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UPPER TAIL LARGE DEVIATIONS FOR ARITHMETIC
PROGRESSIONS IN A RANDOM SET

BHASWAR B. BHATTACHARYA, SHIRSHENDU GANGULY, XUANCHENG SHAO, AND YUFEI ZHAO

ABSTRACT. Let Xj denote the number of k-term arithmetic progressions in a random subset
of Z/NZ or {1,..., N} where every element is included independently with probability p.
We determine the asyrnptotlcs of logP(Xy, > (14 6)EXy) (also known as the large deviation
rate) where p — 0 with p > N~ for some constant ¢ > 0, which answers a question of
Chatterjee and Dembo. The proofs rely on the recent nonlinear large deviation principle of
Eldan, which improved on earlier results of Chatterjee and Dembo. Our results complement
those of Warnke, who used completely different methods to estimate, for the full range of p,
the large deviation rate up to a constant factor.
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1. INTRODUCTION

Let X} denote the number of k-term arithmetic progressions (k-AP) in the random set
2, where 2 is taken to be either Z/NZ or [N] := {1,..., N} throughout this paper, and €,
denotes the random subset of €2 where every element is included independently with probability
p. The upper tail problem asks to estimate the probability that X, significantly exceeds its
expectation. This problem has received some interest over the years |8, 25, 31|. More generally,
the problem of computing tail probabilities of a sum of weakly dependent random variables
has a long and interesting history [2, 6, 8, 9, 10, 13, 14, 22, 23, 24, 25, 26, 28, 27, 30, 31].
There has been many exciting recent developments, particularly in the setting of random
graphs [6, 8, 14|, where one is interested in the concentration of the number of triangles in
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an Erdés—Rényi random graph G(V, p). See Chatterjee’s recent survey [7] and the references
therein for an introduction to recent developments on large deviations in random graphs.

The recent work of Warnke [31] settles the question of the asymptotic order of P(Xj >
(14 6)EX) when Q = [N]. Warnke [31]| shows that for fixed § > 0 and k > 3, there exists
constants ¢, C' > 0 (depending only on k) such that

pOVANP2 < pUx > (14 6EX,) < poVoNe”, (1.1)

as long as p = py > (log N/N)¥* =1 and p is bounded away from 1. Prior to Warnke’s work,
the best upper bound [25] was P(X;, > (1 + 6)EX,) < e=?**N for some constant ¢; > 0
depending on k£ and §. However, the natural question of precise asymptotics still remained
open.

The main result of this paper shows for every k£ > 3, fixed 6 > 0, and Q = [N], if

p=pN > N~&GD log N and p — 0, then, as N — oo,
P(Xi > (1+ 6)EX}) = plHot)Vone, (1.2)

The lower bound to the probability can be seen by forcing an interval of length (1 +
o(1))V/8p*2N to be present in €, so that it generates the extra dEX), many k-APs as desired.
For the special case of k£ = 3, which was also treated in [8], methods in [15] combined with
Fourier analysis allow us to take p > N~"/'®log N, improving on the p > N~1/162(Jog N)34/162
hypothesis in [8]. For k > 4, (1.2) is the first large deviation result for k-AP counts allowing p
to decay as N ¢, thereby answering a question posed by Chatterjee and Dembo [8, Section 1.8]
and improving on Warnke’s result in the appropriate regime.?

The proofs rely on the powerful nonlinear large deviation principle (LDP) developed
by Chatterjee and Dembo [8], which was recently improved by Eldan [15] using different
methods, namely stochastic control theory. These LDPs reduce the determination of the
large deviation rate (i.e., asymptotics of log-probability) in many combinatorial problems to
a natural variational problem involving entropies. For the problem of upper tails of subgraph
counts in a sparse random graph, the corresponding variational problem was recently solved
[2, 28]. For arithmetic progressions, Chatterjee and Dembo were able to verify the hypotheses
of their LDP for 3-term arithmetic progressions but not longer ones |8, Section 1.5]. More
recently, Eldan [15] provided a different, but related, set of hypotheses for his LDP, involving
the supremum of an associated Gaussian process (see Theorem 3.1). We prove the necessary
bounds to apply Eldan’s LDP for arithmetic progressions of arbitrary fixed length. We remark
that similar arguments can also be used to verify Chatterjee and Dembo’s LDP hypotheses
for arithmetic progressions of any fixed length. Some interesting open problems in additive
combinatorics arise in the analysis of this Gaussian process (see Section 4).

After establishing the LDP, we solve the corresponding variational problem. Here, there
are two regimes, below, depending on how ¢ decays to zero compared to p.

(1) In the macroscopic (large §) regime, where §3p*~2(log(1/p))? — 0, the solution of
the variational problem reduces to the extremal problem of maximizing the number
of k-APs in a set of given size, which was solved by Green and Sisask [18] for 3-APs,
and extended to k-APs in Theorem 2.4. The solution to this extremal problem is

Hna previous arXiv version of this paper, we proved the result with p decaying extremely slowly, as our
previous proof depended on the heavy-powered inverse theorem for Gowers uniformity norms due to Green,
Tao, and Ziegler [20].
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attained by an interval. The case of fixed § > 0, namely the asymptotic (1.2), belongs
to this regime.

(2) In the microscopic (small §) regime, where 6 3p*~2(log(1/p))? — oo, the variational
problem exhibits a rather different qualitative behavior compared to the previous case.
We show that

P(Xk > (1 + (S)EXk) — ef(c+o(1))52Np’
for some explicit constant ¢ > 0 depending on k and (2.

Note that in both these regimes above we require p = py — 0. If both p and § are fixed,
the situation is quite different, and we report some partial results for this setting in Section 7.

It is worth comparing these results for arithmetic progressions to the corresponding results
for triangles in a random graph. Let X, denote the number of copies of K3 in G(N,p).
It was shown in [28] (again relying on [8], which was recently improved in [15]) that for
p=py — 0 with p > N~Y/8log N and fixed § > 0, one has

P(Xg, > (14 0)EX ) = plito)min{d®?/2,0/5pNp2

This result was extended in [2], which determined the upper tail large deviation rate of Xy
for every graph H. The extra complexity in the above expression, as compared to (1.2), arises
from the dichotomy of methods of generating many extra triangles: we can either force a
clique to be present, or force a small subset of vertices to be connected to all other vertices.

2. STATEMENTS OF RESULTS

2.1. Notation. We recall some standard asymptotic notations. For two nonnegative se-
quences (fy)n>1 and (gn)n>1, fo S gn means f, = O(gn); fn ~ gn means f, = (1 + o(1))gn;
and f, < g, means f, = O(g,), i.e., fu < gn S fu. Subscripts in the above notation, for
example, Op(+), <g, =g denote that the hidden constants may depend on the subscripted
parameters. We always treat k& (as in k-AP) as a constant, and the dependence of the
hidden constants on k is always implicitly assumed and may be suppressed in the asymptotic
notation.

For any set A in some ambient abelian group (in this paper the ambient group will always
be either Z or Z/N7Z) and k > 3, we write Ti(A) to denote the number of pairs (a,b) of
elements in the ambient group such that a,a + b,a + 2b,...,a + (k — 1)b € A. Note that
every non-trivial k-AP is counted twice, and every trivial k-AP (i.e., b = 0) is counted once.
It will be convenient to state our results in terms of Tj(A).

For p € (0,1) and a subset 2 in the ambient group, denote by 2, C Q the random set
obtained by independently including each element in €2 with probability p. Throughout the
paper, we will consider two settings:

(1) Q=[N]={1,...,N}, and
(2) Q=7Z/NZ.
The ambient group is Z and Z/NZ in the two respective settings. Note that, as long as
pFTIN — oo, it is easy to see that ET,(€,) = p*(Tk(Q) — |Q2]) +p|Q| ~ p*T}(Q). In this paper
we are interested in the upper tail probability, P(Ty(€2,) > (1+0)ET,(2,)), when p = py — 0,
as N — oo (0 = dy may also depend on N).
The relative entropy function with respect to Bernoulli(p) is denoted

1—
I(z) := xlogE + (1 —x)log . ’
p
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Finally, denote the weighted k-AP count of a function f : 2 — R by

Zf fla+0b)--- fla+ (k—1)b). (2.1)

Here a and b each range over all elements of the ambient group (either Z or Z/NZ) such that
{a,a+0b,...,a+ (k—1)b} C Q. By convention, when 2 = [N], we set f(z) = 0 for all x ¢ Q.
Note that Ti(A) = T(14), where 1,4 is the indicator function of A.

