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TESTING LINEAR-INVARIANT PROPERTIES

JONATHAN TIDOR AND YUFEI ZHAO

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. Fix a prime p and a positive integer R. We study the property testing of functions
F
n
p → [R]. We say that a property is testable if there exists an oblivious tester for this property

with one-sided error and constant query complexity. Furthermore, a property is proximity oblivious-
testable (PO-testable) if the test is also independent of the proximity parameter ǫ. It is known that
a number of natural properties such as linearity and being a low degree polynomial are PO-testable.
These properties are examples of linear-invariant properties, meaning that they are preserved under
linear automorphisms of the domain. Following work of Kaufman and Sudan, the study of linear-
invariant properties has been an important problem in arithmetic property testing.

A central conjecture in this field, proposed by Bhattacharyya, Grigorescu, and Shapira, is that
a linear-invariant property is testable if and only if it is semi subspace-hereditary. We prove two
results, the first resolves this conjecture and the second classifies PO-testable properties.
(1) A linear-invariant property is testable if and only if it is semi subspace-hereditary.
(2) A linear-invariant property is PO-testable if and only if it is locally characterized.
Our innovations are two-fold. We give a more powerful version of the compactness argument

first introduced by Alon and Shapira. This relies on a new strong arithmetic regularity lemma
in which one mixes different levels of Gowers uniformity. This allows us to extend the work of
Bhattacharyya, Fischer, Hatami, Hatami, and Lovett by removing the bounded complexity restric-
tion in their work. Our second innovation is a novel recoloring technique called patching. This
Ramsey-theoretic technique is critical for working in the linear-invariant setting and allows us to
remove the translation-invariant restriction present in previous work.

1. Introduction

In property testing, the aim is to find randomized algorithms that distinguish objects that have
some given property from those that are far from satisfying the property by querying the given
large object at a small number of locations. Property testing emerged from the linearity test of
Blum, Luby, and Rubinfeld [10], and was formally defined and systematically studied by Rubinfeld
and Sudan [29] and Goldreich, Goldwasser, and Ron [14]. There have been important developments
especially in the following two settings: graph property testing and arithmetic property testing.

Two representative problems are: (1) given a large graph, test whether the graph is triangle-free
or ǫ-far from triangle-free (an n-vertex graph is ǫ-far from a graph property if one needs to add
and/or remove more than ǫn2 edges in order to satisfy the property), and (2) given a function
f : Fn

p → Fp, test whether f is linear or ǫ-far from linear (for an arithmetic property, being ǫ-far
means that one needs to change the value of the function on more than an ǫ-fraction of the domain
in order to satisfy the property). In both cases, it is known that one can achieve the desired goal by
sampling a fixed number of entries repeatedly C(ǫ) times. For testing whether a graph is triangle-
free [30], one samples a uniformly random triple of vertices and checks whether they form a triangle,
and for testing linearity [10], one samples x, y ∈ F

n
p uniformly and checks if f(x)+ f(y) = f(x+ y).
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In this paper we give a property testing algorithm for a very general class of arithmetic properties.
The goal is to determine whether a function f : Fn

p → [R] := {1, . . . , R} (with fixed prime p and
positive integer R) satisfies some given property or is ǫ-far from satisfying the property. All the
properties we consider are linear-invariant in the sense that they are invariant under automorphisms
of the vector space F

n
p . Linear-invariant properties form an important general class of arithmetic

properties, e.g., the work of Kaufman and Sudan [26] “highlights linear-invariance as a central
theme in algebraic property testing.”

We say that a property P is testable if there exists an oblivious tester with one-sided error (and
constant query complexity) for the property. A tester for P produces a positive integer d = d(ǫ) and
an oracle provides the tester with the restriction f |U where U is a uniform random d-dimensional
linear subspace of the domain (if the domain is large enough that such a subspace exists; if the
domain has dimension strictly less than d, the oracle provides the tester with all of f). We require
our tester accepts functions f satisfying P with probability 1 and reject functions that are ǫ-far from
satisfying P with probability at least δ = δ(ǫ) for some function δ : (0, 1) → (0, 1). Furthermore,
we say that P is proximity oblivious-testable (PO-testable) if d = d(ǫ) is a constant independent of
ǫ. The idea of PO-testability was introduced by Goldreich and Ron [15] who, among other results,
classified the PO-testable graph properties.

One surprising feature of property testing is that many natural properties, such as linearity, are
testable and even PO-testable. A key feature of linearity is that it is subspace-hereditary meaning
that if f : Fn

p → Fp is linear, then the same is true for f |U for every linear subspace U ≤ F
n
p . To be

precise, we say that a linear-invariant property P is subspace-hereditary if for every f : Fn
p → [R]

satisfying P and every linear subspace U ≤ F
n
p , the restriction f |U also satisfies P.

A central conjecture in this field, by Bhattacharyya, Grigorescu, and Shapira, is that all linear-
invariant, subspace-hereditary properties are testable [9, Conjecture 4]. In fact, they conjecture
that the slightly larger class of semi subspace-hereditary properties are testable and prove that no
other properties can be tested.

Definition 1.1. A linear-invariant property P is semi subspace-hereditary if there exists a subspace-
hereditary property Q such that

(i) every function satisfying P also satisfies Q;
(ii) for all ǫ > 0, there exists N(ǫ) such that if f : Fn

p → [R] satisfies Q and is ǫ-far from
satisfying P, then n < N(ǫ).

It is known that there are subspace-hereditary properties where the dimension d sampled must
grow as the proximity parameter ǫ approaches 0. To be PO-testable, a property must satisfy the
following more restrictive condition.

Definition 1.2. A linear-invariant property P is locally characterized if there exists some d such
that the following holds. For every f : Fn

p → [R] with n ≥ d, the function f satisfies P if and only
if f |U satisfies P for every U ≤ F

n
p of dimension d.

Our first result is a resolution of the conjecture of Bhattacharyya, Grigorescu, and Shapira,
classifying the testable linear-invariant properties. Our second result is a classification of the PO-
testable linear-invariant properties.

Theorem 1.3. A linear-invariant property is testable if and only if it is semi subspace-hereditary.

Theorem 1.4. A linear-invariant property is PO-testable if and only if it is locally characterized.

Remark 1.5. Note that under our definition, the tester does not know the dimension of the do-
main. This rules out some “unnatural” properties such as those properties that behave differently
depending on whether the dimension of the domain is even or odd.
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Previous work in arithmetic property testing has focused on a number of special cases includ-
ing monotone properties [27, 31], “complexity 1” properties over F2 [9], and bounded complexity
translation-invariant properties [7].

We note that very little was previously known about general linear-invariant patterns. One
simple way to define a class of linear-invariant patterns can be done by, for example, choosing an
arbitrary subset of “allowable” maps F

2
p → [R] and defining a property of functions F

n
p → [R] to

consist of those whose restriction to every 2-dimensional linear subspace is allowable. Even this
class of 2-dimensionally-defined patterns was not known to be testable in general prior to this work.

Our innovations are two-fold. We prove a strong arithmetic regularity lemma which, unlike
previous arithmetic regularity lemmas, mixes different levels of Gowers uniformity. This allows us
to give a more powerful version of the compactness argument first introduced by Alon and Shapira
[4]. With this tool we can remove the bounded complexity restriction that was present in all previous
work.

Our second innovation is a novel recoloring technique we call patching. This technique is critical
for working in the linear-invariant setting and allows us to handle an important obstacle encoun-
tered by previous works. Roughly speaking, this obstacle is the inability of regularity methods to
regularize functions in a neighborhood of the origin.

In the rest of this section we give a summary of the proof of the main theorem and its relation
to previous work.

1.1. Graph removal lemmas and property testing. We begin with an overview of graph
removal lemmas and their proof techniques (see also the survey [11]).

The triangle removal lemma of Ruzsa and Szemerédi [30] states that for all ǫ > 0 there exists
δ > 0 such that any n-vertex graph with at most δn3 triangles can be made triangle-free by removing
ǫn2 edges. This was generalized to the graph removal lemma, first stated explicitly by Alon, Duke,
Lefmann, Rödl, and Yuster [1] and by Füredi [13].

A key tool for proving the graph removal lemma is a regularity lemma, namely Szemerédi’s
graph regularity lemma. Roughly speaking, the proof proceeds by using this regularity lemma to
partition the input graph G into a small number of structured components. Then we “clean up”
G by removing at most ǫn2 edges. This is done in such a way that either the resulting graph is
H-free or the original graph G contains many copies of H.

An important extension of the graph removal lemma is the induced graph removal lemma, proved
by Alon, Fischer, Krivelevich, and Szegedy [2]. The induced graph removal lemma states that for
every graph H (or finite collection H of graphs), for all ǫ > 0 there exists δ > 0 such that

every n-vertex graph with at most δnv(H) induced copies of H can be made induced H-free by
adding and/or removing at most ǫn2 edges (here induced H-free means not containing any induced
subgraph isomorphic to H).

The original proof of the induced removal lemma relies on an extension of Szemerédi’s graph reg-
ularity lemma known as the “strong regularity lemma.” Using such a regularity lemma combined
with a random sampling argument, one can produce a “regular model”, that is, a large induced
subgraph X := G[U ] (on a constant fraction of the vertices of G) that is very regular and approxi-
mates the original graph well in a certain sense. Then we “clean up” G by adding and/or removing
at most ǫn2 edges in such a way that if the resulting graph is not induced H-free then X (in the
original graph) must contain many induced copies of H.

Alon and Shapira [4] extended the induced graph removal lemma to an infinite collection of
graphs. Namely they prove that for a (possibly infinite) set H of graphs and for ǫ > 0 there exist

δ > 0 and k such that the following holds: if G is an n-vertex graph with at most δnv(H) copies of
H for all H ∈ H with k or fewer vertices, then G can be made induced H-free by adding and/or
removing at most ǫn2 edges (meaning the modified graph has no induced subgraph isomorphic to
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H for every H ∈ H). This theorem immediately implies (and is equivalent to) the fact that every
hereditary graph property is testable with constant query-complexity and one-sided error.

This series of works, in addition to being important results in their own right, gives a framework
for proving constant query-complexity property testing algorithms in other settings, given an ap-
propriate regularity lemma. In particular, the hypergraph regularity lemma, proved by Gowers [17]
and independently by Rödl et al. [28] can be used with the above techniques to prove an infinite
induced hypergraph removal lemma [29]. Consequently, every hereditary hypergraph property is
testable with constant query-complexity and one-sided error.

1.2. Arithmetic analogs. The problem of property testing for functions f : Fn
p → [R] has been

intensely studied, starting with the the classic work of Blum, Luby, and Rubinfeld [10] on linearity
testing. Much of the work focuses on testing whether some function f : Fn

p → Fp has certain
algebraic properties (e.g., a polynomial of some given type) [3, 26]. There is also much interest in
testing properties that do not arrive from algebraic characterizations. Below we give an overview of
the developments related to property testing in Fn

p from a perspective that is parallel to the graph
regularity method developments discussed earlier.

The first arithmetic regularity lemma was proved by Green [19] using Fourier-analytic techniques,
and it laid the groundwork for further developments of the regularity method in the arithmetic
setting. These regularity lemmas has since found many applications in additive combinatorics and
related fields. In particular, combined with the graph removal framework described above, Green’s
regularity lemma is suitable for proving an arithmetic removal lemma for “complexity 1” systems
of linear forms (see Section 3 for the definition of complexity); e.g., see [6].

Král’, Sera, and Vena [27] and independently Shapira [31] bypass the need for an arithmetic regu-
larity lemma and prove the full arithmetic removal lemma by a direct reduction from the hypergraph
removal lemma. Their results imply that all linear-invariant, subspace-hereditary monotone prop-
erties are testable with constant query-complexity and one-sided error. (A property of functions
F
n
p → {0, 1} is monotone if changing 1’s to 0’s preserves the property.)
Note that the above result is an arithmetic removal lemma and not an induced arithmetic removal

lemma (hence the restriction to monotone properties). Due to the nature of the reduction, the
techniques do not seem to be capable of deducing the induced arithmetic removal lemma from the
induced hypergraph removal lemma.

An alternative approach is to apply the strong graph regularity approach [2] of proving the
induced graph removal lemma to Green’s arithmetic regularity lemma. However there is also a
major obstacle to the approach, related to the fact that the origin plays a special role in a vector
space while there is no corresponding feature of graphs. It turns out that it is not always possible
to regularize the space in a neighborhood of the origin [20].

Bhattacharyya, Grigorescu, and Shapira [9] managed to overcome this obstacle in the special
case of vector spaces over F2. They follow the above strategy, implementing the strong regularity
idea [2] in the style of Green’s arithmetic regularity [19] along with one additional tool, namely a
Ramsey-theoretic result, to prove an infinite induced arithmetic removal lemma for “complexity 1”
patterns over F2. Unfortunately, it is known [20] that this Ramsey-theoretic result fails over all
finite fields other than F2.

Bhattacharyya, Fischer, and Lovett [8] managed to overcome this obstacle in a different special
case, namely for translation-invariant patterns. When all patterns considered are translation-
invariant, the origin no longer plays a special role and one can essentially ignore it while carrying
out the strong regularity framework. In addition, [8] allows one to handle higher complexity
patterns, which requires developing and applying tools from higher-order Fourier analysis.

Higher-order Fourier analysis plays a central role in modern additive combinatorics. These
techniques were initiated by Gowers [16] in his celebrated new proof of Szemerédi’s theorem, and
further developed in a sequence of works by Green, Tao, and Ziegler [21, 22, 23] settling classical
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conjectures on the asymptotics of prime numbers patterns. A parallel theory of higher-order Fourier
analysis was developed in finite field vector spaces by Bergelson, Tao, and Ziegler [5, 32, 33], leading
to an inverse Gowers theorem over finite fields vector spaces.

For applications to property testing, this line of work culminated in the work of Bhattacharyya,
Fischer, Hatami, Hatami, and Lovett [7] (extending [8]), who applied the inverse Gowers theorem
over finite fields and developed further equidistribution tools to prove an infinite induced arithmetic
removal lemma for all linear-invariant, subspace-hereditary properties that are also translation-
invariant and bounded-complexity. Their work follows the strong regularity framework of [2, 4].
Our results improve upon this work by removing the translation-invariant and bounded-complexity
restrictions.

In addition to their property testing algorithm, Bhattacharyya, Fischer, Hatami, Hatami, and
Lovett [7] proved that a large class of somewhat algebraically structured properties are indeed
affine-invariant, subspace-hereditary, and locally characterized. These are the so-called “degree-
structural properties”. A simple extension of their result [25, Theorem 16.3] implies that the larger
class of “homogeneous degree-structural properties” are linear-invariant, linear subspace-hereditary
(but not affine-invariant and not subspace-hereditary), and locally characterized, and thus these
properties are testable by our main theorem. As an example, one can test whether a function
F
n
p → Fp can be written as A2 + B2 where both A and B are homogeneous polynomials of some

given degree d.

1.3. Our contributions.

1.3.1. Patching. In this paper, building on the authors’ earlier work with Fox [12] for complexity
1 patterns, we develop a new technique called “patching” that allows us to overcome the obstacle
faced by earlier approaches, namely that a neighborhood of the origin cannot be regularized and
fails certain Ramsey properties (unless working over F2). In essence, the patching result states that
if there exists some map f : Fn

p → [R] that has low density of some colored patterns H for n large
enough, then for all m there must exist some map g : Fm

p → [R] that has no H-instances.

Theorem 1.6 (Informal patching result). For every set of colored pattern H, there exist ǫ0 > 0
and n0 such that the following holds. Either:

• for every n, there exists a function f : Fn
p → [R] that is H-free; or

• for every function f : Fn
p → [R] with n ≥ n0, the H-density in f is at least ǫ0 for some

H ∈ H.

Our proof proceeds in two steps. First, as in [7], following the strong regularity framework of [2]
for proving induced graph removal lemmas, we apply a strong arithmetic regularity lemma, which
produces a partition B of Fn

p and a “regular model” X ⊆ F
n
p made up of a randomly sampled set

of atoms from B. Unlike in the graph setting, we cannot ensure that the map f : Fn
p → [R] is very

regular on every atom of B|X . In particular, it may be impossible to guarantee that f is regular on
the atom containing the origin. Instead we only ensure that almost every atom of X is very regular.
Unlike earlier proofs of removal lemmas, our “recoloring algorithm” has two components: for the
regular atoms we “clean up” f as usual, while for the irregular atoms we apply our patching result.
Our patching result implies that there is some new global coloring g : Fn

p → [R] that avoids some
appropriate set of colored patterns. To complete the proof we “patch” f by replacing it by g on all
of the irregular atoms. If f has low density of some set of colored pattern, then our argument shows
that these pattern cannot appear in the recoloring, thereby completing the proof of the induced
arithmetic removal lemma.

Our proof does not give effective bounds on the rejection probability function δ(ǫ) guaranteed
by Theorem 1.3. The ineffectiveness is due to the fact that the current best-known bounds on the
inverse theorem for non-classical polynomials are ineffective (the same occurs in [7]).
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1.3.2. Unbounded complexity. The technique used to handle infinite removal lemmas is a compact-
ness argument first introduced by Alon and Shapira [4] in the graph setting. A key ingredient of
their proof is a strong regularity lemma.

Bhattacharyya, Fischer, Hatami, Hatami, and Lovett [7] prove that all linear-invariant subspace-
hereditary properties that are also translation-invariant and bounded-complexity are testable. Their
result follows from an infinite removal lemma for arithmetic patterns of bounded complexity. The
proof of this result involves a strong arithmetic regularity lemma and a compactness argument in
the spirit of Alon and Shapira.

To remove the bounded complexity assumption from [7], we prove a new strong arithmetic
regularity lemma obtained by iterating a weaker arithmetic regularity lemma. The key innovation
here is the level of Gowers uniformity used in each iteration is allowed to increase at each step of
the process.

2. Colored patterns and removal lemmas

Theorem 1.3 and Theorem 1.4 both follow from an arithmetic removal lemma for colored linear
patterns. In this section we define these objects and state the main removal lemma.

Definition 2.1. A linear form over Fp in ℓ variables is an expression L of the form

L(x1, . . . , xℓ) =
ℓ

∑

i=1

cixi

with ci ∈ Fp. For any Fp-vector space V , the linear form L gives rise to a function L : V ℓ → V that
is linear in each variable.

Definition 2.2. For a prime p and a finite set S, an S-colored pattern over Fp consisting of m
linear forms in ℓ variables is a pair (L, ψ) given by a system L = (L1, . . . , Lm) of m linear forms
in ℓ variables and a coloring ψ : [m] → S. Given a finite-dimensional Fp-vector space V and a

function f : V → S, an (L, ψ)-instance in f is some x ∈ V ℓ such that f(Li(x)) = ψ(i) for all
i ∈ [m]. An instance is called generic if x1, . . . , xℓ are linearly independent. We say that (L, ψ) is
translation-invariant if the coefficient of x1 is 1 in each of L1, . . . , Lm.

