds 
smaller than �∕Δt , we expect to see a “fake” wave front. Although FEM discretizations 
of the classical heat transfer problem have the same issue, there is no peridynamic surface 

A B

C D

Fig. 7   The behavior of m-convergence curves at different locations in time and space for time step 
Δt = 5 × 10−5 s. a at x = 1.1875 cm, and t = 0.1 s; b at x = 5.0 cm, and t = 0.1 s; c x = 1.1875 cm, t = 0.5 s; 
d x = 5.0  cm, t = 0.5  s. Dotted lines correspond to the temperature values of the exact classical solution, 
respectively
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effect disturbance (like there is in the inner-type implementation of local boundary condi-
tions) to propagate through the material.

This finite propagation speed of information makes the convergence behavior depend 
on space and time, which means that the results in Fig.  7 in [19] showing convergence 
curves crossing and matching the classical temperature value at the same m value (near 
3.4), would suffer if one uses, for example, a larger time step. The calculations performed 
in [19] used a small time step ( Δt = 10−7 s), selected to obtain stable PD solutions when 
the finest spatial grid was used (m = 16 and � = L/160).

In the remaining parts of this paper, we use two, relatively larger time steps 10−4 s and 
5 × 10−5 s (for more efficient computations), to see how well the intersecting property is 
preserved. We impose the boundary condition (Dirichlet boundary condition) using the 
inner type, on the end nodes only (see Fig. 2c). We use the forward Euler method for the 
time integration. The smallest horizon size in this paper is L/40, and the largest m is 8. 
Thus, for the same horizon size, the finite speed in [19] is 500 or 1000 times larger than 
the one we compute now. In the following numerical example, we reveal how the computa-
tional error induced by the time step influences the intersection behavior of the m-conver-
gence curves. Note that we use the temperature values (instead of relative differences to the 
exact classical solution) in the following convergence studies.

For each time instance, we select two locations: x1 = 1.1875 cm and x2 = 5.0 cm (mid-
dle of the bar). Figure 7 shows the m-convergence curves for three different horizon sizes 
at these locations in time and space. At 0.1 s (see Fig. 7a and b), m-convergence curves 
intersect at a single point for solution at location x1 , while in the middle of the bar, at x2 , 
the convergence curves do not intersect at the same point, and the m values of the intersec-
tion points are larger than the one at x1 . The likely explanation for the result in Fig. 7b is 
similar to what was observed in Fig. 5b for the case of mirror-type implementation of BCs: 
�-convergence (see map in Fig. 4b), at that location and time, may not be monotonic for the 
inner-type method; a similar situation was noticed in Fig. 4b, where the zero level-set, by 
not being a vertical line, allows for the sign of the derivative of the analytical PD solution 
with respect to the horizon size to change sign, when the horizon changes. At 0.5 s (see 
Fig. 7c, d), the m-convergence curves from both locations do intersect at the classical solu-
tion, but the m value of the intersection point for x1 location (Fig. 7c) is about 3.2, slightly 
smaller than the one at x2 (Fig. 7d), which is about 3.4.

4 � Obtaining the Exact Classical Solution from Several Non‑Local 
Solutions with Large Horizons

When �-convergence is monotonic (at a point in time and space), and for some m values the 
PD solution is above the classical one, while for some other is below, the m-convergence 
curves have to cross each other at the same m-value, and the corresponding temperature 
there is necessarily the exact solution of the local model (this is easily proven by contradic-
tion, see also [19]). This leads to the potential of obtaining the exact classical solution from 
a number of PD solutions that employ relatively large horizons. This means also that the 
grids needed for these solutions are relatively coarse. A natural question is whether, with 
this strategy, the same m-value can be used for all points along the bar and at all times. The 
answer to this question was partially given in the previous section, where we observed that 
the crossing m-value is not necessarily constant, but that it depends on the location and 
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time where the solution is computed. In this section we study the variation of the intersec-
tion point for m-convergence curves on the time and location along the bar, and investigate 
whether the proposed strategy is better than using a PD solution with a very small horizon 
size to approximate the exact local solution. Note that, because of �-convergence, the PD 
solution with a smaller horizon size should, in principle, approximate the exact classical 
solution better than one obtained using with a larger horizon size.

