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Abstract. Settling Kahn’s conjecture (2001), we prove the following upper bound on the number
i(G) of independent sets in a graph G without isolated vertices:

i(G) ≤
∏

uv∈E(G)

i(Kdu,dv )
1/(dudv),

where du is the degree of vertex u in G. Equality occurs when G is a disjoint union of complete
bipartite graphs. The inequality was previously proved for regular graphs by Kahn and Zhao.

We also prove an analogous tight lower bound:

i(G) ≥
∏

v∈V (G)

i(Kdv+1)
1/(dv+1),

where equality occurs for G a disjoint union of cliques. More generally, we prove bounds on the
weighted versions of these quantities, i.e., the independent set polynomial, or equivalently the
partition function of the hard-core model with a given fugacity on a graph.

1. Introduction

Among d-regular graphs on n vertices, which one has the most number of independent sets? This
question was initially raised by Granville in connection with problems from combinatorial number
theory. It was conjectured by Alon [2] and Kahn [20] that, when n is divisible by 2d, the n-vertex
d-regular graph with the maximum number of independent sets is a disjoint union of complete
bipartite graph Kd,d’s. The conjecture was proved by Kahn [20] for bipartite graphs using a beautiful
entropy argument, and extended to all regular graphs by Zhao [27] via a combinatorial reduction to
the bipartite case. Specifically, the following theorem was shown. We write i(G) for the number of
independent sets of a graph G.

Theorem 1.1 (Kahn [20], Zhao [27]). Let G be an n-vertex d-regular graph. Then

i(G) ≤ i(Kd,d)
n/(2d) = (2d+1 − 1)n/(2d).

Equality holds if and only if G is a disjoint union of Kd,d’s.

Note that i(G t H) = i(G)i(H), where G t H denotes a disjoint union of two graphs. If we
exponentially normalize the number of independent sets as i(G)1/|V (G)|, then the theorem says that
among d-regular graphs, this quantity is maximized by G = Kd,d, as well as disjoint unions of copies
of Kd,d.

As many interesting combinatorial problems can be phrased in terms of independent sets in graphs
and hypergraphs, the problem of bounding the number of independent sets is of central interest.
For example, see the ICM 2018 survey [4] on the recent breakthroughs on the hypergraph container
method of Balogh, Morris, and Samotij [3] and independently Saxton and Thomason [25], which
built partly on the earlier work by Sapozhenko [24], a precursor to Theorem 1.1, giving a weaker
upper bound for i(G).

Recently, Davies, Jenssen, Perkins, and Roberts [10] proved a strengthening of Theorem 1.1 using
a novel technique they called the “occupancy method”, which has also been applied to other settings
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such as matchings, colorings, and Euclidean sphere packings [10, 11, 12, 18, 19]. See the recent
survey [29] for an overview of related developments.

Kahn [20] conjectured an extension of Theorem 1.1 to not necessarily regular graphs, where the
conjectured maximizer is also a disjoint union of complete bipartite graphs Ka,b’s, where a, b may
differ for each component. Specifically, it was conjectured that for a graph G without isolated
vertices (i.e., degree-0 vertices),

i(G) ≤
∏

uv∈E(G)

i(Kdu,dv)
1/(dudv),

where du is the degree of vertex u in G.
The conjecture can be rephrased in terms of the following extremal problem. Let the degree-degree

distribution of G be the probability distribution of the unordered pair {du, dv} as uv ranges uniformly
over edges of G. An example of a degree-degree distribution is that 20% of edges have one endpoint
having degree 2 and the other degree 3, 30% of edges have (3, 3), and 50% of edges have (3, 4).
What the maximum of i(G)1/v(G) over all graphs G with a given degree-degree distribution? Kahn’s
conjecture states that the maximum is attained when G is a disjoint union of complete bipartite
graphs with the prescribed degree-degree distribution of edges.

Galvin and Zhao [15] gave a computer-assisted proof of the conjecture when the maximum degree
of G is at most 5. It is not known if the recent occupancy method [10] can be extended to irregular
graphs, as there appear to be some fundamental obstacles.

Our main result, below, proves Kahn’s conjecture, thereby generalizing Theorem 1.1 to irregular
graphs.

Theorem 1.2. Let G be a graph without isolated vertices. Let dv the degree of vertex v in G. Then

i(G) ≤
∏

uv∈E(G)

i(Kdu,dv)
1/(dudv) =

∏
uv∈E(G)

(2du + 2dv − 1)1/(dudv).

Equality holds if and only if G is a disjoint union of complete bipartite graphs.

Remark. A vertex version of this inequality, i.e., i(G) ≤
∏
v∈V (G) i(Kdv ,dv)

1/(2dv), is false, e.g., for a
path on 4 vertices, as 8 6≤

√
63.

Kahn’s proof [20] of the bipartite case of Theorem 1.1 made clever use of Shearer’s entropy
inequality [6]. It remains unclear how to apply Shearer’s inequality in a lossless way in the irregular
case, despite previous attempts to do so, e.g., [22]. Kahn’s entropy proof was later generalized to
the weighted setting (see (1) below) by Galvin and Tetali [14], as well as more generally to graph
homomorphisms (also see [17]), though the entropy proof remained the only approach known until
Lubetzky and Zhao [21] gave a “one-line” proof via Hölder’s inequality, which can be viewed as
a re-interpretation of Kahn’s entropy proof (see [13] for a discussion relating Shearer’s inequality
to Hölder’s inequality). Still, the Hölder’s inequality method in [21] could not handle irregular
graphs. Our new result in this paper hints at the possibility of a powerful new “non-uniform Hölder’s
inequality” that could have much wider applications, though we do not speculate here on the exact
form of such a more general inequality.

We also prove an analogous but somewhat easier lower bound. The number of independent sets,
exponentially normalized as i(G)1/|V (G)|, is known to be minimized among d-regular graphs by
G = Kd+1.

Theorem 1.3 (Cutler and Radcliffe [8]). Let G be an n-vertex d-regular graph. Then

i(G) ≥ i(Kd+1)n/(d+1) = (d+ 2)n/(d+1).

Equality holds if and only if G is a disjoint union of Kd+1’s.



THE NUMBER OF INDEPENDENT SETS IN AN IRREGULAR GRAPH 3

Our second result extends the above inequality to irregular graphs.

Theorem 1.4. Let G be graph and dv the degree of vertex v in G. Then

i(G) ≥
∏

v∈V (G)

(dv + 2)1/(dv+1).

Equality holds if and only if G is a disjoint union of cliques.

We also establish weighted versions of the above results. Let the independent set polynomial of G
be

PG(λ) =
∑

I∈I(G)

λ|I|.

