Frequency super-resolution with spectro-temporal shaping of photons
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Quantum sensing and metrology promise new insights and novel techniques to surpass the mea-
surement limits of classical framework. Significant improvement has been made in the areas of
imaging, positioning, timing, interferometry, communication and information processing through
quantum detection and estimation techniques. In this Letter, we focus on the application of quan-
tum information for spectral measurements. Specifically, we study the quantum limit to resolve
two spectral modes with small frequency separation. We show that frequency super-resolution can
be achieved with spectro-temporal shaping of input fields before detection. Through a numerical
optimization algorithm, we design the apparatus for spectro-temporal shaping based on phase mod-
ulation and dispersion engineering. This scheme can achieve performance close to the quantum limit
with minimum resources, showing the robustness for experimental implementation and real-world

applications.

I. INTRODUCTION

Improving the accuracy and precision of spectral mea-
surements is a topic of both scientific and technological
importance. Increasingly sophisticated spectroscopy is
utilized in wide applications such as metrology [1-5], op-
tical atomic clocks [6-9], chemical and biological analy-
sis [10-12], and ultrafast processes [13, 14]. Techniques
like frequency chain [15, 16], optical frequency combs
from mode-locked pulse lasers [17-19], electro-optic mod-
ulation [20, 21], optical microcombs [22-24], as well as
spectro-temporal magnifiers [25-28] have been developed
to this end.

In spite of the impressive progress in newly developed
techniques, the standard configuration for spectrometers
and optical spectrum analyzers consists of a dispersive
element followed by direct detection. The equivalence
between paraxial imaging and narrowband dispersion [29]
indicates that direct spectral measurement suffers from
Rayleigh’s limit akin to spatial imaging [30] - the error
in resolving two frequency modes grows infinitely large
as their separation approaches zero. The resolution of
standard spectral measurements is thus limited by the
performance of dispersive elements.

A recent study based on quantum estimation theory
showed that resolution beyond spatial Rayleigh limit can
be achieved with linear optics and photon counting re-
gardless of fluorescence control [31]. This is due to
the significant gap between the error produced by di-
rect imaging and the fundamental quantum error limit
that can be achieved asymptotically [32]. This approach
has been further explored theoretically and experimen-
tally [33-35] for super-resolution imaging. In contrast
to this, approaches to realize frequency super-resolution
have been rarely explored [36, 37].

In this paper, we propose to use spectro-temporal
shaping of photons to overcome the resolution limit
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for frequency measurement. The quantum limit to re-
solve two incoherent spectral modes with small frequency
separation is explored. Instead of using simple dis-
persive elements, we implement spectro-temporal shap-
ing of photons with multiple stages of phase modula-
tion and dispersion engineering before detection. By
only detecting the mode carrying the maximum in-
formation about frequency separation, we can achieve
frequency resolution significantly higher than Rayleigh
limit. We further develop two complementary approaches
for spectro-temporal shaping, based on dispersion op-
timization and arbitrary-wave modulation respectively.
Both approaches can achieve quantum advantages ro-
bustly, providing high flexibility for future experimental
demonstrations and practical implementations. We fur-
ther examine the effects of noise and measurement errors
on our approach and discuss the minimum resource re-
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FIG. 1. (a) Schematic of standard frequency measurement
approach: two frequency modes with small separation go
through dispersive elements followed by direct detection; (b)
Fisher information for different approaches to measure fre-
quency separation. Solid grey: Quantum Fisher informa-
tion; Dashed grey: dispersive elements with direct detection;
Dashed black: binary HG mode detection.



quirement to achieve quantum advantages.

II. CLASSICAL AND QUANTUM LIMITS

Frequency resolution for spectral imaging depends on
the ability to precisely estimate the separation between
two frequency modes. The optimal measurement results
in minimal possible error in estimating frequency sepa-
ration allowed by the Cramer-Rao inequality [38, 39].

