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A B S T R A C T   

Peridynamic (PD) models of bodies without pre-cracks, based on a single fracture parameter (associated with the 
critical fracture energy), produce different strengths when different horizon sizes are used to simulate crack 
nucleation under quasi-static conditions. To maintain the same strength and fracture energy under different 
horizon sizes, extra parameters have to be introduced in the failure model. Bilinear and trilinear bond force- 
strain relationships have been proposed in the literature for crack propagation in quasi-brittle materials. In 
this paper we study crack nucleation in a plate with a hole under quasi-static loading using bilinear and trilinear 
PD models. We provide analytical formulas to calibrate the models to measurable material properties. We show 
convergence for both strength and fracture toughness. The bilinear PD constitutive model works well for both 
brittle (e.g. ceramics) and quasi-brittle (e.g. concrete) systems, while the trilinear version is more suited for 
quasi-brittle fracture behavior. We also find that for quasi-brittle fracture, a model that accounts, stochastically, 
for the presence of small-scale pores/defects performs better than a homogenized model. A wedge-splitting test in 
concrete and crack nucleation in a quasi-isotropic composite plate with a circular hole are used to demonstrate 
the model’s performance. In contrast with other models, the current formulation does not depend on the sample 
geometry.   

1. Introduction 

Brittle and quasi-brittle crack propagation under static or dynamic 
loading have been successfully analyzed using peridynamics (PD) (e.g. 
see [1–6]). PD models converge in terms of crack path and strength 
(maximum load before failure, in the load-displacement curve) dis
played as the nonlocal region (horizon) size goes to zero, when pre- 
cracks are present. In certain problems, where material or physical 
length-scale effects are significant in the material’s mechanical 
behavior, an upper bound for the horizon size can be determined based 
on experimental results (see [7,8]). As we explain in Section 3, existing 
PD models based on a single fracture parameter (calibrated to match a 
material’s critical fracture energy), lead to strength values that do not 
converge as the horizon decreases, for problems without pre-cracks or 
other defects. The reason for this behavior is the absence of a parameter 
linked to crack nucleation. The prototype microelastic brittle (PMB) 
model (see [9]) contains only the critical bond strain that is related to 
the energy release rate for a growing crack, not nucleation of a crack. To 

address this issue, one can introduce strength-dependent parameters 
into the peridynamic bond behavior, leading to, for example, bilinear or 
trilinear bond force-strain relationships. 

Recent works based on such bilinear/trilinear behavior of PD bonds 
focused on aspects of crack nucleation from a material stability point of 
view and crack propagation [10–14]. Ref. [10] presented a bilinear law 
for PD bond force-strain curve, alongside the original linear bond force- 
strain curve presented in [15] for the PMB model. In [10], a condition 
associated with material stability was suggested for spontaneous emer
gence of a discontinuity (“nucleation” of a crack) in a peridynamic body, 
and a numerical example of a plate with a centered hole was tested. A 
study on strength as the horizon size decreases was not provided. 

A bilinear model was also employed in [11,12] in PD modeling of 
static crack growth from a pre-crack in brittle and quasi-brittle mate
rials, such as concrete. The focus was only on crack propagation from 
existing pre-cracks, not on crack nucleation or the issue of convergence 
for strength as the horizon decreases. We also note that in [10–12], the 
extra parameter in the bilinear model is determined via curve fitting to 
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an experimental force-displacement curve, with a goal of matching the 
location where the load-displacement curve departs from linearity as the 
moment for crack nucleation. In [13], the bilinear model is used to study 
quasi-brittle behavior, and the model parameters are calibrated to match 
the experimental force-displacement curves. An alternative approach to 
computing the model parameters by curve-fitting experimental data, as 
pursued in [10–13], is to directly connect these to some measurable 
quantities (e.g. ultimate strength). In [14], the extra parameter in the 
bilinear model is set to the ultimate tension strain, i.e. σu/E, in which σu 
is the ultimate strength, and E is the elastic modulus. The other 
parameter in the bilinear model is then evaluated from the critical 
fracture energy (similar to the calculation of the critical bond strength in 
the PMB model in [9]). A PD model with a trilinear bond force-strain 
relationship for quasi-brittle behavior was proposed in [14] with the 
softening part of the bond force-strain curve being calibrated to the 
corresponding experimental softening curve. Note that PD models with 
bilinear force-bond strain behavior have also been used to simulate 
elasto-plastic-type behavior [16,17]. In these references, the focus was 
not on crack nucleation. 

Two other approaches to crack nucleation in PD were recently pre
sented in [18,19]. In [18], a refinement overlay technique is proposed to 
decouple the model strength from the grid resolution, so that very small 
horizon size (with a constant ratio of horizon size to grid resolution) is 
no longer required to match the actual strength. The special treatment is 
only needed for PD bonds that are close to reaching their breaking strain, 
but the extra cost may be significant, especially for problems with many 
cracks. In [19], an approach based on finite fracture mechanics (FFM) 
concepts was proposed. FFM has been used before to study crack 
nucleation in a plate with a circular hole in [20], and for several other 
simple geometrical settings, such as: elliptical hole [21], V-notch 
[22,23], straight interfaces in adhesive joints [23,24] and laminated 
composites [22,23]. It appears that an FFM formulation for the general 
case (e.g. interacting nucleating cracks) is not available. Moreover, FFM 
approaches are limited to modeling only brittle failure since the basic 
assumption is that failure happens only when both stress and fracture 
energy conditions simultaneously reach their critical values. PD models 
based on bilinear bond-level force-strain relationship cover brittle and 
quasi-brittle behavior, and the bilinear and trilinear PD models are in
dependent of the geometry of the sample. 

The paper is organized as follows: in Section 2 we give a brief review 
of peridynamics; and then present the numerical discretization used; in 
Section 3 we study the convergence (in terms of the horizon size going 
zero) for the global load-displacement curve in a crack nucleation 
problem; in Section 4 we first derive, based on material properties, pa
rameters for a bilinear bond force-strain model, and then apply the 
model to study its convergence behavior; here we use the fully ho
mogenized peridynamic (FH-PD) model and the intermediately (or 
partially) homogenized peridynamic (IH-PD) model that takes into ac
count microstructural defects; in Section 4, we describe a trilinear bond 
force-strain model and apply it to study crack nucleation; validation 
against experimental data and comparisons with other PD models from 
the literature are provided in Section 5; conclusions are given in Section 
6. 

2. Original peridynamic model for the PMB material 

In this part we briefly review the original PD theory and discuss its 
numerical discretization using the one-point Gaussian integration, also 
called the “meshfree” discretization approach. 