We emphasize that, for the remainder of this paper, only the inner-type implementation 
of the local boundary conditions is used, because this is the more robust way to “force” 
m-convergence curves cross each other (at the exact classical value) at more points in space 
and time.

We first calculate the variation of m values at the intersection of the m-convergence 
curves along the 1D bar. To improve accuracy in computing the intersecting point, we 
interpolate three data points in the m-convergence calculations using quadratics (see 
Fig. 8). Note that although two quadratic curves may have two or more intersection points, 
we only keep the one corresponding to the smallest (but positive) m value (see Fig. 8). The 
desire is to choose smaller m-values because of efficiency of computations: large m-val-
ues lead to costly computations without much gain in accuracy, see the plateauing of the 
m-convergence curves for values of m much larger than about 8 in Figs. 5 and 6. Moreover, 
the key factor in getting m-convergence curves to cross is the presence of discretization 
error and/or of surface effects errors, and these are more prominent for smaller m-values. 

Fig. 8   Finding the intersecting 
m-value at the crossing point of 
two m-convergence curves by 
quadratic interpolation, from 
solving for the temperature at a 
point and time step using six dif-
ferent PD solutions (correspond-
ing to given m1, m2, m3, and �1 , 
�2 ). Here, and in what follows, 
�1 = L∕10 , �2 = L∕20 , m1 = 2 , 
m2 = 4 , and m3 = 8

A B

Fig. 9   Distribution of the intersecting m-values for a t = 0.1  s and b 0.5  s. Note that the end points for 
t = 0.5 s have intersecting m-values to 3.7, which are not shown in (b). Δt = 10−4 s
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This is why most of the intersecting points we found, correspond to m values between 2 
and 4.

To maintain efficiency, we select two relatively-large horizon sizes: �1 = L∕10 , 
�2 = L∕20 , and for each horizon size, we use three m values: 2, 4, and 8. In Fig. 8, we sche-
matically show the intersecting of two monotonic m-convergence curves.

With this method (see Fig. 8), we find the distribution of intersecting m-values at times 
0.1 s and 0.5 s, for points along the bar, as shown in Fig. 9. These results reveal two major 
points:

1.	 The intersecting m-value for a certain point along the bar depends on the distance from 
the boundaries. Except for locations close to the boundaries (affected by the PD surface 
effect [35], present in the inner-type implementation of BCs), the m value increases as 
the point is further away from the boundaries. As illustrated in [19], when Dirichlet 
boundary conditions in Eq. (4) are imposed on the boundary nodes inside the bar (inner-
type implementation, see Sect. 2), the amount of total heat present at the initial time 
step in the bar is lower than it should be according to the classical model; on the other 
hand, the nonlocality of the PD model slows the heat flow (relative to the corresponding 
local model), resulting in higher temperature values (or lower, depending on whether 
there is outflow or inflow of heat into the point) than those corresponding to the classical 
solution. Therefore, the earlier the boundary conditions information are felt at a point, 
the higher (for outflow) or lower (for inflow) the value of the numerical PD solution is, 
relative to the corresponding local model value. After the initial time, the intersecting 
m-values stay near 3.4, which is the value noted in [19] also, even though the diffusivity 
in this paper is different from the one in [19]. In [19], we have shown that for the linear 
(or “conical”) micro-diffusivity in the constructive kernel, and using an asymptotically 
compatible quadrature scheme, δ-convergence is monotonic. Therefore, all of the results 
and conclusions we obtained here for the constant micro-diffusivity should also hold 
for the linear micro-diffusivity. In [19] we have also shown that with the linear micro-
diffusivity, the intersecting m-values are slightly larger than for the constant one.

2.	 The intersecting m-value at particular points along the bar is not constant in time, but 
its variation decreases with time, tending to a constant value along the bar. With a rela-
tively large time step, to approximate the exact solution of the classical model using the 
property of intersecting m-convergence curves of peridynamic models is, therefore, more 
efficient at the later times than at early times. At the early times, temperature changes 
are small and affected more strongly by the PD surface effect round-off error. As time 
progresses, the error will be dominated by the boundary condition implementation, 
which is the one canceling out the nonlocality at the intersecting point. The earlier the 
solution sought, the smaller the times-step used in the PD computations for finding the 
intersecting m-value needs to be. This seems a reasonable compromise.

