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ARTICLE INFO ABSTRACT

Keywords: Peridynamic (PD) models of bodies without pre-cracks, based on a single fracture parameter (associated with the
Crack nucleation critical fracture energy), produce different strengths when different horizon sizes are used to simulate crack
Peridynamics

nucleation under quasi-static conditions. To maintain the same strength and fracture energy under different
horizon sizes, extra parameters have to be introduced in the failure model. Bilinear and trilinear bond force-
strain relationships have been proposed in the literature for crack propagation in quasi-brittle materials. In
this paper we study crack nucleation in a plate with a hole under quasi-static loading using bilinear and trilinear
PD models. We provide analytical formulas to calibrate the models to measurable material properties. We show
convergence for both strength and fracture toughness. The bilinear PD constitutive model works well for both
brittle (e.g. ceramics) and quasi-brittle (e.g. concrete) systems, while the trilinear version is more suited for
quasi-brittle fracture behavior. We also find that for quasi-brittle fracture, a model that accounts, stochastically,
for the presence of small-scale pores/defects performs better than a homogenized model. A wedge-splitting test in
concrete and crack nucleation in a quasi-isotropic composite plate with a circular hole are used to demonstrate
the model’s performance. In contrast with other models, the current formulation does not depend on the sample

Failure model
Crack growth
Strength
Fracture energy

geometry.

1. Introduction

Brittle and quasi-brittle crack propagation under static or dynamic
loading have been successfully analyzed using peridynamics (PD) (e.g.
see [1-6]). PD models converge in terms of crack path and strength
(maximum load before failure, in the load-displacement curve) dis-
played as the nonlocal region (horizon) size goes to zero, when pre-
cracks are present. In certain problems, where material or physical
length-scale effects are significant in the material’s mechanical
behavior, an upper bound for the horizon size can be determined based
on experimental results (see [7,8]). As we explain in Section 3, existing
PD models based on a single fracture parameter (calibrated to match a
material’s critical fracture energy), lead to strength values that do not
converge as the horizon decreases, for problems without pre-cracks or
other defects. The reason for this behavior is the absence of a parameter
linked to crack nucleation. The prototype microelastic brittle (PMB)
model (see [9]) contains only the critical bond strain that is related to
the energy release rate for a growing crack, not nucleation of a crack. To
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address this issue, one can introduce strength-dependent parameters
into the peridynamic bond behavior, leading to, for example, bilinear or
trilinear bond force-strain relationships.

Recent works based on such bilinear/trilinear behavior of PD bonds
focused on aspects of crack nucleation from a material stability point of
view and crack propagation [10-14]. Ref. [10] presented a bilinear law
for PD bond force-strain curve, alongside the original linear bond force-
strain curve presented in [15] for the PMB model. In [10], a condition
associated with material stability was suggested for spontaneous emer-
gence of a discontinuity (“nucleation” of a crack) in a peridynamic body,
and a numerical example of a plate with a centered hole was tested. A
study on strength as the horizon size decreases was not provided.

A bilinear model was also employed in [11,12] in PD modeling of
static crack growth from a pre-crack in brittle and quasi-brittle mate-
rials, such as concrete. The focus was only on crack propagation from
existing pre-cracks, not on crack nucleation or the issue of convergence
for strength as the horizon decreases. We also note that in [10-12], the
extra parameter in the bilinear model is determined via curve fitting to
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an experimental force-displacement curve, with a goal of matching the
location where the load-displacement curve departs from linearity as the
moment for crack nucleation. In [13], the bilinear model is used to study
quasi-brittle behavior, and the model parameters are calibrated to match
the experimental force-displacement curves. An alternative approach to
computing the model parameters by curve-fitting experimental data, as
pursued in [10-13], is to directly connect these to some measurable
quantities (e.g. ultimate strength). In [14], the extra parameter in the
bilinear model is set to the ultimate tension strain, i.e. 6, /E, in which o,
is the ultimate strength, and E is the elastic modulus. The other
parameter in the bilinear model is then evaluated from the critical
fracture energy (similar to the calculation of the critical bond strength in
the PMB model in [9]). A PD model with a trilinear bond force-strain
relationship for quasi-brittle behavior was proposed in [14] with the
softening part of the bond force-strain curve being calibrated to the
corresponding experimental softening curve. Note that PD models with
bilinear force-bond strain behavior have also been used to simulate
elasto-plastic-type behavior [16,17]. In these references, the focus was
not on crack nucleation.

Two other approaches to crack nucleation in PD were recently pre-
sented in [18,19]. In [18], a refinement overlay technique is proposed to
decouple the model strength from the grid resolution, so that very small
horizon size (with a constant ratio of horizon size to grid resolution) is
no longer required to match the actual strength. The special treatment is
only needed for PD bonds that are close to reaching their breaking strain,
but the extra cost may be significant, especially for problems with many
cracks. In [19], an approach based on finite fracture mechanics (FFM)
concepts was proposed. FFM has been used before to study crack
nucleation in a plate with a circular hole in [20], and for several other
simple geometrical settings, such as: elliptical hole [21], V-notch
[22,23], straight interfaces in adhesive joints [23,24] and laminated
composites [22,23]. It appears that an FFM formulation for the general
case (e.g. interacting nucleating cracks) is not available. Moreover, FFM
approaches are limited to modeling only brittle failure since the basic
assumption is that failure happens only when both stress and fracture
energy conditions simultaneously reach their critical values. PD models
based on bilinear bond-level force-strain relationship cover brittle and
quasi-brittle behavior, and the bilinear and trilinear PD models are in-
dependent of the geometry of the sample.

The paper is organized as follows: in Section 2 we give a brief review
of peridynamics; and then present the numerical discretization used; in
Section 3 we study the convergence (in terms of the horizon size going
zero) for the global load-displacement curve in a crack nucleation
problem; in Section 4 we first derive, based on material properties, pa-
rameters for a bilinear bond force-strain model, and then apply the
model to study its convergence behavior; here we use the fully ho-
mogenized peridynamic (FH-PD) model and the intermediately (or
partially) homogenized peridynamic (IH-PD) model that takes into ac-
count microstructural defects; in Section 4, we describe a trilinear bond
force-strain model and apply it to study crack nucleation; validation
against experimental data and comparisons with other PD models from
the literature are provided in Section 5; conclusions are given in Section
6.

2. Original peridynamic model for the PMB material

In this part we briefly review the original PD theory and discuss its
numerical discretization using the one-point Gaussian integration, also
called the “meshfree” discretization approach.