2.1. Brief review of peridynamics 

Peridynamics was introduced as a nonlocal form of continuum me
chanics by Silling in 2000 [15] for modeling fracture. Since then, it has 
been extended to a variety of other problems in which domain changes/ 
discontinuities are part of the problem [5,6,8,25–35]. In this theory, 

each material point is connected through peridynamic bonds to other 
points within a certain neighborhood region called “the horizon”. The 
peridynamic bonds transfer forces between points (or mass or heat, as in 
[27,30]) and their failure defines damage at each point. In peridy
namics, one replaces the equation of motion by an integro-differential 
equation in which spatial derivatives are eliminated. This allows peri
dynamics to avoid the mathematical difficulties and inconsistencies 
present in the classical theory when cracks, for example, develop in the 
domain. The PD equations for quasi-static problems are: 
∫ ’

Hx

f(x̂ − x, u(x̂, t) − u(x, t) )dV x̂ + b(x, t) = 0 (1)  

where f is the pairwise force function in the peridynamic bond that 
connects point x̂to x, u is the displacement vector field, and b(x, t) is the 
body force. The integral is defined over a region Hx called the “horizon 
region”, or simply the “horizon”. The horizon is the compact-supported 
domain of the pairwise force function around a point x (see Fig. 1). The 
horizon region is taken here to be a circular disk (in 2D or sphere in 3D) 
of radius δ. We refer to δ also as the “horizon”, and, from the context, 
there should be no confusion whether we refer to the region or its radius. 

A micro-elastic material is defined as one for which the pairwise 
force derives from a potential: 

f(ξ, η) =
∂ω(ξ, η)

∂η (2)  

where ξ = x̂ −x is the relative position in the reference configuration and 
η = u(x̂, t) −u(x, t) is the relative displacement between x and x̂. A 
micropotential that leads to a linear microelastic material is given by: 

ω =
1
2

c(ξ)s2ξ (3)  

where ξ = ‖ξ‖, and s =
‖ξ+η‖−‖ξ‖

‖ξ‖
is the relative elongation of a bond, or 

bond strain. The function c(ξ) is called the micro-modulus and has the 
meaning of bond’s elastic stiffness. The pairwise force corresponding to 
the micropotential given above has the following form: 

f(ξ, η) =

{ ξ + η
‖ξ + η‖

μ(ξ, η)c(ξ)s, for ξ ≤ δ

0, for ξ > δ
(4)  

where the function μ is a history-dependent binary function:[36] 

μ(ξ, η(t)) =

{
1, if s

(
ξ, η

(
t̃
) )〈

s0 for all 0 ≤ t̃ ≤ t
0, otherwise (5)  

and s0 is the critical bond strain, calibrated to the material’s fracture 
energy (see below). f has the same units as the micro-modulus function 
c(ξ) (see Eq. (4)). 

Fig. 1. A point x interacts directly with any point x̂ in its horizon region Hx, 
here a disk of radius δ. 
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This bond force-bond strain relationship is the constitutive model for 
a prototype microelastic brittle (PMB) material in a PD formulation (see 
[9]). 

Several choices for the particular form of the micromodulus function 
c(ξ) can be used (see [1,37]), but at the macro-scale the differences 
between these options should be minimal [1]. Here, to ease the 
analytical calculations in Section 4, we employ the “constant” micro
modulus function, in which the stiffness of bond (x, x̂) does not depend 
on its length. The constant micro-modulus function for 3D, and 2D plane 
stress/plane strain are obtained from enforcing a match between the 
strain energy in PD and the classical strain energy, under a homogeneous 
deformation (see [1,9]): 

c(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

12E
πδ4 , for 3D

9E
πδ3, for 2D plane stress

48E
5πδ3, for 2D plane strain

(6)  

where E is Young’s modulus of the material. We note that with the bond- 
based version of PD, Poisson ratio ν is fixed to 1/3 in 2D plane stress and 
to 1/4 in 2D plane strain and 3D conditions. The material model in Eq. 
(4) is equivalent to the kernel function using n = 1 for the peridynamic 
kernel c(x̂, x)/|x̂ − x|

n (see [36]). No significant differences on crack 
patterns were observed between models with n = 1 and n = 2 [8]. In this 
work, to simplify the analytical calculations in Section 4, we use the 
model with n = 1. 

Failure is introduced in peridynamics by considering that the peri
dynamic bonds break irreversibly and no longer sustain a force [9,15] 
when they are deformed beyond a critical value, called the critical 
relative elongation or critical bond strain, s0, computed based on the 
material’s fracture energy G0. In this study, once a peridynamic bond 
breaks, it remains broken [27,28]. The connection between s0 and G0, 
for 2D [1] and 3D [9] cases, is: 

G0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1

(
z
ξ

)

0

[
c(ξ)s2

0ξ
2

]

ξ2sinϕ dϕdξdθdz, for 3D

2
∫ δ

0

∫ δ

z

∫ cos−1

(
z
ξ

)

0

[
c(ξ)s2

0ξ
2

]

ξ dθdξdz, for 2D

(7) 

Substituting the constant micro-modulus functions from Eq. (6) into 
Eq. (7), one obtains s0 as: 

s0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̅̅̅̅̅̅̅̅
5G0

6Eδ

√

, for 3D
̅̅̅̅̅̅̅̅̅̅̅
4πG0

9Eδ

√

, for 2D plane stress
̅̅̅̅̅̅̅̅̅̅̅
5πG0

12Eδ

√

, for 2D plane strain

(8) 

A damage index quantity is then defined as: 

d(x, t) = 1 −

∫

Hx
μ(ξ, η(t))dV x̂∫

Hx
dV x̂

(9) 

In the discrete version, the damage index is computed as the ratio 
between the number of broken (or failed) bonds (Nf ) and the total 
number of bonds (N) originally associated with a node at time (or load 
step, for quasi-static problems) t (d(x, t) = Nf

N ). When all bonds connected 
to point x are broken, d(x, t) = 1 and point x becomes a free point. 

2.2. Numerical discretization 

In principle, Eq. (1) can be discretized using the finite element 

method (FEM) [16,38], meshfree direct discretization [9], a combina
tion of both [16,39,40], pseudo-spectral methods [41], or any other 
method suitable for numerically computing the solution to an integro- 
differential equation (or an integral equation for the static case). Here 
we use the meshfree discretization, which makes it easiest to handle 
damage and fracture [42,43]. Using a mid-point integration scheme (see 
[9]), the discretized version of Eq. (1) at a node xi is: 
∑

j∈Fam(i)

c
(
ξij

)
sijVij + bi = 0 (10)  

where Fam(i) is the family of nodes j with their area (or volume in 3D) 
covered, fully or partially, by the horizon region of node i, ξij is the bond 
length between nodes i and j, sij is the relative elongation for the bond 
connecting nodes i and j, and Vij is the area (or volume) of node j esti
mated to be covered by the horizon of node i. Note that node j may not be 
fully contained within the horizon of node i, so a “partial volume” 
integration scheme is used to improve the accuracy [42,44,45]. Note 
also that the system of equations obtained from Eq. (10) is linear in bond 
strains (i.e. s =

‖ξ+η‖−‖ξ‖

‖ξ‖
), but nonlinear in displacements (since, in 

general, ‖ξ + η‖ − ‖ξ‖ ∕= ‖û‖ − ‖u‖; see also [15]). For infinitesimal 
deformations, the system is linear in displacements (e.g. see [46]). 