We emphasize that with this strategy, using the intersecting m-value of PD solutions 
for two large horizons (therefore with relatively coarse corresponding grids, and there-
fore, at a small computational cost), we obtain the exact classical solution (!) at a point 
in time and space. In this paper, we apply this approach to compute the local solution 
using several PD models with large horizons with a better approximation than by using 
a PD solution with a smaller horizon size. This approach could be especially useful for 
problems with damage or other singularities.
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Next we show the effectiveness of using the intersecting m-value strategy (with two 
relatively large horizons) versus using the PD solution with a relatively smaller horizon 
to compute an approximation of the exact solution of the classical model. In the inter-
secting m-value strategy, we use a point at a certain time ( x2 = 5.0 cm and t = 0.5 s in 
Fig. 9, for instance) to find the intersecting m-value. Then, we use this m-value, and the 
corresponding number of nodes, to calculate the PD solution at all points along bar, at 
this time-step.

Figure  10 shows the difference between the PD computed solutions and the exact 
classical solutions. The black circles represent the results from the intersecting m-value 
strategy. For these results, first, we use horizon sizes: �1 = L∕10 , �2 = L∕20 , and for 
each horizon size, we select three m values: 2, 4 and 8. With each combination of hori-
zon size and m value, we calculate the temperature value at the middle of the bar and 
time 0.5 s. We interpolate these solution data points using quadratic functions (as shown 
in Fig. 8). The crossing point of the two interpolated curves is the intersecting m-value, 
which is 3.367 in the case shown in Fig. 10. With this m value and a total nodes number 
80, we run the PD simulation again to obtain the results at all points along the bar at 
time t = 0.5  s. The difference compared with the exact classical solution are shown as 
black circles in Fig. 10. We then also use a smaller horizon size and finer grid (L/40 and 
m = 16) to find the solution along the bar at the same time. The red triangles in Fig. 10 
represent the difference between these results and the exact classical solution. Note that 
if the solution is needed at an earlier time, one needs to use a smaller time step in order 
to employ the intersecting m-value approach.

The small difference distribution between PD solution with intersecting m-value and 
the classical solution shown in Fig. 10 demonstrates that PD computational method can be 
used to obtain the classical solution. Notably, the total computational time for all PD runs 
based on the intersection m-value strategy involved in finding the results shown in Fig. 10 
is only 1/4 of the computation time for the single PD solution with the smaller horizon 
size. A smaller time step would further reduce the variation in the distribution of inter-
secting m-values (see Fig.  9), which will further improve the results (smaller difference 
through the bar in Fig. 10).

Fig. 10   The difference between 
the PD computed solution and 
the exact classical solution at 
time t = 0.5 s and x = 5.0 cm. The 
black circle data is computed 
based on the intersecting m-value 
strategy: m = 3.367, obtained 
from intersecting curves for 
horizon sizes L/10 and L/20. 
The total nodes number is 80 
(corresponding to the horizon 
size L/23.76). The triangle data 
is based on a single PD solution 
with horizon size L/40 and 
m = 16 (total nodes number is 
640). Δt = 10−4 s
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Note that except for points very close to the boundary, which are directly affected by the 
PD surface effect, we can choose other location to determine the intersecting m-values, as 
long as the diffusion time is sufficiently large, or the time-step size is sufficiently small (see 
Fig. 9). Certainly, with different choices of location, the intersecting m-values may fluctu-
ate more or less, and so would the approximation of the classical solutions. However, these 
fluctuations should be small.

The intersection property of the m-convergence curves depends in a major way on 
the monotonicity of δ-convergence, the numerical quadrature scheme, and the way local 
boundary conditions are imposed. If monotonic δ-convergence holds, then m-convergence 
curves either do not cross, or they all cross at a single point, whose value may or may not 
be equal to the classical solution value (see the cases with other postulated kernels in [19]). 
For a constructive kernel (n = 2 in Eq.  (1)), if monotonic δ-convergence holds and the 
numerical quadrature scheme is an asymptotically compatible one, then the m-convergence 
curves either do not cross each other or the classical solution, or they all cross at a single 
point and that point is the classical solution.