Given a finite-dimensional Fp-vector space V and functions f1, . . . , fm : V → [−1, 1], we write

ΛL(f1, . . . , fm) := Ex∈V k [f1(L1(x)) · · · fm(Lm(x))].

Definition 2.3. For an S-colored pattern over Fp consisting of m linear forms in k variables (L, ψ),
a finite dimensional Fp-vector space V , and a function f : V → S, define the (L, ψ)-density in f
to be ΛL(f1, . . . , fm) where fi := 1f−1(ψ(i)) for each i ∈ [m].

Our main removal lemma is the following result.

Theorem 2.4 (Main removal lemma). Fix a prime p and a finite set S. Let H be a (possibly
infinite) set of S-colored patterns over Fp. For every ǫ > 0, there exists a finite set Hǫ ⊆ H and
δ = δ(ǫ,H) > 0 such that the following holds. Let V be a finite-dimensional Fp-vector space. If
f : V → S has H-density at most δ for every H ∈ Hǫ, then there exists a recoloring g : V → S
that agrees with f on all but an at most ǫ-fraction of V such that g has no generic H-instances for
every H ∈ H.

There are several difficulties in the proof of the main removal lemma. The first is that individual
patterns H ∈ H may have “infinite complexity”. Second, the set of patterns H may be infinite.
Complicating this, even if all patterns in H have finite complexity, these complexities can be
unbounded. Finally, there are major difficulties related to the fact that the patterns in H are not
necessarily translation-invariant.
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We use a trick called “projectivization” to reduce to the case where all patterns have finite
complexity. To do this, we need a slightly modified version of the main removal lemma that we call
the projective removal lemma (Theorem 2.8).

A “compactness argument” due to Alon and Shapira [4] reduces the problem of an infinite
collection of patterns to a finite one at the expense of requiring a stronger arithmetic regularity
lemma. If the collection of patterns is all complexity at most d, we only require a strong Ud+1-
regularity lemma with rapidly decreasing error parameter. In the most general case when the
collection of patterns has unbounded complexity we require an even stronger regularity lemma
where the error parameter rapidly decreases and the degree of the uniformity norm rapidly increases.

Unless we restrict to the special case where all patterns in H are translation-invariant, the origin
of the vector space plays a special role. This is unfortunate because it is impossible to regularize a
function in the neighborhood of the origin. Since regularity methods are useless here, we turn to a
new technique called patching, originally introduced by the authors and Fox [12], to deal with the
portions of the vector space that cannot be regularized.

Definition 2.5. Let S be a finite set equipped with a group action of F×
p that we denote c · s

for c ∈ F
×
p and s ∈ S. Given a finite-dimensional Fp-vector space V , a function f : V → S is

projective if it preserves the action of F×
p , i.e., f(cx) = c · f(x) for all c ∈ F

×
p and all x ∈ V .

Definition 2.6. A list of linear forms L = (L1, . . . , Lm) is finite complexity if no form is
identically equal to zero, i.e., Li 6≡ 0 for all i ∈ [m], and no two forms are linearly dependent, i.e.,
Li 6≡ cLj for all i 6= j and c ∈ Fp.

Definition 2.7. Fix a prime p and a positive integer ℓ. We consider two particular systems of
linear forms. For i = (i1, . . . , iℓ) ∈ F

ℓ
p, define

Lℓ
i(x1, . . . , xℓ) := i1x1 + · · ·+ iℓxℓ.

Then define Lℓ := (Lℓ
i)i∈Fℓ

p
, the system of pℓ linear forms in ℓ variables that defines an ℓ-dimensional

subspace.
Let Eℓ ⊂ F

ℓ
p be the set of non-zero vectors whose first non-zero coordinate is 1. Then define

L
ℓ
:= (Lℓ

i)i∈Eℓ
, a system of (pℓ − 1)/(p − 1) linear forms in ℓ variables.

Note that unlike Lℓ, the system L
ℓ
has finite complexity. For technical reasons, it will be

convenient to reduce the removal lemma for general patterns to the case where all patterns are
defined by a system of the form Lℓ. Then we reduce this to the following projective removal lemma

where all patterns are defined by a system of the form L
ℓ
.

Theorem 2.8 (Projective removal lemma). Fix a prime p and a finite set S equipped with an F
×
p -

action. Let H be a (possibly infinite) set consisting of S-colored patterns over Fp of the form (L
ℓ
, ψ)

where ℓ is some positive integer and ψ : Eℓ → S is some map (see Definition 2.7 for the definition of

L
ℓ
and Eℓ). For every ǫ > 0, there exists a finite subset Hǫ ⊆ H and δ = δ(ǫ,H) > 0 such that the

following holds. Let V be a finite-dimensional Fp-vector space. If f : V → S is a projective function
with H-density at most δ for every H ∈ Hǫ, then there exists a projective recoloring g : V → S
that agrees with f on all but an at most ǫ-fraction of V such that g has no generic H-instances for
every H ∈ H.

3. Preliminaries on higher-order Fourier analysis

3.1. Gowers norms and complexity.

Definition 3.1. Fix a prime p, a finite-dimensional Fp-vector space V , and an abelian group G.
Given a function f : V → G and a shift h ∈ V , define the additive derivative Dhf : V → G by

(Dhf)(x) := f(x+ h)− f(x).
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Given a function f : V → C and a shift h ∈ V , define the multiplicative derivative ∆hf : V → C

by
(∆hf)(x) := f(x+ h)f(x).

Definition 3.2. Fix a prime p and a finite-dimensional Fp-vector space V . Given a function
f : V → C and d ≥ 1, the Gowers uniformity norm ‖f‖Ud is defined by

‖f‖Ud := |Ex,h1,...,hd∈V (∆h1 · · ·∆hd
f)(x)|1/2d .

Definition 3.3. A system L = (L1, . . . , Lm) of m linear forms in ℓ variables is complexity at

most d if for all ǫ > 0 there exists δ > 0 such that for all f1, . . . , fℓ : V → [−1, 1] it holds that

|ΛL(f1, . . . , fℓ)| ≤ ǫ whenever min
1≤i≤ℓ

‖fi‖Ud+1 ≤ δ. (3.1)

The complexity of L is the smallest d such that the above holds, and infinite otherwise.

Remark 3.4. The above definition is sometimes known as true complexity. It is known that a
pattern (L1, . . . , Lm) is complexity at most d if and only if Ld+1

1 , . . . , Ld+1
m are linearly independent

as (d+ 1)th order tensors [18, 24].
Let (L1, . . . , Lm) be any pattern such that no form is identically zero and no two forms are

linearly dependent. It is known (for example, because Cauchy-Schwarz complexity is an upper
bound for true complexity [22]) that (L1, . . . , Lm) has complexity at most m− 2.

It follows from the above discussion that the definition of complexity given in Definition 3.3
agrees with the definition of finite complexity given in Definition 2.6.

3.2. Non-classical polynomials and homogeneity. For ease of notation we write

Uk := 1
pk
Z/Z ⊂ R/Z (3.2)

through the paper.

Definition 3.5. Fix a prime p, and a non-negative integer d ≥ 0. Let V be a finite-dimensional
Fp-vector space. A non-classical polynomial of degree at most d is a map P : V → R/Z that
satisfies

(Dh1 · · ·Dhd+1
P )(x) = 0

for all h1, . . . , hd+1, x ∈ V . The degree of P is the smallest d > 0 such that the above holds. The
depth of P is the smallest k ≥ 0 such that P takes values in a coset of Uk+1.

See [33, Lemma 1.7] for some basic facts about non-classical polynomials. We record one such
fact here.

Lemma 3.6 ([33, Lemma 1.7(iii)]). Fix a prime p, and a finite-dimensional Fp-vector space V ≃ F
n
p .

Then P : V → R/Z is a non-classical polynomial of degree at most d if and only if it can be expressed
in the form

P (x1, . . . , xn) = α+
∑

0≤i1,...,in<p, j≥0:
0<i1+···+in≤d−k(p−1)

ci1,...,in,k|x1|i1 · · · |xn|in
pk+1

(mod 1),

for some α ∈ R/Z and coefficients ci1,...,in,k ∈ {0, . . . , p − 1} and where | · | is the standard map
Fp → {0, . . . , p − 1}. Furthermore, this representation is unique.

As a corollary we see that in characteristic p, every non-classical polynomial of degree at most d
has depth at most ⌊(d− 1)/(p − 1)⌋.
Definition 3.7. A homogeneous non-classical polynomial is a non-classical polynomial P : V →
R/Z that also satisfies the following. For all b ∈ Fp there exists σ

(P )
b ∈ Z/pk+1

Z such that

P (bx) = σ
(P )
b P (x) for all x ∈ V .
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Lemma 3.8 ([24, Lemma 3.3]). Fix a prime p and integers d > 0 and k ≥ 0 satisfying k ≤
⌊(d− 1)/(p − 1)⌋. For each b ∈ Fp there exists σ

(d,k)
b ∈ Z/pk+1

Z such that σ
(P )
b = σ

(d,k)
b for all

homogeneous non-classical polynomials P of degree d and depth k. Furthermore, for b 6= 0, σ
(d,k)
b

is uniquely determined by the following two properties:

(i) σ
(d,k)
b ≡ bd (mod p)

(ii)
(

σ
(d,k)
b

)p−1
= 1 (in Z/pk+1

Z).

Theorem 3.9 ([24, Theorem 3.4]). Let P be a non-classical polynomial of degree d and depth k.
Then P can be written as the sum of homogeneous non-classical polynomials of degree at most d
and depth at most k.

3.3. Polynomial factors.

Definition 3.10. Fix a prime p. Define

Dp := {(d, k) ∈ Z>0 × Z>0 : k ≤ ⌊(d− 1)/(p − 1)⌋} ,
and

Ip :=







I ∈ Z
Dp

>0 :
∑

(d,k)∈Dp

Id,k < ∞







.

We call I ∈ Ip a parameter list. For I ∈ Ip, we write ‖I‖ := p
∑

d,k(k+1)Id,k and deg I for the
largest d such that Id,k 6= 0 for some k. We add and subtract parameter list coordinatewise. For
I, I ′ ∈ Ip, we write I ≤ I ′ if Id,k ≤ I ′d,k for all (d, k) ∈ Dp.

Definition 3.11. For p a prime and I ∈ Ip, define the atom-indexing set of I to be

AI :=
∏

(d,k)∈Dp

(

1
pk+1Z/Z

)Id,k
. (3.3)

(Note that |AI | = ‖I‖.)
For I, I ′ ∈ Ip with I ≤ I ′, write π : AI′ → AI for the standard projection map defined by

π

(

(

aid,k
)

(d,k)∈Dp

i∈[I′d,k]

)

7→
(

aid,k
)

(d,k)∈Dp

i∈[Id,k]
. (3.4)

AI is equipped with the following F
×
p -action:

c ·
(

aid,k
)

(d,k)∈Dp

i∈[I′d,k]
:=

(

σ(d,k)
c aid,k

)

(d,k)∈Dp

i∈[I′d,k]
, (3.5)

where σ
(d,k)
c is defined in Lemma 3.8.

Definition 3.12. Fix a prime p. Let V be a finite-dimensional Fp-vector space and let I ∈ Ip be
a parameter list. A polynomial factor on V with parameters I, denoted B, is a collection

(

P i
d,k

)

(d,k)∈Dp

i∈[Id,k]

where P i
d,k is a homogeneous non-classical polynomial of degree d and depth k. We also use B to

denote the map B : V → AI defined by evaluation of the polynomials. We also associate to B the
partition of V given by the fibers of this map. The atoms of this partition are called the atoms of
B. We write ‖B‖ := ‖I‖ and degB := deg I.

Note that if B is a polynomial factor on V with parameters I, then B(cx) = c · B(x) for all
c ∈ F

×
p and x ∈ V where the F

×
p -action on AI is defined in Eq. (3.5).
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Definition 3.13. Fix a prime p. Let V be a finite-dimensional Fp-vector space and let I, I ′ ∈ Ip be
two parameter lists. Let B and B

′ be two polynomial factors on V with parameters I and I ′. We
say that B′ is a refinement of B if I ≤ I ′ and the lists of polynomials defining B

′ are extensions
of the lists of polynomials defining B. We say that B′ is a weak refinement of B if the partition
of V associated to B

′ is a refinement of the partition associated to B.

Note that if B′ is a refinement of B, then B = π ◦ B
′ where π : AI′ → AI is the projection

defined in Eq. (3.4).

Definition 3.14. Fix a prime p and integer d ≥ 0. Let V be a finite-dimensional Fp-vector space.
For a non-classical polynomial P : V → R/Z, define the d-rank of P , denoted rankd P , to be the
smallest integer r such that there exists non-classical polynomials Q1, . . . , Qr : V → R/Z of degree
at most d−1 and a function Γ: (R/Z)r → R/Z such that P (x) = Γ(Q1(x), . . . , Qr(x)) for all x ∈ V .

For a polynomial factorB on V with parameters I ∈ Ip, defined by a collection (P i
d,k)(d,k)∈Dp,i∈[Id,k]

where P i
d,k is a homogeneous non-classical polynomial of degree d and depth k, we define the rank

of B, denoted rankB, to be

min
λ∈

∏
(d,k)∈Dp

(Z/pk+1Z)
Id,k

rankd′





∑

(d,k)∈Dp

Id,k
∑

i=1

λi
d,kP

i
d,k





where

d′ := min
(d,k)∈Dp,i∈[Id,k]

deg
(

λi
d,kP

i
d,k

)

.

Lemma 3.15. Fix a prime p, a parameter list I ∈ Ip, and a positive integer r. There exists a
constant nhigh−rank(p, I, r) such that for every n ≥ nhigh−rank(p, I, r), there exists a polynomial
factor B on F

n
p with parameters I and satisfying rankB ≥ r.

Proof. For (d, k) ∈ Dp, write d = (k + a)(p − 1) + b where a ≥ 0 and b ∈ {1, . . . , p − 1}. By
Lemma 3.6 there exists a non-classical polynomial of degree d and depth k. For example, consider

|x1|p−1|x2|p−1 · · · |xa|b
pk+1

(mod 1).

By Theorem 3.9, we can decompose this non-classical polynomial as the sum of homogeneous
non-classical polynomials of degree at most d and depth at most k. Let P : Fa

p → Uk+1 be the
homogeneous part of degree d and depth k.

Next define Q : Fa
p
⊕N → Uk+1 by

Q(x1, . . . ,xN ) := P (x1) + · · ·+ P (xN ).

This is clearly a homogeneous non-classical polynomial of degree d and depth k. We claim that for
N large enough, we have rankd Q ≥ r. The proof of this fact uses several basic results from [33]
that are not used elsewhere in this paper.

First, since P has degree exactly d, we have that (Dh1 · · ·Dhd
P )(x) is a constant, independent

of x, but is not identically zero. This implies that

c := Eh1,...,hd∈Fa
p
e2πi(Dh1

···Dhd
P ) < 1.

The quantity − logp c is known as the analytic rank of P . Now a simple calculation shows that

Eh1,...,hd∈(Fa
p)

⊕N e2πi(Dh1
···Dhd

Q) = cN .

To conclude we use [33, Lemma 1.15(iii)] which implies that rankd Q ≥ −cd logp(c
N ) for some

constant cd > 0 only depending on d. Since c < 1, taking N large enough gives rankd Q ≥ r, as
desired.
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Thus there exist homogeneous non-classical polynomials Qd,k : Vd,k → Uk+1 of degree d and
depth k that satisfy rankd Qd,k ≥ r for each (d, k) ∈ Dp. Define the vector space

V :=
⊕

(d,k)∈Dp

V
⊕Id,k
d,k .

Define the homogeneous non-classical polynomials Q
i
d,k : V → R/Z for each (d, k) ∈ Dp and

i ∈ [Id,k] such that Q
i
d,k is equal to Qd,k evaluated on the ith copy of Vd,k and does not depend on

the other coordinates. In particular, we define

Q
i
d,k

(

(xi
′

d′,k′) (d′,k′)∈Dp

i′∈[I
d′,k′ ]

)

:= Qd,k(x
i
d,k).

These polynomials define a polynomial factor B on V with parameters I such that each of the
homogeneous non-classical polynomials defining B has rank at least r. Furthermore, since the
polynomials defining B depend on disjoint sets of variables, it follows that all non-trivial linear
combinations of the polynomials defining B also have high rank. Setting nhigh−rank(p, I,R) :=

dimV , we have constructed the desired polynomial factor on F
nhigh−rank(p,I,r)
p . To extend this

construction to F
n
p with n ≥ nhigh−rank(p, I, r) one can simply add on extra variables that none of

the polynomials depend on. �

Lemma 3.16 ([7, Lemma 2.13]). Fix a prime p and a positive integers d, r. Let V be a finite-
dimensional Fp-vector space and let P : V → R/Z be a non-classical polynomial of degree d such
that rankd(P ) ≥ r + p. Let U ≤ V be a codimension-1 hyperplane. Then rankd(P |U ) ≥ r unless
d = 1 and P |U is identically zero.

As a consequence, let B be a polynomial factor on V and let P : V → R/Z be a linear polynomial.
Write B′ for the common refinement of B and {P}. If rankB′ ≥ r + p, then rankB|U ≥ r where
U is the codimension-1 hyperplane where P vanishes.

3.4. Equidistribution and consistency sets.

Definition 3.17. Fix a prime p, integers d > 0 and k ≥ 0 satisfying k ≤ ⌊(d− 1)/(p − 1)⌋, and
a system L = (L1, . . . , Lm) of m linear forms in ℓ variables. Define the (d, k)-consistency set

of L, denoted Φd,k(L), to be the subset of Um
k+1 consisting of the tuples a = (a1, . . . , am) such

that there exists a finite-dimensional Fp-vector space V , a homogeneous non-classical polynomial

P : V → Uk+1 of degree d and depth k, and a tuple x ∈ V ℓ such that ai = P (Li(x)) for all i ∈ [m].
For a parameter list I ∈ Ip, define the I-consistency set of L to be the set of tuples a =

(a1, . . . , am) ∈ Am
I such that for each (d, k) ∈ Dp and j ∈ [Id,k] the tuple

(

(a1)
j
d,k, . . . , (am)jd,k

)

lies

in Φd,k(L).

Lemma 3.18. Fix a prime p, integers d > 0 and k ≥ 0 satisfying k ≤ ⌊(d− 1)/(p − 1)⌋, and a
system L = (L1, . . . , Lm) of m linear forms. The (d, k)-consistency set of L is a subgroup of Um

k+1.

Proof. Suppose a, b ∈ Φd,k(L). We wish to show that −a and a+ b both lie in this set. By defini-
tion, there exist finite-dimensional Fp-vector spaces V,W , homogeneous non-classical polynomials

P : V → Uk+1 and Q : W → Uk+1 of degree d and depth k, and tuples x ∈ V k and y ∈ W k such
that ai = P (Li(x)) and bi = Q(Li(y)) for all i ∈ [m].