For a fixed horizon size, the ratio m = δ/Δx describes how accurate 
the numerical quadrature for the integral in Eq. (1) will be. We call this 
ratio “the horizon factor” [37]. We recall that in m-convergence we 
consider the horizon δ fixed and take m→∞ (see [37]). The numerical PD 
approximation will converge in this case to the exact nonlocal PD so
lution for the given δ. In the case of δ-convergence, the horizon δ →0 
while m is fixed or increases with decreasing δ. For δ-convergence, the 
numerical PD solutions are expected to converge to the classical local 
solution (as m increases also) (see [37,47,48]). 

For domain discretization, both uniform [9] and non-uniform grids 
[49–52] are possible. Non-uniform grids (in which node density does not 
vary significantly over the domain so that the quadrature error is 
minimized) are better at modeling rounded shapes compared to uniform 
grids, and they can be easily created from finite element meshes [53]. 
For the non-uniform grids used in this work, the PD nodes are located at 
the centroid of their nodal areas (see [29] for a discussion on other 
options). We use ANSYS to create non-uniform meshes to better match 
the shape of the hole in plate used to study crack nucleation problems: 
each PD node is the centroid of a finite element and the element area is 
assigned to be the nodal area of the corresponding PD node. An ANSYS 
APDL code exports element centroids and areas (see Appendix B in 
[33]), which is the only information from the finite element dis
cretization that is used in a PD model. Schematic pictures of element 
centroid for uniform and non-uniform mesh are shown in Fig. 2. In each 
case, for both uniform and non-uniform grids, we use constant horizon 
size over the domain. A good practice is to always select the horizon size 

Fig. 2. Finite element centroids for (a) uniform and (b) non-uniform meshes 
are chosen as PD nodes. The element area is used as the corresponding PD 
nodal area. 
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for a problem, and then decide on the grid to be used. For the non- 
uniform meshes mentioned above, however, we first create the grids, 
and then compute the constant horizon size δ by selecting a generic Δx 
value, related to the average finite element size, multiplied by the ho
rizon factor m. This works in our case because the density of nodes in 
these grids is fairly uniform, and there are regions where the grid is very 
close to being uniform (see Fig. 4). A comparison of results obtained by 
uniform and non-uniform grids with those obtained by experiments for 
crack nucleation problems are provided in Section 5.2. 

All simulations performed in this work are quasi-static. The 
nonlinear (in displacements) system in Eq. (10) can be solved via the 
energy minimization method using the nonlinear conjugate gradient 
(NCG) [25,33], or by the adaptive dynamic relaxation (ADR) method 
[14,39,54]. A complete discussion of the NCG method is available in, e. 
g., [55,56], and a brief account is given in Appendix A of Ref. [33]. The 

micropotential function ω for the PMB model in Eq. (3) is quadratic (and 
therefore convex), while for the bilinear and trilinear bond force-strain 
models it is not. It is well known that minimizing non-convex functions 
(see Fig. 7) makes convergence to the global minimum more difficult 
(see [55,57]). Because of this, here we use the ADR method for the 
bilinear and trilinear PD constitutive models. A discussion of the ADR 
method is provided in Appendix A. The algorithm we use for simulating 
quasi-static fracture with PD is shown in detail in Appendix B. 

3. Crack nucleation for the PMB model 

The original PD model based on a single fracture parameter relies on 
obtaining the critical bond-strain from the measured critical fracture 
energy (see Eq. (8)). This means that one can match the energy release 
rate with a PD model, but not, at the same time, the material strength 
(related to crack initiation phase). This is not an issue for cases in which 
there is a pre-crack, because in these cases, the PD-computed strength is 
controlled by (or coupled with) the fracture toughness, whereas in 
problems in which there is no pre-crack, the PD computed strength is 
independent from (not controlled by) the fracture toughness (see 
[10,18–20]). Because of this, PMB models for problems with pre-cracks 
do show convergence (see [37], and Section 2.2 for types of convergence 
in PD models) for both strength and dissipated fracture energy. 
Appendix C discusses δ-convergence for the PMB model for a plate with a 
pre-crack. Note that while there are some works that combine the pro
cess zone size with the characteristic relaxation times to describe re
lations between a material’s strength and its fracture toughness (see 
[72,73]), here, for simplicity, we introduce models that match some 
given values of strength and toughness. A description of how micro
structural arrangements can lead to high toughness without sacrificing 

Fig. 4. In (a): force-displacement curves from PD simulation results with the PMB model with horizon size δ = 3 mm for different m-factors. Grids shown (used, with 
symmetry, to create discretizations for the plate in Fig. 3), are for horizon factors (b) m = 3, (c) m = 4, and (d) m = 5. Red circles show the horizon size. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Geometry and loading configuration for the plate with a hole. “Δ” de
notes the displacement-controlled-type loading. 
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the strength and stiffness is given in [58]. 
In this section, we use the original PD model to study δ-convergence 

in problems that do not contain pre-cracks or other defects. Ref. [18] 
showed that for a plate without a hole, the original PD model gives 
higher and higher strengths as the horizon size decreases. We consider a 
plate with a circular hole under quasi-static loading. This geometry is 
selected in order to control the location for crack nucleation, which 
should happen from the points with maximum stress concentration 
factor. 

Geometric parameters used are shown in Fig. 3. The thickness of the 
plate is considered to be 0.5 mm and used in the post-processing step to 
compute the total load on the plate for plotting load-displacement 
curves. Material properties are chosen as: E = 192 GPa and G0 ≈ 83 
kJ/m2 (Section 9.1 of [54]). Note that we calculated G0 through Eq. (8) 
with the critical bond strain (s0 = 0.02), the horizon size and the elastic 
modulus given in Section 9.1 of [54]. The material properties are hy
pothetical values that under certain conditions may lead to brittle or 
quasi-brittle fracture behavior (in Section 4.2 we will show how we 
control the fracture behavior to be brittle and quasi-brittle by involving 
an extra material property) 

A vertical displacement-controlled type loading with a constant rate 
of 0.275 µm per step is applied to each end of the plate (see Fig. 3). 2D 
plane stress conditions are considered. A dynamic relaxation method 
(ADR) solver with a time step of Δt = 0.01 s is used (see Appendix A). 