We have discussed in detail the monotonicity of δ-convergence for the 1D transient 
diffusion with Dirichlet boundary condition imposed via the three strategies discussed in 
Sects. 2 and 3. For higher dimensional cases and problems with other types of boundary 
conditions, we can apply a similar procedure to that shown in Sect. 2 for finding the ana-
lytical solutions to PD models (see [22]). Then, such analytical solutions can be used to 
analyze the monotonicity of the δ-convergence behavior. If δ-convergence is monotonic 
and the numerical quadrature scheme is asymptotically compatible, similar features as the 
intersection of m-convergence curves at classical solution values should persist, and one 
should be able to extend the methodology shown here to the higher dimensional cases and 
problems with other types of boundary conditions. This will be investigated in the future.

It is important to observe that in many works [18, 28, 35], PD solutions have been com-
pared with the exact classical ones and, when a close match was observed for a certain 
m-value (for example, m = 3), the conclusion was that numerical convergence has been 
achieved. The results presented here explain one possible reason for the nonlocal solu-
tions obtained in such cases being very close to the exact solution: the m-value used in 
such cases was probably close to the intersecting point of the m-convergence curves. Had a 
larger m-value been used in those problems, it is likely that one would have noticed the PD 
solution starting to depart from the classical one.

5 � The case of 1D Transient Heat Transfer in a Heterogeneous Bar

In the last section, we focused on 1D transient heat transfer in a homogeneous bar, and 
we explained how the intersecting m-value depends on spatial location and time/time-step. 
In this section, we consider transient heat transfer in a 1D heterogeneous bar and analyze 
whether and how material interfaces affect the intersecting property of the m-convergence 
curves.

We consider the bar of length, initial, and boundary conditions the same as in the homo-
geneous case (see Sect.  2). Two material phases are included in this heterogeneous bar. 
One phase (Material F, from “fast”) is the same as the one used in the homogeneous case, 
the other (Material S, from “slow”) has a diffusivity a tenth of material F’s. To determine 
the properties of bonds crossing material interfaces, we use the harmonic average of the 
materials properties for the bonds crossing interfaces. To account for the portion of an 
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interface bond belonging to each phase, we can use the area-weighted harmonic average, 
introduced in [36]. Other nonlocal interface (NLI) models, e.g., the new energy-based NLI 
model in [37], are possible. In this paper, for simplicity, we use the simple harmonic aver-
age. The bar is composed of 4 segments (see Fig. 11), with the following distribution of 
phases: L/4 (Segment 1, material F), L/8 (Segment 2, material S), 3L/8 (Segment 3, mate-
rial F) and L/4 (Segment 4, material S). Figure 11 shows the classical solution from a FEM 
simulation (using 1D linear truss elements, with 1280 nodes and time step 0.001  s), at 
t = 1 s, 2 s, and 4 s. Obvious slope changes are observed at the phase interfaces. We next 
perform a convergence study for the PD corresponding model and analyze the intersection 
of the m-convergence curves at t = 2 s for different points along the bar. The selection of 
this time is arbitrary.

The m-convergence curves for three different horizon sizes are shown in Fig. 12. Sev-
eral observation locations are selected. As seen from Fig. 12, material interfaces affect the 
intersection of m-convergence curves. At locations close to the material interfaces, and 
especially for points far from the boundaries, the m-convergence curves for this time and 
with a time step of Δt = 5 × 10−5 s do not all intersect at a single point (see Fig. 12b, d). 
The m-convergence curves intersect at different m values in different segments divided by 
the material boundary (see Fig. 12a, c and e–h), and the intersection points may not be the 
same as the value from the exact classical solution (see Fig. 12e, F). Note that in Fig. 12, 
we simply connect the points with straight lines. For computing the intersection points, we 
use the quadratic interpolation as shown in Fig. 8.

In Fig. 13a, we show the distribution of m values of the m-convergence curves intersec-
tion points along the heterogeneous bar. For each material point on the bar, we interpolate 
two m-convergence curves by quadratic interpolation, with the same strategy as the one in 
Fig. 8. Since not all m-convergence curves meet at the same point (see Fig. 12), the inter-
secting m-value depends on which two m-convergence curves we select. However, all of 
the intersection points are close to the classical solution, as shown in Fig. 12. Since our aim 
is to compute the cheapest nonlocal models to approximate the exact solution of the clas-
sical model, for computational efficiency we select two larger horizon sizes: �1 = L∕10 , 
�2 = L∕20 , and for each horizon size, we use three m values: 2, 4 and 8.