Here I(G) denotes the set of independent sets of G. Note that PG(1) = i(G). This polynomial is
the weighted sum over all independent sets I of G, where the set I is assigned weight λ|I|. The
parameter λ is usually called fugacity. The quantity PG(λ) is the partition function of the hard-core
model with fugacity λ from statistical physics, which is an important model for choosing a random
independent set I of G, where each I is chosen with probability proportional to λ|I|.

Theorem 1.1 was extended by Galvin and Tetali [14] (along with the same reduction by Zhao [27])
to PG(λ), showing that for every n-vertex d-graph graph G, and parameter λ > 0, we have

PG(λ) ≤ PKd,d(λ)n/(2d) = (2(1 + λ)d − 1)n/(2d). (1)

We extend this result to irregular graphs. Theorem 1.2 is the λ = 1 special case of the following
result.

Theorem 1.5. Let G be graph without isolated vertices. Let dv the degree of vertex v in G. Let
λ > 0. Then

PG(λ) ≤
∏

uv∈E(G)

PKdv,du (λ)1/(dudv) =
∏

uv∈E(G)

((1 + λ)du + (1 + λ)dv − 1)1/(dudv).

Equality holds if and only if G is a disjoint union of complete bipartite graphs.

Theorem 1.5 reduces to bipartite G via [27] as we will explain in Section 2. For bipartite graphs,
we have the following slightly more general result that allows two different weights.

A bigraph G = (A,B,E) is a bipartite graph with a specified vertex bipartition V (G) = A tB
and edge set E ⊆ A×B. We define the two-variable independent set polynomial of the bigraph G by

PG(λ, µ) =
∑

I∈I(G)

λ|I∩A|µ|I∩B|.

Theorem 1.5 has the following bivariate extension.

Theorem 1.6. Let G = (A,B,E) be a bigraph without isolated vertices. Let dv denote the degree of
vertex v in G. Let λ, µ > 0. Then

PG(λ, µ) ≤
∏
uv∈E

u∈A,v∈B

((1 + λ)dv + (1 + µ)du − 1)1/(dudv).

Equality holds if and only if G is a disjoint union of complete bipartite graphs.

We also generalize the lower bound Theorem 1.4 to the independent set polynomial. Theorem 1.4
follows from the next result by setting λ = 1.

Theorem 1.7. Let G be a graph. Let dv denote the degree of vertex v in G. Let λ > 0. Then

PG(λ) ≥
∏

v∈V (G)

PKdv+1
(λ)1/(dv+1) =

∏
v∈V (G)

((dv + 1)λ+ 1)1/(dv+1).

Equality holds if and only if G is a disjoint union of cliques.
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The proofs of all these theorems follow an induction strategy used by Galvin and Zhao [15],
which we outline in the next section. In [15] the strategy was carried out to prove the upper bound,
Theorem 1.2, for graphs of maximum degree at most 5 with the help of a computer. In this paper, we
establish a number of analytic inequalities that allow us to prove the results without the maximum
degree assumption. The proofs of some of these inequalities are fairly technical verifications, and
they are deferred to the appendix.

After outlining the strategy, we prove the lower bound results, Theorems 1.4 and 1.7, in Section 3,
followed by the upper bound results, Theorem 1.2, 1.5, and 1.6, in Section 4. Both proofs use similar
ideas, but the upper bound proof is more challenging to execute.

Finally, we conclude in Section 5 by offering some corollaries, including how to bound the number
of independent sets given the degree distribution of a graph. We also give some remarks on potential
applications of the method to other open problems, such as counting the number of colorings and
graph homomorphisms.

2. Proof strategy

The proof proceeds by induction on the number of vertices of G. Let us sketch the proof of
the upper bound in the unweighted setting (Theorem 1.2). The strategy for the lower bound
(Theorem 1.4) is similar.

Let iso(G) denote the number of isolated vertices in G. Set

j(G) := 2iso(G)
∏

uv∈E(G)

i(Kdu,dv)
1/(dudv).

Theorem 1.2 then says that i(G) ≤ j(G) for all graphs G.
In [27], Theorem 1.1, the upper bound on the number of independent sets in a regular graph, was

reduced to bipartite graphs via a bipartite swapping trick (later elaborated in [28]). It was shown
that i(G)2 ≤ i(G×K2). Here × denotes the graph tensor product. The graph G×K2 is also known
as the bipartite double cover of G, and it has vertices V (G)× {0, 1}, and an edge between (u, 0) and
(v, 1) for every uv ∈ E(G). It is easy to see that j(G)2 = j(G×K2), since lifting G to its bipartite
double cover G×K2 preserves degrees. Thus it suffices to show that i(G×K2) ≤ j(G×K2), which
reduces to proving i(G) ≤ j(G) for all bipartite graphs G.

We use induction on the number of vertices of G. Also, since both i(G) and j(G) factor over
connected components of G, we may assume that G is connected.

The number of independent sets i(G) satisfies the following easy recurrence relation. For every
vertex w,

i(G) = i(G− w) + i(G− w −N(w)),

where G − w denotes G with the vertex w deleted (along with all edges incident to w), and
G− w −N(w) denotes G with w and all neighbors of w deleted. The recurrence relation follows
from noting that i(G − w) counts the number of independent sets of G not containing w, and
i(G− w −N(w)) counts the number of independent sets of G containing w. Applying induction, it
suffices to show that, for if w is a maximum degree vertex of G, then

j(G− w) + j(G− w −N(w)) ≤ j(G). (2)

This inequality was conjectured by Galvin and Zhao [15], with a computer-assisted proof1 when
G has maximum degree at most 4. Here we prove the above inequality for all G and an arbitrary
maximum degree vertex w.

Let Vk denote the the set of vertices at distance exactly k from the vertex w. So in particular
V0 = {w} and V1 = N(w). Since G is assumed bipartite, there are no edges within each Vk. Let

1Ad-hoc tricks were used in [15] to handle maximum degree 5 graphs, due to computational limitations.
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∆
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V2
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E3

Figure 1. Setup for the proofs of Theorems 1.2 and 1.4

Ek denote the edges between Vk−1 and Vk. Write E≥k :=
⋃
i≥k Ei. We have E = E≥1 since G is

connected. See Figure 1.
For each v ∈ Vk, its neighbors are contained in Vk−1 ∪ Vk+1. We write d+

v to denote the number
of neighbors of v contained in Vk+1. Then the terms in (2) can be written as

j(G) = 2iso(G)
∏

(u,v)∈E

i(Kdu,dv)
1/(dudv),

j(G− w) = 2iso(G−w)
∏

(u,v)∈E2
v∈V1

i(Kdu,d
+
v

)1/(dud
+
v )

∏
(u,v)∈E≥3

i(Kdu,dv)
1/(dudv), and

j(G− w −N(w)) = 2iso(G−w−N(w))
∏

(u,v)∈E3
u∈V2

i(Kd+
u ,dv

)1/(d+
u dv)

∏
(u,v)∈E≥4

i(Kdu,dv)
1/(dudv).