2.2. Large deviation principle. Let us write

£:Q—[0,1]

P (5) := inf {Z I( To(f) > (1+ 5)kak(Q)} (2.2)
for the natural large deviations variational problem for upper tails of k-AP counts. We will
establish in Section 3.1 the following LDP for k-APs, via Eldan’s LDP [15].

Theorem 2.1. Fiz k > 3. Let Q = [N] or Z/NZ. Let p = pn be bounded away from 1, and
d =0dn >0 with 6 = O(1) such that

min{dp*, 6*p} > N~ log N. (2.3)
Then, as N — oo,
—log P(T3,(€) > (1 + 6)ETi(2)) = (1 + 0(1)¢8 (5 + o(6)). (2.4)

Furthermore, for k = 3, the right-hand side of (2.3) can be relaxed to N~'/%(log N)7/5; for
k =4, it can be relazed to N~'/2(log N)'¥/12,

Remark. For fixed § > 0, the theorem requires p to decay slower than N~ SR Very recently,
Briét and Gopi [5] improved the exponent from 73T which improves our result

1 1
Sh=T) O GRThT
for all £ > 5. It remains an open problem to extend the range of validity of p. In comparison,
Warnke’s asymptotics (1.1) on the order of log-probability holds for all p > (log N/N)Y/ =1,

In the above theorem, 0 is allowed to decay as a function of N, and there is a qualitative

change in the behavior of (b;()k’m (0) depending on how quickly § decays compared to p. Drawing
a parallel from statistical physics?, we refer to the two regimes by:

e Macroscopic scale: when § is “large”, namely when 6 3p*~2(log(1/p))? — 0; and
e Microscopic scale: when § is “small”, namely when §3p*~2(log(1/p))? — co.

2.3. Macroscopic scale. In the macroscopic scale, —3p*~2(log(1/p))? — 0. Here, it might
be helpful to think of § as a constant or tending to zero “slowly” compared to p. We will
establish, in Section 5, the following asymptotic solution to the variational problem (2.2) in
this regime.

2The terms macroscopic /microscopic appear in many contexts in the statistical mechanics literature, and
is generically used to described large/small scale behaviors, respectively. However, the exact definitions vary
depending on the problem in question.
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Theorem 2.2. Fix k > 3. Let Q = [N] or Z/NZ, and in the latter case assume that N
is prime. Let p = py — 0 and § = 6x > 0 be such that § = O(1), §p*N? — oo, and
6 3pF~2(log(1/p))* = 0. Then, as N — oo,

3y V(8) = (1 + o(1))/(k — 1)op*T;,(2) log(1/p)
_ {(1 + o(1))Vdp*2N log(1/p) if Q= [N],

(14 0(1))\/(k — 1)dp*/2N1og(1/p) if Q = Z/NZ with prime N.

Remark. In the case of constant ¢, say, while the above solution to the variation problem
needs only p* N? — oo, a stronger condition p*"'N — oo (implying ET}(€,) ~ p*Tk(2)) is
necessary even just for the concentration of the random variable T (€2,).

We prove Theorem 2.2 by first reducing the variational problem to an extremal problem in
additive combinatorics, namely that of determining the size of the smallest subset of 2 with
a given number of k-APs, or equivalently, the maximum number of k-APs in a subset of €2 of
a given size.

Proposition 2.3. Under the same hypotheses as Theorem 2.2 (except that N is not required
to be prime in the case Q = Z/NZ), as N — o0,

3(8) = (1 + o(1))log(1/p) -min {|S] : T4(8) = 6" () . (25)

The number of k-APs in a set of given (sufficiently small) size is always maximized by an
interval, as stated precisely below. The theorem below was proved for 3-APs by Green and
Sisask [18] and extended to all k-APs in Section 8.

Theorem 2.4. Fix a positive integer k > 3. There exists some constant ¢, > 0 such that the
following statement holds. Let A C Z be a subset with |A| =n, or A C Z/NZ with N prime
and |Al =n < ¢ .N. Then Ti(A) < Ti([n]).

After some algebra one easily obtains

2 2
R e
where r € {1,2,...,k — 1} is chosen such that n = r (mod k — 1). In particular we have
") < 2 tk— (2.6)
k—1- Y S o1 Ty ' ’

From this formula we can easily deduce Theorem 2.2 from Proposition 2.3.
Combining with the large deviation principle Theorem 2.1, we obtain the following corollary
on the large deviation rate for upper tails of k-AP counts.

Corollary 2.5. Fiz k > 3. Let Q = [N] or Z/NZ, and in the latter case assume that N is
prime. Let p=py — 0 and § = dx > 0 be such that § = O(1), §3p*2(log(1/p))? — 0, and

5pF > N™1 log N (2.7)

(for k = 3, the right-hand side can be relaved to N~/%(log N)7/S; for k = 4, it can be relaved
to N~Y'2(log N)'3/12). Then, as N — oo, the random variable Xy = T},(€),) satisfies

—logP (X, > (14+0)EX,) |14 o0(1) if Q= [N],
VopE/2N log(1/p) | VE=1+0(1) if Q=7Z/NZ with prime N.
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Remark. When Q = Z/NZ, it is standard to assume N — oo along the primes to avoid
torsion issues. Without the primality assumption, the leading constant in the large deviations
rate function could depend on the subsequence along which N goes to infinity (a similar
issue was discussed in [12]). For example, when N = N; Ny, the maximum number of k-APs
in Z/NZ in a set of size N is given by A = NoZ/NZ, which has T},(A) = N, more than
T([N1]) = N#/(k — 1) + O(1). Thus, as a consequence of Proposition 2.3, we could have a
different constant in Corollary 2.5 for Q = Z/NZ if N — oo along some sequence other than
the primes.

2.4. Microscopic scale. In the microscopic scale, 6 3p*2(log(1/p))? — co. Here § = oy
is thought as tending to zero relatively quickly compared to p = py. We will establish, in
Section 6, the following asymptotic solution to the variational problem (2.2) in this regime.

Theorem 2.6. Fiz k > 3. Let Q = Z/NZ or [N]. Let p =py € (0,1) and 6 = ox > 0 be
such that p — 0 and 6—3p*~2(log(1/p))?> — oo. Then, as N — oo,

1 2 O —
Qg](gk,ﬂ)((;) _ EW+ 0(1)) 0°Np if Q=7Z/NZ,

1
5 0(1)) §Np if Q= [N],

where

7k=%<k+ > (k1) (;il_f]z)gl_j) ) (2.8)

0<i<j<k

Remark. The first few values of «; are v3 = 28/3, 74 = 17, and 5 = 718/27. We are not aware
of a closed-form expression for ~,. However, one always has v, > k%, and asymptotically
limg o 1/k* = (30 — 27%) /9 ~ 1.14.

Combining with the large deviation principle Theorem 2.1, we obtain the following corollary.

Corollary 2.7. Fiz k > 3. Let Q = [N] or Z/NZ, and in the latter case assume that N is
prime. Let p=py — 0 and § = 5y > 0 be such that § = O(1), §3pF~2(log(1/p))? — oo, and

min{dp”, §*p} > N5 log N

(for k = 3, the right-hand side can be relazed to N—'/%(log N)7/S; for k = 4, it can be relaved
to N~Y/'2(log N)'3/12). Then, as N — oo, the random variable X, = T},(S),) satisfies

—logP (X > (14+0)EX;)  [1/(2k*) +0(1) ifQ=Z/NZ,
0*Np | W/@w) Fo(1) if Q= [N],
where v is defined in (2.8).

The upper bound on gzﬁj(ok’ﬂ) in Theorem 2.6 for 2 = Z/NZ is obtained by taking the
constant function on Q with value p(1 + §)/*, which turns out to be tight asymptotically
to the first order. This behavior, where the solution to the variational problem is obtained
by a constant function, at least asymptotically, suggests that the reason for many k-APs
in the microscopic scale is a uniform boost in the density of the set, and such phenomena
are referred to in the literature as replica symmetry [10]. (Admittedly we are somewhat
abusing terminology here, as replica symmetry in previous works [10, 27, 32| on random
graphs refer to setting of constant p and ¢§). In Section 7 we record some partial results on
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replica symmetry for constant p and o for k-APs. On the contrary, in the macroscopic scale,
many k-APs are created by a smaller set arranged in a special structure, for example, an
interval, and this is referred as replica symmetry breaking.