Note that −a ∈ Φd,k(L) since −P : V → Uk+1 is a homogeneous non-classical polynomial of
degree d and depth k that satisfies (−P )(Li(x)) = −ai.
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Now define P ⊕Q : V ⊕W → Uk+1 by (P ⊕Q)(v ⊕ w) := P (v) + Q(w). One can easily check
that P ⊕Q is a homogeneous non-classical polynomial of degree d and depth k. Finally note that
(P ⊕Q)(Li(x⊕ y)) = ai + bi, as desired.

1 �

Theorem 3.19 (Equidistribution [24, Theorem 3.10]). Fix a prime p, a positive integer d > 0,
and a parameter ǫ > 0. There exists requi(p, d, ǫ) such that the following holds. Let V be a finite-
dimensional Fp-vector space and let B be a polynomial factor on V with parameters I such that
degB ≤ d and rank(B) ≥ requi(p, d, ǫ). Then for a system of linear forms L = (L1, . . . , Lm)
consisting of m forms in ℓ variables, and a tuple of atoms a = (a1, . . . , am) ∈ ΦI(L),

∣

∣

∣

∣

Pr
x∈V ℓ

(B(Li(x)) = ai for all i ∈ [m])− 1

|ΦI(L)|

∣

∣

∣

∣

≤ ǫ.

Remark 3.20. To be completely correct, the statement given above follows by combining [24, The-
orem 3.10] and [24, Corollary 2.13].

Note that the probability above is 0 if a 6∈ ΦI(L). We typically apply the above theorem
with ǫ that decreases rapidly with ‖I‖, for example, taking ǫ = 2‖I‖m and using the fact that
|ΦI(L)| ≤ ‖B‖m, we see that in this case the probability above is at least 1/(2|ΦI(L)|).

Consistency sets are often hard to compute exactly. The next two lemmas give exact relations
on the sizes of consistency sets in two special cases that occur in this paper.

Definition 3.21. Fix a prime p. A system L of m linear forms in ℓ variables over Fp is full dimen-

sional if |Φd,k(L)| = |Φd,k(L
ℓ)| for all (d, k) ∈ Dp (recall the system Lℓ defined in Definition 2.7

defines an ℓ-dimensional subspace).

Lemma 3.22. Fix a prime p and a positive integer ℓ. Let J ⊆ F
ℓ
p be a set that contains at least

one vector in each direction (i.e., for each i ∈ F
ℓ
p, there exists j ∈ J and ∈ F

×
p such that i = bj).

Consider the system LJ := (Lℓ
i)i∈J of |J | linear forms in ℓ variables (recall the linear form Lℓ

i

defined in Definition 2.7)). Then LJ is full dimensional.

As a special case of this result we see that the system L
ℓ
, defined in Definition 2.7, is full rank.

Proof. Note that the system LJ is a subsystem of Lℓ. This immediately implies that |Φd,k(LJ)| ≤
|Φd,k(L

ℓ)|, since if (ai)i∈Fℓ
p
∈ Φd,k(L

ℓ), then (ai)i∈J ∈ Φd,k(LJ).

To go the other direction, we use the homogeneity of our polynomials. Suppose (aj)j∈J ∈
Φd,k(LJ). Thus there exists a finite-dimensional Fp-vector space V and a homogeneous non-classical

polynomial P : V → Uk+1 of degree d and depth k, and a vector x ∈ V ℓ such that P (Lℓ
j(x)) = aj

for all j ∈ J . Now by assumption, for i ∈ Fℓ
p, there exists j ∈ J and b ∈ Fp such that i = bj. Define

ai := σ
(d,k)
b aj (recall the definition of σb from Lemma 3.8). We claim that (ai)i∈Fℓ

p
∈ Φd,k(L

ℓ).

This is true simply because

P (Lℓ
i(x)) = P (bLℓ

j(x)) = σ
(d,k)
b P (Lℓ

j(x)) = σ
(d,k)
b aj = ai

where j ∈ J and b ∈ Fp are defined as above. Thus |Φd,k(LJ)| ≥ |Φd,k(L
ℓ)|, as desired. �

Lemma 3.23. Fix a prime p. Let L be a system of m linear forms in ℓ variables over Fp. Say L

is defined by M , an m× ℓ matrix. (By this we mean that Li(x1, . . . , xℓ) = Mi,1x1 + · · ·+Mi,ℓxℓ for

1To be completely correct, we also need to show that Φd,k(L) is non-empty, which follows from, for example
Lemma 3.6 and Theorem 3.9, which together show the existence of homogeneous non-classical polynomial of degree
d and depth k for every (d, k) ∈ Dp.
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all i ∈ [m].) Let L′ be a system of m(n+ 1) linear forms in ℓ+ ℓ′ variables, defined by a matrix of
the form











M 0
c1M
...

cnM

N











where c1, . . . , cn ∈ Fp and N is an mn× ℓ′ matrix. Let L′′ be the system of m(2n+1) linear forms
in ℓ+ 2ℓ′ variables, defined by the matrix

























M 0 0
c1M
...

cnM

N 0

c1M
...

cnM

0 N

























.

Then for all (d, k) ∈ Dp, we have

|Φd,k(L)| ·
∣

∣Φd,k(L
′′)
∣

∣ =
∣

∣Φd,k(L
′)
∣

∣

2
.

Proof. We construct injections between Φd,k(L)×Φd,k(L
′′) and Φd,k(L

′)× Φd,k(L
′) in both direc-

tions. Write σi := σd,k
ci for i ∈ [n] for the rest of the proof (see Lemma 3.8 for the definition).

Consider a = (a1, . . . , am) ∈ Φd,k(L) and b = (b1, . . . , bm(2n+1)) ∈ Φd,k(L
′′). By definition, there

exists a finite-dimensional Fp-vector space V , a homogeneous non-classical polynomial P : V →
Uk+1 of degree d and depth k and a vector x ∈ V ℓ such that P (Li(x)) = ai for all i ∈ [m]. Also
by definition, there exists a finite-dimensional Fp-vector space W , a homogeneous non-classical

polynomial Q : W → Uk+1 of degree d and depth k and a vector (x′,y,y′) ∈ W ℓ ×W ℓ′ ×W ℓ′ such
that Q(L′′

i (x
′,y,y′)) = bi for all i ∈ [m(2n + 1)].

Now we map (a, b) to the pair (a′, b′) where b′i = bi for i ∈ [m(n+1)] and a′i = ai+ bi for i ∈ [m]
and a′tm+i = σtai + bm(n+t)+i for i ∈ [m] and t ∈ [n]. We can easily check that no two pairs (a, b)
map to the same pair (a′, b′). All that remains is to check that a′, b′ ∈ Φd,k(L

′).
Define P ⊕Q : V ⊕W → Uk+1 by (P ⊕Q)(x⊕ y) := P (x)+Q(y). This is clearly a homogeneous

non-classical polynomial of degree d and depth k. Note that z := (x ⊕ x′,0 ⊕ y′) ∈ (V ⊕W )ℓ+ℓ′

satisfies (P ⊕ Q)(L′
i(z)) = a′i for all i ∈ [m(n + 1)]. Similarly note that z′ := (0 ⊕ x′,0 ⊕ y) ∈

(V ⊕ W )ℓ+ℓ′ satisfies (P ⊕ Q)(L′
i(z

′)) = b′i for all i ∈ [m(n + 1)]. This demonstrates the first
injection.

Now consider a = (a1, . . . , am(n+1)) ∈ Φd,k(L
′) and b = (b1, . . . , bm(n+1)) ∈ Φd,k(L

′). By defini-
tion, there exists a finite-dimensional Fp-vector space V , a homogeneous non-classical polynomial

P : V → Uk+1 of degree d and depth k and a vector (x,y) ∈ V ℓ × V ℓ′ such that P (L′
i(x,y)) = ai

for i ∈ [m(n + 1)]. Also by definition, there exists a finite-dimensional Fp-vector space W , a
homogeneous non-classical polynomial Q : W → Uk+1 of degree d and depth k and a vector

(x′,y′) ∈ W ℓ ×W ℓ′ such that Q(L′
i(x

′,y′)) = bi for i ∈ [m(n+ 1)].
We map (a, b) to the pair (a′, b′) where a′i = ai for i ∈ [m] and b′i = ai + bi for i ∈ [m] and

b′m+i = am+i for i ∈ [mn] and b′m(n+1)+i = bm+i for i ∈ [mn]. We can easily check that no two pairs

(a, b) map to the same pair (a′, b′). All that remains is to check that a′ ∈ Φd,k and b′ ∈ Φd,k(L
′′).

As above, define the homogeneous non-classical polynomial P ⊕ Q : V ⊕ W → Uk+1 of degree
d and depth k by (P ⊕ Q)(x ⊕ y) := P (x) + Q(y). Note that z := x ⊕ 0 ∈ (V ⊕ W )ℓ satisfies

(P ⊕Q)(Li(z)) = a′i for i ∈ [m] and z′ := (x⊕x′,y⊕0,0⊕y′) ∈ (V ⊕W )ℓ×(V ⊕W )ℓ
′ ×(V ⊕W )ℓ

′

satisfies (P ⊕Q)(L′′
i (z

′)) = b′i for i ∈ [m(2n + 1)], as desired. �
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3.5. Subatom selection functions. A situation that often occurs is the following. We have a
polynomial factor B with parameters I and a refinement B′ with parameters I ′. We use the word
atom to refer to the atoms of the partition induced by B; these atoms are indexed by AI . We use
the word subatom to refer to the atoms of the partition induced by B

′; these atoms are indexed
by AI′ . The projection map π : AI′ → AI , defined in Eq. (3.4), maps a subatom to the atom that
it is contained in.

We wish to designate one subatom inside each atom as special. This choice is given by a map
s : AI → AI′ that is a right inverse for π. In this paper we define a certain class of these maps that
we call subatom selection functions that have several desirable properties.

First we define certain polynomials Pd,k : Fp → Uk+1 for each (d, k) ∈ Dp. For each i ∈ {1, . . . , p−
1}, there exists a homogeneous non-classical polynomial Fp → Uk+1 of degree k(p−1)+i and depth
k in one variable. (This follows from Lemma 3.6 and Theorem 3.9.) Let Pk(p−1)+i,k be one such a
polynomial. Finally, define

P(k+s)(p−1)+i,k+s := Pk(p−1)+i,k

for all i ∈ {0, . . . , p − 1} and s ≥ 0. This defines Pd,k for each (d, k) ∈ Dp.

Definition 3.24. Fix a prime p and parameter lists I, I ′ ∈ Ip satisfying I ≤ I ′. Let ci,jd,k ∈ Z/pk+1
Z

be arbitrary elements for (d, k) ∈ Dp and i ∈ [I1,0] and Id,k < j ≤ I ′d,k. A subatom selection

function is a map of the form sc : AI → AI′ , defined by

[sc(a)]
i
d,k =

{

aid,k if i ≤ Id,k
∑I1,0

j=1 c
j,i
d,kPd,k(|aj1,0|) otherwise,

where the maps Pd,k : Fp → Uk+1 were defined in the preceding paragraph and | · | is the standard
map U1 → Fp.

Lemma 3.25. Fix a prime p, parameter lists I, I ′ ∈ Ip satisfying I ≤ I ′, and a subatom selection
function sc : AI → AI′. The following hold:

(i) π ◦ s = Id (where π : AI′ → AI is defined in Eq. (3.4));
(ii) for a ∈ AI and b ∈ F

×
p , we have b · sc(a) = sc(b · a) (where the action of F×

p on AI and AI′

is defined in Eq. (3.5));
(iii) for every system L of m linear forms and every consistent tuple of atoms (a1, . . . , am) ∈

ΦI(L), we have
(sc(a1), . . . , sc(am)) ∈ ΦI′(L)

(see Definition 3.17 for the definition of the consistency sets ΦI(L) and ΦI′(L)).

Proof. Property (i) is immediate.
For the property (ii), by definition, we have

[b · sc(a)]id,k = σ
(d,k)
b [sc(a)]

i
d,k,

where σ
(d,k)
b is defined in Lemma 3.8. Now sc(b · a)id,k = σ

(d,k)
b aid,k if i ≤ Id,k, so we are done in this

case.
Assume otherwise. Define d′ such that d′ ≡ d (mod p − 1) and d = k(p − 1) + i for some

i ∈ {1, . . . , p− 1}. Remember that Pd,k is a homogeneous non-classical polynomial of degree d′ and

depth k. Note that σ
(1,0)
b = b ∈ Z/pZ. Then we have

[sc(b · a)]id,k =

I1,0
∑

j=1

cj,id,kPd,k(b|aj1,0|) = σ
(d′,k)
b

I1,0
∑

j=1

cj,id,kPd,k(|aj1,0|).

To complete the proof of (ii) we need to show that σd,k
b = σd′,k

b whenever d ≡ d′ (mod p−1). This

follows from Lemma 3.8 which implies that σd,k
b is uniquely determined by the facts that σd,k

b ≡ bd
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(mod p) and
(

σ
(d,k)
b

)p−1
= 1 in Z/pk+1

Z. The first property does not change when d changes by

a multiple of p − 1 (by Fermat’s little theorem) and the second property does not depend on d at
all. Thus we conclude the desired result.

Now we prove (iii). We know, by Eq. (3.1), that the consistency set Φd,k(L) is a subgroups of
U
m
k+1. Thus it suffices to prove that for (a1, . . . , am) ∈ Φ1,0(L) ⊆ U

m
1 we have (Pd,k(|a1|), . . . , Pd,k(|am|)) ∈

Φd,k(L). Given that (a1, . . . , am) ∈ Φ1,0 we know that there exists a finite-dimensional Fp-vector

space V , a linear function P : V → U1, and vectors x = (x1, . . . , xℓ) ∈ V ℓ such that P (Li(x)) = ai
for i ∈ [m]. Since P and Li are linear, they commute, and thus Li(y) = |ai| for all i ∈ [m] where
y ∈ F

ℓ
p is defined by yi = |P (xi)|. Finally, since Pd,k is a homogeneous non-classical polynomial

of degree d′ and depth k, we have (Pd,k(|a1|), . . . , Pd,k(|am|)) = (Pd,k(L1(y)), . . . , Pd,k(Lm(y)) ∈
Φd′,k(L).

To complete the proof, let Q : Fn
p → Uk+1 be a homogeneous non-classical polynomial of degree d

and depth k. This exists by Lemma 3.6 and Theorem 3.9 as long as n ≥ ⌈(d− 1)/(p − 1)⌉−k. Then
consider the map Pd,k⊕Q : Fp⊕F

n
p → Uk+1 defined as usual by (Pd,k⊕Q)(x⊕y) := Pd,k(x)+Q(y).

This is clearly a non-classical polynomial of degree d and depth k. Furthermore,

(Pd,k ⊕Q)(b(x⊕ y)) = σ
(d′,k)
b Pd,k(x) + σ

(d,k)
b Q(y) = σ

(d,k)
b (Pd,k ⊕Q)(x⊕ y),

since d′ ≡ d (mod p− 1). Considering y ⊕ 0 ∈ (Fp ⊕ F
n
p)

ℓ shows that (Pd,k(|a1|), . . . , Pd,k(|am|)) ∈
Φd,k(L), as desired.2 �

4. Arithmetic regularity and subatom selection

This section follows a fairly standard formula in the theory of regularity lemmas. We start with
an inverse theorem, due to Tao and Ziegler [33]. Iterating the inverse theorem produces a weak
regularity lemma (Lemma 4.3), iterating the weak regularity lemma produces a regularity lemma
(Lemma 4.4), and iterating the regularity lemma gives a strong regularity lemma (Lemma 4.5).
Finally we use the probabilistic method applied to the output of the strong regularity lemma to
produce the desired “subatom selection” result (Theorem 4.6).

Lemma 4.3 and Lemma 4.4 are very similar to results in [8, 7], differing only in some technical
details. The main innovation in this section is that Lemma 4.5 is much stronger than previous
results. To accomplish this, we iterate Lemma 4.4 with the complexity parameter (i.e., degree of
the non-classical polynomials) increasing at each step of the iteration. To our knowledge, this idea
has not appeared previously in the literature.

Notation and conventions: Recall that a polynomial factor B on a vector space V with
parameters I gives rise to a partition (or σ-algebra) on V whose atoms are the fibers of the map
B : V → AI . For a function f : V → C, we write E[f |B] : V → C for the projection of f onto the
σ-algebra generated by B. Concretely, E[f |B](x) is defined to be the average of f over the atom
of B which contains x.

In this section we have to deal with many growth functions. Without loss of generality we always
assume that these growth functions are monotone in all their parameters.

Theorem 4.1 (Inverse theorem [33, Theorem 1.10]). Fix a prime p, a positive integer d, and a
parameter δ > 0. There exists ǫinv(p, d, δ) > 0 such that the following holds. Let V be a finite-
dimensional Fp-vector space. Given a function f : V → C satisfying ‖f‖∞ ≤ 1 and ‖f‖Ud+1 > δ,
there exists a non-classical polynomial P : V → R/Z of degree at most d such that

∣

∣

∣
Ex∈V f(x)e

−2πiP (x)
∣

∣

∣
≥ ǫinv(p, d, δ).

2This argument also shows that for any pattern L, the consistency sets Φd,k(L) are nested as d increases by
multiples of p− 1, though this is the only time we will need that fact in this paper.
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The next lemma is important for making factors high rank and its second claim will be critical
in proving the stronger regularity lemma where we need to produce a refinement (instead of a weak
refinement).

Lemma 4.2 (Making factors high rank [24], c.f. [7, Theorem 2.19]). Fix a prime p, positive
integer d,C0, and a non-decreasing function r : Z>0 → Z>0. There exist constants Crank(p, d, C0, r)
and rrank(p, d, C0, r) such that the following holds. Let V be a finite-dimensional Fp-vector space.
Suppose that B and B

′ are polynomial factors on V with degree at most d such that B′ refines B

and ‖B′‖ ≤ C0 and

rankB ≥ rrank(p, d, C0, r).

Then there is a polynomial factor B
′′ on V that weakly refines B′, refines B, and satisfies ‖B′′‖ ≤

Crank(p, d, C0, r) and degB′′ ≤ d and rankB′′ ≥ r(‖B′′‖).

Lemma 4.3 (Weak arithmetic regularity). Fix a prime p, positive integers d,R,C0, a parameter
η > 0, and a non-decreasing function r : Z>0 → Z>0. There exist constants Creg′(p, d,R,C0, η, r)
and rreg′(p, d,R,C0, η, r) such that the following holds. Let V be a finite-dimensional Fp-vector
space and let B0 be a polynomial factor on V satisfying ‖B0‖ ≤ C0 and degB0 ≤ d and rankB0 ≥
rreg′(p, d,R,C0, η, r). Given functions f (1), . . . , f (R) : V → [0, 1], there exists a polynomial factor B

on V that refines B0 with the following properties. There exists a decomposition

f (ℓ) = f
(ℓ)
str + f (ℓ)

psr

for each ℓ ∈ [R] such that:

(i) f
(ℓ)
str = E[f (ℓ)|B] for each ℓ ∈ [R];

(ii) ‖f (ℓ)
psr‖Ud+1 < η for each ℓ ∈ [R];

(iii) f
(ℓ)
str has range [0, 1] and f

(ℓ)
psr has range [−1, 1] for each ℓ ∈ [R];

(iv) rankB ≥ r(‖B‖);
(v) ‖B‖ ≤ Creg′(p, d,R,C0, η, r) and degB ≤ d.