Consider a state p that depends on a single, unknown
parameter . We can devise an unbiased estimator for
x by performing a measurement on p. If y is the mea-
surement output, classical Fisher Information (FI) for
estimating x is calculated as [40]

1) = [y (o) )

The resultant root-mean-squared error (denoted by Ax)
from measurement over n copies of p is limited by the
classical Cramer-Rao bound [38, 39]
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which is conditioned on the classical probability p(y|z) =
Tr[p(z)I(y)] induced by a specific measurement II(y).
The fundamental quantum mechanical bound for error
Az is obtained by considering all possible measurements
that may be performed on quantum state p(x). This
quantum Cramer-Rao bound (QCRB) is given by [41]
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where K is the quantum Fisher information (QFI). In
contrast to its classical counterpart, the QFI is not spe-
cific to any particular measurement and depends only on
the initial state p(z),

K(x) = Re [Tr [Ezp(z)]} (4)

where £ is the symmetric-logarithmic derivative operator
acting on p [42].

The measurement that achieves this minimum possible
error (Az = (nK(z))~1/?) yields FI (J) that is equal to
QFI (K). While QCRB provides the minimum achiev-
able error Az, it does not specify the measurement (or
estimator) that can achieve it [32].

We now direct our focus to the determination of fre-
quency resolution for spectral measurements. This reso-
lution limit is determined by the minimum possible fre-
quency separation that can be estimated precisely be-
tween overlapping spectral modes. Figure la shows the
schematic of direct detection of two mutually incoher-
ent Gaussian spectra (x1(f) and x2(f)) with constant
bandwidth o and separation §. We assume to have prior
knowledge of the center frequency fy and set it to zero

without loss of generality. We use a Gaussian mode pro-
file here for simplicity, although a similar approach may
be applied for arbitrary input modes [43].

The input spectrum (x(f)) can be written with single
unknown parameter (relative frequency separation §),
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Using direct detection to estimate &, a photon count is
registered at frequency f with probability p(f|d) = x(f).
As § is decreased, the overlap between the modes in-
creases and it becomes difficult to estimate § precisely
due to an arbitrarily high estimation error (Ad). How-
ever, this limitation is imposed by direct detection, and
can be surpassed by the proper design of a different mea-
surement approach.

It has been shown that QFI is independent of source
separation for spatial imaging and pre-detection spatial
Hermite-Gaussian (HG) mode decomposition achieves
this limit [31]. Due to the equivalence between paraxial
imaging and narrowband dispersion, it is straightforward
to show that QFI for frequency estimation also remains
constant while frequency separation § decreases [37]. For
the case of Gaussian spectral modes,

K@) =K=-"— (6)
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where N is the average photon number detected. Fig-
ure 1b shows that FI for direct spectral imaging (from
Eq. 1) approaches QFT limit (constant, K) for large fre-
quency separation d. However, as § approaches zero, it
drops rapidly to zero, and the frequency resolution is
bounded by an equivalent Rayleigh limit.

We decompose the spectrum x(f) into spectral HG
modes [44] before detection to saturate the QFI limit.
The probability of detecting a photon in mode m is given
by P, = 5(|{vm|x1)|? + [(vm|x2)[?), where v,, represents
the m** HG mode. The resultant FI can be calculated
from Eq. 1 as,
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Equation 7 requires spectral decomposition into an in-
finite number of modes to saturate the QFT limit. We
can simplify the detection strategy by only detecting
HG modes with maximum information about frequency
separation. In the small-§ regime, the HG; mode con-
tains nearly all information about separation § while HGq
mode does not contribute to FI [45]. Also, decomposi-
tion amplitudes for higher order (m > 2) HG modes are
negligible. Therefore, a binary detection strategy can be
used where HGq and higher order modes (cumulatively
referred to as HG; mode) are detected separately with
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The corresponding FI can be expressed as,
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which saturates the QFI in our target parameter regime
of small separation, § < o (Fig. 1b). At the same time, it
achieves quantum advantage over direct detection for § <
20, in the region where x1(f) and x2(f) have significant
overlap.