2.1. Brief review of peridynamics

Peridynamics was introduced as a nonlocal form of continuum me-
chanics by Silling in 2000 [15] for modeling fracture. Since then, it has
been extended to a variety of other problems in which domain changes/
discontinuities are part of the problem [5,6,8,25-35]. In this theory,
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Fig. 1. A point x interacts directly with any point ¥ in its horizon region H,,
here a disk of radius 5.

each material point is connected through peridynamic bonds to other
points within a certain neighborhood region called “the horizon”. The
peridynamic bonds transfer forces between points (or mass or heat, as in
[27,30]) and their failure defines damage at each point. In peridy-
namics, one replaces the equation of motion by an integro-differential
equation in which spatial derivatives are eliminated. This allows peri-
dynamics to avoid the mathematical difficulties and inconsistencies
present in the classical theory when cracks, for example, develop in the
domain. The PD equations for quasi-static problems are:

j(ffx,u(f,z)fu(x,z) )dV=+b(x,1) = 0 ¢))

Hy

where f is the pairwise force function in the peridynamic bond that
connects point Xto x, u is the displacement vector field, and b(x, t) is the
body force. The integral is defined over a region H, called the “horizon
region”, or simply the “horizon”. The horizon is the compact-supported
domain of the pairwise force function around a point x (see Fig. 1). The
horizon region is taken here to be a circular disk (in 2D or sphere in 3D)
of radius 6. We refer to § also as the “horizon”, and, from the context,
there should be no confusion whether we refer to the region or its radius.

A micro-elastic material is defined as one for which the pairwise
force derives from a potential:

0w (1)

fEn) = o 2

where € = ¥ —x is the relative position in the reference configuration and
n=u(¥,t)—u(x,t) is the relative displacement between x and X. A
micropotential that leads to a linear microelastic material is given by:

® = ~c(&)s*¢ 3

where ¢ = |||, and s = W is the relative elongation of a bond, or

bond strain. The function c(¢) is called the micro-modulus and has the
meaning of bond’s elastic stiffness. The pairwise force corresponding to
the micropotential given above has the following form:
E+n
TE Ll 57 c é Sy for 5 <6
fen = { e & M) @
0, foré>4o

where the function y is a history-dependent binary function:[36]

_J1 it S(E,I](tv) )<s0 forall 0 <7<t
uEn(n) = {0, otherwise ®)
and s, is the critical bond strain, calibrated to the material’s fracture
energy (see below). f has the same units as the micro-modulus function
c(€) (see Eq. (4)).
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This bond force-bond strain relationship is the constitutive model for
a prototype microelastic brittle (PMB) material in a PD formulation (see
[9D.

Several choices for the particular form of the micromodulus function
c(¢) can be used (see [1,37]), but at the macro-scale the differences
between these options should be minimal [1]. Here, to ease the
analytical calculations in Section 4, we employ the “constant” micro-
modulus function, in which the stiffness of bond (x,x) does not depend
on its length. The constant micro-modulus function for 3D, and 2D plane
stress/plane strain are obtained from enforcing a match between the
strain energy in PD and the classical strain energy, under a homogeneous
deformation (see [1,9]):

12E
—, for 3D
st
9E
c(§) = st for 2D plane stress 6)
b7
48E
—, for 2D plane strain
S5rd

where E is Young’s modulus of the material. We note that with the bond-
based version of PD, Poisson ratio v is fixed to 1/3 in 2D plane stress and
to 1/4 in 2D plane strain and 3D conditions. The material model in Eq.
(4) is equivalent to the kernel function using n = 1 for the peridynamic
kernel c(¥,x)/|x —x|" (see [36]). No significant differences on crack
patterns were observed between models withn =1 and n = 2 [8]. In this
work, to simplify the analytical calculations in Section 4, we use the
model withn = 1.

Failure is introduced in peridynamics by considering that the peri-
dynamic bonds break irreversibly and no longer sustain a force [9,15]
when they are deformed beyond a critical value, called the critical
relative elongation or critical bond strain, sy, computed based on the
material’s fracture energy Go. In this study, once a peridynamic bond
breaks, it remains broken [27,28]. The connection between sy and G,
for 2D [1] and 3D [9] cases, is:

f / ’ / 5 f -0 [C(?g ]ézsinqb depddodz,  for 3D
= o ©
) /0“ /“ /0“““1 (f> {C(f%sgﬂgdadgdz, for 2D

Substituting the constant micro-modulus functions from Eq. (6) into
Eq. (7), one obtains sy as:

15Gy
6E5’ for 3D
4JTG()
so=14 ./ (C))
0 OEs for 2D plane stress
SITGO .
A/ 12E5 for 2D plane strain

A damage index quantity is then defined as:

Jy mEn(0)av;
Ju, dV2
In the discrete version, the damage index is computed as the ratio

between the number of broken (or failed) bonds (Ny) and the total
number of bonds (N) originally associated with a node at time (or load

)

G()

dx,t) =1 (€)]

step, for quasi-static problems) t (d(x, t) = %). When all bonds connected
to point x are broken, d(x, t) = 1 and point x becomes a free point.

2.2. Numerical discretization

In principle, Eq. (1) can be discretized using the finite element
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method (FEM) [16,38], meshfree direct discretization [9], a combina-
tion of both [16,39,40], pseudo-spectral methods [41], or any other
method suitable for numerically computing the solution to an integro-
differential equation (or an integral equation for the static case). Here
we use the meshfree discretization, which makes it easiest to handle
damage and fracture [42,43]. Using a mid-point integration scheme (see
[9]), the discretized version of Eq. (1) at a node x; is:

> e(&)siVi+bi=0 (10)

JjeFam(i)

where Fam(i) is the family of nodes j with their area (or volume in 3D)
covered, fully or partially, by the horizon region of node , £; is the bond
length between nodes i and j, s; is the relative elongation for the bond
connecting nodes i and j, and Vj is the area (or volume) of node j esti-
mated to be covered by the horizon of node i. Note that node j may not be
fully contained within the horizon of node i, so a “partial volume”
integration scheme is used to improve the accuracy [42,44,45]. Note
also that the system of equations obtained from Eq. (10) is linear in bond

[|E+nll—l1&]

strains (i.e. s = el ), but nonlinear in displacements (since, in

general, [|[E+ || — [|€]| # ||@]| — |lu||; see also [15]). For infinitesimal
deformations, the system is linear in displacements (e.g. see [46]).