Proof. Set M :=
⌈

Rǫinv(p, d, η)
−2

⌉

. Define non-decreasing functions ri : Z>0 → Z>0 for each i =

0, . . . ,M such that r0 = r and ri+1(N) ≥ rrank(p, d, p
d3N, ri) and such that ri+1(N) ≥ ri(N) for

all i = 0, . . . ,M − 1 and all N ∈ Z>0. Define rreg′(p, d,R,C0, η, r) := rM (C0).
We construct a list of polynomial factors B0,B1, . . . ,Bm on V such that

• Bi refines Bi−1 for i = 1, . . . ,m;
• rankBi ≥ rM−i(‖Bi‖) for i = 0, . . . ,m;

• ‖Bi‖ ≤ Crank(p, d, p
d3‖Bi−1‖, rM−i) and degBi ≤ d for i = 1, . . . ,m.

Suppose we have constructed polynomial factors B0, . . . ,Bi with the above properties. If ‖f (ℓ) −
E[f (ℓ)|Bi]‖Ud+1 < η for each ℓ ∈ [R] we halt the iteration. Otherwise there is some ℓ ∈ [R] such

that, writing g := f (ℓ) − E[f (ℓ)|Bi], we have

‖g‖Ud+1 ≥ η.

By Theorem 4.1, there exists a non-classical polynomial P : V → R/Z of degree at most d such
that

∣

∣

∣Ex∈V g(x)e
−2πiP (x)

∣

∣

∣ ≥ ǫinv(p, d, η).

By Theorem 3.9, we can write P = P1 + · · · + PC as the sum of homogeneous non-classical poly-

nomials. There are at most
∑d

i=1 1 + ⌊(i− 1)/(p − 1)⌋ ≤ d2 terms in this sum. Let B
′
i to be the

polynomial factor defined by the polynomials defining B as well as the polynomials P1, . . . , PC .

Note that ‖B′
i‖ ≤ pd

3‖Bi‖. Finally let Bi+1 be the polynomial factor produced by applying



TESTING LINEAR-INVARIANT PROPERTIES 17

Lemma 4.2 to Bi and B
′
i with parameters p, d, rM−i−1. In particular B′

i refines Bi and

rankBi ≥ rM−i(‖Bi‖)
≥ rrank(p, d, p

d3‖Bi‖, rM−i−1)

≥ rrank(p, d, ‖B′
i‖, rM−i−1),

so the hypotheses of Lemma 4.2 are satisfied. Thus we have defined Bi+1 with all the desired
properties.

Next we claim that this iteration must stop after at most M steps. We claim that

R
∑

ℓ=1

∥

∥

∥
E[f (ℓ)|Bi]

∥

∥

∥

2

2

increases by at least ǫinv(p, d, η)
2 each time i increases. Since this sum is clearly bounded between

0 and R, it suffices to prove this claim.
First note that by the Cauchy-Schwarz inequality, ‖E[f (ℓ)|Bi+1]‖22 ≥ ‖E[f (ℓ)|Bi]‖22 holds for all ℓ.

Now pick ℓ ∈ [R] as in the ith iteration, define g := f (ℓ)−E[f (ℓ)|Bi], and let P be the non-classical

polynomial defined in the ith iteration. Note in particular that e−2πiP (x) is in the σ-algebra defined
by B

′
i. Then we compute

‖E[f (ℓ)|Bi+1]‖22 − ‖E[f (ℓ)|Bi]‖22 ≥ ‖E[f (ℓ)|B′
i]‖22 − ‖E[f (ℓ)|Bi]‖22

= ‖E[f (ℓ)|B′
i]− E[f (ℓ)|Bi]‖22

= ‖E[g|B′
i]‖22

≥
〈

E[g|B′
i], e

2πiP
〉2

=
〈

g, e2πiP
〉2

≥ ǫinv(p, d, η)
2.

Thus we have producedBm withm ≤ M such thatBm refinesB0 and rankBm ≥ rM−m(‖Bm‖) ≥
r(‖Bm‖) and ‖f (ℓ) − E[f (ℓ)|Bm]‖Ud+1 < η for each ℓ ∈ [R]. Defining f

(ℓ)
str := E[f (ℓ)|Bm] and

f
(ℓ)
psr := f (ℓ) − f

(ℓ)
str, we immediately see that conclusions (i), (ii), (iii), and (iv) hold. Con-

clusion (v) holds by defining Creg′(p, d,R,C0, η, r) to be the M -fold iteration of the function

N 7→ Crank(p, d, p
d3N, rM ) applied to C0. �

Lemma 4.4 (Arithmetic regularity). Fix a prime p, positive integers d,R,C0, a parameter θ > 0, a
non-increasing function η : Z>0 → (0, 1), and a non-decreasing function r : Z>0 → Z>0. There exist
constants Creg′′(p, d,R,C0, θ, η, r) and rreg′′(p, d,R,C0, θ, η, r) such that the following holds. Let V
be a finite-dimensional Fp-vector space and let B0 be a polynomial factor on V satisfying ‖B0‖ ≤ C0

and degB0 ≤ d and rankB0 ≥ rreg′′(p, d, r, I0, θ, η, r). Given functions f (1), . . . , f (R) : V → [0, 1],
there exists a polynomial factor B on V that refines B0 with the following properties. There exists
a decomposition

f (ℓ) = f
(ℓ)
str + f (ℓ)

psr + f
(ℓ)
sml

for each ℓ ∈ [R] such that:

(i) f
(ℓ)
str = E[f (ℓ)|B] for each ℓ ∈ [R];

(ii) ‖f (ℓ)
psr‖Ud+1 < η(‖B‖) for each ℓ ∈ [R];

(iii) f
(ℓ)
str and f

(ℓ)
str + f

(ℓ)
sml have range [0, 1] and f

(ℓ)
psr and f

(ℓ)
sml have range [−1, 1] for each ℓ ∈ [R];

(iv) rankB ≥ r(‖B‖);
(v) ‖f (ℓ)

sml‖2 < θ for each ℓ ∈ [R];
(vi) ‖B‖ ≤ Creg′′(p, d,R,C0, θ, η, r) and degB ≤ d.
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Proof. Set M :=
⌈

Rθ−2
⌉

. Define non-decreasing functions ri : Z>0 → Z>0 for each i = 0, . . . ,M
such that r0 = r and ri+1(N) ≥ rreg′(p, d,R,N, η(N), ri) and such that ri+1(N) ≥ ri(N) for all
i = 0, . . . ,M − 1 and all N ∈ Z>0. Define rreg′′(p, d,R,C0, θ, η, r) := rM (C0).

We construct a list of polynomial factors B0,B1, . . . ,Bm on V such that

• Bi refines Bi−1 for i = 1, . . . ,m;
• rankBi ≥ rM−i(‖Bi‖) for i = 0, . . . ,m;
• ‖Bi‖ ≤ Creg′(p, d,R, ‖Bi−1‖, η(‖Bi−1‖), rM−i) and degBi ≤ d for i = 1, . . . ,m.

Suppose we have constructed polynomial factors B0, . . . ,Bi with the above properties. If i ≥ 1
and ‖E[f (ℓ)|Bi]‖22 − ‖E[f (ℓ)|Bi−1]‖22 < θ2 for each ℓ ∈ [R] we halt the iteration. Otherwise
let Bi+1 be the polynomial factor produced by applying Lemma 4.3 to Bi with parameters
p, d,R, ‖Bi‖, η(‖Bi‖), rM−i−1. Note that

rankBi ≥ rM−i(‖Bi‖)
≥ rreg′(p, d,R, ‖Bi‖, η(‖Bi‖), rM−i−1),

so the hypotheses of Lemma 4.3 are satisfied.
Next we claim that this iteration must stop after at most M steps. This is obvious since

R
∑

ℓ=1

∥

∥

∥E[f (ℓ)|Bi]
∥

∥

∥

2

2
−

R
∑

ℓ=1

∥

∥

∥E[f (ℓ)|Bi−1]
∥

∥

∥

2

2
≥ θ2

for i = 1, . . . ,m and the sum is bounded between 0 and R.
Thus we have produced Bm−1 with m ≤ M such that Bm−1 refines B0 and rankBm−1 ≥

rM−m+1(‖Bm−1‖) ≥ r(‖Bm−1‖) and ‖f (ℓ) − E[f (ℓ)|Bm]‖Ud+1 < η(‖Bm−1‖) for each ℓ ∈ [R] and
∥

∥E[f (ℓ)|Bm]− E[f (ℓ)|Bm−1]
∥

∥

2
< θ for each ℓ ∈ [R]. Defining f

(ℓ)
str := E[f (ℓ)|Bm−1] and f

(ℓ)
psr :=

f (ℓ) −E[f (ℓ)|Bm] and f
(ℓ)
sml := E[f (ℓ)|Bm]− E[f (ℓ)|Bm−1], we immediately see that conclusions (i),

(ii), (iii), (iv), and (v) hold. Conclusion (vi) holds by defining Creg′′(p, d,R,C0, θ, η, r) to be the
M -fold iteration of the function N 7→ Creg′(p, d,R,N, η(N), rM ) applied to C0. �

Lemma 4.5 (Strong arithmetic regularity). Fix a prime p, positive integers R,C0, d0, a parameter
ζ > 0, non-increasing functions η, θ : Z>0×Z>0 → (0, 1), and non-decreasing functions d, r : Z>0×
Z>0 → Z>0. There exist constants Creg′′′(p,R,C0, d0, ζ, η, θ, d, r) and Dreg′′′(p,R,C0, d0, ζ, η, θ, d, r)
and rreg′′′(p,R,C0, d0, ζ, η, θ, d, r) such that the following holds. Let V be a finite-dimensional Fp-
vector space and let B0 be a polynomial factor on V satisfying ‖B0‖ ≤ C0 and degB0 ≤ d0 and

rankB0 ≥ rreg′′′(p,R,C0, d0, ζ, η, θ, d, r). Given functions f (1), . . . , f (R) : V → [0, 1], there exist a
polynomial factor B and a refinement B′ both on V with parameters I and I ′ with the following
properties. There exists a decomposition

f (ℓ) = f
(ℓ)
str + f (ℓ)

psr + f
(ℓ)
sml

for each ℓ ∈ [R] such that:

(i) f
(ℓ)
str = E[f (ℓ)|B′] for each ℓ ∈ [R];

(ii) ‖f (ℓ)
psr‖Ud(degB,‖B‖)+1 < η(degB′, ‖B′‖) for each ℓ ∈ [R];

(iii) f
(ℓ)
str and f

(ℓ)
str + f

(ℓ)
sml have range [0, 1] and f

(ℓ)
psr and f

(ℓ)
sml have range [−1, 1] for each ℓ ∈ [R];

(iv) rankB ≥ r(degB, ‖B‖) and rankB′ ≥ r(degB′, ‖B′‖);
(v) ‖f (ℓ)

sml‖2 < θ(degB, ‖B‖) for each ℓ ∈ [R];
(vi) for all but at most a ζ-fraction of a ∈ AI′ it holds that

∣

∣

∣Ex∈B′−1(a)[f
(ℓ)(x)]− Ex∈B−1(π(a))[f

(ℓ)(x)]
∣

∣

∣ < ζ

for each ℓ ∈ [R] (recall the definition of the atom indexing sets from Eq. (3.3) and the
projection map π : AI′ → AI from Eq. (3.4));
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(vii) ‖B′‖ ≤ Creg′′′(p,R,C0, d0, ζ, η, θ, d, r) and degB′ ≤ Dreg′′′(p,R,C0, d0, ζ, η, θ, d, r).

Proof. Set M :=
⌈

Rζ−3
⌉

. Define non-decreasing functions ri : Z>0 × Z>0 → Z>0 for each i =
0, . . . ,M such that r0 = r and ri+1(D,N) ≥ rreg′′(p, d(D,N), R,N, θ(D,N), η(d(D,N), ·), ri(d(D,N), ·))
and such that ri+1(D,N) ≥ ri(D,N) for all i = 0, . . . ,M − 1 and all D,N ∈ Z>0. Define
rreg′′′(p,R,C0, d0, ζ, η, θ, d, r) := rM (d0, C0).

We construct a list of polynomial factors B0,B1, . . . ,Bm on V such that

• Bi refines Bi−1 for i = 1, . . . ,m;
• rankBi ≥ rM−i(degBi, ‖Bi‖) for i = 0, . . . ,m;
• ‖Bi‖ ≤ Creg′′(p, d(degBi−1, ‖Bi−1‖), R, ‖Bi−1‖, θ, η, rM−i(d(degBi−1, ‖Bi−1‖), ·)) and degBi ≤
d(degBi−1, ‖Bi−1‖) for i = 1, . . . ,m.

Suppose we have constructed polynomial factors B0, . . . ,Bi with the above properties. If i ≥ 1
and ‖E[f (ℓ)|Bi]‖22 − ‖E[f (ℓ)|Bi−1]‖22 < ζ3 for each ℓ ∈ [R] we halt the iteration. Otherwise
let Bi+1 be the polynomial factor produced by applying Lemma 4.4 to Bi with parameters
p, d(degBi, ‖Bi‖), R, ‖Bi‖, θ(degBi, ‖Bi‖), η(d(degBi, ‖Bi‖), ·), rM−i−1(d(degBi, ‖Bi‖), ·). Note
that

rankBi ≥ rM−i(degBi, ‖Bi‖)
rreg′′(p, d(degBi, ‖Bi‖), R, ‖Bi‖, θ(degBi, ‖Bi‖), η(d(degBi, ‖Bi‖), ·), rM−i−1(d(degBi, ‖Bi‖), ·)),

so the hypotheses of Lemma 4.4 are satisfied.
Next we claim that this iteration must stop after at most M steps. This is obvious since

R
∑

ℓ=1

∥

∥

∥E[f (ℓ)|Bi]
∥

∥

∥

2

2
−

R
∑

ℓ=1

∥

∥

∥E[f (ℓ)|Bi−1]
∥

∥

∥

2

2
≥ ζ3

for i = 1, . . . ,m and the sum is bounded between 0 and R.
Thus we have produced Bm−1 and Bm with m ≤ M such that Bm−1 refines B0 and Bm refines

Bm−1. Furthermore, rankBm−1 ≥ rM−m+1(degBm−1, ‖Bm−1‖) ≥ r(degBm−1, ‖Bm−1‖) and

rankBm ≥ rM−m(degBm, ‖Bm‖) ≥ r(degBm, ‖Bm‖). Also
∥

∥E[f (ℓ)|Bm]− E[f (ℓ)|Bm−1]
∥

∥

2

2
< ζ3

for each ℓ ∈ [R]. Let f (ℓ) = f
(ℓ)
str + f

(ℓ)
psr + f

(ℓ)
sml be the decomposition produced by the last ap-

plication of Lemma 4.4. This decomposition satisfies conclusions (i), (ii), (iii), and (v). Con-
clusion (iv) we already verified, and conclusion (vi) follows from Markov’s inequality applied to

the bound
∥

∥E[f (ℓ)|Bm]− E[f (ℓ)|Bm−1]
∥

∥

2

2
< ζ3. Finally conclusion (vii) holds where we define the

pair (Dreg′′′(p,R,C0, d0, ζ, η, θ, d, r), Creg′′′(p,R,C0, d0, ζ, η, θ, d, r)) to be theM -fold iteration of the
function (D,N) 7→ (Creg′′(p, d(D,N), R,N, θ, η, rM (d(D,N), ·)), d(D,N)) applied to (d0, C0). �

Recall that for a parameter list I ∈ Ip and an atom a ∈ AI , we write ad,k ∈ U
Id,k
k+1 to be the degree

d, depth k part of a. In the next theorem we will choose a subatom selection function s : AI → AI′

(recall Definition 3.24) such that s(a) is regular for all a ∈ AI except those with a1,0 = 0.

Theorem 4.6 (Subatom selection). Fix a prime p, positive integers R, c0, a parameter ζ > 0,
non-increasing functions η, θ : Z>0×Z>0 → (0, 1), and non-decreasing functions d, r : Z>0×Z>0 →
Z>0. There exist constants Creg(p,R, c0, ζ, η, θ, d, r) and Dreg(p,R, c0, ζ, η, θ, d, r) and nreg(p, c0, ζ)
such that the following holds. Let V be a finite-dimensional Fp-vector space satisfying dimV ≥
nreg(p, c0, ζ). Given functions f (1), . . . , f (R) : V → [0, 1], there exist a polynomial factor B and a
refinement B

′ both on V with parameters I and I ′ with the following properties. There exists a
subatom selection function s : AI → AI′ and a decomposition

f (ℓ) = f
(ℓ)
str + f (ℓ)

psr + f
(ℓ)
sml

for each ℓ ∈ [R] such that:
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(i) f
(ℓ)
str = E[f (ℓ)|B′] for each ℓ ∈ [R];

(ii) ‖f (ℓ)
psr‖Ud(degB,‖B‖)+1 < η(degB′, ‖B′‖) for each ℓ ∈ [R];

(iii) f
(ℓ)
str and f

(ℓ)
str + f

(ℓ)
sml have range [0, 1] and f

(ℓ)
psr and f

(ℓ)
sml have range [−1, 1] for each ℓ ∈ [R];

(iv) rankB ≥ r(degB, ‖B‖) and rankB′ ≥ r(degB′, ‖B′‖);
(v) for each a ∈ AI with a1,0 6= 0, it holds that

‖f (ℓ)
sml1B′−1(s(a))‖2 < θ(degB, ‖B‖)‖1B′−1(s(a))‖2

for each ℓ ∈ [R];
(vi) for all but at most a ζ-fraction of a ∈ AI it holds that

∣

∣

∣
Ex∈B−1(a)[f

(ℓ)(x)]− Ex∈B′−1(s(a))[f
(ℓ)(x)]

∣

∣

∣
< ζ

for each ℓ ∈ [R];
(vii) I1,0 ≥ c0;
(viii) ‖B′‖ ≤ Creg(p,R, c0, ζ, η, θ, d, r) and degB′ ≤ Dreg(p,R, c0, ζ, η, θ, d, r).

Proof. Define nreg(p, c0, ζ) := max{c0, ⌈logp(2/ζ)⌉}. Let B0 be a polynomial factor on V defined
by nreg(p, c0, ζ) linearly independent linear functions. Define θ′ : Z>0 × Z>0 → Z>0 by θ′(D,N) :=

θ(D,N)/(2
√
RN). We apply Lemma 4.5 to B0 with parameters p,R, ‖B0‖, 1, ζ/4, η, θ′, d, r. Let B

andB
′ be the polynomial factors produced. We immediately have conclusions (i), (ii), (iii), and (iv).