III. IMPLEMENTATION OF
SPECTRO-TEMPORAL SHAPING

In order to break the classical frequency resolution
limit, we explore the implementation of the binary de-
tection scheme described in the previous section using
spectro-temporal shaping of photons before detection. To
realize this transformation, we use alternating spectral
phase masks and temporal phase modulation (Fig. 2a)
[46, 47]. The Fourier equivalence of time and frequency,
along with well-established technology to control both
temporal and spectral degrees of freedom, enables us to
engineer spectro-temporal shaping with two complemen-
tary approaches - we fix either the temporal modulation
or spectral phase masks while optimizing the other. This
is in contrast to implementing spatial unitary transforma-
tions, where the approach is restricted to optimized spa-
tial phase masks spaced by free-space propagation with
little flexibility [48].

We use wavefront matching algorithm [49-51] to nu-
merically optimize spectral phase masks or temporal
modulation (in the respective approach). Numerical op-
timization has the advantage of realizing target transfor-
mation with high precision and small resource require-
ment. Although small imperfections in the numerically
optimized transformation lead to increased error in -
estimation, we show that optimized binary transforma-
tion can obtain quantum advantage in frequency resolu-
tion robustly and achieve performance close to the quan-
tum limit. We quantify the improvement over direct de-
tection by defining the resolution limit (d1) as the fre-
quency separation at which the particular measurement
achieves FI that is half of the QFI limit. For direct de-
tection, this definition leads to Rayleigh-like resolution
limit of 5%“““ = 1.340.

A. Approach I - Optimizing spectral phase masks
with fixed sinusoidal modulation

In the first approach, we use multiple stages of op-
timized spectral phase masks implemented with pulse
shapers and fixed sinusoidal modulation (Fig. 2a). The
goal is to optimize the spectral phase mask at each stage
to transform the HGy and HG; modes from the in-
put spectrum into two well-separated Gaussian modes
(Fig. 2b). All phase masks are initialized as identity. The
input spectrum and target output are propagated in the
forward and backward directions respectively. For each
HG mode (m), the overlap between the forward (vj;)l)
and backward (vzﬂ) propagating fields is calculated at
each stage (I). The field overlap is summed over all
HG modes, and its phase added to the existing phase
mask. For the i** optimization iteration, the updated
phase phase at " stage is

Pig = Pi—10+ A[Z(Uf;,z)wn,z] (11)
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The optimization result (phase masks and intermediate
spectrum distribution) for input field with frequency sep-
aration § = ¢ is shown in Fig. 2b. Four stages of alternat-
ing phase masks and temporal modulation are used, and
the temporal modulation is sinusoidal with 2.5 modu-
lation depth.

The field transformation shows that the numerically
optimized transformation is an excellent approximation
to the target mode transformation. However, any such
optimization has inherent imperfections due to restricted
resources, such as the number of stages. As a result,
a small fraction of power for input HG modes is trans-
formed into the wrong target output mode (modal cross-
talk) that leads to noticeable deviation in FI compared
to an ideal transformation [45, 52]. As ¢ approaches
zero, the power of HGg mode at the input field increases,
while the power of HG; mode decreases. Even a minute
amount of cross-talk creates high uncertainty in deter-
mining the power in the HG; mode, which holds nearly
all information about §. This inevitable imperfection in
the transformation due to restrained resources leads to
the rapid decrease of FI as § approaches zero. In spite of
this deviation from the ideal case, we find that separation
of HG(y mode before detection clearly leads to higher reso-
lution of 6} = 0.83¢ using only 3 stages (Fig. 3a) showing