When Q = [N], in the microscopic scale, the asymptotically optimal solution to the
variational problem turns out not to be a constant function, but rather, a function that
assigns each a € [N] to a number proportional to the number of k-APs in [/N] containing a.
This is due to the asymmetry of the elements in [N], as the elements in the middle bulk are
contained in more k-APs than those in the fringe. Even though the constant function does
not asymptotically minimize the variational problem in this setting, the solution nevertheless
exhibits some features of replica symmetry (by analogy to the Z/NZ setting). We find this
new phenomenon interesting, as we are not aware of analogous results in the random graph
setting.

3. GAUSSIAN WIDTH AND NON-LINEAR LARGE DEVIATIONS

In this section we apply Eldan’s non-linear large deviation principle [15] to k-AP upper
tails, reducing the large deviation rate problem to a variational problem. The proof relies on
bounding the Gaussian width of a set of gradients, which will be done in Section 4.

3.1. Eldan’s LDP. We start with a short discussion of Eldan’s [15] result (adapted to our
setting). For any K C RY define the Gaussian width of K by

GW(K) :=E[sup (z, Z)]
zeK
Wherf, the expectation is taken over Z ~ Normal(0, Iy), a standard Gaussian random vector
" lil‘%or 'any function F': {0,1}" — R, define its discrete derivatives by
DiscDerv; F(y) = F(y1,- -+ Yi-1, L, Yis1s- - YN) — F (Y15 ¥im1,0, Yig1, - -, YN)
for any i € [N] and y = (y1,¥2,-..,yn) € {0, 1}, and its discrete gradient by
DiscGrad F(y) = (DiscDervy F(y), ..., DiscDervy F(y)).

A key quantity is the Gaussian width of the set of all discrete gradients of F', which we denote
by

DiscGW(F) := GW ({DiscGrad F(y) : y € {0,1}"} U {0}) . (3.1)
Define the discrete Lipschitz constant of F' by
DLip(f) = max  DiscDerv; f(y).

1€[N],ye{0,1}N

Improving an earlier result of Chatterjee and Dembo [8|, Eldan [15] proved a large deviation
principle for general non-linear functions F': {0,1}" — R satisfying certain hypotheses on its
set of discrete gradients. The large deviation rate is given in terms of the natural variational
problem:

el (t) = inf {le(yi):EF(Y)ZtN}, (3.2)

yel0,1]V

where the expectation is taken with respect to a random vector Y = (Y7,Y5,...,Yy) with
Y; ~ Bernoulli(y;) independently for every i € [N].
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Theorem 3.1 (Eldan [15]). Let X = (X1, Xo,...,Xy) € {0,1}Y be a random wvector
with i.i.d. X; ~ Bernoulli(p). Given a function F: {0,1}Y — R, for every t,e € R with
0<e<@l(t—e)/N, we have

log P(F(X) > tN) <~k (t — ¢) (1 - M)

N1/3
with
1/3

2/3
L= (2DLip(F) + = DLip(F) + [Hog(p(1 )] ) (DicGW(F) + L DLip(Y?)
(3.3)

Moreover, whenever the assumption % DLip(F)? < % holds, the following lower bound holds:

log P(F(X) > (t —&)N) > =l (t) (1 + Nig DLip(F)Q) —log 10.

Denote the usual gradient and partial derivatives of F': RY — R by
VFE :=(0,F,...,0nF).
Define
GW(F) == GW ({VF(y): y € {0,1)¥} U {0}) (3.4
for the continuous analog of DiscGW (F') from (3.1). These two quantities differ only negligibly
in our applications.

Lemma 3.2. For any twice-differentiable F: RN — R, we have
N
| DiscGW(F) = GW(F)[ <Y sup [0,F ()],
i—1 €0,V
where 0;F = 0°F/dx;0x; denotes the (i, j)-th partial deriwative of F and DiscGW (F) is
defined by considering the restriction of F to {0,1}.

Proof. Applying the intermediate value theorem (twice), we have
|DiscDerv; F(y) — 0;F(y)| < sup |0 F(x)]

z€[0,1]NV
for any y € {0,1}". Thus for any Z = (Z,...,Zy) € RY and any y € {0,1}¥,
| DiscGrad F(y). 2) — (VE@). 2)| < Y sup [0aF(@)[|Z].

; z€[0, 1)V
The result follows by first taking the supremum over y, and then taking an expectation over
Z ~ Normal(0, Iy) and using E|Z;| = O(1). O

3.2. LDP for k-AP. Now, we apply Theorem 3.1 to derive a large deviation principle for
k-AP counts, conditioned on bounds for the Gaussian width of the gradients of the k-AP
counting function.

By viewing points in R as functions Q — R, the previously defined k-AP functional 7},
can be viewed as a function on R? by

Ti(y) = ZyayaeryaJer < Yar(k-1)b, Y E R,
a,b
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In the case Q = [NV], the indices a and b both range over Z, and we set y, = 0 if a ¢ [N].
In the case 2 = Z/NZ, the indices a and b both range over Z/NZ and the indices of y are
taken mod N. Recall the definition (2.2) of the variational problem for upper tails of k-AP
counts, reproduced here:

PPFN(8) == inf {ZI Ya) : Thly (1+5)kak(Q)}. (3.5)

y€[0,1]¢
We will apply Theorem 3.1 to the function F' = T} /N. The relevant Gaussian width is
GW(Ty/N) = GW ({£VTi(y): y € {0,1}"}).

Note that we do not need to include the origin in the definition since VT (0) = 0. We have
the “trivial” bounds:

VN < GW(T,/N) S N. (3.6)
The lower bound comes from considering the constant vector y = (1,...,1), and the upper
bound comes from noting that + V7 (y) is coordinatewise O(1) for all y € {0, 1}

The main result of this section is the following proposition, showing that any power-saving
improvement to the trivial upper bound to GW(T;/N) leads to a large deviation principle
allowing the probability p to decay as N~¢. Combining it with bounds on the Gaussian width
(to be proved in the next section) gives Theorem 2.1.

Proposition 3.3. Fiz k > 3. Suppose we have real constants o, T such that

GW(Ty/N) = O(N'~?(log N)7). (3.7)
Let p = pn be bounded away from 1, and § = o > 0 be such that § = O(1) and
N=3(log N)/3* < min{dp*, ¢ (kQ (0/2)/N}. (3.8)

Then
—1og P(Ti() > (1+ 8)ETi(2)) = (1 + 0(1))¢ (8 + 0(0)).
As long as one can prove an estimate (3.7) on Gaussian width with o > 0, we can allow

p to decay as N~¢ for some constant ¢ > 0. In Theorem 4.1, we show that one can take
o=1/(2(k—1)) and 7 = 0 (with better bounds for k£ = 3,4). From the asymptotic solutions

to the variational problems (Theorem 2.2 and 2.6), and noting that ¢1(,Q’k)(5) is monotonic in
d, we have, as long as dp* N? — oo,

@M (5/2) /N < min{V/6p""* log(1/p), 8°p}.

Combining these asymptotics, we see that hypothesis (3.8) translates into hypothesis (2.3) in
Theorem 2.1, and hence Proposition 3.3 implies Theorem 2.1.

In the rest of this section, we prove Proposition 3.3. We first prove some easy estimates on
the various quantities that appear in Theorem 3.1. Recall the definitions of DiscGW (F’) and
GW(F) from (3.1) and (3.4).

Lemma 3.4. For any k > 3, we have
DLip(T}/N) = O(1)
and
DiscGW (T /N) = GW(T/N) + O(1).



10 BHATTACHARYA, GANGULY, SHAO, AND ZHAO

Proof. The first claim follows from noting that in Ty.(y) = >_,, YaYa+b " * Yat(k—1)b, €VEry
variable y, appears in O(NV) terms.

The second claim follows from Lemma 3.2, as 0,,7%(y) is uniformly bounded for all
y € (0,1 and all a € Q. 0

Proof of Proposition 3.3. We apply Theorem 3.1 for F' = T}, /N. Set
e = N—I/S(log N)11/12 GW(Tk/N)l/S S N—U/B(log N)T/3+11/12.

By (3.8),
e =o0(0p*) and = 0(¢§k’9)(5/2)/N). (3.9)

Note that ¢ < 1/2 due to the lower bound GW(T}/N) > +/N in (3.6). So in particular,
Ne? — oo. Also, log(1/p) = O(log N) by (3.8).