For a fixed horizon size, the ratio m = §/Ax describes how accurate
the numerical quadrature for the integral in Eq. (1) will be. We call this
ratio “the horizon factor” [37]. We recall that in m-convergence we
consider the horizon 6 fixed and take m— oo (see [37]). The numerical PD
approximation will converge in this case to the exact nonlocal PD so-
lution for the given &. In the case of §-convergence, the horizon 5 -0
while m is fixed or increases with decreasing é. For -convergence, the
numerical PD solutions are expected to converge to the classical local
solution (as m increases also) (see [37,47,48]).

For domain discretization, both uniform [9] and non-uniform grids
[49-52] are possible. Non-uniform grids (in which node density does not
vary significantly over the domain so that the quadrature error is
minimized) are better at modeling rounded shapes compared to uniform
grids, and they can be easily created from finite element meshes [53].
For the non-uniform grids used in this work, the PD nodes are located at
the centroid of their nodal areas (see [29] for a discussion on other
options). We use ANSYS to create non-uniform meshes to better match
the shape of the hole in plate used to study crack nucleation problems:
each PD node is the centroid of a finite element and the element area is
assigned to be the nodal area of the corresponding PD node. An ANSYS
APDL code exports element centroids and areas (see Appendix B in
[33]), which is the only information from the finite element dis-
cretization that is used in a PD model. Schematic pictures of element
centroid for uniform and non-uniform mesh are shown in Fig. 2. In each
case, for both uniform and non-uniform grids, we use constant horizon
size over the domain. A good practice is to always select the horizon size
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Fig. 2. Finite element centroids for (a) uniform and (b) non-uniform meshes
are chosen as PD nodes. The element area is used as the corresponding PD
nodal area.
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A

Fig. 3. Geometry and loading configuration for the plate with a hole. “A” de-
notes the displacement-controlled-type loading.

for a problem, and then decide on the grid to be used. For the non-
uniform meshes mentioned above, however, we first create the grids,
and then compute the constant horizon size § by selecting a generic Ax
value, related to the average finite element size, multiplied by the ho-
rizon factor m. This works in our case because the density of nodes in
these grids is fairly uniform, and there are regions where the grid is very
close to being uniform (see Fig. 4). A comparison of results obtained by
uniform and non-uniform grids with those obtained by experiments for
crack nucleation problems are provided in Section 5.2.

All simulations performed in this work are quasi-static. The
nonlinear (in displacements) system in Eq. (10) can be solved via the
energy minimization method using the nonlinear conjugate gradient
(NCG) [25,33], or by the adaptive dynamic relaxation (ADR) method
[14,39,54]. A complete discussion of the NCG method is available in, e.
g., [55,56], and a brief account is given in Appendix A of Ref. [33]. The
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micropotential function @ for the PMB model in Eq. (3) is quadratic (and
therefore convex), while for the bilinear and trilinear bond force-strain
models it is not. It is well known that minimizing non-convex functions
(see Fig. 7) makes convergence to the global minimum more difficult
(see [55,57]). Because of this, here we use the ADR method for the
bilinear and trilinear PD constitutive models. A discussion of the ADR
method is provided in Appendix A. The algorithm we use for simulating
quasi-static fracture with PD is shown in detail in Appendix B.

3. Crack nucleation for the PMB model

The original PD model based on a single fracture parameter relies on
obtaining the critical bond-strain from the measured critical fracture
energy (see Eq. (8)). This means that one can match the energy release
rate with a PD model, but not, at the same time, the material strength
(related to crack initiation phase). This is not an issue for cases in which
there is a pre-crack, because in these cases, the PD-computed strength is
controlled by (or coupled with) the fracture toughness, whereas in
problems in which there is no pre-crack, the PD computed strength is
independent from (not controlled by) the fracture toughness (see
[10,18-20]). Because of this, PMB models for problems with pre-cracks
do show convergence (see [37], and Section 2.2 for types of convergence
in PD models) for both strength and dissipated fracture energy.
Appendix C discusses 5-convergence for the PMB model for a plate with a
pre-crack. Note that while there are some works that combine the pro-
cess zone size with the characteristic relaxation times to describe re-
lations between a material’s strength and its fracture toughness (see
[72,731), here, for simplicity, we introduce models that match some
given values of strength and toughness. A description of how micro-
structural arrangements can lead to high toughness without sacrificing
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Fig. 4. In (a): force-displacement curves from PD simulation results with the PMB model with horizon size § = 3 mm for different m-factors. Grids shown (used, with
symmetry, to create discretizations for the plate in Fig. 3), are for horizon factors (b) m = 3, (c) m = 4, and (d) m = 5. Red circles show the horizon size. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. In (a): results for the plate with a hole (Fig. 3) with the PMB model showing increase in strength when horizon § decreases (horizon factor m = 5). Non-
uniform grids used are for horizon sizes: (b) § = 3, (¢) § = 1.5, and (d) § = 0.75 mm. Red circles show the horizon sizes. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

the strength and stiffness is given in [58].

In this section, we use the original PD model to study §-convergence
in problems that do not contain pre-cracks or other defects. Ref. [18]
showed that for a plate without a hole, the original PD model gives
higher and higher strengths as the horizon size decreases. We consider a
plate with a circular hole under quasi-static loading. This geometry is
selected in order to control the location for crack nucleation, which
should happen from the points with maximum stress concentration
factor.

Geometric parameters used are shown in Fig. 3. The thickness of the
plate is considered to be 0.5 mm and used in the post-processing step to
compute the total load on the plate for plotting load-displacement
curves. Material properties are chosen as: E = 192 GPa and Gy ~ 83
kJ/m? (Section 9.1 of [54]). Note that we calculated Gy through Eq. (8)
with the critical bond strain (so = 0.02), the horizon size and the elastic
modulus given in Section 9.1 of [54]. The material properties are hy-
pothetical values that under certain conditions may lead to brittle or
quasi-brittle fracture behavior (in Section 4.2 we will show how we
control the fracture behavior to be brittle and quasi-brittle by involving
an extra material property)

A vertical displacement-controlled type loading with a constant rate
of 0.275 pm per step is applied to each end of the plate (see Fig. 3). 2D
plane stress conditions are considered. A dynamic relaxation method
(ADR) solver with a time step of At = 0.01 s is used (see Appendix A).