Fig. 11   FEM-computed time-
evolution of temperature distribu-
tion along a 1D heterogeneous 
bar subject to Dirichlet boundary 
conditions. The different material 
phases (with high/orange and 
low/blue diffusivities) are shown 
at the top of the plot
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Similar conclusions as those drawn from the results in Fig. 12 can be made from the 
results in Fig. 13a: the intersection behavior of the m-convergence curves is influenced by 
the time it takes to propagate the information (including the PD surface effects) from the 
boundaries. Moreover, in the heterogeneous case, the presence of the material interfaces 
also modifies the intersecting m-values. Two other observations are: 1) as in the homo-
geneous case (see Fig. 9), zones farther away from the boundaries have higher m values; 
and 2) intersecting m-values jump at the material interfaces. For a homogeneous bar, the 
diffusivity value has no effect on the intersecting m-value. In the heterogeneous case, the 
observed jump in the intersecting m-value at an interface is likely due to the discontinuity 
in the effective diffusivity in the PD nonlocal model and the selection for deciding bond 
properties for PD bonds that cross a material interface. The area-weighted harmonic aver-
age introduced in [36] may be used to mitigate the effect from the jump discontinuity in the 
material properties, but it is not pursued in this work. It might also be possible to develop 
an approach similar to the fictitious nodes method for material interfaces, which could also 
improve on the results shown here.

In Fig. 13b, we use the intersecting m-value at x = 5.0 cm and t = 2 s (m = 4.432) from 
Fig.  13a, and a relative grid-density with the total nodes number 160, and we show the 
difference between the PD computational solution and the FEM solution. The intersecting 
m-value approach has a smaller difference to the classical (FEM-based) solution than the 
PD solution obtained with a single, but much smaller horizon size. In the future, it will be 
interesting to investigate whether for problems with singularities in the classical solution, 
the intersecting m-value can be more efficient even than a FEM-computed solution.

6 � Concluding Remarks

In this paper we analyzed the behavior of peridynamic (PD) numerical solutions for tran-
sient heat/mass diffusion subject to Dirichlet boundary conditions. We investigated whether 
a strategy based on intersecting m-convergence curves that compute several PD solution 
using large horizons leads to better/more effective approximations of the exact solution of 
the classical model than a single PD model that uses a much smaller horizon size.

We have clearly explained the source for the intersecting m-convergence curves by using 
analytical solutions to PD models of transient heat transfer and the numerical approxima-
tions of various ways of imposing local boundary conditions, in the context of the one-
point Gaussian spatial quadrature (mid-point integration).

With the one-point Gauss quadrature and an appropriate peridynamic kernel, numeri-
cal results converge to the classical solution in the limit of the horizon going to zero when 
the relative grid-density (m) is kept constant. The intersection of m-convergence curves at 
the classical solution is due to the competition between numerical discretization effects 
and the way of implementing the local boundary conditions and the nonlocality present 
in a PD model. We noticed that the behavior of m-convergence curves intersecting at the 
classic solution provides a better approximation of the exact classical solution that using a 
PD model with a smaller horizon size. It is therefore possible to find a certain m-value for 

Fig. 12   The m-convergence curves of PD solutions for transient heat transfer in a heterogeneous 
bar at t = 2  s and at different locations along the bar (marked in red on the bar). In phase F (blue): a 
x = 1.1875 cm, c x = 3.125 cm, e x = 5.0 cm, and f x = 6.25 cm. In phase S (orange): b x = 2.75 cm, close to 
an interface, d x = 3.625 cm, close to an interface; g x = 8.125 cm, and h x = 8.75 cm. The dotted lines cor-
respond to the FEM-computed classical solution values. Δt = 5 × 10−5 s (Color figure online)

▸
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which, even with a large nonlocal size, one finds the exact local solution at a point in time 
and space.

We also performed convergence studies for 1D transient heat transfer in a composite bar 
made of alternative phases with high and low diffusivities. We showed that material inter-
faces have a strong influence on the m-convergence intersection points value for the solu-
tion at different locations along the bar. The benefits observed for the homogeneous bar 
are maintained for the heterogeneous bar: m-convergence curves for peridynamic solutions 
obtained with different horizon sizes cross at the classical solutions, when an “asymptoti-
cally compatible” numerical scheme is used.

Note that the properties discussed here were obtained for the one-point Gaussian quad-
rature (meshfree PD implementation). They may persist for other types of discretization 
methods, but we have not studied that so far.
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