Conclusion (vii) follows since B refines B0 which is defined by at least c0 linear forms. Conclusion
(viii) holds by defining Creg(p,R, c0, ζ, η, θ, d, r) = Creg′′′(p,R, nreg(p, c0, ζ), 1, ζ/4, η, θ

′, d, r) and

Dreg(p,R, c0, ζ, η, θ, d, r) = Dreg′′′(p,R, pnreg(p,c0,ζ), 1, ζ/4, η, θ′, d, r).

Let ci,jd,k ∈ Z/pk+1
Z be elements chosen independently and uniformly at random for each (d, k) ∈

Dp and i ∈ [I1,0] and Id,k < j ≤ I ′d,k. Consider the subatom selection function sc : AI → AI′ defined

in Definition 3.24. We claim that with positive probability, this sc satisfies conclusions (v) and (vi).
Fix a ∈ AI with a1,0 6= 0. We first claim that for this fixed a, as c varies, the subatom s(a) is

uniformly distributed over π−1(a) ⊂ AI′ . To see this, first note that the univariate homogeneous
non-classical polynomials Pd,k : Fp → Uk+1 used in the definition of sc satisfy Pd,k(x) 6∈ Uk for all
x 6= 0. This follows by homogeneity: if Pd,k(x) ∈ Uk for some x 6= 0, then Pd,k always takes values
in Uk, contradicting the assumption that Pd,k has depth exactly k. Thus for a ∈ AI with a1,0 6= 0,

we find that the vector (Pd,k(|a11,0|), . . . , Pd,k(|aI1,01,0 |)) ∈ U
I1,0
k+1 does not lie in U

I1,0
k .

Considering the definition of sc, we see that the vector ([sc]
i
d,k)Id,k<i≤I′

d,k
is produced by the

following matrix multiplication.














[sc]
Id,k+1
d,k

[sc]
Id,k+2
d,k
...

[sc]
I′
d,k

d,k















=















c
Id,k+1,1
d,k c

Id,k+1,2
d,k · · · c

Id,k+1,Id,k
d,k

c
Id,k+2,1
d,k c

Id,k+2,2
d,k · · · c

Id,k+2,Id,k
d,k

...
...

. . .
...

c
I′
d,k

,1

d,k c
I′
d,k

,2

d,k · · · c
I′
d,k

,Id,k
d,k

























Pd,k(|a11,0|)
Pd,k(|a21,0|)

...

Pd,k(|aId,k1,0 |)











As stated above, the vector on the right lies in U
I1,0
k+1 but not in U

I1,0
k while the matrix is uniform

random with entries in Z/pk+1
Z. This implies that the vector on the left is uniformly distributed

over U
I′
d,k

−Id,k
k+1 , as desired. This holds for each (d, k) ∈ Dp and furthermore, since for each (d, k) the

c matrices are chosen independently, one can see that the resulting vectors are also independent,
proving the desired result.

Now note that by Lemma 4.5(vi), for each ℓ ∈ [R],

∑

a∈AI′

‖f (ℓ)
sml1B′−1(a)‖22 ≤

θ(degB, ‖B‖)2
4R‖B‖2

∑

a∈AI′

‖1B′−1(a)‖22.
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Thus by Markov’s inequality, for a′ ∈ AI′ chosen uniformly at random, with probability at least
1− 1/(4R‖B‖2) the following holds

‖f (ℓ)
sml1B′−1(a′)‖22 ≤ θ(‖B‖)2‖1B′−1(a′)‖22. (4.1)

Thus for a fixed a ∈ AI with a1,0 6= 0, we have that for c chosen at random, we have sc(a) satisfies
Eq. (4.1) with probability at least 1− 1/(4R‖B‖). Taking a union bound over all choices of a ∈ AI

and ℓ ∈ [R], we see that with probability at least 3/4, conclusion (v) holds.
Now we deduce conclusion (vi). First note that the fraction of a ∈ AI which satisfy a1,0 = 0 is

p−I1,0 ≤ ζ/2. For the other a ∈ AI , the expected fraction of a ∈ AI that fail to satisfy the desired
inequality is at most ζ/4. Thus by Markov’s inequality, with probability at least 1/2, at most ζ/2
fraction of a ∈ AI satisfy a1,0 6= 0 and fail to satisfy the desired inequality. Thus with probability
at least 1/2, conclusion (vi) holds. �

5. Patching

To motivate the kind of results proved in this section consider the following result, which follows
from an application of Ramsey’s theorem.

Let H be a finite set of red/blue edge-colored graphs. There exists an integer
n0 = n0(H) such that the following holds. Either:
(a) either the all-red coloring of Kn or the all-blue coloring of Kn contains no

subgraph from H for every n; or
(b) every 2-edge-coloring of Kn with n ≥ n0 contains a subgraph from H.

We call such a statement a dichotomy result. The first main result of this section, Theorem 5.6,
is a dichotomy result for our setting. In our setting we consider colored labeled patterns instead
of edge-colored subgraphs and instead of monochromatic colorings we have to consider so-called
canonical colorings, defined below.

The second main result of this section, Theorem 5.9, is our patching result, which is a supersat-
uration version of the dichotomy result.

Definition 5.1. For a prime p, a finite set S, and a parameter list I ∈ Ip, an S-colored I-labeled
pattern over Fp consisting of m linear forms in ℓ variables is a triple (L, ψ, φ) given by:

• a system L = (L1, . . . , Lm) of m linear forms in ℓ variables,
• a coloring ψ : [m] → S, and
• a labeling φ : [m] → AI (recall the definition of the atom-indexing set AI from Eq. (3.3)).

Given a finite-dimensional Fp-vector space V , a function f : V → S, and a polynomial factor B on

V with parameters I, an (L, ψ, φ)-instance in (f,B) is some x ∈ V ℓ such that f(Li(x)) = ψ(i)
for all i ∈ [m] and B(Li(x)) = φ(i) for all i ∈ [m]. An instance is called generic if x1, . . . , xℓ are
linearly independent.

Definition 5.2. For an S-colored I-labeled pattern (L, ψ, φ) consisting of m linear forms, a finite
dimensional Fp-vector space V , a function f : V → S, and a polynomial factor B on V with
parameters I, define the (L, ψ, φ)-density in (f,B) to be

ΛL(1f−1(ψ(1))∩B−1(φ(1)), . . . , 1f−1(ψ(m))∩B−1(φ(m))).

Given a set X ⊆ V , define the relative density of (L, ψ, φ) in X to be

ΛL (f1, . . . , fm)

ΛL(1X , . . . , 1X)

where fi := 1X∩f−1(ψ(i))∩B−1(φ(i)).
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Definition 5.3. Define the first non-zero coordinate function fnz: Fn
p → Fp by fnz(0, . . . , 0) := 0

and fnz(x1, . . . , xn) := xk where x1 = · · · = xk−1 = 0 and xk 6= 0. Given a finite-dimensional Fp-

vector space V equipped with an isomorphism ι : V
∼−→ F

n
p , define the function fnzι : V → Fp by

fnzι(x) := fnz(ι(x)).

Definition 5.4. Fix a prime p, a finite set S, a parameter list I ∈ Ip, and a function ξ : Fp×AI →
S. For a finite-dimensional Fp-vector space V equipped with an isomorphism ι : V

∼−→ F
n
p and a

polynomial factor B on V with parameters I, define the ξ-canonical coloring Ξξ,ι,B : V → S
by Ξξ,ι,B(x) := ξ(fnzι(x),B(x)). Furthermore, if S is equipped with an F

×
p -action, say that ξ is

projective if the same is true for every function Ξξ,ι,B. (Note that this property is equivalent to
the condition that ξ preserves the action of F×

p , i.e., ξ(cx, c ·a) = c ·ξ(x, a) for all c ∈ F
×
p , all x ∈ Fp,

and all a ∈ AI . Recall the action of F×
p on AI defined in Eq. (3.5).)

Definition 5.5. Given a prime p, a finite set S, a parameter list I ∈ Ip, a function ξ : Fp×AI → S,
and a S-colored I-labeled patternH = (L, ψ, φ), say that ξ canonically induces H if the following
holds. There exists some n ≥ 0 and a polynomial factor B on F

n
p with parameters I such that there

exists a generic H-instance in (Ξξ,Id,B,B). For a finite set of S-colored I-labeled patterns H, say
that ξ canonically induces H if ξ canonically induces some H ∈ H.

It is not hard to show that if ξ canonically induces H, then there exists a generic H-instance
in (Ξξ,ι,B,B) for every V, ι,B as long as dimV and rankB are large enough. Our first result is a
strengthening of this: if every ξ canonically induces H, then there exists a generic H-instance in
(f,B) for every f : V → S and every B as long as dimV and rankB are large enough.

Theorem 5.6 (Dichotomy). Fix a prime p, a finite set S with an F
×
p -action, a parameter list

I ∈ Ip, and a positive integer ℓ0. There exist constants ndich = ndich(p, |S|, I, ℓ0) and rdich =
rdich(p, |S|, I, ℓ0) such that the following holds. Let H be a finite set of S-colored, I-labeled patterns
each defined by a system of linear forms in at most ℓ0 variables. Either:

(a) there exists a projective ξ : Fp ×AI → S that does not canonically induce H; or
(b) for every finite-dimensional Fp-vector space V satisfying dimV ≥ ndich, every projective

function f : V → S, and every polynomial factor B on V with parameters I which has rank
at least rdich, there is a generic H-instance in (f,B) for some H ∈ H.

Proof. Define m to be the smallest positive integer such that the following holds. Let H be a
S-colored, I-labeled patterns defined by a system of linear forms in at most ℓ0 variables and let
ξ : Fp×AI → S be a projective function. If ξ canonically induces H, then there exists some nH ≤ m
and a polynomial factor BH on F

nH
p with parameters I such that there exists a generic H-instance

in (Ξξ,Id,BH
,BH). This is well defined since there are only a finite number of S-colored, I-labeled

patterns defined by a system of linear forms in at most ℓ0 variables.

Lemma 5.7. Fix a prime p, a finite set S, a parameter list I ∈ Ip, and positive integers m, r0, n0.
There exist constants nramsey = nramsey(p, |S|, I,m, r0, n0) and rramsey = rramsey(p, |S|, I,m, r0, n0)
such that the following holds. Let V be a finite dimensional Fp-vector space satisfying dimV ≥
nramsey, let B be a polynomial factor on F

n
p with parameters I such rankB ≥ rramsey, and let

f : V → S be a function. Then there exists a subspace U ≤ V , and linear functions P1, . . . , Pm : V →
Fp, and a function ξ : Fp ×AI → S such that the following holds:

(i) ξ(fnz(P1(x), . . . , Pm(x)),B(x)) = f(x) for all x ∈ U that also satisfy (P1(x), . . . , Pm(x)) 6=
(0, . . . , 0);

(ii) ξ(0, 0) = f(0)
(iii) the polynomial factor B

′ on U defined by the homogeneous non-classical polynomials that
define B|U in addition to the polynomials P1, . . . , Pm satisfies rankB′ ≥ r0;

(iv) dimU ≥ n0.
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Let us show how this lemma completes the proof. Define

r0 := requi

(

p,deg I,
1

2(pm‖I‖)pm
)

and n0 := 2pm(m+
⌈

logp ‖I‖
⌉

).

Then define

ndich(p, |S|, I, ℓ0) := nramsey(p, |S|, I,m, r0, n0),

and

rdich(p, |S|, I, ℓ0) := rramsey(p, |S|, I,m, r0, n0).

Let H be a finite set of S-colored, I-labeled patterns each defined by a system of linear forms in
at most ℓ0 variables. Suppose (a) does not hold. Thus for every projective ξ : Fp ×AI → S, there
exists an H ∈ H such that ξ canonically induces H.

Now we apply Lemma 5.7 to f : V → S. This produces a subspace U ≤ V , linear functions
P1, . . . , Pm, and a function ξ : Fp ×AI → S with several desirable properties.

First note that since f : V → S is projective, the same is true of ξ : Fp × AI → S. Thus by
assumption there exists an H ∈ H such that ξ canonically induces H. By the choices in the first
paragraph, there exists a nH ≤ m and a polynomial factor BH on F

nH
p such that (Ξξ,Id,BH

,BH)
contains a generic H-instance.

To complete the proof, all we need to show is that there exists an injective linear map κ : FnH
p → U

such that BH(x) = B(κ(x)) for all x ∈ F
nH
p and fnz(x) = fnz(P1(κ(x)), . . . , Pm(κ(x))) for all

x ∈ F
nH
p . This follows by an application of equidistribution (Theorem 3.19).

Recall the definition of LnH (Definition 2.7), the system of pnH linear forms in nH variables that
define an nH -dimensional subspace.

Say thatB′ has parameters I ′. Thus the atom-indexing set ofB′ can be written as AI′ ≃ F
m
p ×AI .

We define the following tuple of atoms a = (ai)i∈FnH
p

by ai = ((i1, . . . , inH
, 0, . . . , 0),BH (i)) where

there are m− nH 0’s. We claim that a ∈ ΦI′(L
nH ). We can check this separately for the first and

second coordinate; each is trivial.
Thus by Theorem 3.19 and the rank bound on B

′, we have

Pr
x1,...,xnH

∈U

(

B
′(LnH

i (x1, . . . , xnH
)) = ai for all i ∈ F

nH
p

)

≥ 1

|ΦI′(LnH )|−
1

2(pm‖I‖)pm ≥ 1

2(pm‖I‖)pm .

We wish to find a single tuple (x1, . . . , xnH
) ∈ V nH that satisfies the above condition and also has

x1, . . . , xnH
linearly independent. The number of linearly dependent tuples is small, so we calculate

that the number of good tuples is at least

|U |nH

2(pm‖I‖)pm − |U |nH−1pnH .

This is positive by our assumption that dimU ≥ n0. Thus there exists some good tuple (x1, . . . , xnH
) ∈

V nH . Defining κ : FnH
p → U by κ(i) := LnH

i (x1, . . . , xnH
) has all the desired properties. Thus we

have shown (b) assuming that (a) does not hold. �

Proof of Lemma 5.7. Define M := m|S|p‖I‖. Our strategy is to find a large subspace UM and linear
functions P1, . . . , PM : V → Fp such that for x ∈ UM , the value of f(x) only depends on B(x),
fnz(P1(x), . . . , PM (x)), and the index k such that P1(x) = · · · = Pk−1(x) = 0 and Pk(x) 6= 0. Once
we have found such a configuration, we can complete the proof by a simple pigeonhole argument.

Define

L := {psP i
(p−1)s+1,s : s ≥ 0, i ∈ [I(p−1)s+1,s]},

where P i
d,k is the ith homogeneous non-classical polynomial of degree d and depth k defining B.

Note that L is a finite set of linear functions (in particular, it is the set of all psP that are classical
linear polynomials where s ≥ 0 is a non-negative integer and P is one of the homogeneous non-
classical polynomials that define B.) It is immediate from the definition of rank that if P1, . . . , Pm
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are linear functions such that {P1, . . . , Pm} ∪ L are linearly independent, then rankB′ = rankB.
We will use this fact to guarantee conclusion (iii).

Our main tool is the following lemma which is a Van der Waerden-type result.

Lemma 5.8. Fix a prime p, a finite set S, a parameter list I ∈ Ip, and positive integers n0, r0.
There exist constants nramsey′ = nramsey′(p, |S|, I, n0, r0) and rramsey′ = rramsey′(p, |S|, I, n0, r0)
such that the following holds. Let V be a finite dimensional Fp-vector space satisfying dimV ≥
nramsey′ and let P : V → Fp be a non-trivial linear function. Let B be a polynomial factor on F

n
p with

parameters I and let B′ be the common refinement of B and {P}. Suppose that rankB′ ≥ rramsey′ .
Let f : V → S be a function. Then there exists a subspace U ≤ V contained in the zero set of P , a
vector z ∈ V such that P (z) = 1, and a function χ : AI → S such that the following holds:

(i) χ(B(x)) = f(x) for all x ∈ z + U ;
(ii) rankB|U ≥ r0;
(iii) dimU ≥ n0.

Define r1, . . . , rM and n1, . . . , nM by

ni := max{nramsey′(p, |S|p−1, I, ni−1, ri−1), |L|+ 1}
and

ri := rramsey′(p, |S|p−1, I, ni−1, ri−1).

Then define

nramsey(p, |S|, I,m, r0, n0) := nM and rramsey(p, |S|, I,m, r0, n0) := rM .

We will find nested subspaces V = U0 ≥ U1 ≥ · · · ≥ UM , linear functions Pi : V → Fp, and
functions ξi : (Fp \ {0}) ×AI → S such that the following holds for each i ∈ [M ]:

• ξi(Pi(x),B(x)) = f(x) for all x ∈ Ui that satisfy P1(x) = · · · = Pi−1(x) = 0 and Pi(x) 6= 0;
• {P1, . . . , Pi} ∪ L are linearly independent;
• rankB|Wi

≥ rM−i where Wi := {x ∈ Ui : P1(x) = · · · = Pi(x)};
• dimWi ≥ nM−i where Wi := {x ∈ Ui : P1(x) = · · · = Pi(x)}.

Suppose we have defined V = U0 ≥ U1 ≥ · · · ≥ Ui, linear functions P1, . . . , Pi : V → Fp, and
functions ξ1, . . . , ξi : (Fp \ {0}) ×AI → S with the above properties.

Define W := {x ∈ Ui : P1(x) = · · · = Pi(x) = 0}. We have dimW ≥ mi > |L|. Pick an arbitrary
y ∈ W such y 6= 0 but all of the linear functions L vanish on y. Let Pi+1 : V → Fp be an arbitrary
linear function such that Pi+1(y) = 1. Note that automatically we have {P1, . . . , Pi, Pi+1} ∪ L are
linearly independent.

Define W ′ := {x ∈ W : Pi+1(x) = 0}. Note that the subspace W is partitioned into hyperplanes

as W = W ′ ⊔ (y +W ′) ⊔ (2y +W ′) ⊔ · · · . Write S := SF
×
p . Then define f : W → S by

f(x+ ty) := (f(bx+ by))b∈F×
p

for x ∈ W ′ and t ∈ Fp.

We apply Lemma 5.8 to f,B|W , Pi+1 with parameters nM−i−1, rM−i−1 to produce a subspace
U ′
i ≤ W ′, a vector z ∈ y + U ′

i and a function χ : AI → S with several desirable properties.

We have χ(B(x + z)) = f(x + z) for all x ∈ U ′
i . Looking at the bth coordinate of this equation

for some b ∈ F
×
p gives χ(B(x + z))a = f(bx+ bz). Finally using the homogeneity of B (recall the

action of F×
p on AI defined in Eq. (3.5)) gives χ(b−1 ·B(bx+ bz))a = f(bx+ bz) for all x ∈ U ′

i and

all b ∈ F
×
p .