We use non-uniform grids generated by ANSYS APDL (see Section 
2.2) for an eighth of the structure, as shown in Fig. 4 and Fig. 5. We use 
symmetries to then construct the grid for the entire plate and solve the 
problem over the entire plate, without using symmetry, in order to 
observe fracture without forcing symmetry conditions into the model, 
other than the natural ones present in the geometry itself. This option 
also leads to creating more uniform element sizes over the sample, 
which helps avoiding zones with few nodes (and therefore with low 

quadrature accuracy) that could happen if we were to generate the FE 
mesh directly for the entire sample. PD nodes are the centroids of cor
responding finite elements in the grid and nodal areas are the element 
areas (see Section 2.2). 

We consider regions of fictitious nodes with the width of δ at the top 
and bottom of the plate to apply the displacements that control the 
loading [59,60]. For example, for the horizon factor of m = 5, five rows 
of fictitious nodes in the top and bottom of the plate are considered. 
These rows are on uniform grids, since the non-uniform mesh becomes 
uniform far enough from the hole. Over these fictitious nodes we enforce 
the constant values of the applied displacements, with the goal of 
mimicking the imposition of the corresponding local boundary condi
tions. Note that imposing local-type boundary conditions may be 
desired/needed because, in reality, such conditions can only be 
measured at the surfaces of a body, not through a finite layer near the 
surface, which what nonlocal boundary conditions would entail. 
Different implementations of the fictitious nodes method (FNM) are 
possible to impose local-type boundary conditions in PD models, see 
[48]. 

A comparison between displacements obtained by the PMB PD model 
(solved with ADR) with those from FEA, for the elasticity problem (when 
no failure is allowed), is shown in Section 9.1 of [54]. Fig. 4(a) shows the 
force-displacement curves from the current PD simulations of failure 
with the PMB model (see Eq. (4)) and different horizon factors m. The 
non-uniform grids for several horizon factors are shown in Fig. 4(b-d). 
These m-convergence results allow us to use m = 5 for the remaining 
simulations in this section and in Section 4. Note that we compute the 
total load at the top end of the plate (i.e. at the cross-section separating 
the top of the plate from the fictitious nodes above it), by summing up 
the vertical components of nodal forces. 

In Fig. 5 we show the results with the PMB model for different ho
rizon sizes. As the horizon decreases, we reach higher and higher 

Fig. 5. In (a): results for the plate with a hole (Fig. 3) with the PMB model showing increase in strength when horizon δ decreases (horizon factor m = 5). Non- 
uniform grids used are for horizon sizes: (b) δ = 3, (c) δ = 1.5, and (d) δ = 0.75 mm. Red circles show the horizon sizes. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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strengths (load at which failure initiates). The reason for this behavior is 
the absence of an independent parameter linked to crack nucleation. The 
PMB model contains only the critical bond strain, which is calibrated to 
match the fracture energy release rate. To address this issue, we will 
introduce strength-dependent parameters into the peridynamic bond 
behavior, leading to bilinear or trilinear bond force-strain relationships 
(see Section 4). Some alternatives have appeared recently [18,19], but 
they come with some limitations/deficiencies (see discussion in Section 
1). 

To analyze the influence spatial discretization has on strength values 
for our problem, we also use uniform grids. In Fig. 6 we show the 

increase of strength values with a decreasing horizon size and we 
compare the results obtained with uniform and non-uniform grids. As 
expected, strength values calculated by using uniform grids are lower 
than corresponding ones from non-uniform grids because a uniform grid 
around a circular hole shape will be staggered and thus lead to artificial 
stress concentration points (see also [49,53]). 

4. PD models with softening 

One way to reach convergence for strength values under decreasing 
horizon values is to introduce an independent parameter related to 

Fig. 7. PD bond micropotentials (top row) and force versus strain (bottom row) for (a) the PMB model, and softening models with (b) a bilinear behavior, and (c) a 
trilinear approximation. 

Fig. 6. In (a): load-displacement curves from PMB-PD simulations for uniform grids and different horizon sizes (horizon factor m = 5). In (b): comparison between 
strength values calculated with non-uniform and uniform grids as horizon size decreases. 
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ultimate strength. Instead of the sudden bond-failure in the PMB model, 
one can use a bond force-bond strain constitutive model with softening. 
This allows for additional parameters besides the critical bond failure 
one (see Fig. 7 for different options for PD bond force-strain curve). One 
of the simplest versions for such an approach is a bilinear PD model (see 
Fig. 7b). In this section we show how to calibrate this to strength values 
and study crack nucleation for the plate with a circular hole. A trilinear 
model is also discussed in this section. 

The bilinear and trilinear constitutive models for PD bonds allow for 
the simulation of both nucleation of a crack (primarily associated with 
the peak of the PD bond force-strain curve) and crack propagation 
through full failure (primarily associated with the bond breakage point 
in the PD bond force-strain curve). 

4.1. Bilinear PD softening model 

Methods using a bilinear bond force-bond strain model have 
appeared in, for example, [10–14], where some approximate methods 
were used to obtain the parameters involved. Here, we pursue an 
analytical approach to connect the model parameters to the ultimate 
strength (associated with crack nucleation) and fracture energy (asso
ciated with crack propagation). 

Similar to the approach used for the calibration of the PMB model 
(see Eq. (7)), we enforce a match between the material’s fracture energy 
and the energy required in the PD model to break a sample in two (see 
Fig. 8), as follow: 

G0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1

(
z
ξ

)

0

[
c(ξ)s1scξ

2

]

ξ2sinϕ dϕdξdθdz, for 3D

2
∫ δ

0

∫ δ

z

∫ cos−1

(
z
ξ

)

0

[
c(ξ)s1scξ

2

]

ξ dθdξdz, for 2D

(11) 

This leads to: 

s1sc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

5G0

6Eδ
, for 3D

4πG0

9Eδ
, for 2D plane stress

5πG0

12Eδ
, for 2D plane strain

(12) 

For the additional equation needed here, we use the ultimate 
strength value (a material property available from experimental data). 
The ultimate strength value is controlled by small pores, defects, 
microcracks, and it is reasonable to assume that most of these grow and 

lead to either softening or sudden failure because of isotropic expansion 
(zero deviatoric components) local conditions. We connect the 
maximum bond force cs1 (see Fig. 7) to the ultimate strength by 
assuming that PD stress normal to the plane along which a crack initiates 
is equal to the ultimate tensile strength (see [16]): 

σu =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1

(
z
ξ

)

0
(cs1cosϕ)ξ2sinϕ dϕdξdθdz, for 3D

2
∫ δ

0

∫ δ

z

∫ cos−1

(
z
ξ

)

0
(cs1cosθ)ξ dθdξdz, for 2D

(13) 

From Eq. (13), one obtains: 

σu =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πcs1δ4

6
, for 3D

πcs1δ3

6
, for 2D

(14) 

By substituting the constant micromodulus functions from Eq. (6) 
into Eq. (14), the bilinear parameter is obtained as: 

s1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σu

2E
, for 3D

2σu

3E
, for 2D plane stress

5σu

8E
, for 2D plane strain

(15)  

and by substituting s1 from Eq. (15) into Eq. (12), the other bilinear 
parameter is obtained as: 

Fig. 8. Evaluation of ultimate tensile strength, σu, for (a) 3D, and (b) 2D cases. For each point A along 0 ≤ z ≤ δ, the force for bonds connecting A to each point B 
(assumed all to be at their maximum value, for crack initiation) is integrated by Eq. (13) (redrawn, with modifications, from [1;9]). 