Recall L from (3.3). Using Lemma 3.4 and earlier estimates, we have
L < e '(log N2 GW(T,/N)'/3.
Thus, as N — oo,
LN"3(log N)V/¢ < eI N=V3(log N)>¢ GW (T}, /N)/3 = (log N)~/12 — 0.

Let Y = (Y1,...,Yy) be a random vector with Y; ~ Bernoulli(y;) independently for all
i € [N]. Then

ETL(Y) = Ti(y) + O(N) = Tu(y) + o(dp* N?).

The discrepancy O(N) comes from terms in T (y) where some y; may appear more than once.
Setting

t = (140)p"T(Q)/N?,
we see that

ET.(Y)/N > (t + o(6p"))N is equivalent to Ti(y) > (146 + 0(6))p"Ti(Q).

Comparing the definition of ¢!'(¢) from (3.2) for F = T;/N and qﬁl()k’m(d) from (3.5) (and

noting that ¢!’ (¢) is non-decreasing in ¢ and qﬁék’g)(é) is non-decreasing in ¢), we obtain
o Nt £e) = oD (0 + 0(3)).

The hypothesis 0 < € < %gog’“/]v(t —¢) in Theorem 3.1 is also satisfied due to (3.9).
Applying Theorem 3.1, we obtain the upper bound to the log-probability

log P(T5,(2y) > (14 8)p"T1(2)) < —(1 = o(1)) o/ ¥ (t =€) ~ =6 (8 — 0(9)),
as well as the lower bound (changing ¢ to t + ¢ when applying Theorem 3.1),
log P(T3(€2,) = (1+8)p"T3(2)) = —(1 = o(1))pp ¥ (t + ) = O(1) ~ =4 {+D (8 + 0(0)).

Combining the upper and lower bounds, and recalling that ET}.(Q,) ~ p*T5.(Q), the result
follows. 0J
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4. BOUNDS ON (GAUSSIAN WIDTH

In this section, we establish bounds on the Gaussian width of the set of gradients of Tj.

These bounds can be used in Proposition 3.3 from the previous section to deduce Theorem 2.1
on the LDP for APs.
Our main result of this section is stated below. Recall from Section 3.1 that

GW(T;/N) = GW({VTi(y)/N : y € {0,1}})

- IEZNNormal(O,I]\r) sup <%VTk(y)7 Z> . (41>
ye{0,1}

Theorem 4.1. For any fixed k > 3,

GW(T,/N) = O(N'~ 7@ 7), (4.2)
Furthermore, for k = 3, the bound can be tightened to

GW(T3/N) = ©(\/Nlog V).
For k =4, the bound can be improved to

GW(Ty/N) = O(N*/*(log N)'/*).

Remark. After a preprint of our paper had appeared, Briét and Gopi [5] improved the bound
to GW(T},/N) = O(N' 216072 (log N)V/2) for all k > 5.

We have an easy lower bound GW(T},/N) = v/N deduced by taking the constant vector
y=(1,...,1)in (4.1). We conjecture that it is essentially tight.

Conjecture 4.2. For any fized k > 4,
GW(T,/N) = VN (log N)°W.

For the proof of Theorem 4.1, we go back to viewing T}, as an operator on functions 2 — R
(as opposed to a function on points in R®?). We define a multilinear version of T}, by setting,

for fo,..., fi_1: Q2 = R,
Ti(for- s feer) =D fola) fi(a+b) - fumr(a+ (k — 1)b),
a,b

so that for f: Q — R,

k times

We identify points in C* with functions  — C and maintain the notation { , ) for inner
products, so that for f,h: Q — C,

(f.h) =" fla)h(a).

a€fl

The gradient VT}, of T}, maps a function f: Q — R to the function VT (f): Q© — R defined
by

VIN@ =3 [[ fla+G-in. aco

i=0 0<j<k—1
J#i
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Since T} is multi-linear, for any f,h: Q — R,

(VTi(f ZTk Lhon b fee ). (4.3)

i tlmes k—1—7 times

4.1. 3-APs and Fourier analysis. Here, we prove the claim in Proposition 4.7 for k = 3

using Fourier analysis. It will be easier to work in the setting {2 = Z/NZ. The corresponding

bounds for € = [N] C Z can be easily derived by embedding [N] in Z/N'Z for some larger

N’ € [2N,3N] so that 3-APs in [N] C Z/N'Z do not wrap-around zero in the cyclic group.
Given f: Z/NZ — C, define its discrete Fourier transform by

> flaw™, reZ/NL,
a€Z/NZL
where w = e2™/N_ The inverse transform is given by
> flrw
r€Z/NZ

The following standard identity relates T3 with the Fourier transform.

Lemma 4.3. For f,q,h: Z/NZ — R,
reZ/NZ

Proof. Expanding the left-hand side using the inverse transform, we have

Ts(f.9.h) = > fla)g(a+b)h(a+ 2b)

a,beZ/NZ

Z Z Fr)g(s)h(t)wrHatb)st(at20)

a,b€Z/NZ r,s,t€Z/NZ

= N2 3" F(r)g(=2r)h(r),

reZ/NZ

where the final step follows from noting that

Z Wt (atb)s+(a+20)t _ N? ifr+s+t=0and s+ 2t = 0,
0 otherwise.

a,b€Z/NT

O

The above identity leads to the following bound, showing that T3 is controled by the Fourier
transform of its inputs.

Lemma 4.4. Let fy, f1, fo: Z/NZ — [—1,1]. For each i =0,1,2,

2 Tsfos o, o)) S N Filloo =2 max i)

Remark. If N is odd, then the < can be replaced by <.
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Proof. Using Lemma 4.3 and the Cauchy-Schwarz inequality, we have

1 -~ ~ ~
~z 5o, fis f2)l < [l folle > A2 k)]

reZ/NZ

<Rl (1A -20R) (1)
IS ||J?0||oo(z |J?1(T)|2)1/2(Z |J?2(7“)|2)1/2

< [[folloo-

The final step follows from Parseval’s identity: \E(T)P = % 2o [fi(a)]* < 1. The proofs
for i = 1,2 are analogous. U

Proof of Theorem 4.1 for k = 3. For any ¢g: Z/N7Z — R, we have

<VT3(f)7g> = T3(gv f7 f) + T3(f7g7 f) +T3(f7 fag)v
so by Lemma 4.4,

1 —~
~! VIs(f), 9) | S N max([g(r)].

Now let g be a random function taking i.i.d. standard normal values. Then each g(r) is a
normally distributed complex number with E[|g(r)[?] = 1/N, since the Fourier transform

is a unitary operator. Standard results about the supremum of Gaussian processes, e.g.,
Lemma 4.5 below, then gives Esup, |g(r)| < v/(log N)/N. Thus

1

GW(T,/N)=E s — (VT(f),0) S NEsup [g(r)| < v/Nlog V.
f:2/NzZ—~{01} N r

The matching lower bound is proved in Appendix A. U

See Appendix A for proof of the bound GW(T;/N) = O(N3/*(log N)'/*) in Theorem 4.1,
which extends the above Fourier analytic technique.

4.2. k-APs and the Chinese remainder theorem. Our strategy for proving Theorem 4.1
is to show that the set of gradients VT (f)/N over all f: Q@ — {0,1} is contained in the
convex hull of a small set of bounded functions. We start with a standard bound on Gaussian
width of sets. The proof is included for completeness.

Lemma 4.5 (Small sets have small Gaussian widths). If S C [—1,1]V, then

GW(S) = O(y/N log |S]).

Proof. We may assume that [S| > 2. We have the following standard tail bound for
Z ~ Normal(0,02): P(Z > t) < e **/?*) With Z ~ Normal(0, Iy) a standard Gaussian
vector in RY, one has (y, Z) ~ Normal(0, |y|?) for every y € RY. Thus P({y, Z) > t) <
e /@) < ¢=t*/C2N) for every y € [—1,1]N. So for any t > 0, we have by the union bound

P(sup (y, Z) > t) < |S|e"/CM),
yes
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Set u = 104/ N log|S|. Then

GW(S) =Ezsup (y,7Z) < u—l—/ P(sup (y, Z) > t)dt

yeS yeS

< u+/ 15]e=/CN) qt = O(\/Nlog |S]). O

Corollary 4.6. If {VT.(f)/N : f: Q@ — {0,1}} is contained in the convex hull of a set S of
uniformly bounded functions® on 2, then GW(T,,/N) = O(1/N log|S|).