We use non-uniform grids generated by ANSYS APDL (see Section
2.2) for an eighth of the structure, as shown in Fig. 4 and Fig. 5. We use
symmetries to then construct the grid for the entire plate and solve the
problem over the entire plate, without using symmetry, in order to
observe fracture without forcing symmetry conditions into the model,
other than the natural ones present in the geometry itself. This option
also leads to creating more uniform element sizes over the sample,
which helps avoiding zones with few nodes (and therefore with low

quadrature accuracy) that could happen if we were to generate the FE
mesh directly for the entire sample. PD nodes are the centroids of cor-
responding finite elements in the grid and nodal areas are the element
areas (see Section 2.2).

We consider regions of fictitious nodes with the width of § at the top
and bottom of the plate to apply the displacements that control the
loading [59,60]. For example, for the horizon factor of m = 5, five rows
of fictitious nodes in the top and bottom of the plate are considered.
These rows are on uniform grids, since the non-uniform mesh becomes
uniform far enough from the hole. Over these fictitious nodes we enforce
the constant values of the applied displacements, with the goal of
mimicking the imposition of the corresponding local boundary condi-
tions. Note that imposing local-type boundary conditions may be
desired/needed because, in reality, such conditions can only be
measured at the surfaces of a body, not through a finite layer near the
surface, which what nonlocal boundary conditions would entail.
Different implementations of the fictitious nodes method (FNM) are
possible to impose local-type boundary conditions in PD models, see
[48].

A comparison between displacements obtained by the PMB PD model
(solved with ADR) with those from FEA, for the elasticity problem (when
no failure is allowed), is shown in Section 9.1 of [54]. Fig. 4(a) shows the
force-displacement curves from the current PD simulations of failure
with the PMB model (see Eq. (4)) and different horizon factors m. The
non-uniform grids for several horizon factors are shown in Fig. 4(b-d).
These m-convergence results allow us to use m = 5 for the remaining
simulations in this section and in Section 4. Note that we compute the
total load at the top end of the plate (i.e. at the cross-section separating
the top of the plate from the fictitious nodes above it), by summing up
the vertical components of nodal forces.

In Fig. 5 we show the results with the PMB model for different ho-
rizon sizes. As the horizon decreases, we reach higher and higher
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Fig. 6. In (a): load-displacement curves from PMB-PD simulations for uniform grids and different horizon sizes (horizon factor m = 5). In (b): comparison between
strength values calculated with non-uniform and uniform grids as horizon size decreases.

strengths (load at which failure initiates). The reason for this behavior is
the absence of an independent parameter linked to crack nucleation. The
PMB model contains only the critical bond strain, which is calibrated to
match the fracture energy release rate. To address this issue, we will
introduce strength-dependent parameters into the peridynamic bond
behavior, leading to bilinear or trilinear bond force-strain relationships
(see Section 4). Some alternatives have appeared recently [18,19], but
they come with some limitations/deficiencies (see discussion in Section
1).

To analyze the influence spatial discretization has on strength values
for our problem, we also use uniform grids. In Fig. 6 we show the

increase of strength values with a decreasing horizon size and we
compare the results obtained with uniform and non-uniform grids. As
expected, strength values calculated by using uniform grids are lower
than corresponding ones from non-uniform grids because a uniform grid
around a circular hole shape will be staggered and thus lead to artificial
stress concentration points (see also [49,53]).

4. PD models with softening

One way to reach convergence for strength values under decreasing
horizon values is to introduce an independent parameter related to

CSob - - - -
cs,f--

v

(a)

S, S
S¢e =81
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S2 — 51
CSl-——'
Besy|-4-L -
1 1
SC S Sl 32 .§CS

(b) (c)

Fig. 7. PD bond micropotentials (top row) and force versus strain (bottom row) for (a) the PMB model, and softening models with (b) a bilinear behavior, and (c) a

trilinear approximation.
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(b)

Fig. 8. Evaluation of ultimate tensile strength, 6, for (a) 3D, and (b) 2D cases. For each point A along 0 < z < §, the force for bonds connecting A to each point B
(assumed all to be at their maximum value, for crack initiation) is integrated by Eq. (13) (redrawn, with modifications, from [1;9]).

ultimate strength. Instead of the sudden bond-failure in the PMB model,
one can use a bond force-bond strain constitutive model with softening.
This allows for additional parameters besides the critical bond failure
one (see Fig. 7 for different options for PD bond force-strain curve). One
of the simplest versions for such an approach is a bilinear PD model (see
Fig. 7b). In this section we show how to calibrate this to strength values
and study crack nucleation for the plate with a circular hole. A trilinear
model is also discussed in this section.

The bilinear and trilinear constitutive models for PD bonds allow for
the simulation of both nucleation of a crack (primarily associated with
the peak of the PD bond force-strain curve) and crack propagation
through full failure (primarily associated with the bond breakage point
in the PD bond force-strain curve).

4.1. Bilinear PD softening model

Methods using a bilinear bond force-bond strain model have
appeared in, for example, [10-14], where some approximate methods
were used to obtain the parameters involved. Here, we pursue an
analytical approach to connect the model parameters to the ultimate
strength (associated with crack nucleation) and fracture energy (asso-
ciated with crack propagation).

Similar to the approach used for the calibration of the PMB model
(see Eq. (7)), we enforce a match between the material’s fracture energy
and the energy required in the PD model to break a sample in two (see
Fig. 8), as follow:

f /z,r /5 f (f) {&;lsé} Esing dpdédodz, for 3D
= o -
) / f / 0 {4@%}5 dfdédz, for 2D
o J: Jo

This leads to:

Gy

1D

5Gy
SES
4nGy
9ES’
57Gy
12E8’

for 3D

$18c =

for 2D plane stress 12)

for 2D plane strain

For the additional equation needed here, we use the ultimate
strength value (a material property available from experimental data).
The ultimate strength value is controlled by small pores, defects,
microcracks, and it is reasonable to assume that most of these grow and

fu 1 / /.
(C)z // /A(C)1
/1 for &,
/vfor 8,
N
N R

s; (s), (s); s

Fig. 9. Bilinear bond law for different horizon sizes (5, > 62).

lead to either softening or sudden failure because of isotropic expansion
(zero deviatoric components) local conditions. We connect the
maximum bond force cs; (see Fig. 7) to the ultimate strength by
assuming that PD stress normal to the plane along which a crack initiates
is equal to the ultimate tensile strength (see [16]):