Fig. 9. Bilinear bond law for different horizon sizes (δ1 > δ2).  
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sc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

5G0

3σuδ
, for 3D

2πG0

3σuδ
, for 2D plane stress

2πG0

3σuδ
, for 2D plane strain

(16) 

For 2D plane stress and plane strain conditions, the same sc is ob
tained analytically. Note that similar formulae to Eq. (15) are found in 
3D [16] and 2D plane strain [17] but in the different context of elasto- 
plastic-type behavior. 

Note that parameter s1 is independent of horizon size, but sc is 
inversely proportional with the horizon size. For the same PD material 
model, using two different horizon sizes δ1 > δ2, the bilinear model will 
look as shown in Fig. 9. 

We note that the condition sc > s1 is required to construct the bilinear 
model with a softening part. This condition imposes an upper limit on δ, 
assuming some given material properties, as follows (see Eqs. (15) and 
(16)): 

δ <

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

10EG0

3σu
2 , 3D

πEG0

σu
2 , plane stress

16πEG0

15σu
2 , plane strain

(17) 

One can also use Eq. (17) to determine the range of material prop
erties which, for a particular horizon size, can be analyzed with the 
bilinear constitutive model. 

4.2. Crack nucleation for the bilinear PD model 

In this section we utilize the bilinear model (see Fig. 7(b)) to study 
nucleation of a brittle or quasi-brittle crack in the plate with hole under 
tensile loading (see Fig. 3). The PD models discussed so far are homo
geneous. Real materials are heterogeneous, and a closer representation 
of them is given by the IH-PD model [5,6,33,60], which is a stochastic 
PD model able to take into account, for example, the presence of pores/ 

Fig. 10. PD bond force (times nodal area) vs. strain (top) and global load-displacement (bottom) curves obtained with the FH-PD using the bilinear constitutive 
model for quasi-brittle (a) and (c), and brittle (b) and (d) behavior. 

Table 1 
Simulation parameters for the bilinear model when E = 192 GPa and G0 = 83 kJ/ 
m2.  

Model δ (mm) s1 (see Eq. (15)) sc (see Eq. (16)) σu (GPa)  

Bilinear 3 0.002 0.1 0.576* 
1.5 0.2 
0.75 0.4 
0.375 0.8 
3 0.005 0.04 1.44†

1.5 0.08 
0.75 0.16  
0.375 0.32  

* Quasi-brittle behavior for the given E and G0. 
† Brittle behavior for the given E and G0. 
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defects/phases into the elastic and failure behavior of materials [5,6] 
without having to include the detailed representation of such pores/ 
defects/phases. Our previous studies showed such models are able to 
capture initiation of damage and failure in materials with critical pre- 
notches, matching experimental observations (see [5,6]). In this sec
tion we will also test the IH-PD model for crack initiation from a hole 
and observe if there are advantages compared with homogenous PD 
formulations. 

In our example, with the IH model, to account for the presence of 
defects, we assume a porosity of 1% for the brittle and quasi-brittle 
cases. Many ceramic materials, which are nominally brittle materials, 
have a porosity around 1% (see Table 5.5 in [61]). Crystalline rock, such 
as granite, a quasi-brittle material, can have a very low porosity (<1%) 
[62]. For a large variety of low-porosity brittle and quasi-brittle mate
rials, the critical porosity ϕc (the porosity beyond which the material can 
exist only as a suspension [63]), can be higher than 0.9 (or 90%) 
[63–65]. Here we consider ϕc ≈ 1 as input in the simulations with the IH 
model. 

To determine the material properties needed in the IH-PD model of 
poroelastic materials, the following relationship can be used to find Msp 

(see [5]): 

Meff

Msp
=

(

1 −
ϕ
ϕc

)2

(18)  

where Msp is a particular property of the solid phase (sp) constituent in 
the porous medium (e.g., elastic modulus, fracture energy, and ultimate 
strength), Meff is the effective material property for the porous medium, 
ϕ is material’s porosity, and ϕc is critical porosity. The last three 
quantities are taken from experimental measurements. Note that, ma
terial properties to be used in the bond force-strain models (see Eqs. (6), 
(8), (15), and (16)) for the IH-PD model are the properties of the solid 
phase constituent material of the porous medium, Esp, Gsp,σu,sp, not the 
effective properties that were used in the FH-PD model above. For our 
example, the solid phase Young’s modulus and fracture energy for ϕ

ϕc
=

1% and using the values given in Section 3, are obtained as (see Eq. (18)) 
Esp = 195.9 GPa, andGsp = 84.6 kJ/m2 . 

In this section we consider two materials with different strengths but 
the same Young’s moduli and fracture energies (with values given in 
Section 3). In Table 1 we give the correspondings1 values. If we consider 
σu = 0.576 GPa, we find that the bilinear bond model leads to a global 
quasi-brittle fracture behavior (see Fig. 10(a)), while with σu = 1.44 
GPa, we get a macroscale brittle fracture behavior (see Fig. 10(b)). These 
values for σu are arbitrarily chosen so that they lead to a global fracture 
behavior that appears to be brittle (sudden failure) or quasi-brittle 
(failure with a softening curve). The horizon sizes and the material 

properties given in Table 1 satisfy Eq. (17), which is required for the 
bilinear model. 

Fig. 10 and Fig. 11 show the PD simulation load-displacement results 
for the crack nucleation problem from the FH-PD and IH-PD models, 
respectively, when the bilinear bond constitutive model is used. Fig. 10 
(a) and (b) show the bond-level constitutive models responsible for the 
global responses shown in Fig. 10 (c) and (d), respectively. Softening 
behavior in the constitutive law at the bond level can lead to an abrupt/ 
sudden global failure (brittle behavior) under certain selections of bond 
parameters (see Table 1 and Fig. 10 (b)). To transition to a quasi-brittle 
global response, the softening part in the bond-level model needs to be 
extended significantly compared to one that leads to brittle failure (see 
Fig. 10 (b)). These observations correlate well with the physical un
derstanding that in brittle fracture, the extent of the fracture process 
zone (FPZ) is, in general, smaller than the extent of the FPZ for quasi- 
brittle fracture. Note that the quantity plotted in Fig. 10 (a) and (b), 
fdA, is the integral kernel in Eq. (1) (dA is the nodal area). 