We will prove the following bounds on the size of S, which imply the bound GW(T},/N) =
1
O(N'"2=1) in Theorem 4.1.

Proposition 4.7. Fiz k > 3. The set {VT(f)/N : f: Q — {0,1}} is contained in the
conver hull of a set S of uniformly bounded functions on Q, where |S| = exp(O(N'~V/(k=1D)),

o(1
N°® " or perhaps even the

We can conjecture that the bound on |S| can be improved to e
following stronger bound, which would imply Conjecture 4.2.
Conjecture 4.8. In Proposition 4.7, for every fized k > 4, one can have |S| = ellog N
Remark. For k = 3, one can have |S| = O(N) by considering the Fourier basis and using
Lemma 4.4. For the first open case k = 4, intuition from the theory of higher-order Fourier
analysis (e.g., [29]) suggests that perhaps it suffices to take the set of “quadratic characters”,
i.e., functions of the form a — €274(%) where ¢(a) behaves quadratically (very loosely speaking).
More generally, perhaps we can take a set of nilsequences [19]. However, this method is
currently incapable of proving the conjecture due to poor quantitative dependencies in the
theory of higher order Fourier analysis. See |16, Section 4.1] for the analogous problem in the
language of ergodic averages.

For the proof of Proposition 4.7, it will be easier to work in the setting Q = [N] C Z.
The proof can be easily adapted to work for {2 = Z/NZ by chopping Z/NZ into a bounded
number of intervals and analyzing their contributions separately.

The argument we present here is essentially the same as that appearing in [17, Section
4], which in turn is motivated by the random sampling idea in [11]. Roughly speaking, we
can obtain a good estimate of VT}(f) by knowing f only on A C [N], where A is a random
subset of slightly more than N'~1/(*=1) elements. Thus any gradient V7j(f) can be well
approximated by one of 24l many possible functions.* Actually one can achieve a similar
effect (more simply and with better bounds) deterministically by partitioning [/N] modulo
k — 1 distinct primes of sizes roughly N'/(*~1 each, which is how we shall proceed. In this
approach, the Chinese remainder theorem play a role similar to independence for random
variables.

Proof of Proposition 4.7. We may assume that N is large. To analyze VTy(f), we make
the following definition. For ¢1,...,¢cx_1 € Z, let ®(cq,...,cx_1) be the set of all functions

3Here, and in the sequel, uniformly bounded functions refer to those functions f with |f(a)] = O(1)
point-wise.

4This random sampling argument can also be used in conjunction with Chatterjee and Dembo’s results [8]
to obtain a large deviation principle for k-APs, allowing the probability p to decay as N~ for some constant
ci > 0, though with a smaller ¢ than what is shown here.
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F: [N] — R of the form

Fla) = % S fla+ b flateb) .. fla+aib), aelN] (4.4)

beZ

for some f: [N] — {0,1} (set f(a) =0 if a ¢ [N]). It suffices to show that ®(cy,...,cx_1)
is contained in the convex hull of exp(O(N'~'/(*=1)) many bounded functions, whenever
{c1,...,cp_1} is any of

(1,2, k—1}{-1,1,... . k=2},... {—(k=1),...,—2,—1}.

For clarity, we assume that (c1,...,cx) = (1,...,k — 1), as the other cases are similar.

Pick k — 1 distinct primes ¢, ..., k-1 € [(N/ 2)ﬁ, N ﬁ] (such a choice always exist when
N is large due to bounds on large gaps between primes [1]). We have ¢1¢s - - - g1 € [N/2, N].
Write

f = Z fTH-in (45)
ri €L/ q; 7
where
fla) ifa=r; (mod g),
fTiJrqz'Z(a) = ( ) . ( )
0 ifa#mr, (mod ),

is the restriction of f to the residue class r; (mod ¢;). By using (4.5) to partition the i-th
factor f(a + ib) in each term in (4.4), we obtain

k—1
Fa) =5 X IT X fazlat ) = —— 3 w0

beZ i=1 r;€Z/q;Z Tl Th—1

where the sum is taken over r1 € Z/1Z, . .. ,rx_1 € Z/qr17Z, and

k—1
4192 * - " qk—1 ,
vrly-wvrk—ﬁf(a/) = N Z H fT‘i+qz'Z(a + ib). (4.6)

beZ i=1
We see that F' lies in the convex hull of

V =Avr i fis {0, 1}-valued,ry € Z/GiZ, ... ,Tk—1 € L]q—1Z}.

For fixed ¢ and r;, the number of possibilities for f,, .4z is at most oN/ai+1 a5 f ranges over
{0, 1}-valued functions. It follows that

k—1
|V| < Qe Qo H oN/ai+1 _ 20(]\[171/(1%1))7

i=1
by our choice of g;. It remains to show that all functions in V' are bounded. Indeed, for any
fixed a € [N], the simultaneous congruence conditions a + b = r; (mod ¢;), for 1 <i < k—1,
in the unknown b € [~ N, N] have O(N/(q1¢2 - - - gx—1) +1) solutions by the Chinese Remainder
Theorem. Thus the number of nonzero summands in (4.6) is O(N/(q1q2 - - - qx—1) + 1), and it
follows that
@Gt

N ~

as desired. This completes the proof. O

|U7’1y---77'k—1;f(a)| S T+
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This completes the proof of Theorem 4.1, which bounds GW(T},/N), other than the match-
ing lower bound GW(T3/N) > +/Nlog N and the improvement GW (7} /N) < N3/4(log N)'/*,
whose proofs can be found in Appendix A.

5. VARIATIONAL PROBLEM AT THE MACROSCOPIC SCALE

The goal of this section is to prove Proposition 2.3, which reduces the entropic variational
problem in the macroscopic scale, i.e., *p*~2(log(1/p))? — 0, to a corresponding extremal
problem in additive combinatorics:

B (5) = (1+ o(1))log(1/p) -1

(provided that 6 = O(1) and 6p* N? — c0). Let us provide an overview of the proof strategy.

{\S| L Ti(S) > 5kak(Q)} (5.1)

in
cQ

The upper bound on (b](,k’m(é) follows by considering a function which takes value 1 on an
interval and p elsewhere (Section 5.1). For the lower bound, suppose T (f) > (14 8)p Ty (Q).
Write f(a) = p+ g(a). Let ¢’ denote a function obtained from ¢ by changing each g(a) to 0
if g(a) is already sufficiently close to zero (the exact threshold will be specified in the proof).
It will be shown that Ty (f) ~ p*Ty(2) + Tx(g'), so that Ti(¢') > (1 — o(1))dp*T(82). For
now, it is fine to pretend that ¢’ is an indicator function of a set, so that we have a lower
bound on the number of k-APs of the set. We will prove an extremal result on maximizing
the number of k-APs of a set of given size. This will imply a lower bound on ), ¢'(a),
thereby giving the desired lower bound on ) I,(f(a)) = >_, ¢ (a)log(1/p).

5.1. Proof of upper bound in Proposition 2.3. We begin by noting that the right-hand
side expression of (5.1) does not change if J is replaced by some ¢’ = 0 + o(d). This is
equivalent to the fact that the maximum number of k-APs in a subset of (2 of size n does
not change significantly if n is changed to n + o(n). This is clear from the exact formula
in Theorem 2.4 and (2.6) whenever the hypothesis of the theorem applies, or otherwise in
general from the easy lemma below (applied with n — oo, n < N, and s = o(n), so that
M, Z n* and M, o) ~ M,).

Lemma 5.1. Let k > 3 and Q = Z/NZ or [N]. Let M,, = maxacq:jaj<n Tk(A). Then
M, < M,.s < M, + ks(n+s)
for alln,s > 0.

Proof. 1t is easy to see that T(A U {a}) < Ti(A) + k|A| + 1 by counting the number of new
k-APs that are formed with the addition of a new element a to A. Thus M,, 1 < M, +kn+1.
The lemma follows by iterating this bound. U

It is not too hard to prove that Qﬁz(gk’m(é) is at most the right-hand side quantity in (5.1).
Take any S C Q with Ti(S) > (1 — p*)~16p*Ti(2) (here we are implicitly changing the §
in the right-hand side of (5.1) to &' = (1 — p*)~16 = § + 0(d)), and let f in the variational
problem (2.2) be the function

1 ifaels,
fla) = {p fads (5.2)

So that
Te(f) = (1= p")T(S) + p"Ti(Q) > (14 6)p*Ti(9),
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and
> L(f(a)) =S| log(1/p).
acf)

This proves the upper bound in Proposition 2.3.