Observe that the factor
∏
k≥4

∏
(u,v)∈Ek i(Kdu,dv)

1/(dudv) is present is all three expressions. By
eliminating this common factor, we see that (2) reduces to

2|I1|
∏

(u,v)∈E2
v∈V1

i(Kdu,d
+
v

)1/(dud
+
v )

∏
(u,v)∈E3

i(Kdu,dv)
1/(dudv) + 2|I2|

∏
(u,v)∈E3
u∈V2

i(Kd+
u ,dv

)1/(d+
u dv)

≤
∏

(u,v)∈E≤3

i(Kdu,dv)
1/(dudv),

where Ik is the set vertices in Vk that become isolated once we delete Vk−1 from G. In other words,
Vk is the set of vertices whose neighborhood is contained in Vk−1. Thus the inequality (2) only
depends on the subgraph of G induced by V0 ∪ V1 ∪ V2 ∪ V3, which is a more tractable problem.2

2This is in fact a finite problem if we fix the maximum degree of G. This observation led to the approach in [15].
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We prove the above inequality by carefully analyzing the quantities i(Ka,b)
1/(ab), including some

judicious applications of Hölder’s inequality.

3. Lower bound

In this section we prove Theorem 1.7, which states that PG(λ) ≥ P−G (λ), where recall PG(λ) =∑
I∈I(G) λ

|I|, and we set

P−G (λ) :=
∏

v∈V (G)

((dv + 1)λ+ 1)1/(dv+1).

We proceed by induction on the number of vertices in G. The case |V (G)| = 1 is trivial. Since
PGtH(λ) = PG(λ)PH(λ) and P−GtH(λ) = P−G (λ)P−H (λ), it suffices to prove the inequality when G is
connected.

Suppose G has maximum degree ∆. Let w be a vertex of degree ∆. Let Vk denote the set of
vertices at distance exactly k from w, e.g., V0 = {w} and V1 = N(w). Write V≥k =

⋃
i≥k Vi. Since

G is connected, V (G) = V≥0. For u ∈ V2, let eu be the number of its neighbors in V1 = N(w), and
fu be the number of remaining neighbors, so that eu + fu = du.

By considering independent sets containing w versus those that do not, we obtain the recursion

PG(λ) = PG−w(λ) + λPG−w−N(w)(λ).

By the induction hypothesis, we have PG−w(λ) ≥ P−G−w(λ) and PG−w−N(w)(λ) ≥ P−G−w−N(w)(λ).
Thus to prove PG(λ) ≥ P−G (λ) it suffices to show

P−G−w(λ) + λP−G−w−N(w)(λ) ≥ P−G (λ). (3)

We have
P−G−w(λ) =

∏
v∈V1

(dvλ+ 1)
1
dv

∏
v∈V≥2

((dv + 1)λ+ 1)
1

dv+1

and
λPG−w−N(w)(λ) = λ

∏
v∈V2

((fv + 1)λ+ 1)
1

fv+1

∏
v∈V≥3

((dv + 1)λ+ 1)
1

dv+1 .

After removing the common the factor
∏
v∈V≥3

((dv + 1)λ+ 1)
1

dv+1 , (3) is seen to be equivalent to∏
v∈V1

(dvλ+ 1)
1
dv

∏
v∈V2

((dv + 1)λ+ 1)
1

dv+1 +λ
∏
v∈V2

((fv + 1)λ+ 1)
1

fv+1 ≥
∏

v∈V0∪V1∪V2

((dv + 1)λ+ 1)
1

dv+1 .

On the right-hand side, the only V0 contribution is v = w with dw = ∆. Dividing both sides by the
V2 contributions, we see that the inequality is equivalent to∏

v∈V1

(dvλ+ 1)
1
dv + λ

∏
v∈V2

((fv + 1)λ+ 1)
1

fv+1

((dv + 1)λ+ 1)
1

dv+1

≥ ((∆ + 1)λ+ 1)
1

∆+1

∏
v∈V1

(dvλ+ 1)
1
dv . (4)

Observe that
(a+ 1)1/a > (b+ 1)1/b for 0 < a < b, (5)

which follows from taking logarithms and noting that log(x+ 1) is concave, so that log(x+ 1)/x is
decreasing for x > 0. So ((fv + 1)λ+ 1)

1
fv+1 ≥ ((dv + 1)λ+ 1)

1
dv+1 as fv ≤ dv. Thus, to prove (4), it

suffices to prove that∏
v∈V1

(dvλ+ 1)
1
dv + λ ≥ ((∆ + 1)λ+ 1)

1
∆+1

∏
v∈V1

((dv + 1)λ+ 1)
1

dv+1 . (6)
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In fact, we will prove this inequality for arbitrary reals dv ∈ [1,∆] for v ∈ V1. Recall that
|V1| = |N(w)| = ∆. Let

f(d1, . . . , d∆) :=

∏∆
v=1(dvλ+ 1)

1
dv + λ∏∆

v=1((dv + 1)λ+ 1)
1

dv+1

.

It suffices to show that f(d1, . . . , d∆) ≥ f(∆, . . . ,∆) = ((∆ + 1)λ+ 1)
1

∆+1 for all reals d1, . . . , d∆ ∈
[1,∆].

Since f is symmetric in its variables, it suffices to show f(d1, . . . , d∆) ≥ f(∆, d2, . . . , d∆) for all
reals d2, . . . , d∆ ∈ [1,∆], so that we can iterate and replace each variable dv by ∆.

By (5), we have (dvλ+ 1)
1
dv ≥ (∆λ+ 1)

1
∆ for each v. Using the fact that a ≥ b ≥ 0 and c ≥ d ≥ 0

imply ac+1
bc+1 ≥

ad+1
bd+1 (it is equivalent to (a− b)(c− d) ≥ 0), we have

f(d1, d2, . . . , d∆)

f(∆, d2, . . . , d∆)
=

(
(d1λ+ 1)

1
d1
∏∆
v=2(dvλ+ 1)

1
dv + λ

(∆λ+ 1)
1
∆
∏∆
v=2(dvλ+ 1)

1
dv + λ

)(
((∆ + 1)λ+ 1)

1
∆+1

((d1 + 1)λ+ 1)
1

d1+1

)

≥

(
(d1λ+ 1)

1
d1
∏∆
v=2(∆λ+ 1)

1
∆ + λ

(∆λ+ 1)
1
∆
∏∆
v=2(∆λ+ 1)

1
∆ + λ

)(
((∆ + 1)λ+ 1)

1
∆+1

((d1 + 1)λ+ 1)
1

d1+1

)

=
(d1λ+ 1)

1
d1 (∆λ+ 1)

∆−1
∆ + λ

((∆ + 1)λ+ 1)
∆

∆+1 ((d1 + 1)λ+ 1)
1

d1+1

.