Fig. 12 shows the variation of the ultimate load with respect to the 
horizon size. These results show that the PD model with a bilinear 

Fig. 11. Global load-displacement curves obtained with the IH-PD using the bilinear constitutive model for quasi-brittle (a) and brittle (b) behavior.  

Fig. 12. Comparison of computed ultimate load for different horizon sizes 
using the PMB and the bilinear model (with FH-PD and IH-PD) for brittle and 
quasi-brittle behavior. 
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constitutive model for bonds leads to δ-convergence for crack nucleation, 
for both brittle and quasi-brittle behavior. Fig. 13 compares the FH-PD 
and IH-PD results in terms of the relative difference between a base 
value for the ultimate load (obtained with the smallest horizon size used 
in this workδ* = 0.375 mm; see below) and the corresponding value 

computed for a certain horizon size, δ. This relative difference, for each 
model in part, is computed by:

|Pu(δ) − Pu(δ*)|

Pu(δ*)
(19)  

where Pu(δ*) is the computed ultimate load obtained with the smallest 
horizon size (here, δ* = 0.375 mm). As seen in Fig. 13, for both brittle 
and quasi-brittle behavior, the relative difference in Eq. (19) decreases 
with the horizon size shrinking. For brittle-type fracture behavior, there 
is little difference between the two models. However, for a quasi-brittle 
behavior, the IH-PD model, even with a large horizon size, computes an 
ultimate load value that is much closer to the “converged” value 
computed with a significantly smaller horizon size. This means that for 
quasi-brittle fracture, the IH-PD will be more efficient to use than a 
corresponding FH-PD model because we can reach a reasonable ultimate 
load using a much coarser horizon size (and coarser corresponding 
discretization grid). This issue is discussed in detail in [5,6] in the 
context of materials with high and very high porosities. 

In Appendix D, we also compare the computed ultimate load with an 
empirical estimate for the ultimate load often used in engineering 
design. The formula for that estimate was based on the photoelastic 
method, which is supposed to serve as a conservative estimate for a 
variety of materials. 

4.3. Trilinear PD model 

In this section we review the trilinear PD model, introduced in [14], 
and then use it to model crack nucleation in the plate with a hole 
described in Section 3. We then compare the results with those obtained 
in the previous section by the bilinear model. In Section 5.1, we will 

Fig. 14. PD bond force (times nodal area) vs. bond strain (a) and global load-displacement curves obtained with the FH-PD (b) and IH-PD (c) using the trilinear 
constitutive model for quasi-brittle behavior. 

Fig. 13. Relative difference in computed ultimate load (see Eq. (19)) for FH-PD 
and IH-PD with the bilinear model, for brittle and quasi-brittle behavior. 
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compare the performance of these models in an example of quasi-static 
fracture in concrete, also studied in [14]. 

Unlike brittle materials, quasi-brittle materials have a complex 
strain-softening behavior due to the existence of a larger fracture process 
zone (FPZ) [66,67]. The global stress-strain curve for quasi-brittle ma
terials is generally not easily obtained from direct tension tests because 
it is strongly influenced by the specimen’s dimensions, which is a 
manifestation of size effects in quasi-brittle fracture. Instead, a softening 
constitutive curve has been used to investigate failure of quasi-brittle 
materials, especially in concrete [14,66,67]. The softening constitutive 
curve gives the relationship between the “cohesive” stress (stress normal 
to the propagation direction at the crack tip) and the critical crack 
opening displacement (COD), which can be regarded as a material 
property. Ref. [14] used the softening constitutive curve to introduce a 
trilinear constitutive PD model, in which the force-strain curve is 
controlled by three parameters. 

For the trilinear model in the PD constitutive model, parameter s1 is 
the same as that in the bilinear model (see Fig. 7(b) and (c), and Eq. 
(15)). By equating G0 from bilinear and trilinear models (corresponding 
to equating the areas below the bond force-strain curves; see Fig. 7 (b) 
and (c), and Eq. (11)), one obtains the other two parameters in the 
trilinear model as follow: 

s2 =
sc + βγs1

1 + βγ
ŝc = s1 + γ(s2 − s1) (20) 

In order to compute s2 and ̂sc, β and γ need to be determined. These 
can be obtained from a bilinear approximation of the experimental 
softening constitutive curve, as suggested in [14], if such a curve is 
available from fracture tests. In the absence of an experimental softening 
curve, Ref. [14] suggests the following prescribed values for a generic 
concrete material: β = 1

4 and γ = 3+2β
2β(1−β)

= 28
3 .In Section 5.1, we will show 

that using these values for β and γ leads to poor performance in repro
ducing some experimental fracture data. 

In the trilinear model, the condition s2 > s1 needs to be satisfied, and 
according to Eq. (20), this leads to the condition sc > s1. This condition is 
the same with that for the bilinear model which imposes upper limits on 
δ for given material properties (see Eq. (17)). Note that other conditions 
for the trilinear model, i.e. the conditions β < 1 and γ > 1) are satisfied 
by choosing the above-mentioned values for β and γ(see Fig. 7(c)). 

Note that the constitutive models for PD bonds we introduced here 
should also work for dynamic problems for materials with light strain/ 
loading rate dependencies (or in which the rate dependencies are simply 
a result of the inertias in the problem), since no assumptions were made 
in the derivations of the mathematical formulas obtained that would 
restrict their application to static problems. However, for materials with 
moderate and strong strain/loading rate dependencies, the current 
models need modifications to account for such specific rate dendencies. 

4.4. Crack nucleation for trilinear PD models 

Here, we apply the trilinear model for the crack nucleation problem 
discussed in Section 3. We choose β and γ as suggested in [14] (see 
Section 4.3). Similar to Section 4.2, we here utilize the both FH- and IH- 
PD models. Fig. 14 shows the FH- and IH-PD results with the trilinear 
model for a quasi-brittle material with σu = 0.576 GPa (see Section 4.2). 
We note that the trilinear PD model is defined based on the softening 
curve, and has been used for modeling failure of quasi-brittle materials 
(e.g. concrete) (see [14]). 

From Fig. 14, we observe that using the trilinear PD model, the force 
displacement curves for smaller and smaller horizons converge 
throughout the loading sequence. We also see that utilizing IH-PD model 
alongside with the trilinear model leads to a faster convergence. 