5.2. Proof of lower bound in Proposition 2.3. To begin with note that taking S C €2
to be an interval of size [\/k&'Ty(Q)p*?], where &' = (1 — p*)~'6 = 6 + o(§), ensures
Ti(S) > (1 — p*)"1op*Ti(2). Then taking f as in (5.2) gives Ti(f) > (1 + §)p*Tr(2)
and >, I,(f(a) = VI T(Q)p*?log(1/p) < 2VkSNp*/?log(1/p), for N large enough.
Therefore, to show that the left-hand side of (2.5) is greater than its right-hand side, it
suffices to restrict our attention to functions f: Q — [p, 1] that satisfy

> L(f(a)) < 2VESNpP?log(1/p) and  Ti(f) > (1+ 6)p*T(Q) (5.3)

a€f)

(note that we can restrict the range of f to [p, 1] since I,(-) is decreasing in [0, p]). We will
show that for such f,

> (@) = (1+ o(1)log(1/p) - min {IS] : Tw($) > 5" T(2) }.

aef)

We recall a useful asymptotic estimate of I,(-) from |28, Lemma 3.3].

Lemma 5.2. Letp — 0, and x = x(p) € [0,1 —p|. If x = o(p), then L,(p + z) ~ x*/(2p). If
x/p — 00, then I,(p + ) ~ xlog(z/p).

Let f(a) = p+ g(a), where g : Q@ — [0,1 — p]. (When Q = [N], we set both f and g
to be zero outside [N].) Note the following bounds on g¢: by convexity of I,(-), (5.3), and
Lemma 5.2,

L+ 0@) =5 (S r@) <+ 3 L)
N N N

aef a€cfl a€f)
< VE3p*210g(1/p) ~ I, (p + 2(k8)/1p2/1 /1og(1/p) )

since §1/4p+2/4, /log(1/p) = o(p) whenever § = O(1). Moreover, since I,(p+z) is increasing
for x € [0,p — 1],

N
1
S D" ga) £ N log (1) (5.4
ace)

The proof of the lower bound on ), I,,(f(a)) proceeds via two-step thresholding on the
function g. At each step, we choose some threshold 7 and decompose g into its small and
large components:

9= g<r + G>r-
Here g<-(a) := g(a)1{g(a) < 7}, and g, := g(a)1{g(a) > 7}.
(1) (Thresholding) First, we perform the decomposition with 7 = p** and show that the
contribution to Ti(f) from the small component g<, is negligible.
(2) (Bootstrapping) Next, we bootstrap the argument in the first step and take a higher
threshold 7 = p°(.

The following lemma will be useful later.
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Lemma 5.3. Let Q = Z/NZ or [N]. Let x,y € {0,1,...,k — 1} with x # y. For any
f:Q—[0,1], one has

Zfa+xbf(a+yb —1(Zf )

ae)

where the sum on the left-hand side is taken over all pairs of elements (a,b) in the ambient
group such that {a + xb,a + yb} C .

Proof. The lemma follows from observing that after expanding the right-hand side, for any
c,d € (), there are at most £ — 1 pairs of elements a,b in the ambient group such that
a+ zb = c and a + yb = d. Indeed, subtracting the two equations gives (z — y)b = ¢ — d.
Since 0 < |x — y| < k — 1, the number of solutions for b is at most 1 when 2 = [N] and at
most (k — 1) when Q = Z/NZ. O

5.2.1. The thresholding step. In this section we formalize step (1) above. Recall that f is as
n (5.3), and f = p+ g, where g : Q — [0, 1] satisfies 0 < g <1 —p. From (5.3) we know that

T(p + 9<r + g57) = Ti(f) > (1 +0)p*T3(2).

The expression Tx(p + g<- + g=-), when written out as a sum, expands into a number of
components. The following lemma shows that, with an appropriate choice of 7, the only
non-negligible contributions are Ty (p) = p*T% () and Ty (g>-).

Lemma 5.4. Assume that 6 3p*~21log®(1/p) — 0, and f = p+g: Q — [p, 1] satisfies (5.3).
Let 7 = p3/*. Then

Ti(g57) > (1= 0(1))0p" T () (5.5)
and
> gorla) S VONPH2, (5.6)

Remark. In the above lemma, one may take 7 = p® for any fixed 2/3 < s < 1.

Proof. From Lemma 5.2 we have [,(p + ¢g--(2)) < g>-( )log(l/p) Thus

> gor(a)log(1/p) < Y L+ gs-(a) < Y L(f(a)) S VN log(1/p).

a€ef) a€N a€q

where the final step uses (5.3). This gives us (5.6).
By expanding, we have

Ti(p + 9<r + g57) = Z Txv,z(P, 9<r: 97, (5.7)
X,\Y,Z
where the sum is over all ordered partitions (X, Y, Z) of the set {0,1,...,k — 1}, and
Txv.z(p, g<r: gor) : ZP‘X' [ 9<-(a+ub) [] 95+ (a + 20). (5.8)
yey z€Z

Here the sum is taken over all pairs of elements (a,b) in the ambient group such that
{a,a+0b,...;a+ (k—1)b} C Q. We say that T'xy z(p, g<+, g>-) contributes negligibly to the
sum (2.1) (or negligible for short) if Ty z(p, g<r, gs-) = 0(6N?p*). We will show that all
terms except for (X,Y,Z) = ({0,...,k—1},9,9) and (&, 9,{0, ...,k — 1}) are negligible,
i.e., the only non-negligible terms are p*7T},(Q) and Ty(g>,). This would prove (5.5), due to
the assumption Ty (f) > (1 + §)p*T%(Q) from (5.3).
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First, if |Z| > 2, then by Lemma 5.3 and (5.6),

2
Txy,z(p, g<rr gor) < (k — 1)71¥OY] (Z g>T(a)> S TS NEpE.

a€ef

Therefore, if |Z| > 2, then the contribution from Txy z(p, 9<r, 9>-) is negligible unless
IXUY|=0,ie, (X,Y,2)=(2,0,{0,...,k —1}).
Next, if | X| =k —1 and |Y U Z| =1, then by (5.4),

Txy.z(p, g<r, g57) < KNP " gla) < 8N4 /log(1/p) = o(6N?p"),
a€e)

where in the final step we use the macroscopic scale assumption §—3pF=2(log(1/p))? — 0.
Therefore these terms are negligible.
Finally, if |Z] <1 and |Y' U Z| > 2, then by (5.4) and Lemma 5.3,

2
Txy,z(D, 9<r, gr) < (k — 1)7772 (Z g(a)) S TN 2D 2 l0g(1/p) = 0o(ON?PF),

a€N

where the last step holds due to 7 = o(p??(log(1/p))~?/®=6)) and the macroscopic scale
assumption on 9.
It follows from the above analysis that the only non-negligible contributions to the sum

(5.7) are (X,Y,Z) = ({0,...,k—1},9,2) and (&,9,{0,...,k —1}), so that
Ti(f) = P"Ti(Q) + Tilg>+) + o(3p°N?).

By the assumption Ty (f) > (1+8)p*T5(Q) from (5.3), we obtain T}.(g-) > (1—0(1))0p*Tx ()
as desired. 0

5.2.2. The bootstrapping step. Now, we strengthen Lemma 6.3 by replacing 7 with any
T =0(1).

Lemma 5.5. Assume that 6 >pF~21log®(1/p) — 0, and f = p+g: Q — [p, 1] satisfies (5.3).
For any 7 = o(1), we have

T(gor) > (1= (1) ().
Proof. Observe that

2
Ti(gspsr) — Til(gsr) < K*1 (Z g>ps/4(a)> < 76p"N? = o(6p"N?). (5.9)

ae)

To prove the first inequality, note that the left-hand side can be bounded above by a sum of
k terms, where the j-th term (for 1 < j < k) is itself the following sum

Y gi(@)ga(a+b)---gila+ (k= 1))

a,beq)
where g; = g<, and all other g;’s are set to g.,s/4, and this sum can be bounded by
T(k — 1)(3q4eq 9spr/e)® using Lemma 5.3. The second part of (5.9) follows from (5.6).
By (5.5) we have Tj(g>,34) > (1 — 0(1))6p*Ti(Q2), and thus by (5.9) we have Tj(g>,) >
(1 —0(1))6p*T(Q) as well. O
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5.2.3. Completing the proof of Proposition 2.3. Assume that f: Q — [p, 1] satisfies (5.3). Let
f =p+ g, and choose some threshold 7 satisfying 7 = p°" — 0 (e.g., 7 = 1/log(1/p) for
concreteness). By Lemma 5.5, one has

Ti(g57) = (1= 0(1))6p" T ().