Thus it remains to prove

(∆λ+ 1)
∆−1

∆ (dλ+ 1)
1
d + λ ≥ ((∆ + 1)λ+ 1)

∆
∆+1 ((d+ 1)λ+ 1)

1
d+1 (7)

for 1 ≤ d ≤ ∆, which is proved in Lemma A.1.
Equality conditions. Suppose equality occurs in Theorem 1.7. We still assume that G is connected.

Since λ > 0, Lemma A.1 implies that to have equality in (7), we must have d = ∆. Therefore
equality holds in f(d1, . . . , d∆) ≥ f(∆, . . . ,∆) if and only if d1 = · · · = d∆ = ∆. Thus dv = ∆ for
all v ∈ V1. Since (5) is strict for a < b, to maintain equality in reducing (4) to (6), we must have
fv = dv for all v ∈ V2, but this is impossible unless V2 is empty since every vertex in V2 is adjacent
to some vertex in V1. Therefore, V2 is empty, which forces G = K∆+1.

The inequality is strict for all connected G except for cliques. Since the inequality factors over
connected components, we see that equality occurs for a general graph G if and only if G is a disjoint
union of cliques. This completes the proof of Theorem 1.7.

4. Upper bound

In this section we prove Theorem 1.6. Note that Theorem 1.5 (and hence Theorem 1.2) follows by
setting µ = λ in Theorem 1.6 and using PG(λ)2 ≤ PG×K2(λ)2 from [27] to reduce Theorem 1.5 to
the bipartite setting.

For a bigraph G = (A,B,E), where E ⊆ A × B, recall PG(λ, µ) =
∑

I∈I(G) λ
|I∩A|µ|I∩B|. Let

isoA(G) and isoB(G) denote the number of isolated vertices of G lying in A and B respectively. Set

P+
G (λ, µ) := (1 + λ)isoA(G)(1 + µ)isoB(G)

∏
(u,v)∈E

((1 + µ)du + (1 + λ)dv − 1)1/(dudv).

We use the notation convention that u ∈ A and v ∈ B (this is consistent with (u, v) ∈ E as E ⊆ A×B
is a set of ordered pairs). Our aim is to prove Theorem 1.6, which says that PG(λ, µ) ≤ P+

G (λ, µ) for
all bigraphs G and weights λ, µ > 0.

We use induction on the number of vertices of G. If G has maximum degree at most 1, i.e., a
union of isolated edges and vertices, then the theorem is trivial to verify.
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Since both PG(λ, µ) and P+
G (λ, µ) factor over connected components of G, we may assume that

G is connected.
Suppose G has maximum degree ∆ ≥ 2. Let w be a vertex of degree ∆. Without loss of generality,

assume that w ∈ A. Let Vk denote the set of vertices at distance exactly k from w, e.g., V0 = {w}
and V1 = N(w). Write V≥k =

⋃
i≥k Vi. Note that V2k ⊆ A and V2k+1 ⊆ B. For each i ≥ 1, define

Ei ⊆ E to be the set of edges of the bigraph between Vi−1 and Vi. Write E≥k =
⋃
i≥k Ei. Since G is

a connected, E = E≥1. By considering independent sets of G containing v and those not containing
v, we have

PG(λ, µ) = PG−w(λ, µ) + λPG−w−N(w)(λ, µ).

By induction, it suffices to prove that

P+
G (λ, µ) ≥ P+

G−w(λ, µ) + λP+
G−w−N(w)(λ, µ). (8)

For each k ≥ 1, let Ik = {v ∈ Vk : N(v) ⊆ Vk−1}, i.e., the set of vertices in Vk that become
isolated after we remove Vk−1 from G. For u ∈ V2, let eu be the number of its neighbors in V1, and
fu be the number of its neighbors in V3, so that eu + fu = du.

We have (recall we assume that G is connected, so it has no isolated vertices)

P+
G−w(λ, µ) = (1+µ)|I1|

∏
(u,v)∈E2

((1+µ)du+(1+λ)dv−1−1)
1

du(dv−1)

∏
(u,v)∈E≥3

((1+µ)du+(1+λ)dv−1)
1

dudv

and

λP+
G−w−N(w)(λ, µ) = λ(1+λ)|I2|

∏
(u,v)∈E3

((1+µ)fu+(1+λ)dv−1)
1

fudv

∏
(u,v)∈E≥4

((1+µ)du+(1+λ)dv−1)
1

dudv .

Thus (8) expands as∏
(u,v)∈E

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

≥ (1 + µ)|I1|
∏

(u,v)∈E2

((1 + µ)du + (1 + λ)dv−1 − 1)
1

du(dv−1)

∏
(u,v)∈E≥3

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

+ λ(1 + λ)|I2|
∏

(u,v)∈E3

((1 + µ)fu + (1 + λ)dv − 1)
1

fudv

∏
(u,v)∈E≥4

((1 + µ)du + (1 + λ)dv − 1)
1

dudv .

Dividing by
∏

(u,v)∈E≥3
((1 + µ)du + (1 + λ)dv − 1)

1
dudv , the inequality is equivalent to∏

(u,v)∈E1∪E2

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

≥ (1 + µ)|I1|
∏

(u,v)∈E2

((1 + µ)du + (1 + λ)dv−1 − 1)
1

du(dv−1)

+ λ(1 + λ)|I2|
∏

(u,v)∈E3

((1 + µ)fu + (1 + λ)dv − 1)
1

fudv

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

. (9)

By Lemma A.2, using fu ≤ du and dv ≤ ∆, we have

((1 + µ)fu + (1 + λ)dv − 1)
1

fudv

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

≤ ((1 + µ)fu + (1 + λ)∆ − 1)
1

fu∆

((1 + µ)du + (1 + λ)∆ − 1)
1

du∆

,
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so

∏
(u,v)∈E3

((1 + µ)fu + (1 + λ)dv − 1)
1

fudv

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

≤
∏

(u,v)∈E3

((1 + µ)fu + (1 + λ)∆ − 1)
1

fu∆

((1 + µ)du + (1 + λ)∆ − 1)
1

du∆

=
∏

u∈V2\I2

((1 + µ)fu + (1 + λ)∆ − 1)
1
∆

((1 + µ)du + (1 + λ)∆ − 1)
fu
du∆

,

where in the last step we use that each u ∈ V2 is contained in exactly fu edges of E3. Thus, to prove
(9), it suffices to show