Fig. 16. Comparison of bilinear and trilinear PD bond-force (times nodal area) 
vs. bond strain (a) and the corresponding results obtained with these different 
models plotted against experimental data from Ref. [68] (b). 

Fig. 15. Wedge-splitting test specimen (unit: cm) (redrawn from [14,68]).  
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5. Validation against experimental results and comparisons 
with other PD models 

In this part we compare the results obtained by our PD models with 
softening (bilinear and trilinear) against two experimental tests and 
against those obtained by other PD models. We first use a wedge- 
splitting test in concrete (Section 5.1), and then look at crack nucle
ation in a woven glass/epoxy composite plate with a center-hole (Sec
tion 5.2). 

5.1. Validation for a wedge-splitting test in concrete 

We consider the wedge-splitting test of a concrete specimen [68] (see 
Fig. 15), with material properties given as: E = 28.3 GPa, σu = 2.27 MPa, 
and G0 = 490 N/m. We perform PD simulations under 2D plane strain 
conditions. Quasi-static loading conditions are mentioned in [68,69]. In 
our simulations, we apply a horizontal displacement-controlled type 
loading with a constant rate of 60 nm per loading step, as shown in 
Fig. 15. We use δ = 0.193 m and m = 3, as used in [14]. Ref. [14] used 
this experiment to validate results obtained by bilinear and trilinear PD 
models. A conclusion drawn in [14] was that results with the trilinear PD 
model matched better the experimental data compared with those from 
a bilinear PD model (see Fig. 15(a) in [14]). 

In this section we will test whether the bilinear PD model we intro
duced here (with analytically-derived parameter, see Section 4.1) leads 
to results that are comparable, or not, to those from the trilinear model. 
For the trilinear model, we will employ two different ways of computing 
its parameters (see Fig. 16(a)). 

Fig. 16 shows the comparison of load versus crack mouth opening 
displacement (CMOD) in the crack propagation problem for the wedge- 
specimen, utilizing different bilinear and trilinear PD models. We 
compute the solution with two different bilinear models (see Fig. 16(a)): 
one in which parameter s1 is determined by curve fitting to an experi
mental force-displacement curve [10–13] (or setting it equal to σu/E 
([14], see Section 1); a second one in which parameter s1 is obtained 
from Eq. (15). We also provide the results from two trilinear models: one 
in which the parameters in the trilinear model (see Eq. (20)) are 
calculated based on an available experimental softening curve; the other 
in which the parameters are the prescribed values suggested in [14]. 
Ref. [68] presented the experimental softening curve for the concrete 
specimen used in the wedge-splitting test, and then presented a bilinear 

approximation of the curve. Thus, parameters in the trilinear model are 
directly evaluated as β = 0.29/2.27 = 0.1277, and γ = 1.42/0.25 = 5.68 
[14,68]. If the experimental curve was not available, we would choose β 
= 1/4 and γ = 28/3 suggested in [14] (see Section 4.3). Fig. 16 shows 
that the second trilinear model leads to poor performance in reproduc
ing experimental data. 

Fig. 16 also shows that the analytically-derived bilinear model can 
match the peak in the experimental load-displacement curve, while the 
approximate bilinear model overshoots the peak. The bilinear PD model 
with analytically-derived parameter leads to compromising results with 
those from the trilinear model suggested in [14]. Since for the trilinear 
model, an experimental softening constitutive curve (as an extra mate
rial properties) is needed for an accurate fracture analysis, we suggest 
using the analytically-derived bilinear model introduced here to study 
quasi-brittle fracture, e.g. in concrete materials. 

5.2. Validation for a crack nucleation problem 

We now compare the results obtained by our bilinear PD bond model 
(derived analytically; see Section 4.1) with the experimental data in [70] 
for crack nucleation in center-hole plate specimens of woven glass/ 
epoxy composite. This experimental data was also used to compare with 
the prediction of the PD model based on finite fracture mechanics (FFM) 
in [19]. 

We note that the composite specimens have similar elastic properties 
in vertical and horizontal directions (Exx = Eyy = 23.6 GPa) corre
sponding to the quasi-isotropic materials, and they show brittle fracture 
behavior [70]. 

We consider the plate with thickness of 40 mm and with six radii for 
the centered hole (similar to Fig. 3). In order to compare the results 
obtained by our PD models with those by PD model proposed in [19], we 
conduct our PD simulations under the same parameters and conditions 
taken by [19]. We use δ = 0.2 mm and m = 4 and we consider plane 
stress and displacement-controlled loading conditions. In [19] a uniform 
grid is employed. We employ both uniform and non-uniform grids. As 
shown in Fig. 17, the bilinear PD bond model reproduces the strength in 
the experiment more accurately than the PD model presented in [19] 
does. 

Since non-uniform grids conform better the region where a curvature 
exists (see Section 2.2), we use non-uniform grids for this problem. We 
generate non-uniform grids (see Section 3) for the plate with six radii of 
the hole. A comparison of strengths computed by bilinear PD bond 
model utilizing non-uniform and uniform grids with those measured 
from the experimental data is shown in Fig. 17. Note that the notched 
strength is the maximum strength that the plate with hole can reach, and 
this is different from the ultimate strength which is a material property. 

We calculate the relative deviation and maximum error of our PD 
simulation results with respect to the experimental data. We calculate 
the relative deviation by using [19]: 

SPD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
6

∑n=6

n=1

(
σPD(Rn/W) − σExp(Rn/W)

σExp(Rn/W)

)2
√

(21)  

and the maximum relative error by using: 

erel,max = maxn=6
n=1

⃒
⃒
⃒
⃒
σPD(Rn/W) − σExp(Rn/W)

σExp(Rn/W)

⃒
⃒
⃒
⃒ (22) 

Fig. 17. The comparisons of strengths computed by the bilinear PD model with 
those by the PD model based on FFM in [19], and with those measured from 
experiment [70]. 

Table 2 
Relative deviations and maximum relative errors with respect to experimental 
data.   

SPD (%)  erel,max (%)  

PD model based on FFM 7.82 (from [19]) 12 
Bilinear PD model with uniform grids 3.73 6.83 
Bilinear PD model with non-uniform grids 1.9 3.3  
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where σExp(Rn/W) is the experimentally measured notched strength for 
hole radius Rn, and σPD(Rn/W) is the corresponding computed strength 
by PD. 2W is the plate width. The index n is one of the 6 configurations 
used in the experiment corresponding to a different hole radius. 

Table 2 shows that deviations and maximum errors in notched 
strength of our PD results relative to the experimental data are signifi
cantly smaller than those obtained with the FFM-based PD model in 
[19]. We also see that the results with non-uniform grids deliver the 
smallest errors relative to the experimental data (SPD and erel,max). 