5 oo msf|<§)
/0/0 //0 (csicosp)Esing dpddbdz,  for 3D

6, (13)
5 6 pcos”! (i)
2/ / / (esicosO)é dOdédz,  for 2D
0 z 0
From Eq. (13), one obtains:
4
mes19 ,  for 3D
0, = R 14)
mesio , for 2D

By substituting the constant micromodulus functions from Eq. (6)
into Eq. (14), the bilinear parameter is obtained as:

;—E for 3D
20,
s = 3E for 2D plane stress (15)
5 u .
8(;7 for 2D plane strain

and by substituting s; from Eq. (15) into Eq. (12), the other bilinear
parameter is obtained as:
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Table 1
Simulation parameters for the bilinear model when E = 192 GPa and Gy = 83 kJ/
mZA
Model & (mm) 51 (see Eq. (15)) s (see Eq. (16)) o, (GPa)
Bilinear 3 0.002 0.1 0.576*
1.5 0.2
0.75 0.4
0.375 0.8
3 0.005 0.04 1.44!
1.5 0.08
0.75 0.16
0.375 0.32
" Quasi-brittle behavior for the given E and Go.
T Brittle behavior for the given E and Go.
SGO
——, for 3D
36,8
27'[G()
Se =4 =, for 2D plane stress 16
7 300 P (16)
227G,
0, for 2D plane strain
36,6

For 2D plane stress and plane strain conditions, the same s is ob-
tained analytically. Note that similar formulae to Eq. (15) are found in
3D [16] and 2D plane strain [17] but in the different context of elasto-
plastic-type behavior.
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Note that parameter s; is independent of horizon size, but s, is
inversely proportional with the horizon size. For the same PD material
model, using two different horizon sizes §; > s, the bilinear model will
look as shown in Fig. 9.

We note that the condition s > s; is required to construct the bilinear
model with a softening part. This condition imposes an upper limit on &,
assuming some given material properties, as follows (see Egs. (15) and

(16)):
10EG,

2

3D

30,

nEG
§< -
oy

,plane stress a7)

167EG,
15¢,%

plane strain

One can also use Eq. (17) to determine the range of material prop-
erties which, for a particular horizon size, can be analyzed with the
bilinear constitutive model.

4.2. Crack nucleation for the bilinear PD model

In this section we utilize the bilinear model (see Fig. 7(b)) to study
nucleation of a brittle or quasi-brittle crack in the plate with hole under
tensile loading (see Fig. 3). The PD models discussed so far are homo-
geneous. Real materials are heterogeneous, and a closer representation
of them is given by the IH-PD model [5,6,33,60], which is a stochastic
PD model able to take into account, for example, the presence of pores/
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Fig. 10. PD bond force (times nodal area) vs. strain (top) and global load-displacement (bottom) curves obtained with the FH-PD using the bilinear constitutive

model for quasi-brittle (a) and (c), and brittle (b) and (d) behavior.
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Fig. 11. Global load-displacement curves obtained with the IH-PD using the bilinear constitutive model for quasi-brittle (a) and brittle (b) behavior.

defects/phases into the elastic and failure behavior of materials [5,6]
without having to include the detailed representation of such pores/
defects/phases. Our previous studies showed such models are able to
capture initiation of damage and failure in materials with critical pre-
notches, matching experimental observations (see [5,6]). In this sec-
tion we will also test the IH-PD model for crack initiation from a hole
and observe if there are advantages compared with homogenous PD
formulations.

In our example, with the IH model, to account for the presence of
defects, we assume a porosity of 1% for the brittle and quasi-brittle
cases. Many ceramic materials, which are nominally brittle materials,
have a porosity around 1% (see Table 5.5 in [61]). Crystalline rock, such
as granite, a quasi-brittle material, can have a very low porosity (<1%)
[62]. For a large variety of low-porosity brittle and quasi-brittle mate-
rials, the critical porosity ¢, (the porosity beyond which the material can
exist only as a suspension [63]), can be higher than 0.9 (or 90%)
[63-65]. Here we consider ¢, ~ 1 as input in the simulations with the IH
model.

To determine the material properties needed in the IH-PD model of
poroelastic materials, the following relationship can be used to find My,
(see [5]):

Mt ¢)2
=(1-= 18
My (-5 a8

where My, is a particular property of the solid phase (sp) constituent in
the porous medium (e.g., elastic modulus, fracture energy, and ultimate
strength), M is the effective material property for the porous medium,
¢ is material’s porosity, and ¢, is critical porosity. The last three
quantities are taken from experimental measurements. Note that, ma-
terial properties to be used in the bond force-strain models (see Egs. (6),
(8), (15), and (16)) for the IH-PD model are the properties of the solid
phase constituent material of the porous medium, E;,, Gp,04,p, N0t the
effective properties that were used in the FH-PD model above. For our
example, the solid phase Young’s modulus and fracture energy for {/% =

1% and using the values given in Section 3, are obtained as (see Eq. (18))
E,, = 195.9 GPa, andG,, — 84.6 kj/m?.

In this section we consider two materials with different strengths but
the same Young’s moduli and fracture energies (with values given in
Section 3). In Table 1 we give the correspondings; values. If we consider
o, = 0.576 GPa, we find that the bilinear bond model leads to a global
quasi-brittle fracture behavior (see Fig. 10(a)), while with o, = 1.44
GPa, we get a macroscale brittle fracture behavior (see Fig. 10(b)). These
values for o, are arbitrarily chosen so that they lead to a global fracture
behavior that appears to be brittle (sudden failure) or quasi-brittle
(failure with a softening curve). The horizon sizes and the material

properties given in Table 1 satisfy Eq. (17), which is required for the
bilinear model.

Fig. 10 and Fig. 11 show the PD simulation load-displacement results
for the crack nucleation problem from the FH-PD and IH-PD models,
respectively, when the bilinear bond constitutive model is used. Fig. 10
(a) and (b) show the bond-level constitutive models responsible for the
global responses shown in Fig. 10 (c) and (d), respectively. Softening
behavior in the constitutive law at the bond level can lead to an abrupt/
sudden global failure (brittle behavior) under certain selections of bond
parameters (see Table 1 and Fig. 10 (b)). To transition to a quasi-brittle
global response, the softening part in the bond-level model needs to be
extended significantly compared to one that leads to brittle failure (see
Fig. 10 (b)). These observations correlate well with the physical un-
derstanding that in brittle fracture, the extent of the fracture process
zone (FPZ) is, in general, smaller than the extent of the FPZ for quasi-
brittle fracture. Note that the quantity plotted in Fig. 10 (a) and (b),
fdA, is the integral kernel in Eq. (1) (dA is the nodal area).