∏
(u,v)∈E1∪E2

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

≥ (1 + µ)|I1|
∏

(u,v)∈E2

((1 + µ)du + (1 + λ)dv−1 − 1)
1

du(dv−1)

+ λ(1 + λ)|I2|
∏

u∈V2\I2

((1 + µ)fu + (1 + λ)∆ − 1)
1
∆

((1 + µ)du + (1 + λ)∆ − 1)
fu
du∆

. (10)

Apply Hölder’s inequality in the form of ap + b ≤ (a + b)p(1 + b)1−p for a, b > 0 and p ∈ [0, 1]
with a = (1 + µ)du , b = (1 + λ)∆ − 1 and p = fu/du, we obtain

(1 + µ)fu + (1 + λ)∆ − 1 ≤
(

(1 + µ)du + (1 + λ)∆ − 1
) fu
du (1 + λ)∆(1− fu

du
). (11)

Thus ∏
u∈V2\I2

((1 + µ)fu + (1 + λ)∆ − 1)
1
∆

((1 + µ)du + (1 + λ)∆ − 1)
fu
du∆

≤
∏

u∈V2\I2

(1 + λ)1− fu
du .

We have
∑

u∈V2\I2(1− fu
du

) =
∑

u∈V2\I2
eu
du

=
∑

(u,v)∈E2

1
du
− |I2| since eu is the number of edges of

E2 containing u as an endpoint. Thus, to prove (10), it suffices to show

∏
(u,v)∈E1∪E2

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

≥ (1 + µ)|I1|
∏

(u,v)∈E2

((1 + µ)du + (1 + λ)dv−1 − 1)
1

du(dv−1) + λ
∏

(u,v)∈E2

(1 + λ)
1
du . (12)

Let us upper bound the right-hand side by applying Hölder’s inequality in the form

k∏
i=1

apii +

k∏
i=1

bpii ≤
k∏
i=1

(ai + bi)
pi , where

k∑
i=1

pi = 1, (13)

with the exponents pi being the summands of

|I1|
∆

+
∑

(u,v)∈E2

1

∆(dv − 1)
= 1
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(as each v ∈ V1 appears as an endpoint in dv − 1 edges of E2). The right-hand-side of (12) equals

((1 + µ)∆)
|I1|
∆

∏
(u,v)∈E2

(
((1 + µ)du + (1 + λ)dv−1 − 1)

∆
du

) 1
∆(dv−1)

+ λ
|I1|
∆

∏
(u,v)∈E2

(
λ(1 + λ)

∆(dv−1)
du

) 1
∆(dv−1)

≤
(
(1 + µ)∆ + λ

) |I1|
∆

∏
(u,v)∈E2

(
((1 + µ)du + (1 + λ)dv−1 − 1)

∆
du + λ(1 + λ)

∆(dv−1)
du

) 1
∆(dv−1)

(14)

by Hölder’s inequality (13). On the other hand, the left-hand side of (12) may be written as (recall
that all edges in E1 have w as an endpoint)∏

v∈V1

((1 + µ)∆ + (1 + λ)dv − 1)
1

∆dv

∏
(u,v)∈E2

((1 + µ)du + (1 + λ)dv − 1)
1

dudv

= ((1 + µ)∆ + λ)
|I1|
∆

∏
(u,v)∈E2

((1 + µ)∆ + (1 + λ)dv − 1)
1

∆dv(dv−1) ((1 + µ)du + (1 + λ)dv − 1)
1

dudv ,

(15)

obtained by distributing each ((1 + µ)∆ + (1 + λ)dv − 1)
1

∆dv factor on the left-hand side evenly over
all edges of E2 containing v, noting that the exponents add up as 1

∆dv
=
∑

u:(u,v)∈E2

1
∆dv(dv−1) for

each v ∈ V1. It remains to show that the right-hand side of (14) is at most (15), which would follow
if for every (u, v) ∈ E2,

((1 + µ)du + (1 + λ)dv−1 − 1)
∆
du + λ(1 + λ)

∆(dv−1)
du

≤ ((1 + µ)∆ + (1 + λ)dv − 1)
1
dv ((1 + µ)du + (1 + λ)dv − 1)

∆(dv−1)
dudv .

By Lemma A.3, this inequality holds for all reals 1 ≤ du, dv ≤ ∆ and λ, µ > 0.
Equality conditions. Suppose equality occurs in Theorem 1.6. We still assume that G is connected.

Since λ, µ > 0, Lemma A.3 further implies that du = ∆ or dv = 1 for all (u, v) ∈ E2. Notice
that every v with (u, v) ∈ E2 has dv ≥ 2, so du = ∆ for all u ∈ V2. To have equality in (11),
we must have fu ∈ {0, du} for every u ∈ V2 \ I2, since to attain equality in Hölder’s inequality
ap + b ≤ (a+ b)p(1 + b)1−p with a > 1 and b > 0, we must have p ∈ {0, 1}. But eu = du − fu ≥ 1 by
definition of V2, and thus fu = 0 for all u ∈ V2 \ I2, and hence V2 = I2, which implies that G = K∆,dv

for some v ∈ V1.
The inequality is strict for all connected G except for complete bipartite graphs. Since the

inequality factors over connected components, we see that equality occurs for a general graph G
if and only if G is a disjoint union of complete bipartite graphs. This completes the proof of
Theorem 1.6.

5. Further remarks

5.1. Degree conditions. As a corollary of our main theorems, we obtain tight bounds on the
exponentially normalized number i(G)1/|V (G)| of independent sets of a graph G subject to the degree
distribution of G, i.e., the fraction of vertices of every degree. (The minimization problem is actually
equivalent to Theorem 1.7.)

Let λ > 0 and let ρ = (ρ0, ρ1, . . . ) be a finitely supported sequence of nonnegative rational
numbers summing to 1. Let fmin(ρ;λ) and fmax(ρ;λ) denote the minimum and maximum possible



THE NUMBER OF INDEPENDENT SETS IN AN IRREGULAR GRAPH 11

values, respectively, of PG(λ)1/|V (G)|, over all graphs G with degree distribution ρ, i.e., exactly
ρi|V (G)| vertices of G have degree i for each i ≥ 0.

Theorem 1.7 says us that the minimum possible value of PG(λ)1/|V (G)| is attained by a disjoint
union of cliques, so that

fmin(ρ;λ) =
∏
i≥0

PKi+1(λ)
ρi
i+1 .