Define Ui+1 ≤ Ui to be a (dimW + i+1)-dimensional subspace of Ui that contains z and W and
such that none of P1, . . . , Pi are identically 0 on Ui+1. Then define ξi+1 : (Fp \ {0}) ×AI → S by

ξi+1(b, a) := χ(b−1 · a)b.
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Note dimUi+1 ≥ dimW ′ ≥ mi+1 and rankB|Ui+1 ≥ rankB|W ′ ≥ ri+1. Furthermore, for x ∈ Ui+1

such that P1(x) = · · · = Pi−1(x) = 0 and Pi(x) = b 6= 0, we can write x = bx′+bz for some x′ ∈ W ′.
Then f(x) = f(x′ + z)b = χ(B(x′ + z))b = χ(b−1 ·B(bx′ + bz))b = ξi+1(b,B(x)), as desired.

Thus we have defined a sequence of nested subspaces V = U0 ≤ · · · ≤ UM , linear functions
P1, . . . , Pm : V → Fp and functions ξ1, . . . , ξM : (Fp \ {0}) ×AI → S with the above properties.

Finally note that the number of possible functions (Fp \ {0})×AI → S is at most |S|p‖I‖. Thus
by the pigeonhole principle, there exists 1 ≤ i1 < · · · < im ≤ M such that ξ1 = · · · = ξm. Define
ξ : Fp × AI → S by ξ(0, a) = f(0) for all a ∈ A and ξ(b, a) = ξ1(b, a) for all b ∈ (Fp \ {0}) and
all a ∈ A. Define WM := {x ∈ UM : P1(x) = · · · = PM (x) = 0} and let U be a (dimWM + m)-
dimensional subspace of V that contains WM and such that none of Pi1 , . . . , Pim are identically 0
on U . Then U , Pi1 , . . . , Pim , and ξ have all the desired properties. �

Proof of Lemma 5.8. Define constants

n1 := max{n0, nhigh−rank(p, I, r0 + p)},
and

θ :=
1

8(2|S|)2pn1
and θ′ :=

θ

‖I‖
√

2p|S|
Define the non-increasing functions α : Z>0 → (0, 1) by

α(N) :=
1

2N2pn1
,

and η : Z>0 → (0, 1) by

η(N) :=
1

8(3|S|N)p
n1

,

and define the non-decreasing function r : Z>0 → Z>0 by

r(N) := requi(p, p
n1 , α(N)).

Define

nramsey′(p, |S|, I, n0, r0) := 2pn1
⌈

logp(16|S|Creg′′(p, p
n1 , |S|, p‖I‖, θ′, η, r))

⌉

and

rramsey′(p, |S|, I, n0, r0) := rreg′′(p, p
n1 , |S|, p‖I‖, θ′, η, r)

For c ∈ S, define f (c) : V → [0, 1] by f (c) := 1f−1(c). We are now ready to proceed with the proof.

We apply the arithmetic regularity lemma, Lemma 4.4, to the polynomial factor B′ on V and the
functions (f (c))c∈S with parameters p, pn1 , |S|, p‖I‖, θ′, η, r. This produces a polynomial factor B′′

refining B
′ and decompositions f (c) = f

(c)
str + f

(c)
psr + f

(c)
sml with several desirable properties.

Say that B′ has parameters I ′ and B
′′ has parameters I ′′ (note that ‖I ′‖ = p‖I‖). We consider

the atom-indexing set of B′′ (see Eq. (3.3) for the definition) as AI′′ ≃ Fp ×AI ×AI′′−I′ .
Say that an atom a ∈ AI′′ is regular if

‖f (c)
sml1B′′−1(a)‖2 ≤ θ‖1B′′−1(a)‖2 for all c ∈ S.

Our first goal is to find s ∈ AI′′−I′ such that all atoms of the form (1, a, s) ∈ AI′′ ≃ Fp×AI×AI′′−I′

are regular.
By Lemma 4.4(v), for each c ∈ S,

∑

a∈AI′′

‖f (c)
sml1B′′−1(a)‖22 ≤

θ2

2p|S|‖I‖2
∑

a∈AI′′

‖1B′′−1(a)‖22.

Thus at least a (1 − 1/(2p‖I‖2))-fraction of atoms are regular. For each a ∈ AI , at least a (1 −
1/(2‖I‖))-fraction of the atoms of the form (1, a, s) are regular, for s ∈ AI′′−I′ . Thus by a union
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bound there exists some s ∈ AI′′−I′ such that (1, a, s) is regular for all a ∈ AI . Fix this value of s
for the rest of the proof.

Define χ : AI → S such that χ(a) is a color that appears in the atom B
−1(1, a, s) with density

at least 1/|S|.
By the definition of n1 and Lemma 3.15, there exists a polynomial factor B1 on F

n1
p with

parameters I and satisfying rankB1 ≥ r0 + p. Our goal is to find vectors x0, x1, . . . , xn1 ∈ V such
that

• B
′′(x0 + i1x1 + · · ·+ in1xn1) = (1,B1(i1, . . . , in1), s) for all (i1, . . . , in1) ∈ F

n1
p ;

• f(x0 + i1x1 + · · ·+ in1xn1) = χ(B1(i1, . . . , in1)) for all (i1, . . . , in1) ∈ F
n1
p ;

• x1, . . . , xn1 are linearly independent.

We choose x0, x1, . . . , xn1 ∈ V independently and uniformly at random. Let p1 be the probability
that this choice of x satisfies all three conditions above. First note that the probability that
x0, . . . , xn1 are linearly dependent is at most pn1+1/|V |. Let p2 be the probability that this choice
of x satisfies the first two conditions above. We have shown that

p1 ≥ p2 − pn1+1/|V |.
Let L = (Li)i∈Fn1

p
to be the system of pn1 linear forms in n1 + 1 variables defined by

Li(x0, x1, . . . , xn1) := x0 + i1x1 + · · ·+ in1xn1 .

This system defines an n1-dimensional affine subspace. One can easily see that L is finite complexity
and in fact its complexity is at most pn1 (see Remark 3.4).

Define g(i) := f (χ(B1(i))) and define g
(i)
str, g

(i)
sml, g

(i)
psr similarly. Define h(i) : V → [0, 1] by h(i) :=

1B′′−1(1,B1(i),s).
We compute p2 as

p2 = Ex





∏

i∈F
n1
p

g(i)(Li(x))h
(i)(Li(x))





= Ex

[

∏

i

(

g
(i)
str(Li(x)) + g

(i)
sml(Li(x)) + g(i)psr(Li(x))

)

h(i)(Li(x))

]

≥ Ex

[

∏

i

(

g
(i)
str(Li(x)) + g

(i)
sml(Li(x))

)

h(i)(Li(x))

]

− 3p
n1
η(‖B′′‖).

The inequality follows from Lemma 4.4(ii) and the counting lemma, Eq. (3.1).
Write p3 for the expectation in the last line above. We have p2 ≥ p3 − 3p

n1η(‖B′′‖). Expanding
the product, there are at most 2p

n1 terms involving g
(j)
sml for some j ∈ F

n1
p . Each of these is bounded

in magnitude by

Ex

[

∣

∣

∣g
(j)
sml(Lj(x))

∣

∣

∣

∏

i

h(i)(Li(x))

]

.

By applying a change of coordinates, we can transform to the case that j = 0 (and L0(x) = x0).
Then by the Cauchy-Schwarz inequality, the square of the above expression is bounded by

Ex0

[

∣

∣

∣
g
(0)
sml(x0)

∣

∣

∣

2
h(0)(x0)

]

Ex0



h(0)(x0)Ex1,...,xn1





∏

i 6=0

h(i)(Li(x))





2

 .

The first term is at most θ(‖B‖)2‖h(0)‖22 by the fact that (1,B1(i), s) is a regular atom for all i.
The second term can be counted by equidistribution applied to the system L′ of 2pn1 − 1 linear
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forms in 2n1 − 1 variables defined as follows. Set

L′
0(x0, x1, . . . , xn1 , x

′
1, . . . , x

′
n1
) := x0,

and for i ∈ F
n1
p \ {0}, define

L′
i,1(x0, x1, . . . , xn1 , x

′
1, . . . , x

′
n1
) := x0 + i1x1 + · · ·+ in1xn1 ,

L′
i,2(x0, x1, . . . , xn1 , x

′
1, . . . , x

′
n1
) := x0 + i1x

′
1 + · · ·+ in1x

′
n1
.

By Lemma 3.23, we know that ‖B′′‖ · |ΦI′′(L
′)| = |ΦI′′(L)|2 (see also [7, Lemma 5.13].)

Thus by equidistribution, Theorem 3.19, and the rank bound on B
′′, we have the second term

is at most
1

|ΦI′′(L′)| + α(‖B′′‖) = ‖B′′‖
|ΦI′′(L)|2 + α(‖B′′‖) ≤ 2‖B′′‖

|ΦI′′(L)|2 .

Applying equidistribution again we have that the first term is at most

θ2
(

1

‖B′′‖ + α(‖B′′‖)
)

≤ 2θ2

‖B′′‖ .

Combining these bounds and summing over all terms that contain some g
(j)
sml, we see that

p3 ≥ Ex

[

∏

i

g
(i)
str(Li(x))h

(i)(Li(x))

]

− 2p
n1+1 θ

|ΦI′′(L)| .

Write p4 for the expectation in the last line. The quantity g
(i)
str(Li(x)) is the density of χ(B1(i))

in the atom of B′′ that Li(x) lies in. When B(Li(x)) = (1,B1(i), s), the choice of χ implies that
this density is at least 1/|S|. Thus

p4 ≥
1

|S|pn1
Ex

[

∏

i

h(i)(Li(x))

]

.

Write p5 for the expectation in the last line. Unwrapping the definition of h(i), this can be
written as

p5 = Pr
x

(

B
′′(Li(x)) = (1,B1(i), s) for all i ∈ F

n1
p

)

.

We claim that ((1,B1(i), s))i∈Fn1
p

is an L-consistent tuple of atoms. We check this coordinate

by coordinate. Obviously (B1(i))i∈Fn1
p

is L-consistent. Furthermore any constant tuple is also

obviously L-consistent (this follows from the fact that L is a translation-invariant pattern). Thus
by another application of equidistribution and the rank bound on B

′′, we have

p5 ≥
1

|ΦI′′(L′)| − α(‖B′‖) ≥ 1

2|ΦI′′(L′)| .

Combining all these inequalities, we see that

p1 ≥
1

|S|pn1

1

2|ΦI′′(L′)| − 2p
n1+1 θ

|ΦI′′(L)| − 3p
n1
η(‖B′′‖)− pn1+1

|V | .

This expression is positive by the definition of θ, η and the assumption that dimV ≥ nramsey′ .
Thus we have define a function χ : AI → S and found linearly independent x0, x1, . . . , xn1 ∈ V

with several desirable properties. Define z := x0 and U := span{x1, . . . , xn1}. Since P : V → Fp is a
linear function and P (x0+i1x1+· · ·+in1xn1) = 1 for all i ∈ F

n1
p , we conclude that P (z) = P (x0) = 1

and U is contained in the zero set of P . Furthermore, B(x0 + i1x1+ · · ·+ in1xn1) = B1(i1, . . . , in1)
for all i ∈ F

n1
p . Since B1 was chosen such that rankB1 ≥ r0 + p and n1 ≥ n0, we see that

dimU ≥ n0 and rankB|span{x0,U} ≥ r0 + p. By Lemma 3.16, we conclude that rankB|U ≥ r0.
Finally, f(x0 + i1x1 + · · · + in1xn1) = χ(B1(i1, . . . , in1)) = χ(B(x0 + i1x1 + · · · + in1xn1)) for all
i ∈ F

n1
p , which proves the desired result. �
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We boost this Ramsey dichotomy result to a density result using a Cauchy-Schwarz supersatu-
ration argument. For technical reasons we need this result to hold inside “subvarieties” of a vector
space, i.e., the zero sets of a sufficiently high-rank collection of non-classical polynomials. Again for
technical reasons, this supersaturation argument only works for full dimensional patterns (recall
Definition 3.21).

Theorem 5.9 (Patching). Fix a prime p, a finite set S with an F
×
p -action, parameter lists I, I ′ ∈ Ip

satisfying I ≤ I ′, and a positive integer ℓ0. There exist constants npatch = npatch(p, |S|, I ′, ℓ0) and
βpatch = βpatch(p, |S|, I, ℓ0) > 0 and a non-decreasing function rpatch = rpatch(p, |S|, I, ℓ0) : Z>0 ×
Z>0 → Z>0 such that the following holds. Let H be a finite set of S-colored, I-labeled patterns such
that each pattern is defined by a full dimension system of linear forms in at most ℓ0 variables (recall
Definition 3.21). Either:

(a) there exists a projective ξ : Fp ×AI → S that does not canonically induce H; or
(b) for every finite-dimensional Fp-vector space V satisfying dimV ≥ npatch, every projec-

tive function f : V → S, every polynomial factor B on V with parameters I that satisfies
rankB ≥ rpatch(degB, ‖B‖), and every polynomial factor B

′ on V with parameters I ′ that
refines B and satisfies rankB′ ≥ rpatch(degB

′, ‖B′‖), there is a pattern H ∈ H such that
in (f,B), the relative density of H in B

′−1(AI × {0}) is at least βpatch.

Note that npatch may depend on I ′, but critically βpatch does not depend on I ′.

Proof. First we define several parameters.
Write r := rdich(p, |S|, I, ℓ0) for brevity. Define

n1 := max{ndich(p, |S|, I, ℓ0), nhigh−rank(p, I, r)}
where n0 is defined in Lemma 3.15.

Define the constants
npatch(p, |S|, I ′, ℓ0) := 2pn1

⌈

logp(‖I ′‖)
⌉

,

and

βpatch(p, |S|, I, ℓ0) :=
1

6400ℓ20p
2n1·ℓ‖I‖2pn1

,

and define the non-increasing function α : Z>0 → (0, 1) by

α(N) :=
1

2N2pn1
,

and the non-decreasing function rpatch(p, |S|, I, ℓ0) : Z>0 × Z>0 → Z>0 by

rpatch(p, |S|, I, ℓ0)(D,N) := requi(p,D, α(N)).

We now proceed to the proof. Let H be a finite set of S-colored, I-labeled patterns each defined
by a full dimension system of linear forms in at most ℓ0 variables. We apply Theorem 5.6 to H. If
Theorem 5.6(a) holds, then clearly conclusion (a) holds. Now assume that Theorem 5.6(b) holds.
We wish to show conclusion (b).

Let V be a finite-dimensional Fp-vector space satisfying dimV ≥ npatch, let f : V → S be a
projective function, let B be a polynomial factor on V with parameters I that satisfies rankB ≥
rpatch(‖B‖), and let B′ be a polynomial factor on V with parameters I ′ that refines B and satisfies
rankB′ ≥ rpatch(‖B′‖).

Write X := B
′−1(AI × {0}) and n := dimV . By assumption, n ≥ npatch. We wish to count H

instances in (f,B) that are contained in X. Write H =
⊔ℓ0

ℓ=1Hℓ where Hℓ is defined to be the
subset of H consisting of colored labeled patterns defined by a system of linear forms in exactly ℓ
variables. We define sets U1, . . . ,Uℓ0 as follows. Uℓ is the set of ℓ-dimensional subspaces U of V
which satisfy the following:

• U ⊆ X;
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• there exists a colored labeled pattern H ∈ Hℓ in ℓ variables and a generic H-instance
x1, . . . , xℓ ∈ U .

Note that the requirement that x1, . . . , xℓ ∈ U are generic implies that U = span{x1, . . . , xℓ}.
Thus

∑ℓ0
ℓ=1 |Uℓ| is a lower bound on the number of H-instances in X.

Define the following counting function c : Uℓ → Z>0 for each ℓ ∈ [ℓ0] as follows. For U ∈ Uℓ,
let c(U) be the number of n1-dimensional subspaces that contain U and are contained in X. An
application of the Cauchy-Schwarz inequality implies that

|Uℓ| ≥

(

∑

U∈Uℓ
c(U)

)2

∑

U∈Uℓ
c(U)2

. (5.1)

Define S1 to be the number of n1-dimensional subspaces W of V such that W ⊆ X and
rank(B|W ) ≥ r. By Theorem 5.6(b), every such W contains a generic H-instance. Thus

ℓ0
∑

ℓ=1

∑

U∈Uℓ

c(U) ≥ S1.

By the pigeonhole principle, there exists some ℓ ∈ [ℓ0] such that

∑

U∈Uℓ

c(U) ≥ S1

ℓ0
. (5.2)

We fix such a value of ℓ ∈ [ℓ0] for the rest of the proof.
Define S2 to be the number of ordered n1-tuples (x1, . . . , xn1) ∈ V n1 such that x1, . . . , xn1 are

linearly independent, span{x1, . . . , xn1} ⊆ X, and rank(B|span{x1,...,xn1}
) ≥ r. We can compute

S2 = S1

n1−1
∏

i=0

(pn1 − pi) ≤ pn
2
1S1. (5.3)

Define S3 to be the number of ordered n1-tuples (x1, . . . , xn1) ∈ V n1 such that span{x1, . . . , xn1} ⊆
X and rank(B|span{x1,...,xn1}

) ≥ r. We can easily bound

S2 ≥ S3 − pn·n1pn1−n. (5.4)

By the definition of n1 and Lemma 3.15, there exists a polynomial factor B1 on F
n1
p with

parameters I and rank at least r. Define S4 to be the number of ordered n1-tuples (x1, . . . , xn1) ∈
V n1 such that B1(i1, . . . , in1) = B(i1x1 + · · · + in1xn1) and span{x1, . . . , xn} ⊆ X. Notice that
S3 ≥ S4.

Write L′ := Ln1 , the system of pn1 linear forms in n1 variables that define an n1-dimensional
subspace (see Definition 2.7). By definition, (P i

d,k(i1, . . . , in1))i∈Fn1
p

∈ Φd,k(L
′) for every (d, k) ∈ Dp

and i ∈ [Id,k] where P i
d,k is the ith non-classical polynomial of degree d and depth k defining B1.

Also, (0, . . . , 0) ∈ Φd,k(L
′) for all (d, k) ∈ Dp. Define a ∈ A

F
n1
p

I′ by

(ai)
i
d,k =

{

P i
d,k(i1, . . . , in1) if i ≤ Id,k,

0 if Id,k < i ≤ I ′d,k.