Fig. 12 shows the variation of the ultimate load with respect to the
horizon size. These results show that the PD model with a bilinear

45 - i
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~——Bilinear (brittle)-FH
35 = ¥ = Bilinear (brittle)-IH |
=l Bilinear (quasi-brittle)-FH
5 30+ = =¥-= Bilinear (quasi-brittle)-IH |
®
8251 1
=1
)
< 20|
£
515+ 1
10._— i e —_——— e ——
5 B v —
0 |
0.375 0.75 15 3

horizon size (§) [mm]

Fig. 12. Comparison of computed ultimate load for different horizon sizes
using the PMB and the bilinear model (with FH-PD and IH-PD) for brittle and
quasi-brittle behavior.
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Fig. 13. Relative difference in computed ultimate load (see Eq. (19)) for FH-PD
and IH-PD with the bilinear model, for brittle and quasi-brittle behavior.

constitutive model for bonds leads to é-convergence for crack nucleation,
for both brittle and quasi-brittle behavior. Fig. 13 compares the FH-PD
and IH-PD results in terms of the relative difference between a base
value for the ultimate load (obtained with the smallest horizon size used
in this works” = 0.375 mm; see below) and the corresponding value
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computed for a certain horizon size, §. This relative difference, for each
model in part, is computed by:

Py(5)
where P,(5") is the computed ultimate load obtained with the smallest
horizon size (here, 5 = 0.375 mm). As seen in Fig. 13, for both brittle
and quasi-brittle behavior, the relative difference in Eq. (19) decreases
with the horizon size shrinking. For brittle-type fracture behavior, there
is little difference between the two models. However, for a quasi-brittle
behavior, the IH-PD model, even with a large horizon size, computes an
ultimate load value that is much closer to the “converged” value
computed with a significantly smaller horizon size. This means that for
quasi-brittle fracture, the IH-PD will be more efficient to use than a
corresponding FH-PD model because we can reach a reasonable ultimate
load using a much coarser horizon size (and coarser corresponding
discretization grid). This issue is discussed in detail in [5,6] in the
context of materials with high and very high porosities.

In Appendix D, we also compare the computed ultimate load with an
empirical estimate for the ultimate load often used in engineering
design. The formula for that estimate was based on the photoelastic
method, which is supposed to serve as a conservative estimate for a
variety of materials.

4.3. Trilinear PD model

In this section we review the trilinear PD model, introduced in [14],
and then use it to model crack nucleation in the plate with a hole
described in Section 3. We then compare the results with those obtained
in the previous section by the bilinear model. In Section 5.1, we will
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Fig. 14. PD bond force (times nodal area) vs. bond strain (a) and global load-displacement curves obtained with the FH-PD (b) and IH-PD (c) using the trilinear

constitutive model for quasi-brittle behavior.
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Fig. 15. Wedge-splitting test specimen (unit: cm) (redrawn from [14,68]).

compare the performance of these models in an example of quasi-static
fracture in concrete, also studied in [14].

Unlike brittle materials, quasi-brittle materials have a complex
strain-softening behavior due to the existence of a larger fracture process
zone (FPZ) [66,67]. The global stress-strain curve for quasi-brittle ma-
terials is generally not easily obtained from direct tension tests because
it is strongly influenced by the specimen’s dimensions, which is a
manifestation of size effects in quasi-brittle fracture. Instead, a softening
constitutive curve has been used to investigate failure of quasi-brittle
materials, especially in concrete [14,66,67]. The softening constitutive
curve gives the relationship between the “cohesive” stress (stress normal
to the propagation direction at the crack tip) and the critical crack
opening displacement (COD), which can be regarded as a material
property. Ref. [14] used the softening constitutive curve to introduce a
trilinear constitutive PD model, in which the force-strain curve is
controlled by three parameters.

For the trilinear model in the PD constitutive model, parameter s; is
the same as that in the bilinear model (see Fig. 7(b) and (c), and Eq.
(15)). By equating G, from bilinear and trilinear models (corresponding
to equating the areas below the bond force-strain curves; see Fig. 7 (b)
and (c), and Eq. (11)), one obtains the other two parameters in the
trilinear model as follow:

52 :%ﬂ =51+y(s2—51)

In order to compute s, and 5., # and y need to be determined. These
can be obtained from a bilinear approximation of the experimental
softening constitutive curve, as suggested in [14], if such a curve is
available from fracture tests. In the absence of an experimental softening
curve, Ref. [14] suggests the following prescribed values for a generic

concrete material: § = Land y = ;32 =28 In Section 5.1, we will show

— 25(1-p) 3
that using these values for  and y leads to poor performance in repro-
ducing some experimental fracture data.

In the trilinear model, the condition s, > s1 needs to be satisfied, and
according to Eq. (20), this leads to the condition s. > s;. This condition is
the same with that for the bilinear model which imposes upper limits on
§ for given material properties (see Eq. (17)). Note that other conditions
for the trilinear model, i.e. the conditions < 1 and y > 1) are satisfied
by choosing the above-mentioned values for # and y(see Fig. 7(c)).

(20)
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Fig. 16. Comparison of bilinear and trilinear PD bond-force (times nodal area)
vs. bond strain (a) and the corresponding results obtained with these different
models plotted against experimental data from Ref. [68] (b).

Note that the constitutive models for PD bonds we introduced here
should also work for dynamic problems for materials with light strain/
loading rate dependencies (or in which the rate dependencies are simply
a result of the inertias in the problem), since no assumptions were made
in the derivations of the mathematical formulas obtained that would
restrict their application to static problems. However, for materials with
moderate and strong strain/loading rate dependencies, the current
models need modifications to account for such specific rate dendencies.

4.4. Crack nucleation for trilinear PD models

Here, we apply the trilinear model for the crack nucleation problem
discussed in Section 3. We choose $ and y as suggested in [14] (see
Section 4.3). Similar to Section 4.2, we here utilize the both FH- and IH-
PD models. Fig. 14 shows the FH- and IH-PD results with the trilinear
model for a quasi-brittle material with 6, = 0.576 GPa (see Section 4.2).
We note that the trilinear PD model is defined based on the softening
curve, and has been used for modeling failure of quasi-brittle materials
(e.g. concrete) (see [14]).