Theorem 1.5 implies that the maximum possible value of PG(λ)1/|V (G)| is attained by a disjoint
union of complete bipartite graphs, where the vertices of largest degree are paired with the vertices
of smallest degree successively in a greedy fashion, assuming that the number of vertices satisfies
appropriate divisibility conditions. We give the corresponding function fmax(ρ;λ) recursively. We
expand the domain of fmax by dropping the requirement that ρ sums to 1. Let ∆(ρ) and δ(ρ) denote
the largest and smallest nonzero indices in ρ, respectively, with ∆(ρ) = δ(ρ) = −1 if these indices
do not exist. Finally, let ei denote the sequence ρ = (ρ0, ρ1, . . . ) with ρi = 1 and ρj = 0 for all j 6= i.
We claim that fmax is given by the recursion: writing δ = δ(ρ) and ∆ = ∆(ρ),

fmax(ρ;λ) =


2ρ0 if δ = −1,

PKδ,∆(λ)ρδ/∆fmax(ρ− ρδeδ − δ
∆ρδe∆;λ) if δ 6= −1 and δρδ ≤ ∆ρ∆,

PKδ,∆(λ)ρ∆/δfmax(ρ− ∆
δ ρ∆eδ − ρ∆e∆;λ) if δ 6= −1 and ∆ρ∆ ≤ δρδ.

This recursion terminates after a finite number of steps, since the support of ρ becomes strictly
smaller at each step.

The claim follows from Theorem 1.5 along with the following observation. If a < b and c < d,
and G contains bd copies of Ka,c and ac copies of Kb,d, then by replacing them by bc copies of Ka,d

and ad copies of Kb,c, we never decrease PG(λ), as PKa,c(λ)bdPKb,d(λ)ac ≤ PKa,d(λ)bcPKb,c(λ)ad by
Lemma A.2. Note that this operation does not change the degree distribution of the graph.

Given any G that is a disjoint union of complete bipartite graphs, after taking an appropriate
number of disjoint copies of G, we may successively apply the above operation so that, at the end of
the process, we have a disjoint union of complete bipartite graphs where the edges consist of the
largest degree vertices successively paired off with the smallest degree vertices. It is easy to see
that there is a unique such pairing as long as the number of vertices is highly divisible (which is
true as we took many disjoint copies of the graph in an earlier step), and the maximum value of
PG(λ)1/|V (G)| corresponds to the fmax stated above.

A similar procedure lets us obtain the extrema for PG(λ)1/|V (G)| subject to conditions on the
minimum/average/maximum degree of G. The expressions are somewhat complicated, so we do not
include them here.

5.2. Bounds on independence number. We note a couple of neat corollaries. Theorem 1.7 says
that ∑

I∈I(G)

λ|I| ≥
∏

v∈V (G)

((dv + 1)λ+ 1)1/(dv+1).

Letting λ→∞ and comparing the growth rate of the two sides, we obtain the following lower bound
on the independence number α(G) (the size of the largest independent set of G):

α(G) ≥
∑

v∈V (G)

1

dv + 1
.

This is actually the classic Caro–Wei bound [5, 26], from which Turán’s theorem can be deduced
by noting that the right-hand side is, by convexity, at least |V (G)|/(d+ 1), where d is the average
degree in G. The Caro–Wei bound has a short probabilistic proof (taken from [1]): randomly order
the vertices of G and consider the independent set where we include a vertex if it appears before all
its neighbors. The right-hand side above is the expected size of this independent set.
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Similarly, starting with Theorem 1.5, which says∑
I∈I(G)

λ|I| ≤ (1 + λ)iso(G)
∏

uv∈E(G)

((1 + λ)du + (1 + λ)dv − 1)1/(dudv),

and taking λ→∞, we have

α(G) ≤
∑

(u,v)∈E(G)

1

min(du, dv)
+ iso(G).

This inequality also has a quick proof: given an independent set I, for each v ∈ I, assign weight
1/dv to all edges incident to v, and note that the right-hand side upper bounds the sum of the
edge-weights.

5.3. Extensions to colorings and graph homomorphisms. Let cq(G) denote the number of
q-colorings of a graph G. The following conjecture of Galvin and Tetali [14] remains one of the most
interesting open problems on this topic.

Conjecture 5.1. For q ≥ 3 and n-vertex d-regular graph G,

cq(G) ≤ cq(Kd,d)
n/(2d).

Galvin and Tetali proved the result for bipartite G (analogous to Kahn’s [20] bound on independent
sets). Zhao’s bipartite swapping trick [27, 28] did not extend to q-colorings. Very recently, the d = 3
case was proved by Davies, Jenssen, Perkins, and Roberts [12] using the occupancy method (along
with a computer-aided verification), and it was later extended to d = 4 [9].

To tackle this conjecture using our methods, one needs to formulate a more general conjecture,
e.g., [16]

cq(G) ≤
∏

uv∈E(G)

cq(Kdu,dv)
1/(dudv).

However, the number of colorings does not have the nice recursive relation i(G) = i(G− w) + i(G−
w − N(w)) for independent sets. A natural workaround is to consider list-colorings, i.e., assign
every vertex v a list Lv of possible remaining colors. Then there is an easy recursive relation on the
number of list colorings: for each possible color assignment to w, delete w from G, and remove the
assigned color from the lists of the neighbors of w.

More generally, Galvin and Tetali [14] proved that the number, hom(G,H), of graph homomor-
phisms from G to H, where H is a fixed graph allowing loops, satisfies the following inequality: for
every n-vertex d-regular bipartite graph G,

hom(G,H) ≤ hom(Kd,d, H)n/(2d).

This general setup includes independent sets as hom(G, ) = i(G). It also includes q-colorings as
hom(G,Kq) = cq(G). The bipartite assumption on G cannot be relaxed in general, for example by
taking H to be two looped vertices. Nonetheless, there are lots of interesting results and conjectures
regarding what happens when one relaxes the bipartiteness assumption. See the survey [29].

It was conjectured [7] that hom(G,H) ≤ hom(Kd,d, H)n/(2d) for all triangle-free G. Furthermore,
as with Theorem 1.2, it was conjectured [16]3 that for all triangle-free G,

hom(G,H) ≤
∏

uv∈E(G)

hom(Kdu,dv , H)1/(dudv).

We believe that these conjectures are amenable to our methods. We plan to address them in a
follow-up work.

3The triangle-free assumption was missing in [16].
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Notes added. We proved all conjectures mentioned above in our follow-up work [23]. The
methods in [23] would also give a more streamlined proof of Theorem 1.6, eliminating the need for
the calculus verifications in the appendix.
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Appendix A. Some analytic inequalities

This appendix contains a number of technical inequalities used in the proof of the main theorems.