the robust2ness of the numerical approach. Increasingly
accurate mode transformation with lower cross-talk can
be achieved using more transformation stages. We obtain
higher FI and better frequency resolution of 5% = 0.050
using 6 stages (Fig. 3a). This presents an improvement
in resolution over direct detection by factor of ~ 27.
Another critical constraint during experimental imple-
mentation of this transformation is the frequency reso-
lution of dispersion phase masks, limited practically by
resolution of pulse shapers. Figure 3b shows the results
for different frequency resolutions of phase masks using 6
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FIG. 2. (a) Schematic of spectro-temporal shaping with optimized spectral phase masks and fixed sinusoidal modulation. The
fundamental and orthogonal higher-order HG modes of the input field are transformed into two well-separated Gaussian modes
respectively. (b) Example results for a 4-stage spectro-temporal shaping, showing the applied spectral phase masks (black) and
output spectrum distribution (black) at each stage. The modulation depth for all stages is 2.5m. The frequency separation
between input spectral modes is § = o. The fixed temporal modulation at each stage is hidden for convenience.
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FIG. 3. Fisher information versus frequency separation op-
timized with (a) different numbers of transformation stages;
(b) different frequency resolutions of phase masks; and (c)
modulation depths. Quantum Fisher information (solid grey),
Fisher information of direct detection (dashed grey), and ideal
binary detection (dashed black) are also shown in (a-c). (d)
Maximum achievable Fisher information with different mod-
ulation depths. Except specified, modulation depth is 2.5,
frequency resolution for phase masks is infinite, and number
of transformation stages is 6.

transformation stages and a depth of 2.57 for fixed sinu-
soidal modulation. Decreasing the resolution of spectral
phases leads to greater inaccuracy in implementing the
optimized phase masks and higher cross-talk. However,
even with relatively low phase resolution (o/1.5), we can
achieve frequency super-resolution with 6% = 0.95¢.

2
The modulation depth is another factor that plays

a critical role in determining the accuracy of spectro-
temporal shaping. Larger modulation depth ensures that
a wider band of frequencies undergo mixing in a single
stage, improving the efficiency of spectral transforma-
tion with fixed number of stages (Fig. 3¢). A modulation
depth of 7 enables super-resolution with 64 = 0.50. Fig-

2
ure 3d shows that modulation depth greater than (1.57)
is sufficient to achieve F1 close to unity, indicating a near-
ideal transformation.

B. Approach II - Optimizing temporal modulation
with constant group velocity dispersion

Instead of optimizing spectral phase masks with fixed
sinusoidal modulation, we can utilize wavefront match-
ing algorithm to optimize temporal modulation phase
while fixing the dispersion. This is equivalent to realiz-
ing the transformation through temporal modes. Tempo-
ral modulation implements arbitrary phase masks across
temporal modes, and dispersion introduces relative time
delay for inter-modal mixing (Fig. 4a). Figure 4b shows
the optimization results (temporal modulation sequence
and intermediate spectral distribution) with 4 transfor-
mation stages for input spectra with frequency separa-
tion § = 0. Spectral modes are obtained through Fourier
transform of the temporal modes. We use a fixed second-
order dispersion (group velocity dispersion) of the form
exp(—iD f?) with D = 0.03/0%. The spectral HGo mode
is well separated from HG; mode leading to FI surpassing
direct detection (Fig. 5a). We see that resolution may be
improved by a factor of ~ 25 using 6 stages, compared
to direct detection.

Experimental implementation of this approach in-
volves temporal phase modulation using arbitrary wave
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FIG. 4. (a) Schematic of spectro-temporal shaping with optimized temporal modulation and fixed dispersion. The fundamental
and orthogonal higher-order HG modes of the input field are transformed into two well-separated Gaussian modes respectively.
(b) Example results for a 4-stage spectral-temporal shaping, showing the applied temporal modulation (red) and output
spectrum distribution (black) of each stage. Broad spectrum chosen here leads to sharp pulses that only require significant
modulation phase change around the centre (t=0) of time axis. The fixed dispersion for all stages is 0.1/¢® rad. The frequency
separation between input spectral modes is § = o. The dispersion phase is hidden for convenience.

generators. Its bandwidth directly determines the resolu-
tion of the temporal phase, which strongly influences the
accuracy of the spectral-temporal transformation. Fig-
ure 5b shows the FI with varying modulation bandwidth
and fixed group velocity dispersion D = 0.03/0? using
6 transformation stages. Lowering the modulation band-
width leads to larger error in implementing the optimized
temporal phase. This gives rise to higher cross-talk and
subsequently lower FI. A sufficiently high modulation
bandwidth of ~ 100 is required to double the resolution
compared to direct detection.