FFM considers a finite characteristic length, in addition to the natural 
one given by the discretization size, related to geometrical parameters. 
In FFM one inserts a crack of that length at the nucleation site, and 
convert the crack nucleation problem, from computational viewpoint, 
into a crack propagation problem [19–21]. This extra length-scale in the 
FFM model might be the reason for the FFM results deviating from the 
experimental results in this problem (see Fig. 17). In contrast, our PD 
models with softening are able to track very well the experimentally- 
observed notched-strength dependency on sample geometry. 

6. Conclusions 

In this paper we showed that peridynamic (PD) models with two or 
three damage-related parameters lead to convergence, in terms of the 
nonlocal size, for crack nucleation and growth in brittle and quasi-brittle 
materials with no pre-cracks. These bilinear and trilinear “constitutive 
models” for bond force-strain relationships are calibrated to the fracture 
energy and the ultimate material strength. The original PD models based 
on a single fracture parameter (associated with the critical fracture en
ergy) also converge if there is a pre-crack in the domain, but produce 
different strengths when different horizon sizes are used to model crack 
nucleation under quasi-static conditions in bodies without pre-cracks. 

We provided analytical formulas for the calibration of the bilinear 
and trilinear models to measurable material properties. The bilinear 

form of the PD constitutive model showed good performance for both 
brittle (e.g. ceramics) and quasi-brittle (e.g. concrete) systems, while the 
trilinear version was more suited for quasi-brittle fracture behavior. We 
also found that for quasi-brittle fracture, a PD model that accounts, 
stochastically, for the presence of small-scale pores/defects performs 
better than a homogenized model. 

Using these PD models, we conducted numerical simulations for a 
wedge-splitting test in concrete and crack nucleation in a woven-type 
composite plate with a circular hole. In the concrete fracture problem, 
we showed that even a bilinear PD model can capture well the failure 
and post-peak softening curve observed experimentally. The results for 
the plate with a hole match very well the experimentally measured 
dependence of strength on hole size. In contrast with other methods (e.g. 
those using Finite Fracture Mechanics approaches in PD), our model is 
more general, does not depend on the sample geometry, and the results 
match closer those obtained experimentally. 
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Appendix A 

This appendix describes the adaptive dynamic relaxation (ADR) method. This scheme is based on the fact that the static solution is the steady-state 
part of the transient response of the solution [39]. The ADR method is explained in [39] and Section 7.5 of [54]. We here discuss the effects of time step 
and damping coefficient in ADR method. 

The time step (Δt) should be chosen small enough to deliver a convergence. For relatively large time steps, a transient effect generates in the 
beginning of the simulation that can penetrate through the whole simulation. This effect disappears as the time step decreases. 

Fig. A1. Effect of damping coefficient in ADR method. (a) Load-displacement curve obtained by using different ADR damping coefficients, and (b) a zoom-in over the 
blue circle area shown in (a). 
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To study the effect of damping coefficient in ADR method, we consider a plate with a hole under quasi-static tensile loading, similar to Fig. 3. We 
utilize the PMB model to study the crack nucleation problem (see Section 3). The load-displacement curve obtained by different value of damping 
coefficient d is shown in Fig. A1. As the damping coefficient increases, the oscillations caused by the dynamic effect of ADR solver are reduced (see 
Fig. A1(b)). 

Appendix B 

This appendix explains the algorithm we use for the simulation process of PD quasi-static fracture modeling (see Fig. B1). At a given load step, the 
ADR solver is called to find the equilibrium displacement field. On these displacements, the bond-breaking subroutine is called to check if any bonds 
exceeded their critical strain. If there are any such bond breaks, the solver is called again (at the same load step) until no more bonds break and the 
physical system reaches equilibrium. If too many bonds break after one solution, numerical instabilities may happen [25]. In the examples shown in 
this paper, the crack growth is stable, and as long as a reasonable number of load steps are used, numerical instabilities are avoided. 

Appendix C 

In this appendix we study δ-convergence in PD simulations when a pre-existing crack propagates. We consider the geometry and boundary 
condition shown in Fig. C2(a). We assume plane stress condition and displacement-controlled quasi-static loading with the increment of 5 nm at each 
of the top corners. Mechanical properties are considered to be E = 72 GPa, G0 = 5 J/m2. A nonlinear conjugate gradient (NCG) method of type Polak- 
Ribiere (PR) is used here. The NCG method works well for the PMB bond model (see Section 2.2). 

Load versus opening displacement curve obtained for different horizon size (with the fixed horizon factor of 3) is shown in Fig. C2(b). PD models 
for brittle fracture (as well as quasi-brittle fracture, e.g. see [5]) converge for δ→0 when pre-cracks are present (excluding problems with length-scale 
effects enforcing specific horizon size [7]). 

Appendix D 

In this appendix, we estimate the ultimate load in Fig. 12 by a correlation that has been used for the purpose of engineering design. This correlation 
is derived through the use of a photoelastic method and is based on the definition of stress concentration factor. This factor is the ratio of maximum 
stress σmax (σθθ at θ = 0◦ and at the edge of the hole) to nominal stress σnom (the average stress at the reduced cross-section due to the hole). Remote 
stress σ∞ is the stress applied on the plate ends. With these, one obtains [71]: 

σmax

σ∞
= Kt

1

1 −

(
d
W

) (D1)  

Fig. B1. Flowchart for the simulation process of PD quasi-static fracture modeling. Here t is the load step.  

S. Niazi et al.                                                                                                                                                                                                                                    



Theoretical and Applied Fracture Mechanics 112 (2021) 102855

15

where the stress concentration factor Kt is obtained experimentally through the use of a photoelastic method for a variety of materials, as follows (see 
chart 4.1 of [71]): 

Kt = 2 + 0.284
(

1 −
d
W

)

− 0.6
(

1 −
d
W

)2

+ 1.32
(

1 −
d
W

)3

(D2) 

We enforce σmax = σu. We use the two values for σu chosen for brittle and quasi-brittle materials (see Table 1). Using Eq. (D1) we find the remote 
stress σ∞ by which crack nucleation is about to happen. The corresponding remote load related to crack nucleation (or the ultimate load shown in 
Fig. 12) is F∞ = σ∞Wb, where W is the plate width and b is the plate thickness. The ultimate (remote) loads for the brittle and quasi-brittle materials is 
obtained as 9.73 kN and 3.89 kN, respectively. These estimated values are a bit smaller than the corresponding values shown in Fig. 12, since Eq. (D2) 
is mostly used for the engineering designs that seek allowable stress (or load) before failure/yielding being about to happen. For the engineering 
designs of elasto-plastic materials (such as steels), one may use Eq. (D1) with enforcing σmax= σy, where σy is the yield strength, for the materials not 
being yielded. 
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