Lemma A.1. Fix ∆ ≥ 1 and λ > 0. Then the function

g(x) = (∆λ+ 1)
∆−1

∆ (xλ+ 1)
1
x + λ− ((∆ + 1)λ+ 1)

∆
∆+1 ((x+ 1)λ+ 1)

1
x+1

is strictly decreasing for 0 < x < ∆. In particular, g(x) > 0 for 0 < x < ∆ because g(∆) = 0.

Proof. We need g′(x) < 0. We have

g′(x) =
(∆λ+ 1)

∆−1
∆

(xλ+ 1)
x−1
x

(
λ

x
− (xλ+ 1)(log(xλ+ 1))

x2

)

− ((∆ + 1)λ+ 1)
∆

∆+1

((x+ 1)λ+ 1)
x
x+1

(
λ

x+ 1
− ((x+ 1)λ+ 1) log((x+ 1)λ+ 1)

(x+ 1)2

)
.

We have (xλ+1) log(xλ+1)
x2 − λ

x > 0 and ((x+1)λ+1) log((x+1)λ+1)
(x+1)2 − λ

x+1 > 0 since they both follow from

the inequality (y + 1) log(y + 1) − y > 0 for y > 0, equivalent to log
(

1
y+1

)
< 1

y+1 − 1. Thus it
suffices to prove that

(xλ+ 1) log(xλ+ 1)

x2
− λ

x
≥ ((x+ 1)λ+ 1) log((x+ 1)λ+ 1)

(x+ 1)2
− λ

x+ 1
(16)

and
(xλ+ 1)

x−1
x

((x+ 1)λ+ 1)
x
x+1

<
(∆λ+ 1)

∆−1
∆

((∆ + 1)λ+ 1)
∆

∆+1

. (17)

The inequality (16) follows as the function

h(x) =
(xλ+ 1) log(xλ+ 1)

x2
− λ

x
is nonincreasing, as

h′(x) =
2λx− (λx+ 2) log(λx+ 1)

x3
≤ 0,

where we used (y + 2) log(y + 1)− 2y ≥ 0 for y ≥ 0, which is true since it is true at y = 0 and its
derivative is y+2

y+1 + log(y + 1)− 2 = 1
y+1 − 1− log

(
1
y+1

)
≥ 0.

The inequality (17) follows by proving that the function

k(x) = (xλ+ 1)
x−1
x

is strictly log-concave on (0,∞). This reduces to showing that

d2

dx2
[log k(x)] =

xλ(2 + 3xλ− x2λ)− 2(xλ+ 1)2 log(xλ+ 1)

x3(xλ+ 1)2
> 0,

which is equivalent to
xλ(2 + 3xλ− x2λ)

2(xλ+ 1)2
< log(xλ+ 1)
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for x > 0. This is true since there is equality at x = 0 and

d

dx

[
log(xλ+ 1)− xλ(2 + 3xλ− x2λ)

2(xλ+ 1)2

]
=
x2λ2(λ(x+ 2) + 3)

2(xλ+ 1)3
> 0. �

Lemma A.2. For β ≥ α > 0 and λ, µ ≥ 0. Then the function

f(x) =
((1 + µ)α + (1 + λ)x − 1)

1
αx

((1 + µ)β + (1 + λ)x − 1)
1
βx

is nondecreasing on (0,∞).

Proof. Let

r(x, y) := x log x+ y log y +
xy

x+ y − 1
log x log y − (x+ y − 1) log(x+ y − 1).

Let us show that, for x, y ≥ 1, we have r(x, y) ≥ 0, which is equivalent to

q(x)q(y) ≥ q(1)q(x+ y − 1)

where q(t) = 1 + t
x+y−1 log t. Consider the function

p(α) = log q(c− α) + log q(c+ α),

where c = x+y
2 . It suffices to check that p′(α) is nonpositive when α ∈ [0, c− 1], since, upon taking

logs, the left side is at α = |x−y|
2 and the right side is at α = x+y

2 − 1, which is larger since x, y ≥ 1.
Taking derivative, we have

p′(α) =
(c− α− 1) log(c+ α)− log(c− α)(c+ α− 1)− 2α log(c+ α) log(c− α)

((c− α) log(c− α) + 2c− 1)((c+ α) log(c+ α) + 2c− 1)
.

Since c ≥ 1 and α ∈ [0, c − 1], it follows that the denominator in this expression is positive.
Furthermore, for α > 0 the numerator is at most

γ(α) = (c− α− 1) log(c+ α)− (c+ α− 1) log(c− α).

Its second derivative is

γ′′(α) =
2α(5c2 − α2 − 2c)

(c+ α)2(c− α)2
> 0,

since c2 > α2 and c2 ≥ c. Hence, in order to verify γ(α) ≤ 0 for 0 ≤ α ≤ c− 1, it suffices to check
the endpoints. In fact γ(0) = γ(c− 1) = 0, so γ is indeed nonpositive. Hence r(x, y) ≥ 0 for x, y ≥ 1
as required.

Now we return to the inequality stated in the lemma. It suffices to check that log f(x) is
nondecreasing on this interval, since clearly f takes positive values. We have

∂

∂x
log f(x) = s(x, α)− s(x, β)

where

s(x, t) =
(1 + λ)x log(1 + λ)

tx((1 + µ)t + (1 + λ)x − 1)
− log((1 + µ)t + (1 + λ)x − 1)

tx2
.

Since α ≤ β, it suffices to check that the partial derivative ∂s/∂t, which is true since

∂s(x, t)

∂t
= − r((1 + λ)x, (1 + µ)t)

x2t2((1 + λ1)x + (1 + µ)t − 1)
≤ 0

by our inequality r(x, y) ≥ 0 for all x, y ≥ 1. �
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Lemma A.3. Let c1, c2 ≥ 0, and let u, v, w ≥ 1 be positive reals with 1 ≤ u ≤ w and 1 ≤ v ≤ w.
Then

(1 + c1)(v−1)w
u c1 +

[
(1 + c1)v−1 + (1 + c2)u − 1

]w
u

≤ [(1 + c1)v + (1 + c2)u − 1]
w(v−1)
uv ((1 + c1)v + (1 + c2)w − 1)

1
v .

Equality holds if and only if v = 1 or w = u or c1c2 = 0.

Proof. When v = 1, equality holds since both sides evaluate to (1 + c2)w + c1. Similarly, if c1 = 0,
then both sides evaluate to (1 + c2)w and if c2 = 0 then both sides evaluate to (1 + c1)

w(v−1)
u

+1.
Hence, we will assume v > 1 and c1, c2 > 0 from now on.