From Fig. 14, we observe that using the trilinear PD model, the force
displacement curves for smaller and smaller horizons converge
throughout the loading sequence. We also see that utilizing [H-PD model
alongside with the trilinear model leads to a faster convergence.
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Fig. 17. The comparisons of strengths computed by the bilinear PD model with
those by the PD model based on FFM in [19], and with those measured from
experiment [70].

5. Validation against experimental results and comparisons
with other PD models

In this part we compare the results obtained by our PD models with
softening (bilinear and trilinear) against two experimental tests and
against those obtained by other PD models. We first use a wedge-
splitting test in concrete (Section 5.1), and then look at crack nucle-
ation in a woven glass/epoxy composite plate with a center-hole (Sec-
tion 5.2).

5.1. Validation for a wedge-splitting test in concrete

We consider the wedge-splitting test of a concrete specimen [68] (see
Fig. 15), with material properties given as: E = 28.3 GPa, ¢, = 2.27 MPa,
and Gp = 490 N/m. We perform PD simulations under 2D plane strain
conditions. Quasi-static loading conditions are mentioned in [68,69]. In
our simulations, we apply a horizontal displacement-controlled type
loading with a constant rate of 60 nm per loading step, as shown in
Fig. 15. We use § = 0.193 m and m = 3, as used in [14]. Ref. [14] used
this experiment to validate results obtained by bilinear and trilinear PD
models. A conclusion drawn in [14] was that results with the trilinear PD
model matched better the experimental data compared with those from
a bilinear PD model (see Fig. 15(a) in [14]).

In this section we will test whether the bilinear PD model we intro-
duced here (with analytically-derived parameter, see Section 4.1) leads
to results that are comparable, or not, to those from the trilinear model.
For the trilinear model, we will employ two different ways of computing
its parameters (see Fig. 16(a)).

Fig. 16 shows the comparison of load versus crack mouth opening
displacement (CMOD) in the crack propagation problem for the wedge-
specimen, utilizing different bilinear and trilinear PD models. We
compute the solution with two different bilinear models (see Fig. 16(a)):
one in which parameter s; is determined by curve fitting to an experi-
mental force-displacement curve [10-13] (or setting it equal to o,/E
([14], see Section 1); a second one in which parameter s; is obtained
from Eq. (15). We also provide the results from two trilinear models: one
in which the parameters in the trilinear model (see Eq. (20)) are
calculated based on an available experimental softening curve; the other
in which the parameters are the prescribed values suggested in [14].
Ref. [68] presented the experimental softening curve for the concrete
specimen used in the wedge-splitting test, and then presented a bilinear
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Table 2
Relative deviations and maximum relative errors with respect to experimental
data.

Sep (%) €retmax (%)
PD model based on FFM 7.82 (from [19]) 12
Bilinear PD model with uniform grids 3.73 6.83
Bilinear PD model with non-uniform grids 1.9 3.3

approximation of the curve. Thus, parameters in the trilinear model are
directly evaluated as = 0.29/2.27 = 0.1277, and y = 1.42/0.25 = 5.68
[14,68]. If the experimental curve was not available, we would choose
= 1/4 and y = 28/3 suggested in [14] (see Section 4.3). Fig. 16 shows
that the second trilinear model leads to poor performance in reproduc-
ing experimental data.

Fig. 16 also shows that the analytically-derived bilinear model can
match the peak in the experimental load-displacement curve, while the
approximate bilinear model overshoots the peak. The bilinear PD model
with analytically-derived parameter leads to compromising results with
those from the trilinear model suggested in [14]. Since for the trilinear
model, an experimental softening constitutive curve (as an extra mate-
rial properties) is needed for an accurate fracture analysis, we suggest
using the analytically-derived bilinear model introduced here to study
quasi-brittle fracture, e.g. in concrete materials.

5.2. Validation for a crack nucleation problem

We now compare the results obtained by our bilinear PD bond model
(derived analytically; see Section 4.1) with the experimental data in [70]
for crack nucleation in center-hole plate specimens of woven glass/
epoxy composite. This experimental data was also used to compare with
the prediction of the PD model based on finite fracture mechanics (FFM)
in [19].

We note that the composite specimens have similar elastic properties
in vertical and horizontal directions (Exy = Eyy = 23.6 GPa) corre-
sponding to the quasi-isotropic materials, and they show brittle fracture
behavior [70].

We consider the plate with thickness of 40 mm and with six radii for
the centered hole (similar to Fig. 3). In order to compare the results
obtained by our PD models with those by PD model proposed in [19], we
conduct our PD simulations under the same parameters and conditions
taken by [19]. We use § = 0.2 mm and m = 4 and we consider plane
stress and displacement-controlled loading conditions. In [19] a uniform
grid is employed. We employ both uniform and non-uniform grids. As
shown in Fig. 17, the bilinear PD bond model reproduces the strength in
the experiment more accurately than the PD model presented in [19]
does.

Since non-uniform grids conform better the region where a curvature
exists (see Section 2.2), we use non-uniform grids for this problem. We
generate non-uniform grids (see Section 3) for the plate with six radii of
the hole. A comparison of strengths computed by bilinear PD bond
model utilizing non-uniform and uniform grids with those measured
from the experimental data is shown in Fig. 17. Note that the notched
strength is the maximum strength that the plate with hole can reach, and
this is different from the ultimate strength which is a material property.

We calculate the relative deviation and maximum error of our PD
simulation results with respect to the experimental data. We calculate
the relative deviation by using [19]:

16 (0pp (Ru/ W) = 0 (Ri/W) \
Spp = 1/~ 21
i \/6an (= @b
and the maximum relative error by using:
xn:6|GPD(R”/W) — O (Ra/W) ‘ (22)

€relmax — MaX, |

Otxp (R /W)
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where ogy,(Rn/W) is the experimentally measured notched strength for
hole radius Ry, and opp(R,/W) is the corresponding computed strength
by PD. 2W is the plate width. The index n is one of the 6 configurations
used in the experiment corresponding to a different hole radius.

Table 2 shows that deviations and maximum errors in notched
strength of our PD results relative to the experimental data are signifi-
cantly smaller than those obtained with the FFM-based PD model in
[19]. We also see that the results with non-uniform grids deliver the
smallest errors relative to the experimental data (Spp and e;ej max)-

FFM considers a finite characteristic length, in addition to the natural
one given by the discretization size, related to geometrical parameters.
In FFM one inserts a crack of that length at the nucleation site, and
convert the crack nucleation problem, from computational viewpoint,
into a crack propagation problem [19-21]. This extra length-scale in the
FFM model might be the reason for the FFM results deviating from the
experimental results in this problem (see Fig. 17). In contrast, our PD
models with softening are able to track very well the experimentally-
observed notched-strength dependency on sample geometry.