This implies, by Lemma 5.6 below (used in the contrapositive in conjunction with Lemma 5.1),

> gorla) = (14 o) min {IS] : Tk(S) = 5 T() }.

By Lemma 5.2, I,(p + g=,(a)) ~ g=,(2)log(1/p) since 7 = p°). Therefore,

S L(f(a) =) L(p+ gor(a)) = (1+0(1)) log(1/p) Y _ gor(a)

> (1+ o(1))log(1/p) min { S| : Tk(S) = p"Ti() |

thereby completing the proof of Proposition 2.3, modulo the following lemma, which says
that the problem of maximizing the number of k-APs in a set remains roughly unchanged
even if we allow the elements to be weighted.

Lemma 5.6. Let f: Q0 — [0, 1] be such that )., f(a) = m. Then

Tf) < (14 0(1) | max  Ti(4) (5.10)

provided that m — oo as N — oo.
Proof. Let My = maxacq.aj<s Tk(A). Let ©Q; be a random subset of Q chosen by including
element a € Q with probability f(a) independently for all a € 2. Note that E[|Qf|] = m, and
for a,b € ),

fla)fla+b)--- fla+ (k—1)b) <Pla,a+0b,...a+ (k—1)be A).
(it is always an equality when the elements of the k-AP are distinct). This implies

Ti(f) <ETW(Qy) < Y P(I9] = 5) M,

s>1

For s < m +m?*3, we bound M, < M,, .25 = (14 0(1))M,,. And for s > m + m?? we use
the trivial bound M, < s?. Thus

To(f) < (14 0(1)) My, + 4m’P(m +m*?® < |A] < 2m) + ) P(|A] = 5)s
s>2m
< (1+ o(1)) My, + 4m’P(|A] > m +m*?) + > " P(|A] > 5)s
s>2m
< (14 0(1)) My, + 4m2e™™ /3 4 Z s2es/6
s>2m

= (14 0(1)) My,

where the penultimate step uses Chernoff bound in the following form: if X is a sum of

independent indicator random variables, and EX = y, then for any 6 > 0, P(X > (14 0)u) <
— min{62,6}1/3 0
e :
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This completes the proof of Proposition 2.3. Combining it with Theorem 2.4, which will be
proved in Section 8, yields Theorem 2.2, the asymptotic solution to the variational problem
in the macroscopic scale.

6. VARIATIONAL PROBLEM AT THE MICROSCOPIC SCALE

In this section, we prove Theorem 2.6, which solves the variational problem in the micro-
scopic scale, i.e., 0-3pF21log?(1/p) — oco. The following theorem unifies the settings Q = [V]
and Z/NZ.

Theorem 6.1. Fiz k > 3. Let Q = [N] or Z/NZ . Then for p=py — 0 and 6 =6y >0
such that 6—3p*~2(log(1/p))? — oo, we have
82Ty(92)2p

S = (1ol g5+ 0

where v, is the number of k-APs in ) containing a € Q) (the constant k-AP a,a, ..., a is
counted k times), i.e., v, is the number of triples (x,y,j) where x,y are elements in the
ambient group, j € {0,1,...,k —1}, so that a = x + jy and {x,x +vy,...,x+ (k— 1)y} C Q.

(6.1)

In Section 6.1, we prove Theorem 6.1, following similar thresholding strategy to the
macroscopic setting. In Section 6.2, we then compute the rate formulae in Theorem 2.6.

6.1. Proof of Theorem 6.1. We begin by showing that gb (F Q)( 9) is at most the right-hand
side of (6.1). The claim follows from an explicit construction of a function f in the variational
problem (2.2), as given by the following lemma.

Lemma 6.2. Let Q = [N]| or Z/NZ, and let v, be defined as in Theorem 6.1. Define
g: Q2 —[0,1] by

0T1(Q)v,
gla) = =—5».
Zaeﬂ I/g
Then f = p—+ g satisfies
82T, (Q
L(f(a)) ~ P g Tu(f) > (1 + 0)p"TH(Q). (6.2)
2ZCLEQ a
As a consequence, qﬁl(,k’ﬂ)(é) <(1+ 0(1))%.
ac a
Proof. We have v, < N, Y o v2 < N?, so g(a) = dp = o(p), and thus by Lemma 5.2,
)2 2 2,
L(f(a
S~ S~ i
Next, by expanding we have
Ti(f) = Tulp+ g) > PPTi(2) +p"~ 1ZZgw+Jy
z,y j=0
= p"T, P glayve = (14 0)p*T(Q),
ac)
where (x,y) ranges over all pairs of elements in the ambient group such that {z,z+vy,..., o+

(k — 1)y} C €. This proves (6.2) and the upper bound on ¢ (8) in Theorem 6.1. O
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Now we prove the lower bound on ¢ (6). To begin with, using 3_. _, ve = kT5(€2) and

the Cauchy—Schwarz inequality, we have

a€ef)

?pN

CTH (14 o(1)) 55 (6.3)

QZaGQ Vg

Therefore, to prove the lower bound on gzﬁ](gk’m(é) in (6.1), we can restrict our attention to
functions f =p+ g: Q — [p, 1] satisfying

D L(f(a) <6°Np and Ti(f) > (1+ 6)p*Th(). (6.4)

a€ef

oy V(0) < (1+0(1))

Then by convexity, (6.4), and Lemma 5.2,

I (p + % Zg(a)> < % > Lp+gla)) < 8%~ L(p+ V26p).

acf) acf)
Since I,(p + ) is increasing for « € [0,1 — p|, we have
> g(a) < pN. (6.5)
acQ)
The following lemma gives a lower bound on the weighted average of any function g

satisfying f =p+g: Q — [p, 1] with Tp(f) > (1 + 0)p*T}(€), in the microscopic regime.

Lemma 6.3. Assume that 6=>p*2log?(1/p) — oo, and f =p+ g: Q — [p, 1] with Tp.(f) >
(14 0)pFTy(). Then

> 9@ > (1= o(1))5pTi(5). (6.6)

a€e)

Proof. Set threshold 7 = p**. As in Section 5.2.1, write g = g<, + g~,. As in Lemma 6.3,
we have by Lemma 5.2 and (6.4),

> gor(a)log(1/p) = Y Ly(p+ g5r(a) < Y L(f(a)) < 8N, (6.7)
acf) acfd a€ll

thereby gaining an extra log(1/p) factor compared to (6.5).
By expanding, we have

Ti(p + g<r + g57) = Z Txy,z(P, §<r: 9>7); (6.8)
Xv.2

where Txy.z(p, 9<r, g>-) is the same as earlier (5.8). We say that Txy z(p, g<r, g>-) con-
tributes negligibly to the sum (6.8) if Ty z(p, g<r, g-) = 0o(6N?p*). We will show that unless
|X| =k — 1 or k, the term contributes negligibly.

Indeed, as in Section 5.2.1, if |Z| > 2, then by Lemma 5.3 and (6.7),

Txy,z(p; 9<r, g5r) < (k= 1) (Z g>T(a)> < (loég(%) — o(ON2pF),

where the final step uses the microscopic scale hypothesis 6—3p*¥~21log?(1/p) — oo.



UPPER TAIL LARGE DEVIATIONS FOR ARITHMETIC PROGRESSIONS 23

If |Z| <1and|Y UZ| > 2, then by Lemma 5.3 and (6.5),

2
Txy,z(p, 9<r: g5r) < (K — 1)747 (Z 9(@) ST PPN = o(ONpY),

a€f)

where the last step holds due to 7 = o(p?3(log(1/p))~#©*=%)) and the microscopic scale
hypothesis on ¢.

This shows that the non-neglible contributions are those terms with |X| = k£ — 1 or k.
Hence

Tif) = @) + 9SS gl + ) + o(5p*N?)

z,y 7=0
= PTe(Q) + ") gla)va + o(6pFN?),
ace)

where the first sum runs over all pairs (x,y) of elements in the ambient group such that
{z,2+y,...,2+ (k= 1)y} C Q. Since T}(f) > (1 + 6)p"T3(2), we have >, g(a)v, >
(1 —0(1))0pTx(€2), as required. O

In the final step of the proof of Theorem 6.1, we convert the lower bound on the weighted
sum of g from the above lemma to a lower bound on the entropy ) I,(p+g(a)). We consider
the two cases 2 = Z/NZ and [N] separately.