In addition, the amplitude of the group velocity dis-
persion directly determines the efficiency of inter-modal
mixing in time domain. We show in Fig. 5c&d that
a lowest-order dispersion (group velocity dispersion) of
~ 0.015/0? is sufficient to introduce mixing among dif-
ferent temporal modes and achieve near-ideal FI. We ob-
serve an improvement in resolution by factor of 2 relative
to direct detection.

IV. BINARY VS. FULL
SPECTRAL-TEMPORAL TRANSFORMATION

Our discussion thus far has been limited to binary
transformation strategy, which saturates the QCRB only
in the small-6 regime (Fig. 1b). As § increases, more in-
formation about the separation is contained in high-order
HG modes and individual detection of each higher-order
mode is needed to achieve higher FI. A full HG mode
detection strategy, that transforms different input HG
modes into a set of well-separated Gaussian modes at
the output, can achieve the QFI for any frequency sepa-
ration.

In Fig. 6a, we show the optimization result for the full
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FIG. 5. Fisher information versus frequency separation op-
timized with (a) different numbers of transformation stages;
(b) different temporal resolution of arbitrary wave modula-
tion; and (c) total dispersion. Quantum Fisher information
(solid grey), Fisher information of direct detection (dashed
grey), and ideal binary transformation (dashed black) are also
shown in (a-c). (d) Maximum achievable Fisher information
with different total dispersion. Except specified, total disper-
sion is 0.03/0%, bandwidth for arbitrary wave modulations is
infinite, and number of transformation stages is 6.

HG mode detection implemented with optimized spectral
phase masks and fixed sinusoidal modulation. We used
7 transformation stages and a modulation depth of 2.57.
We see that the achieved FI for full HG mode detec-
tion is significantly lower than the QFI. In comparison,
the binary scheme implemented using identical parame-
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FIG. 6. (a) Fisher information versus frequency separation
for full and binary HG mode transformation. Both optimiza-
tions are performed with 7 stages and modulation depth 2.57.
The QFI, direct detection Fisher information and ideal binary
sorting Fisher information curves are replicated from Fig. 1;
(b) Modal cross-talk vs. optimization iterations for full and
binary transformation schemes.

ters performs significantly better than the full scheme for
small frequency separation. For large frequency separa-
tion, direct detection outperforms both binary and full
mode detection.

Optimized full HG mode transformation cannot
achieve the highest FI in any frequency separation
regime. This is because the complexity involved in the
separation of all HG modes leads to excessive cross-talks
with limited optimization resources (Fig.6b). In con-
trast, binary transformation only requires the separation
of HGy and HG; modes. Therefore, significantly lower
cross-talk can be achieved with the same configuration.
For this case, binary transformation has 50 dB lower
cross-talk than full mode transformation (Fig. 6b), lead-
ing to a 10x higher resolution. We infer that it is prefer-
able to use binary transformation for frequency super-
resolution due to its tolerance to cross-talk with fewer
experimental resources.
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FIG. 7. (a) Fisher information against frequency separation
for binary sorting with thermal noise of varied average photon
number; (b) Comparison between Fisher information versus §
curves for binary sorting with noise (SNR = 100) and with 1%
crosstalk. The QFI, direct detection Fisher information and
ideal binary sorting Fisher information curves are replicated
from Fig. 1.

V. NOISY DETECTION

In the preceding sections, we explore the impact of

modal cross-talk on frequency resolution assuming noise-
less photon detection. However, stray photons and dark
counts may significantly influence the performance of
these detection schemes [43, 53, 54] by introducing addi-
tional uncertainty in determining the power in the HG;
mode for small §. We factor in the effect of this noise as
a weak thermal source emitting Np photons on average
within the detection window. The resultant probability
of detecting a photon (using binary scheme) in the HG,
mode is modified to,