Applying Hölder’s inequality to the left-hand side, we get

(1 + c1)(v−1)w
u c+ ((1 + c1)v−1 + (1 + c2)u − 1)

w
u

=
[
c1(1 + c1)v−1

] 1
v

[
c1(1 + c1)

wv
u
−1
] v−1

v

+
[
(1 + c2)w + (1 + c1)v−1 − 1

] 1
v

[[(1 + c1)v−1 + (1 + c2)u − 1
] vw
u

(1 + c1)v−1 + (1 + c2)w − 1

] 1
v−1


v−1
v

≤ [(1 + c2)w + (1 + c1)v − 1]
1
v

c1(1 + c1)
wv
u
−1 +

[[
(1 + c1)v−1 + (1 + c2)u − 1

] vw
u

(1 + c1)v−1 + (1 + c2)w − 1

] 1
v−1


v−1
v

.

Therefore it suffices to prove that

c1(1 + c1)
wv
u
−1 +

[[
(1 + c1)v−1 + (1 + c2)u − 1

] vw
u

(1 + c1)v−1 + (1 + c2)w − 1

] 1
v−1

≤ [(1 + c1)v + (1 + c2)u − 1]
w
u .

Let a = (1 + c1)v−1, b = (1 + c2)u − 1, t = w
u , c = c1. Then upon dividing through by the right

hand side, the above inequality can be rewritten as F1 + F2 ≤ 1, where

F1 =

(
ac

a+ ac+ b

)t(
1 + c

c

)t−1

and F2 =

(
a+ b

a+ ac+ b

)t(
(a+ b)t

a+ (b+ 1)t − 1

) log(1+c)
log a

.

It suffices to prove that for all a > 1, b > 0, c > 0, t ≥ 1, one has F1 + F2 ≤ 1. Fix a > 1, b > 0, and
c > 0. Set

F (t) := logF2 − log(1− F1).

We need to show that F (t) ≤ 0 for all t ≥ 1 with equality if and only if t = 1. We have F (1) = 0, so
it suffices to check that F ′(t) < 0 for t > 1, which follows from the following two facts

(A) F ′(1) < 0.
(B) There exists a function M(t) which is positive on (1,∞), and for which M(t)F ′(t) is

nonincreasing.

We have

F ′(t) = log

(
a+ b

a+ ac+ b

)
+

log(1 + c) log(a+ b)

log a
− log(1 + c) log(1 + b)

(log a)
(

1 + a−1
(b+1)t

) − log
(

a+ac
a+ac+b

)
1−

(
a+ac
a+ac+b

)−t(
1 + 1

c

) .
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Proof of (A). We have

F ′(1) = log
( a+ b

a+ ac+ b

)
+

log(1 + c) log(a+ b)

log a
− log(1 + c) log(1 + b)(1 + b)

log a(a+ b)
+

log
(

a+ac
a+ac+b

)
ac

a+ b
.

Hence F ′(1) < 0 is equivalent to, upon multiplying through by (a+ b) log a, substituting d = c+ 1,
and rearranging,

(a+ b) log(ad) log(a+ b) + (ad− a) log(ad) log a < (ad+ b) log(ad+ b) log a+ (1 + b) log(1 + b) log d.

Note that both sides are equal if b = 0. We claim that the difference (RHS − LHS) is strictly
increasing in b. Indeed, upon taking a derivative this is equivalent to

log(ad) log(a+ b) < log a log(ad+ b) + log d log(1 + b),

which is in turn equivalent to, upon dividing through by log(ad) > 0,

log(a+ b) ≤ log a

log a+ log d
log(ad+ b) +

log d

log a+ log d
(1 + b),

which follows from Jensen’s inequality on the strictly convex function r(x) = log(ex + b) and the
fact that ad > 1, b > 0. This completes the proof of (A).

Proof of (B). Set d = c+ 1, so that

F ′(t) = log

(
a+ b

ad+ b

)
+

log d log(a+ b)

log a
− log d log(1 + b)

log a ·
(

1 + a−1
(b+1)t

) − log(ad+b
ad )(

ad+b
ad

)t(
d
d−1

)
− 1

.

Set
M(t) =

(ad+ b

ad

)t
− d− 1

d
.

We have M(t) > 0 for t > 1 since d > 1 and b > 0. Note that M ′(t) = log(ad+b
ad )(ad+b

ad )t. We
compute:

d

dt
(M(t)F ′(t)) = M ′(t)

(
log d log(b+ a)

log a
+ log

( a+ b

ad+ b

))

−M ′(t) log d log(1 + b)

log a ·
(

1 + a−1
(b+1)t

) −M(t)
log d log2(b+ 1)(a− 1)(b+ 1)t

log a[(b+ 1)t + a− 1]2

= log
(ad+ b

ad

)(ad+ b

ad

)t( log d log(b+ a)

log a
+ log

( a+ b

ad+ b

))

− log d log(1 + b)

log a

[(ad+ b

ad

)t
log
(ad+ b

ad

)( (b+ 1)t

(b+ 1)t + a− 1

)

+ log(b+ 1)(a− 1)

((ad+ b

ad

)t
− d− 1

d

)
(b+ 1)t

[(b+ 1)t + a− 1]2

]
.

We wish to show this is nonpositive. For this, we first invoke the estimate
log d log(b+ a)

log a
+ log

( a+ b

ad+ b

)
≤ log d log(b+ 1)

log a
.

Indeed, this is equivalent to
log a

log a+ log d
log(ad+ b) +

log d

log a+ log d
log(1 + b) ≥ log(a+ b),



THE NUMBER OF INDEPENDENT SETS IN AN IRREGULAR GRAPH 17

which follows from Jensen’s inequality applied to the convex function x 7→ log(ex + b). Using this

estimate and dividing through by
(

ad
ad+b

)t
log d log(b+1)

log a > 0, it suffices to check that

log

(
ad+ b

ad

)(
a− 1

a− 1 + (b+ 1)t

)
≤ log(b+ 1)(a− 1)

(
1− d− 1

d

( ad

ad+ b

)t) (b+ 1)t

[(b+ 1)t + a− 1]2
.

Multiplying through by [(b+1)t+a−1]2

(b+1)t(a−1) > 0, this is equivalent to

log

(
ad+ b

ad

)(
1 +

a− 1

(b+ 1)t

)
≤ log(b+ 1)

(
1− d− 1

d

( ad

ad+ b

)t)
.

The left side is decreasing in t, while the right side is increasing in t. Hence it suffices to check the
inequality at t = 1, which simplifies to

log
(ad+ b

ad

)
(ad+ b) ≤ log(b+ 1)(b+ 1).

This follows from ad > 1, along with the fact that the function x 7→ (x+ b) log(x+b
x ) is decreasing as

the derivative is log(1 + b
x)− b

x ≤ 0. This completes the proof of (B), and hence the proof of the
lemma.

Tracing out the equality conditions, we saw that in the case that c1, c2 > 0 and v > 1, equality
holds exactly when t = 1, that is, w = u. �
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