By the above discussion, a is L′-consistent, so by Theorem 3.19 and the rank assumption of B′,
we find

S3 ≥ S4 =
∣

∣{x ∈ V n1 : B′(L′
i(x)) = ai for all i ∈ F

n1
p }

∣

∣

≥
(

1

|ΦI′(L′)| − α(‖I ′‖)
)

pn·n1 ≥ pn·n1

2|ΦI′(L′)| .
(5.5)
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Combining Eq. (5.2), Eq. (5.3), Eq. (5.4), and Eq. (5.5), we conclude

∑

U∈Uℓ

c(U) ≥ 1

ℓ0pn
2
1

pn·n1

(

1

2|ΦI′(L′)| − pn1−n

)

≥ 1

4ℓ0pn
2
1 |ΦI′(L′)|

pn·n1. (5.6)

Next we find an upper bound on
∑

U∈Uℓ
c(U)2. Define T1 to be the number of triples (U,W,W ′)

where U is a ℓ-dimensional subspace of V and W,W ′ are both n1-dimensional subspaces of V that
contain U and are contained in X. First note that

∑

U∈Uℓ

c(U)2 ≤ T1. (5.7)

Now define T2 to be the number of ordered (2n1−ℓ)-tuples (x1, . . . , xℓ, y1, . . . , yn1−ℓ, z1, . . . , zn1−ℓ) ∈
V 2n1−ℓ such that x1, . . . , xℓ, y1, . . . , yn1−ℓ are linearly independent, x1, . . . , xℓ, z1, . . . , zn1−ℓ are lin-
early independent, span{x1, . . . , xℓ, y1, . . . , yn1−ℓ} ⊆ X, and span{x1, . . . , xℓ, z1, . . . , zn1−ℓ} ⊆ X.
We compute

T2 =

(

ℓ−1
∏

i=0

(pℓ − pi)

)(

n1−1
∏

i=ℓ

(pn1 − pi)

)2

T1 ≥
p2n1(n1−ℓ)

100
T1. (5.8)

Next define T3 to be the number of ordered (2n1−ℓ)-tuples (x1, . . . , xℓ, y1, . . . , yn1−ℓ, z1, . . . , zn1−ℓ) ∈
V 2n1−ℓ such that span{x1, . . . , xℓ, y1, . . . , yn1−ℓ} ⊆ X and span{x1, . . . , xℓ, z1, . . . , zn1−ℓ} ⊆ X.
Clearly T2 ≤ T3.

Define L′′ to be the following system of 2pn1 −pℓ linearly forms in 2n1−nℓ variables. For i ∈ F
ℓ
p,

define

L′′
i (x1, . . . , xℓ, y1, . . . , yn1−ℓ, z1, . . . , zn1−ℓ) := i1x1 + · · ·+ iℓxℓ.

For i ∈ F
n1
p \

(

F
ℓ
p × {0}n1−ℓ

)

, define

L′′
i,1(x1, . . . , xℓ, y1, . . . , yn1−ℓ, z1, . . . , zn1−ℓ) := i1x1 + · · · + iℓxℓ + iℓ+1y1 + · · ·+ in1yn1−ℓ,

L′′
i,2(x1, . . . , xℓ, y1, . . . , yn1−ℓ, z1, . . . , zn1−ℓ) := i1x1 + · · · + iℓxk + iℓ+1z1 + · · ·+ in1zn1−ℓ.

Now let B
′′ be the polynomial factor on V with parameters I ′ − I defined by homogeneous

non-classical polynomials
(

P i
d,k

)

(d,k)∈Dp

Id,k<i≤I′
d,k

where P i
d,k is the ith non-classical polynomial of degree d and depth k that defines B

′. The

important property of this polynomial factor is that X = B
′′−1(0). Also note that rankB′′ ≥

rankB′ ≥ r(‖B′‖). By Theorem 3.19 and the bounds on rankB′′, we find

T2 ≤ T3 =
∣

∣

∣{x ∈ V 2n1−ℓ : B′′(L′′(x)) = 0}
∣

∣

∣

≤
(

1

|ΦI′−I(L′′)| + α(‖I ′‖)
)

pn(2n1−ℓ) ≤ 2pn(2n1−ℓ)

|ΦI′−I(L′′)| .
(5.9)

Combining Eq. (5.7), Eq. (5.8), and Eq. (5.9), we conclude

∑

U∈Uℓ

c(U)2 ≤ 200p2n1·ℓ

p2n
2
1 |ΦI′−I(L′′)|

pn(2n1−ℓ). (5.10)

Finally, we combine Eq. (5.1), Eq. (5.6), and Eq. (5.10) to find

|Uℓ| ≥
|ΦI′−I(L

′′)|
3200ℓ20p

2n1·ℓ|ΦI′(L′)|2 p
n·ℓ.
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Consider Lℓ, the system of pℓ linear forms in ℓ variables that define an ℓ-dimension subspace
(see Definition 2.7). By Lemma 3.23, we have |ΦI′−I(L

ℓ)| · |ΦI′−I(L
′′)| = |ΦI′−I(L

′)|2. Thus the
above expression simplifies to

|Uℓ| ≥
1

3200ℓ20p
2n1·ℓ|ΦI(L′)|2 · pn·ℓ

|ΦI′−I(Lℓ)| ≥
1

3200ℓ20p
2n1·ℓ‖I‖2pn1

· pn·ℓ

|ΦI′−I(Lℓ)| .

Therefore there exists some colored labeled pattern H = (L, ψ, φ) ∈ Hℓ where L is a full
dimension system of linear forms in ℓ variables and such that the number of generic H-instances in
(f,B) which are contained in X is at least 1/|Hℓ| times the right-hand side of the above equation.
Note that by equidistribution, Theorem 3.19, and the rank bound on B

′′,

ΛL(1X , . . . , 1X) ≤ 1

|ΦI′−I(L)| + α(‖I ′‖) ≤ 2

|ΦI′−I(L)| . (5.11)

. Noting that since L is full dimensional, we have |ΦI′−I(L)| = |ΦI′−I(L
ℓ)|. Thus dividing the two

above quantities, we find that the relative density of the above H in X is at least

1

6400ℓ20p
2n1·ℓ‖I‖2pn1

= βpatch(p, |S|, I, ℓ0). �

6. Proof of removal lemmas

As usual, for an atom a ∈ AI (defined in Eq. (3.3)), we use ad,k ∈ U
Id,k
k+1 to denote the degree

d, depth k part of a. We use the notation ÃI ⊂ AI to denote the set ÃI := {a ∈ AI : a1,0 = 0}.
This is the set of atoms that are regularized by Theorem 4.6. Also define Ĩ ∈ Ip by Ĩ1,0 = 0 and

Ĩd,k = Id,k otherwise.

Definition 6.1. Fix a prime p, a finite set S equipped with an F
×
p -action, and a parameter

list I ∈ Ip. A summary function with parameters I is a pair (F, ξ) consisting of a function

F : (AI \ ÃI) → 2S \ {∅} and a projective function ξ : Fp ×AĨ → S.

Definition 6.2. For an S-colored pattern H = (L, ψ) consisting of m linear forms and a summary
function (F, ξ) with parameters I, say that (F, ξ) partially induces H if there exists a tuple of
atoms a ∈ Am

I such that the following holds:

(i) a is L-consistent, i.e., a ∈ ΦI(L);

(ii) for each i ∈ [m] such that ai 6∈ ÃI , we have ψ(i) ∈ F (ai);

(iii) defining J := {i ∈ [m] : ai ∈ Ãi} and HJ := ((Li)i∈J , ψ|J , (ai)i∈J}, an S-colored I-labeled
pattern, we have ξ canonically induces HJ .

Proof of Theorem 2.8. We are given a parameter ǫ > 0 and a possibly infinite set H of S-colored
patterns over Fp of the form (L

ℓ
, ψ) where ℓ is some positive integer and ψ : Eℓ → S is some map.

(See Definition 2.7 for the definition of L
ℓ
and Eℓ.)

We begin with a “compactness argument” based on ideas of Alon and Shapira that allows us to
reduce to the case when H is finite size.

For each parameter list I ∈ Ip, we define a finite subset HI ⊆ H as follows. Consider the set
of all summary functions (F, ξ) with parameters I. If there exists any H ∈ H such (F, ξ) partially
induces H, include one such H in HI . Note that |HI | is at most the number of summary functions
with parameters I, which is finite.

Define the compactness functions ΨH : Z>0×Z>0 → Z>0 as follows. Let ΨH(D,N) be the largest
positive integer ℓ such that there exists a parameter list I ∈ Ip satisfying deg I ≤ D and ‖I‖ ≤ N

such that a pattern of the form (L
ℓ
, ψ) exists in HI .
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Now we set several parameters. Define non-increasing functions η : Z>0 × Z>0 → Z>0 by

η(D,N) :=
1

40

(

ǫ

12N |S|

)pΨH(D,N)

,

β : Z>0 × Z>0 → Z>0 by

β(D,N) := min
I∈Ip:deg I≤D,‖I‖≤N

βpatch(p, |S|, I,ΨH(D,N)),

θ : Z>0 × Z>0 → Z>0 by

θ(D,N) :=
β(D,N)

40

(

ǫ

8|S|

)pΨH(D,N)

,

and α : Z>0 × Z>0 → (0, 1) by

α(D,N) :=
β(D,N)

10N2pΨH(D,N)

Then define non-decreasing functions r : Z>0 × Z>0 → Z>0 by

r(D,N) := max{requi(p,D, α(D,N)), max
I∈Ip :deg I≤D,‖I‖≤N

rpatch(p, |S|, I,ΨH(D,N))(D,N)+p
⌈

logpN
⌉

}

and d : Z>0 × Z>0 → Z>0 by

d(D,N) := pΨH(D,N).

Define parameters

ζ :=
ǫ

16|S| and c0 :=
⌈

logp(2/ǫ)
⌉

.

Then define
Cmax := Creg(p, |S|, c0, ζ, η, θ, d, r),
Dmax := Dreg(p, |S|, c0, ζ, η, θ, d, r),

nmin := max

{

nreg(p, c0, ζ), max
I∈Ip : deg I≤Dmax,‖I‖≤Cmax

npatch(p, |S|, I,ΨH(Dmax, Cmax)) +
⌈

logp Cmax

⌉

}

.

Finally, define

δ(ǫ,H) := min

{

β(Dmax, Cmax)

40

(

ǫ

4Cmax|S|

)pΨH(Dmax,Cmax)

, p−nmin·ΨH(Dmax,Cmax)

}

and
Hǫ :=

⋃

I∈Ip:‖I‖≤Cmax,deg I≤Dmax

HI .

Since the union is over a finite set of I, we have Hǫ is finite. We will show that this choice of δ and
Hǫ satisfies the desired conclusion.

Let V be a finite-dimensional Fp-vector space and f : V → S be a projective function with H-
density at most δ(ǫ,H) for every H ∈ Hǫ. Our goal is to produce a projective recoloring g : V → S
that agrees with f on all but an at most ǫ-fraction of V that has no generic H-instances for every
H ∈ H.

First note that if dimV < nmin, the theorem is easily follows. This is because for the pattern

H = (L
ℓ
, ψ), if there exists an H-instance in f , then the H-density in f is at least 1/|V |ℓ. Thus

taking g = f and noticing that we chose δ(ǫ,H) ≤ p−nmin·ΨH(Cmax,Dmax), the theorem holds in this
case.

Now assume that dimV ≥ nmin. We apply Theorem 4.6 to the functions {1f−1(c)}c∈S with

parameters p, |S|, c0, ζ, η, θ, d, r. This produces a polynomial factor B and a refinement B′ both on
V with parameters I and I ′ and a subatom selection function s : AI → AI′ satisfying several other
desirable properties.
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As above, define ÃI ⊂ AI to be the set ÃI := {a ∈ AI : a1,0 = 0}. We call the atoms a ∈ ÃI

irregular and the remaining atoms a ∈ AI\ÃI regular. Define Ṽ to be the codimension-I1,0 subspace
of V that is the common zero set of all I1,0 linear polynomials defining B. The irregular atoms of

B exactly consist of Ṽ , i.e., B−1(ÃI) = Ṽ .

Define B̃ to be the polynomial factor on Ṽ defined by the restrictions of the homogeneous non-
classical polynomials that define B to Ṽ , except for the linear polynomials (which restrict to the

zero function). Let Ĩ ∈ Ip be the parameter list of B̃ (Ĩ1,0 = 0 and Ĩd,k = Id,k otherwise). Also

define B̃
′ to be the polynomial factor on Ṽ defined by the restrictions of the homogeneous non-

classical polynomial that define B′ to Ṽ , except for the linear polynomials that also define B. Let
Ĩ ′ ∈ Ip be the parameter list of B̃′ (Ĩ ′1,0 = I ′1,0 − I1,0 and Ĩ ′d,k = I ′d,k otherwise). Note that by
Lemma 3.16 and our definition of r, we have

rank B̃ ≥ rpatch(p, |S|, Ĩ ,ΨH(degB, ‖B‖))(degB, ‖B‖),

rank B̃′ ≥ rpatch(p, |S|, Ĩ ,ΨH(degB, ‖B‖))(degB′, ‖B′‖).
We will “clean up” the regular atoms by removing low-density colors in a projective manner.

We will “patch” the irregular atoms by replacing the coloring by a new coloring Ξξ,ι,B̃ for some

projective ξ : Fp ×AĨ → S and ι : Ṽ
∼−→ F

dim Ṽ
p .

Note that to check that the recoloring g : V → S is projective, it suffices to check this fact
separately on Ṽ and on V \ Ṽ .

Clean up regular atoms: For each a ∈ (AI \ ÃI), say that a color c ∈ S is high-density in
a if it appears in B

′−1(s(a)) with density at least ǫ/(4|S|). Say that a color is low-density in a
otherwise.

First note that a basic property of subatom selection functions, Lemma 3.25(ii), is the following.
For a ∈ AI and b ∈ F

×
p , we have b · s(a) = s(b · a). Combined with the projectiveness of f , this

implies that for a color c ∈ S and b ∈ F
×
p , the c-density in B

′−1(s(a)) is the same as the (b·c)-density
in B

−1(s(b · a)). Thus a color c is high-density in a if and only if b · c is high density in b · a.
We pick a single high-density color ca ∈ S for each regular atom a ∈ (AI \ ÃI) in a projective

way, namely such that b · ca = cb·a for all a ∈ (AI \ ÃI) and b ∈ F
×
p . By the argument in the above

paragraph, this is possible.
Now we define our recoloring of the regular atoms, g : (V \ Ṽ ) → S as follows. For each a ∈

(AI \ ÃI) and x ∈ B
−1(a), we define g(x) := f(x) unless f(x) is low-density in a, in which case we

define g(x) := ca. Note that g is a projective function. Furthermore we claim that g differs from f
on at most an (ǫ/2)-fraction of V .

By Theorem 4.6(vi), for all but at most a ζ-fraction of a ∈ AI , the c-density in B
−1(a) and

the c-density in B
′−1(s(a)) differ by at most ζ for all s ∈ S. Thus for most atoms a, each low-

density color appears in B
−1(a) with density at most ǫ/(4|S|) + ζ, so f and g differ on at most

an (ǫ/4 + ζ|S|)-fraction of these atoms. The functions f and g may differ completely on the other
atoms, but there are at most ζ‖B‖ of these. It follows by equidistribution, Theorem 3.19, and
the rank bound on B that each atom of B is at most an (‖B‖−1 + α(degB, ‖B‖))-fraction of V .
Putting this all together, we see that g differs from f on at most the following fraction of V

ζ‖B‖
(

1

‖B‖ + α(degB, ‖B‖)
)

+

(

ǫ

4|S| + ζ

)

|S| < ǫ

2
.

Patch irregular atoms: We define H̃ to be the set of all S-colored I-labeled patterns that are
defined by a full dimension system of linear forms in at most ΨH(deg I, ‖I‖) variables and whose

relative density in B̃
′−1(AĨ × {0}) is less than βpatch(p, |S|, Ĩ ,ΨH(deg I, ‖I‖)).

We apply our patching result, Theorem 5.9, to the set H̃. Our definitions are exactly such that
f |Ṽ with B̃, B̃′ demonstrate that Theorem 5.9(b) does not hold. In particular, we checked the
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rank assumptions on B̃ and B̃
′ above when they were defined. Furthermore, we assumed that

dimV ≥ nmin, which implies that dim Ṽ ≥ npatch(p, |S|, Ĩ ′,ΨH(deg I, ‖I‖). Finally we defined H̃
to be the set of patterns which appear with very low density in B̃

′−1(AĨ ×{0}). Thus we conclude
that Theorem 5.9(a) holds. This means that there exists a projective ξ : Fp × AĨ → S that does

not canonically induce H̃. In particular, this means that for any fixed isomorphism ι : Ṽ
∼−→ F

dim Ṽ
p ,

there are no generic H-instances in (Ξξ,ι,B̃) for any H ∈ H̃.

We complete our definition of g : V → S by defining g(x) := Ξξ,ι,B̃(x) for all x ∈ Ṽ . To conclude

this portion of the proof, we make sure that |Ṽ | ≤ (ǫ/2)|V |. By assumption,

|Ṽ |/|V | = p−I1,0 ≤ p−c0 = ǫ/2,

as desired.
Proof of correctness: We claim that g has no generic H-instances for each H ∈ H. Define

F : (̃AI \ ÃI) → 2S \ {0} to map a to the set of high-density colors in a and recall the projective
function ξ : Fp × AĨ → S defined in the “patch irregular atoms” section. Now suppose that the
desired conclusion does not hold, i.e., that there is a generic H ′-instance in g for some H ′ ∈ H. By
the construction of g, this means that (F, ξ) partially induces H ′. By the definition of the HI , this
means that there is some H ∈ HI ⊆ Hǫ so that (F, ξ) also partially induces H. We will reach a
contradiction by showing that this implies that the H-density in f is larger than δ(ǫ,H).

Say that H = (L
ℓ
, ψ) (note that ℓ ≤ ΨH(deg I, ‖I‖)). Since (F, ξ) partially induces H, this

implies that there exists a tuple of atoms a ∈ ΦI(L
ℓ
) ⊆ AEℓ

I with several desirable properties.

Define J := {i ∈ Eℓ : ai ∈ ÃI}. Recalling that ÃI is just the set of atoms whose linear part is zero,
we can conclude that J ⊆ Eℓ ⊂ F

ℓ
p is the intersection of Eℓ with some linear subspace U ≤ F

ℓ
p of

dimension ℓ′ ≤ ℓ. This means that the system (Lℓ
i)i∈J is equivalent to the system (Lℓ′

i )i∈J where

now we view J ⊂ U ≃ F
ℓ′
p . Define, HJ := ((Lℓ′

i )i∈Eℓ
, ψ|J , (ai)i∈J ), an S-colored I-labeled pattern.

By Lemma 3.22, we see that Hj is a full dimension pattern.

The first property, that a isL
ℓ
-consistent, implies that s(a) is alsoL

ℓ
-consistent, by Lemma 3.25(iii).

The second property implies that for each i ∈ (Eℓ \ J), the color ψ(i) is high-density in ai. The
third property, together with our definition of ξ implies that in (f,B), the relative density of HJ

in B̃
′−1(AĨ × {0}) is at least βpatch(p, |S|, Ĩ ,ΨH(deg I, ‖I‖) ≥ β(deg I, ‖I‖)).