N 2 N
m-(-3) ) R
For low noise level Ng/N <« 1 and small frequency sep-
aration, the probability P can be simplified to
2 1
Pl = (1 - ‘%) . 13
! ) sNR (13)

where the signal-to-noise ratio (SNR) is given by N/Np.
Then the corresponding FI is expressed as
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In the small separation limit 6 — 0, Eq.14 can be simpli-
fied to

o2 1 )—1

N
Jo.5(0) = @(1 + 165 SNR

(15)
Intuitively, lower noise level will lead to higher FI due
to the more accurate measurement of optical power
(Fig. 7a). It is also worth noting that noise has simi-
lar influence on FI with modal cross-talk, as both affect
the measurement accuracy of HG; power. In Fig. 7b,
FI with the same level of SNR and modal cross-talk is
plotted. The FI for the two cases is nearly identical, in-
dicating that any source of uncertainty in HG; modal
power affects the FI equivalently.

VI. DISCUSSION

The two approaches discussed in the previous section
are theoretically equivalent and connected by Fourier
transform. However, the experimental choice of each ap-
proach depends critically on the bandwidth o of the input
field.

The optimized phase masks and sinusoidal temporal
modulation can be readily realized with pulse shapers
and electro-optic modulators driven with sinusoidal mi-
crowave signal. With high modulation efficiency and
large bandwidth, we expect that electro-optic modula-
tors would not constrain practical realization. On the
other hand, the frequency resolution for pulse shapers is
around 10 GHz. As shown in Fig. 3b, frequency super-
resolution can be achieved if the frequency resolution of
phase masks is smaller than ¢/1.5. This determines that



the approach based on optimized phase masks only works
for input field with bandwidths larger than 10s of GHz.

On the other hand, optimized temporal modulation
requires electro-optic modulators driven with arbitrary
waveform generators, whose bandwidth determines the
temporal resolution. The group velocity delay can be
simply realized with fiber spools and fiber Bragg grat-
ings. As shown in Fig. 5b, temporal resolution smaller
than 1/(100) is needed to demonstrate frequency super-
resolution. Arbitrary waveform generators with band-
width up to 80 GHz are commercially available. There-
fore, it is possible to experimentally demonstrate fre-
quency super-resolution with input field bandwidths
smaller than 8 GHz. Depending on the input bandwidth
(o), we can select approach I /II for broad/narrow-band
input frequency mode super-resolution, respectively.

Spectro-temporal shaping is not restricted to Gaussian
modes and may be modified for input spectra with arbi-
trary mode shapes [55]. The modal basis for spectro-
temporal shaping with alternate input shapes can be de-
termined by using the input mode itself as the funda-
mental mode and constructing an orthonormal basis set
[43]. A common example is the sinc-Bessel basis detec-
tion, which can achieve super-resolution for sinc-function
input modes [31, 45].

We also note that the application of spectro-temporal
shaping demonstrated here is not limited to two-mode
problems. This treatment can be further extended for
super-resolution of extended spectra and pulses [45]. It
can also be applied to enhance the measurement resolu-
tion of time delay between two temporal pulses, based
on the Fourier equivalence between time and frequency.
This finds particularly important applications in optical
measurement of distance, optical communications, oscil-
loscopes, and time-of-flight measurements.

VII. CONCLUSION

We have studied the approach to break the classical
Rayleigh limit for frequency separation measurement.
We show that the spectral-temporal shaping of input
fields before detection can significantly increase FI and
achieve frequency super-resolution. The two comple-
mentary methods based on the optimization of spectral
phase masks and temporal modulation enable experimen-
tal implementation with feasible resource requirements.
They also provide high flexibility to accomplish frequency
super-resolution with different input bandwidths.

We further recognize that modal cross-talk due to im-
perfect transformation and detection noise have simi-
lar effect in the degradation of frequency resolution for
practical applications. We find that binary transforma-
tion shows significantly better robustness than full mode
transformation with limited resources, which is critical
for the experimental implementation. In addition to new
possibilities for spectroscopy, spectro-temporal shaping
could also provide new insights for photonic process-
ing such as arbitrary optical pulse generation and high-
dimensional frequency-bin encoding of quantum informa-
tion.
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