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A SHORT PROOF OF

THE CANONICAL POLYNOMIAL VAN DER WAERDEN THEOREM

JACOB FOX, YUVAL WIGDERSON, AND YUFEI ZHAO

Abstract. We present a short new proof of the canonical polynomial van der Waerden theorem,
recently established by Girão.

Girão [3] recently proved the following canonical version of the polynomial van der Waerden
theorem. Here a set is rainbow if all elements have distinct colors. We write [N ] := {1, . . . , N}.

Theorem 1 ([3]). Let p1, . . . , pk be distinct polynomials with integer coefficients and pi(0) = 0 for
each i. For all sufficiently large N , every coloring of [N ] contains a sequence x+p1(y), . . . , x+pk(y)
(for some x, y ∈ N) that is monochromatic or rainbow.

Girão’s proof uses a color-focusing argument. Here we give a new short proof of Theorem 1,
deducing it from the polynomial Szemerédi’s theorem of Bergelson and Leibman [1].

Theorem 2 ([1]). Let p1, . . . , pk be distinct polynomials with integer coefficients and pi(0) = 0
for each i. Let ε > 0. For all N sufficiently large, every A ⊂ [N ] with |A| ≥ εN contains
x+ p1(y), . . . , x+ pk(y) for some x, y ∈ N.

Our proof of Theorem 1 follows the strategy of Erdős and Graham [2], who deduced a canonical
van der Waerden theorem (i.e., for arithmetic progressions) using Szemerédi’s theorem [6].

We quote the following result, proved by Linnik [5] in his elementary solution of Waring’s problem
(see [4, Theorem 19.7.2]). Note the left-hand side below counts the number of solutions f(x1) +
· · ·+ f(xs/2) = f(xs/2+1) + · · · + f(xs) with x1, . . . , xs ∈ [n].

Theorem 3 ([5]). Fix a polynomial f of degree d ≥ 2 with integer coefficients. Let s = 8d−1. Then

∫ 1

0

∣∣∣∣∣

n∑

x=1

e2πiθf(x)

∣∣∣∣∣

s

dθ = O(ns−d).

Lemma 4. Fix a polynomial f of degree d ≥ 2 with integer coefficients. For every A ⊂ Z and

n ∈ N, the number of pairs (x, y) ∈ A× [n] with x+ f(y) ∈ A is O(|A|1+
1

s n1− d

s ), where s = 8d−1.

Proof. We write

1̂A(θ) =
∑

x∈A

e2πiθx and F (θ) =
n∑

y=1

e2πiθf(y).
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Then the number of solutions to z = x+ f(y) with x, z ∈ A and y ∈ [n] is

∫ 1

0
|1̂A(θ)|

2F (θ) dθ ≤

(∫ 1

0
|1̂A(θ)|

2s

s−1 dθ

)1− 1

s
(∫ 1

0
|F (θ)|s dθ

)1

s

[Hölder]

≤

(
|A|

2

s−1

∫ 1

0
|1̂A(θ)|

2 dθ

)1− 1

s

· O(n1− d

s ) [|1̂A(θ)| ≤ |A| and Theorem 3]

=
(
|A|

2

s−1 |A|
)1− 1

s

· O(n1− d

s ) [Parseval]

= O(|A|1+
1

s n1− d

s ). �

Lemma 5. Fix a polynomial f of degree d ≥ 1 with integer coefficients. Let A ⊂ Z. Suppose that
|A ∩ [x, x + L)| ≤ εL for every L ≥ nd and x. Then the number of pairs (x, y) ∈ A × [n] with

x+ f(y) ∈ A is O(ε1/s |A|n), where s = 8d−1.

Proof. If d = 1, then for every x ∈ A, the number of y ∈ [n] so that x+ f(y) ∈ A is O(εn) by the
local density condition on A. Summing over all x ∈ A yields the desired bound O(ε|A|n) on the
number of pairs. From now on assume d ≥ 2.

Letm = O(nd) so that |f(y)| ≤ m for all y ∈ [n]. Let Ai = A∩[im, (i+2)m). Then |Ai| = O(εm).
Every pair x, x+ f(y) ∈ A with y ∈ [n] is contained in some Ai, and, by Lemma 4, the number of

pairs contained in each Ai is O(|Ai|
1+ 1

sn1− d

s ) = O((εm)
1

s |Ai|n
1− d

s ) = O(ε1/s|Ai|n). Summing over
all integers i yields the lemma (each element of A lies in precisely two different Ai’s). �

Proof of Theorem 1. Choose a sufficiently small ε > 0 (depending on p1, . . . , pk). Consider a col-
oring of [N ] without monochromatic progressions x + p1(y), . . . , x + pk(y). By Theorem 2, every
color class has density at most ε on every sufficiently long interval.

Let D = maxi6=j deg(pi−pj). Let n be an integer on the order of N1/D so that x+p1(y), . . . , x+
pk(y) ∈ [N ] only if y ∈ [n]. For each color class A, applying Lemma 5 to f = pi − pj and
summing over all i 6= j, we see that the number of pairs (x, y) ∈ Z × [n] where at least two of

x+ p1(y), . . . , x + pk(y) lie in A is O(ε1/8
D−1

|A|n). Summing over all color classes A, we see that

the number of non-rainbow progressions x+ p1(y), . . . , x+ pk(y) ∈ [N ] is O(ε1/8
D−1

Nn). Since the
total number of sequences x+ p1(y), . . . , x+ pk(y) ∈ [N ] is on the order of Nn, some such sequence
must be rainbow, as long as ε > 0 is small enough and N is large enough. �
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