Now we put everything together as follows. Write f (i) for 1f−1(ψ(i)). There is a decomposition

f (i) = f
(i)
str + f

(i)
sml + f

(i)
psr given by Theorem 4.6 for each i ∈ Eℓ. Let p1 be the H-density in f . We

lower bound p1 as follows.

p1 = Ex





∏

i∈Eℓ

f (i)(Lℓ
i(x))





= Ex





∏

i∈J

f (i)(Lℓ
i(x))

∏

i∈Eℓ\J

(

f
(i)
str(L

ℓ
i(x)) + f

(i)
sml(L

ℓ
i(x)) + f (i)

psr(L
ℓ
i(x))

)





≥ Ex





∏

i∈J

f (i)(Lℓ
i(x))

∏

i∈Eℓ\J

(

f
(i)
str(L

ℓ
i(x)) + f

(i)
sml(L

ℓ
i(x))

)



− 3|Eℓ|η(degB′, ‖B′‖).

The inequality follows from Theorem 4.6(iii), the counting lemma (Eq. (3.1)), and the fact that the

complexity of H is at most d(deg I, ‖I‖) = pΨH(deg I,‖I‖).
Write p2 for the expectation in the last line above. By Theorem 4.6(iv), the expression inside

the expectation is non-negative so we can restrict the expectation to x such that L
ℓ
(x) = s(a).
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Thus

p2 ≥ Ex





∏

i∈J

f (i)(Lℓ
i(x))1B′−1(s(ai))(L

ℓ
i(x))

∏

i∈Eℓ\J

(

f
(i)
str(L

ℓ
i(x)) + f

(i)
sml(L

ℓ
i(x))

)

1B′−1(s(ai))(L
ℓ
i(x))



 .

Write p3 for the expectation in the last line above. Expanding the product, there are at most

2|Eℓ| terms involving f
(j)
sml for some j ∈ Eℓ \ J . Each of these is bounded in magnitude by

Ex





∣

∣

∣f
(j)
sml(Lj(x))

∣

∣

∣

∏

i∈Eℓ

1B′−1(s(ai))(L
ℓ
i(x))



 .

By applying a change of coordinates, we can assume that Lℓ
j(x) = x1. Then by the Cauchy-Schwarz

inequality, the square of the above expression is bounded by

Ex1

[

∣

∣

∣f
(j)
sml(x1)

∣

∣

∣

2
1B′−1(s(aj))(x1)

]

Ex1



1B′−1(s(aj ))(x1)Ex2,...,xℓ





∏

i6=j

1B′−1(s(ai))(L
ℓ
i(x))





2

 .

The first term is at most θ(degB, ‖B‖)2‖1B′−1(s(aj ))‖22 by Theorem 4.6(vi) and the fact that aj is

a regular atom for j ∈ Eℓ \ J . The second term can be counted by equidistribution applied to the
system L′ of 2|Ek| − 1 linear forms in 2ℓ− 1 variables defined as follows. Set

L′
j(x1, x2, . . . , xℓ, x

′
2, . . . , x

′
ℓ) := x1,

and for i ∈ Eℓ \ {j}, define
L′
i,1(x1, x2, . . . , xℓ, x

′
2, . . . , x

′
ℓ) := Lℓ

i(x1, x2 . . . , xℓ),

L′
i,2(x1, x2, . . . , xℓ, x

′
2, . . . , x

′
ℓ) := Lℓ

i(x1, x
′
2, . . . , x

′
ℓ).

By Lemma 3.23, we know that ‖B′‖ · |ΦI′(L
′)| = |ΦI′(L

ℓ
)|2 (see also [7, Lemma 5.13].)

Thus by equidistribution (Theorem 3.19) and the rank bound on B
′, we have the second term

is at most

1

|ΦI′(L′)| + α(degB′, ‖B′‖) = ‖B′‖
|ΦI′(L

ℓ
)|2

+ α(degB′, ‖B′‖) ≤ 2‖B′‖
|ΦI′(L

ℓ
)|2

.

Applying equidistribution again we have that the first term is at most

θ(degB, ‖B‖)2
(

1

‖B′‖ + α(degB′, ‖B′‖)
)

≤ 2θ(degB, ‖B‖)2
‖B′‖ .

Combining these bounds and summing over all terms that contain some f j
sml, we see that

p3 ≥ Ex





∏

i∈J

f (i)(Lℓ
i(x))1B′−1(s(ai))(L

ℓ
i(x))

∏

i∈Eℓ\J

f
(i)
str(L

ℓ
i(x))1B′−1(s(ai))(L

ℓ
i(x))



−2|Eℓ|+1 θ(degB, ‖B‖)
|ΦI′(L

ℓ
)|

.

Write p4 for the expectation above. The quantity f
(i)
str(L

ℓ
i(x)) is the density of ψ(i) in the atom

of B′ that Lℓ
i(x) lies in. When B(Lℓ

i(x)) = s(ai), the fact that ψ(i) is high density in ai for all
i ∈ Eℓ \ J implies that

p4 ≥
(

ǫ

4|S|

)|Eℓ|

Ex





∏

i∈J

f (i)(Lℓ
i(x))1B′−1(s(ai))(L

ℓ
i(x))

∏

i∈Eℓ\J

1B′−1(s(ai))(L
ℓ
i(x))



 .
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Write p5 for the expectation above. We write LJ := (Lℓ
i)i∈J . By assumption, we know that

Ex

[

∏

i∈J

f (i)(Lℓ
i(x))1B′−1(s(ai))(L

ℓ
i(x))

]

≥ β(deg I, ‖I‖)
|ΦI′(LJ)|

. (6.1)

We want to use this inequality to show that p5 is at least on the order of β(deg I, ‖I‖)/|ΦI′(L
ℓ
)|.

For simplicity, write β := β(deg I, ‖I‖) in the rest of this argument.
By applying a change of coordinates, we can assume that LJ only depends on x1, . . . , xℓ′ and is

independent of xℓ′+1, . . . , xℓ. To lower bound p5, we want to show that each tuple (x1, . . . , xℓ′) that
lies in certain atoms extends to a tuple (x1, . . . , xℓ) that still lies in certain atoms in approximately
the same number of ways. We do this by a Cauchy-Schwarz argument. Define L′′ to be the following
system of 2|Eℓ| − |J | linear forms in 2ℓ− ℓ′ variables. For i ∈ J , set

L′′
i (x1, . . . , xℓ, x

′
ℓ′+1, . . . , x

′
ℓ) := Lℓ′

i (x1, . . . , xℓ′),

and for i ∈ Eℓ \ J , define
L′′
i,1(x1, . . . , xℓ, x

′
ℓ′+1, . . . , x

′
ℓ) := Lℓ

i(x1, . . . , xℓ),

L′′
i,1(x1, . . . , xℓ, x

′
ℓ′+1, . . . , x

′
ℓ) := Lℓ

i(x1, . . . , xℓ′ , xℓ′+1, . . . , xℓ).

By Lemma 3.23, we know that |ΦI′(LJ)| · |ΦI′(L
′′)| = |ΦI′(L

ℓ
)|2.

Define S ⊆ V ℓ′ to be the set of tuples x = (x1, . . . , xℓ′) such that B
′(Lℓ

i(x)) = s(ai) for each
i ∈ J . For x ∈ S, let cx be the number of tuples x′ = (x1, . . . , xℓ) such that B′(Lℓ

i(x)) = s(ai) for

each i ∈ Eℓ. By applying equidistribution (Theorem 3.19) to LJ and L
ℓ
and L′′, we find that

|S| =
∑

x∈S

1 ≤ (1 + β/10)
|V |ℓ′

|ΦI′(LJ)|
, (6.2)

∑

x∈S

cx ≥ (1− β/10)
|V |ℓ

|ΦI′(L
ℓ
)|
, (6.3)

∑

x∈S

c2x ≤ (1 + β/10)
|V |2ℓ−ℓ′

|ΦI′(L′′)| = (1 + β/10)
|V |2ℓ−ℓ′ |ΦI′(LJ)|

|ΦI′(L
ℓ
)|2

. (6.4)

Define T ⊆ S ⊆ V ℓ′ to be the set of tuples x = (x1, . . . , xℓ′) such that B
′(Lℓ

i(x)) = s(ai) and

f (i)(Lℓ
i(x)) = 1 for each i ∈ J . Eq. (6.1) implies that

|T | ≥ β
|V |ℓ′

|ΦI′(LJ)|
. (6.5)

We express p5 as follows.

p5 =
1

|V |ℓ
∑

x∈T

cx =
1

|V |ℓ





∑

x∈S

cx −
∑

x∈S\T

cx



 ≥ (1− β/10)
1

|ΦI′(LJ)|
− 1

|V |ℓ
∑

x∈S\t

cx.

Then combining Eq. (6.2), Eq. (6.4), Eq. (6.5) with the Cauchy-Schwarz inequality gives




∑

x∈S\T

cx





2

≤ |S \ T | ·
∑

x∈S\T

c2x ≤ (1− 4β/5)
|V |2ℓ

|ΦI′ (L
ℓ
)|2

.

Taking the square root and combining the above two inequalities gives

p5 ≥
β

10

1

|ΦI′(L
ℓ
)|
.
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Combining all the above inequalities we see that p1, the H-density in f , is bounded by

p1 ≥
(

(

ǫ

4|S|

)|Eℓ| β(degB, ‖B‖)
10

− 2|Eℓ|+1θ(degB, ‖B‖)
)

1

|ΦI′(L
ℓ
)|
−3|Eℓ|η(degB′, ‖B′‖) > δ(ǫ,H).

This provides the desired contradiction. Therefore we conclude that the recoloring g : V → S has
no generic H-instances for every H ∈ H. �

Proof of Theorem 2.4. Define S := SF
×
p with F

×
p -action defined by

b′ · (cb)b∈F×
p
:= (cb′b)b∈F×

p
.

First we partition

H =
⊔

c∈S⊔{0}

Hc

as follows. If Li ≡ 0 for some i ∈ [m], place H in the set Hψ(i). Otherwise, place H in H0. (Without
loss of generality, we can assume that no pattern in H has multiple linear forms that are identically
equal to 0.)

Now we define sets Hc of S-colored patterns for each c ∈ S. Let H = (L, ψ) ∈ H0 ∪ Hc be an
S-colored pattern over Fp consisting of m linear forms in ℓ variables. We can write L = (Lℓ

i)i∈J for

some set J ⊆ F
ℓ
p of size m. We convert H to a set of patterns defined by the system L

ℓ
= (Lℓ

i)i∈Eℓ

as follows. (See Definition 2.7 for the definitions of Lℓ
i and Eℓ.) For each function ψ : Eℓ → S that

satisfies ψ(i)b = ψ(bi) whenever i ∈ Eℓ ⊆ F
ℓ
p and b ∈ F

×
p are such that bi ∈ J ⊆ F

ℓ
p, we add (L

ℓ
, ψ)

to Hc.
For each c ∈ S, we apply Theorem 2.8 to Hc with parameter ǫ. This produces a finite subset

Hc,ǫ ⊆ Hc and δc = δ(ǫ,Hc) > 0 with several desirable properties.

Let Hǫ ⊆ H be the finite subset consisting of all patterns H such that some pattern H corre-
sponding to H lies in Hc,ǫ for some c ∈ S. Let δ = minc∈S δc > 0. We claim that Hǫ, δ satisfy the
desired conclusion.

Let V be a finite-dimensional Fp-vector space. Let f : V → S be a function. Suppose that the

H-density in f is at most δ for every H ∈ Hǫ. Define f : V → S by

f(x) := (f(bx))b∈F×
p
.

Note that f is a projective function. Furthermore, we claim that the H-density in f is at most δ
for all H ∈ Hf(0). This is true simply because if x = (x1, . . . , xℓ) ∈ V ℓ is an H-instance in f , then

x is also an H-instance in f where H ∈ Hf(0) is any patterns corresponding to H ∈ H0 ⊔Hf(0).

Thus by assumption, there exists a projective recoloring g : V → S such that g agrees with f on
all but an at most ǫ-fraction of V and g has no generic H-instances for every H ∈ Hf(0).

Define g : V → S by g(x) := g(x)1 for x 6= 0 and g(0) = f(0). Note that g agrees with f on
all but an at most ǫ-fraction of V . Furthermore, note that g has no H-instances for H ∈ Hc with
c 6= f(0) since f(0) = g(0). Finally, g has no generic H-instances for H ∈ H0 ⊔ Hf(0) since any

such generic H-instance in g is a generic H-instance in g for some H corresponding H in Hf(0),
which we assumed was not the case. �

7. Proof of property testing results

Proof of Theorem 1.3. It follows from [9, Theorem 10] that a linear-invariant property is testable
only if it is semi subspace-hereditary.

Now suppose that P is a linear-invariant semi subspace-hereditary property. By definition, there
exists a subspace-hereditary property Q such that

(i) every function satisfying P also satisfies Q;
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(ii) for all ǫ > 0, there exists N(ǫ) such that if f : V → S satisfies Q and is ǫ-far from satisfying
P, then dimV < N(ǫ).

We define H a (possibly infinite) set of S-colored patterns. For each f : Fℓ
p → S that does not

satisfy Q, include H = (Lℓ, f) in H (Lℓ is the system of linear forms that defines an ℓ-dimensional
subspace, defined in Definition 2.7). Since Q is subspace-hereditary, it immediately follows that Q
consists exactly of the functions with no generic H-instances for any H ∈ H.

By Theorem 2.4, there exist a finite subset Hǫ ⊆ H and some δ(ǫ,H) > 0 such that the following
holds. If f : V → S has H-density at most δ(ǫ,H) for every H ∈ Hǫ, then f is ǫ-close to Q. Define
ℓ(ǫ) to be the largest ℓ such that some pattern defined by the system Lℓ is present in Hǫ.

Now we define the oblivious tester for P. Given ǫ > 0, the tester produces

d(ǫ) := max
{

N(ǫ/2), ⌈logp(2/δ(ǫ/2,H))⌉ + ℓ(ǫ/2)
}

.

Given a function f : V → S our tester receives oracle access to f |U where

(i) if dimV ≥ d(ǫ), then U is a uniform random affine subspace of dimension d(ǫ);
(ii) else, U = V .

Our tester works as follows. If dimU < d(ǫ) the tester accepts if f |U ∈ P. If dimU ≥ d(ǫ) the
tester accepts in f |U ∈ Q.

Suppose f ∈ P. If dimU < d(ǫ), then U = V , so f |U = f ∈ P. Thus the tester always accepts
in this case. In the other case, note that since f ∈ P, it follows that f ∈ Q, and since Q is
subspace-hereditary, f |U ∈ Q. Thus the tester also always accepts in this case.

Now suppose that f is ǫ-far from P. By the definition of Q we know that either dimV <
N(ǫ/2) ≤ d(ǫ) or f is ǫ/2-far from Q. Consider the action of the tester. If dimU < d(ǫ), then
U = V so f |U = f 6∈ P. Thus the tester always rejects in this case. In the other case, note that
since f is ǫ/2-far from Q, by assumption there is some H ∈ Hǫ/2 such that f has H-density more

than δ(ǫ/2,H). Let H = (Lℓ, ψ) for some ℓ ≤ ℓ(ǫ/2). We claim the fact that the H-density in f is
large implies that there is at least a δ(ǫ/2,H)/2-fraction of ℓ-dimensional subspaces that f colors
by ψ. (Note that this does not immediately follow since the H-density includes the contribution
of H-instances that are not generic.) We can compute that the probability a uniform random
Lℓ-instance in V is not generic is at most pℓ−dimV . It follows that the fraction of ℓ-dimensional
subspaces that f colors by ψ is at least

δ(ǫ/2,H) − pℓ−dimV ≥ δ(ǫ/2,H) − p−⌈logp(2/δ(ǫ/2,H))⌉ ≥ δ(ǫ/2,H)/2.

We conclude that in this case the tester rejects with probability at least δ(ǫ/2,H)/2, as desired. �

Proof of Theorem 1.4. Suppose P is a linear-invariant property that is PO-testable. By definition,
there exists some d, independent of ǫ and dimV , such that to test f : V → S, the tester receives
f |U where U is

(i) if dimV ≥ d, then U is a uniform random linear subspace of dimension d;
(ii) else, U = V .

We define H to be the set of patterns of the form (Ld, ψ) where ψ : Fd
p → S is a restriction

that the tester rejects on (Ld is the pattern that defines a d-dimensional subspace, defined in
Definition 2.7). We claim that for every f : V → S with dimV ≥ d, it holds that f ∈ P if and
only if f has no generic H-instances. This claim suffices to prove that H is subspace-hereditary
and locally characterized.

Suppose f : V → S satisfies P and dimV ≥ d. By the definition of PO-testable, the tester must
accept f with probability 1. Thus the tester must accept f |U for every U ≤ V of dimension d.
This implies that f has no generic H-instances. Now suppose that f : V → S does not satisfy P
and dimV ≥ d holds. By definition, the tester must accept f with positive probability. Thus there
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must be some U ≤ V of dimension d such that f |U rejects. This is equivalent to the fact that f
contains a generic H-instance for some H ∈ H, proving the desired result.

Now we show that every linear-invariant subspace-hereditary locally characterized property is
testable. Suppose P is such a property. It follows that there is some d and (finite) H consisting of
patterns of the form (Ld, ψ) such that for f : V → S with dimV ≥ d, we have f satisfies P if and
only if f has no generic H-instances.

The PO-tester for P proceeds in the obvious way. The tester is given oracle access to f |U where
U is

(i) if dimV ≥ d, then U is a uniform random linear subspace of dimension d;
(ii) else, U = V .

The tester accepts if and only if f |U ∈ P.
Suppose f : V → S satisfies P. If dimV < d, then f |U = f ∈ P, so the tester accepts f . If

dimV ≥ d, then by the fact that P is subspace-hereditary and locally characterized, it follows that
f |U ∈ P for all d-dimensional U ≤ V . Thus the tester accepts f in this case as well.

Now suppose that f : V → S is ǫ-far from P. If dimV < d, then f |U = f 6∈ P, so the tester
rejects f . If dimV ≥ d, by Theorem 2.4, there must be some H = (Ld, ψ) ∈ H such that the
H-density in f is more than δ(ǫ,H). We claim that this implies that there is a large fraction of
d-dimensional subspaces that f colors by some H ∈ H. (Note that this does not immediately
follow since the H-density includes the contribution of H-instances that are not generic.) We can
compute that at most a pd−dimV -fraction of H-instances are non-generic. Thus at least the fraction
of d-dimensional subspaces that f colors by ψ is at least

δ(ǫ,H) − pd−dimV .

This parameter is negative for small values of dimV , so we can also use the fact that since f does
not satisfy P, there is at least one d-dimensional subspaces that is colored by H. Thus the rejection
probability of this tester is at least

max
{

δ(ǫ) − pd−dimV , p−d·dimV
}

.

Note that for dimV ≥ d, this parameter is uniformly bounded away from 0, as desired. �
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