6. Conclusions

In this paper we showed that peridynamic (PD) models with two or
three damage-related parameters lead to convergence, in terms of the
nonlocal size, for crack nucleation and growth in brittle and quasi-brittle
materials with no pre-cracks. These bilinear and trilinear “constitutive
models” for bond force-strain relationships are calibrated to the fracture
energy and the ultimate material strength. The original PD models based
on a single fracture parameter (associated with the critical fracture en-
ergy) also converge if there is a pre-crack in the domain, but produce
different strengths when different horizon sizes are used to model crack
nucleation under quasi-static conditions in bodies without pre-cracks.

We provided analytical formulas for the calibration of the bilinear
and trilinear models to measurable material properties. The bilinear

Appendix A
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form of the PD constitutive model showed good performance for both
brittle (e.g. ceramics) and quasi-brittle (e.g. concrete) systems, while the
trilinear version was more suited for quasi-brittle fracture behavior. We
also found that for quasi-brittle fracture, a PD model that accounts,
stochastically, for the presence of small-scale pores/defects performs
better than a homogenized model.

Using these PD models, we conducted numerical simulations for a
wedge-splitting test in concrete and crack nucleation in a woven-type
composite plate with a circular hole. In the concrete fracture problem,
we showed that even a bilinear PD model can capture well the failure
and post-peak softening curve observed experimentally. The results for
the plate with a hole match very well the experimentally measured
dependence of strength on hole size. In contrast with other methods (e.g.
those using Finite Fracture Mechanics approaches in PD), our model is
more general, does not depend on the sample geometry, and the results
match closer those obtained experimentally.
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This appendix describes the adaptive dynamic relaxation (ADR) method. This scheme is based on the fact that the static solution is the steady-state
part of the transient response of the solution [39]. The ADR method is explained in [39] and Section 7.5 of [54]. We here discuss the effects of time step

and damping coefficient in ADR method.

The time step (At) should be chosen small enough to deliver a convergence. For relatively large time steps, a transient effect generates in the
beginning of the simulation that can penetrate through the whole simulation. This effect disappears as the time step decreases.
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Fig. Al. Effect of damping coefficient in ADR method. (a) Load-displacement curve obtained by using different ADR damping coefficients, and (b) a zoom-in over the

blue circle area shown in (a).
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To study the effect of damping coefficient in ADR method, we consider a plate with a hole under quasi-static tensile loading, similar to Fig. 3. We
utilize the PMB model to study the crack nucleation problem (see Section 3). The load-displacement curve obtained by different value of damping
coefficient d is shown in Fig. Al. As the damping coefficient increases, the oscillations caused by the dynamic effect of ADR solver are reduced (see
Fig. A1(b)).

Appendix B

This appendix explains the algorithm we use for the simulation process of PD quasi-static fracture modeling (see Fig. B1). At a given load step, the
ADR solver is called to find the equilibrium displacement field. On these displacements, the bond-breaking subroutine is called to check if any bonds
exceeded their critical strain. If there are any such bond breaks, the solver is called again (at the same load step) until no more bonds break and the
physical system reaches equilibrium. If too many bonds break after one solution, numerical instabilities may happen [25]. In the examples shown in
this paper, the crack growth is stable, and as long as a reasonable number of load steps are used, numerical instabilities are avoided.

Appendix C

In this appendix we study §-convergence in PD simulations when a pre-existing crack propagates. We consider the geometry and boundary
condition shown in Fig. C2(a). We assume plane stress condition and displacement-controlled quasi-static loading with the increment of 5 nm at each
of the top corners. Mechanical properties are considered to be E = 72 GPa, Gy = 5 J/m?. A nonlinear conjugate gradient (NCG) method of type Polak-
Ribiere (PR) is used here. The NCG method works well for the PMB bond model (see Section 2.2).

Load versus opening displacement curve obtained for different horizon size (with the fixed horizon factor of 3) is shown in Fig. C2(b). PD models
for brittle fracture (as well as quasi-brittle fracture, e.g. see [5]) converge for 5—0 when pre-cracks are present (excluding problems with length-scale
effects enforcing specific horizon size [7]).

Appendix D

In this appendix, we estimate the ultimate load in Fig. 12 by a correlation that has been used for the purpose of engineering design. This correlation
is derived through the use of a photoelastic method and is based on the definition of stress concentration factor. This factor is the ratio of maximum
stress omax (0gp at @ = 0° and at the edge of the hole) to nominal stress 6, (the average stress at the reduced cross-section due to the hole). Remote
stress o, is the stress applied on the plate ends. With these, one obtains [71]:

O'max _ Kt 1

(1)

Initialization

I
. v.
Quasi-static solver

(ADR) to find <
equilibrium
Go to Eliminate
next ¢ y bonds broken bonds

A

exceed their
ciritcal
strain?

Fig. B1. Flowchart for the simulation process of PD quasi-static fracture modeling. Here ¢ is the load step.
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Fig. C2. (a) A crack propagation problem, and (b) Load versus opening displacement curve showing §-convergence.

where the stress concentration factor K; is obtained experimentally through the use of a photoelastic method for a variety of materials, as follows (see
chart 4.1 of [71]):

d d\? a\’
K,72+0.284(1—W)—0.6<1—W> +1'32<1_W> (D2)

We enforce 6,,,x = 6,. We use the two values for ¢, chosen for brittle and quasi-brittle materials (see Table 1). Using Eq. (D1) we find the remote
stress o, by which crack nucleation is about to happen. The corresponding remote load related to crack nucleation (or the ultimate load shown in
Fig. 12)isF,, = 0, Wb, where W is the plate width and b is the plate thickness. The ultimate (remote) loads for the brittle and quasi-brittle materials is
obtained as 9.73 kN and 3.89 kN, respectively. These estimated values are a bit smaller than the corresponding values shown in Fig. 12, since Eq. (D2)
is mostly used for the engineering designs that seek allowable stress (or load) before failure/yielding being about to happen. For the engineering
designs of elasto-plastic materials (such as steels), one may use Eq. (D1) with enforcing 6,,.«= 0,, where o, is the yield strength, for the materials not
being yielded.
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