Case 1: Q = Z/NZ. In this case, we have v, = kN for all a € Q and T;(Q2) = N2. By
convexity of I,(-), (6.6), and Lemma 5.2,

> Lp+gla) = NI, (p+ %ZM@))

ace) ac)
op 52Np
> N1, (p+(1 —o(1)) k) ~ o
This combined with Lemma 6.2, proves Theorem 6.1, when Q = Z/NZ.

Case 2: Q2 = [N]. In this case, the quantities v, are unequal, and the solution requires an
extra step. We use the estimate®

L(p+z) > (1+0(1)p™z uniformly for all x € [p'!,1 — p]. (6.9)
It follows by (6.9) and (6 4) that
Y gopi(a) < (L+oW)p Y L(p + gopra(a)

a€c a€eN

< (14 0(1))p™ 23 Z L( (14 0(1))8*p° "N = o(6pN)

a€e

where the final step, § = o(p®?), is due to the microscopic scale hypothesis. Since v, < N for
all a € €, the above estimate along with (6.6) gives

Zggpla (a)ya > (1 — O(l))éka(Q)

5 Proof of estimate: by Lemma 5.2, for x € [p'!, 1p°9] we have I,(p + x) > L,(p + p*!) ~ 1pt2 > p03z

and for z > 2p%9 we have I,(p + z) ~ zlog(z/p) > (1 +0o(1))p°3z. -
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By the Cauchy—Schwarz inequality, we have

52p2T (Q)2
gepri(a)? > (1= o(1)) =t
GGZQ = ZaEQ Vg

It follows by Lemma 5.2 and the above estimate that

S 5L(F(@) 2 Y L(p+ g<pala) Ej““l > (14 o(1)) s

a€ef) a€N a€N

which combined with Lemma 6.2 completes the proof of Theorem 6.1.

52T3(92)?

2 EaeQ 1/3 ’

6.2. Microscopic rate function. In the case 2 = Z/NZ, by symmetry, v, = kN for all
s € Q, and T;(Q) = N2. Thus Theorem 2.6 for Q = Z/NZ follows from Theorem 6.1.
When = [N] C Z, the derivation of the formula in Theorem 2.6 is routine though a
bit more involved. For each s € [N] and 0 < j < k, let v5; denote the number of pairs of
a,b € Z such that a,a+ (k — 1)b € [N] and a + jb = s, i.e., the number of k-APs (allowing
zero or negative common difference) contained in [N] and whose (j + 1)-th term is s. It is
easy to see that v, ; equals to the number of b € Z satisfying 1 < s+ (k—1—j)b < N and

1 <s—75b< N, so that

us,,:min{f;lJ , {ﬂ:ﬂ}*mlnﬂkiijw [

Thus, for each s € [IV],

k—1 k—1 s—1 N—s
VSZZVSJZI{?‘FQZIHIH{\‘ j Ja\‘k_l_j

By Riemann sum, we have

]\}I_IE;ON 327/ —4ZB2]7

1,7=0

5 /1 x 11—z x 11—z
= min — > min -
’J 0 ik—1—1 j k—1—3

where

N?1}+L

Observing that min{x /i, (1 — z)(k — 1 —14)} is piecewise-linear with the kink at z = i/(k — 1),

we can compute the above integral: for all 0 <: <757 <k —1,

= 72 w4 (1 — x)gj 1 (1 — $)2
= ~d g d
P é m‘”*lg w—l—njx+/;xk—1—@w—1—j>x

(k=12 == (k—1—j)?
6k —12(k—1—14)]
In particular, for all 0 <7 < k — 1,

Therefore,

]\}1_1;[3)0 SZV —42513—42511+8Z ﬁlj

1,7=0 0<i<j<k
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| (k—1)2 =4 —(k—1—j)?
7’“‘5(’“ 2 (k—1—1i)j )

0<i<j<k

where

Since Ty ([N]) ~ N?/(k — 1) for fixed k as N — oo, Theorem 2.6 for Q = [N] follows from
Theorem 6.1.
As for the remark following Theorem 2.6, we always have 7 > k* due to (6.3). The first
few values of ~; are
28 718
V=5 Ve = 17, %= o
The asymptotic dependence of v, on k can be computed via a Riemann integral® (note that
the integrand takes value in [0, 2] in the given domain):
i ® 4/ 1—22—(1-y)? 40 — 272
0

dedy = —— ~ 1.14.
<g<y<1 (1—2)y 9

im —
k=0 k2 3

7. REPLICA SYMMETRY

In this section, we record a partial result on exact replica symmetry for constant values of
p and ¢ in the case of Q = Z/NZ, analogous to results about dense random graphs in [10, 27].
Unlike previous sections, where we solve the variational problem asymptotically as p — 0, the
following theorem gives exact replica symmetry, i.e., we give sufficient conditions on constants
p and d so that the constant function uniquely minimizes the variational problem. Unlike the
results in [27], we do not know if the following theorem gives the full replica symmetry phase
(it probably does not). The proof is nearly identical to the one in [27], the only difference
being the Holder-like inequality (Lemma 7.2) for k-APs.

Using arguments very similar to [32], one can also prove regions of replica symmetry in the
lower tail. Details are omitted.

Theorem 7.1. Take any 0 < p < q < 1, positive integer k > 3 and prime N. Suppose that
(¢*/%,1,(q)) lies on the convexr minorant of the function x v~ I,(z**). Then the constant
function f = q is the unique minimizer to the variational problem (2.2) with Q = Z/NZ and

(1+0)p* = ¢*, so that ¢3"*/"(8) = NI,(q).

Remark. The hypothesis that N is prime is mainly for convenience, and it is likely unnecessary
here. For example, the proof shows that when k£ is even, there is no requirement on N, and
when £ is odd, ged(k — 1, N) = 1 suffices.

Proof. In the variational problem (2.2), suppose that f: Z/NZ — [0,1] satisfies Ty(f) >
(1+0)pF*N? = ¢*N?. By Lemma 7.2 below, we have

> f@)? = ¢ N. (7.1)

a€Z/NZ
Let J(z) = I,(x*/%), and ((x) = J'(¢*/?)(x — ¢"=2) + I,(q). Then ¢ is the tangent line to J(x)
at x = ¢"2, and by the convex minorant condition, we have J(z) > ¢(x) for all x € [0, 1].

6The integral was computed using MATHEMATICA.
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Since I,() is increasing in x € [p, 1], we have J'(¢*/2) > 0. It follows that

ST (f(a) =Y J(fa)?)

a€ef aef)
SN
a€e)
k/2 (Zf k‘/2 k/2N> +]p(q)
a€ef
> IP(Q)

by (7.1). Equality occurs if and only if f(a) = ¢ for all a € Z/NZ.
Lemma 7.2. Let k > 3 and N a prime. For any f: Z/NZ — [0,00), one has

§< > f(a)k/2)2.

a€Z/NZ

Proof. Define

hij(a,b) = v/ f(a+ib) f(a + jb).
By Holder’s inequality, one has

= > fla)fla+b)--- fla+ (k—1)b)

a,bEL/NZ.
Z ho(a,b)hi2(a,b) - - - hi—g—1(a, b)hg-1,0(a,b)
a,bEZ/NZ
1/k
< 11 > higlab)f
(1,)€4(0,1),(1,2) 0 (k—2,k—1),(k—1,0)} \ a,bEZ/NZ
2
- ( 3 f(a>’“/2) ,
a€Z/NZL
where the last step is due to
Z hij(a, b)* Z fla+ib)*2f(a + jb)k/?
a,bELINT a,bEZ/NZ
2
= ( >, f(a>’“/2) if ged(i —j,N) = L.
a€L/NZ

Note that when k is even, we can instead write

fla)fla+b)--- fla+ (k—1)b) = ho(a,b)*hos(a,b)? - hy_ox_1(a,b)?

and remove the need for primality hypothesis on N.
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8. MAXIMIZING THE NUMBER OF k-APS
In this section we prove Theorem 2.4, repeated below for convenience.

Theorem 2.4. Fiz a positive integer k > 3. There exists some constant ¢, > 0 such that the
following statement holds. Let A C Z be a subset with |A| =n, or A C Z/NZ with N prime
and |A| =n < ¢ .N. Then Tp(A) < Ti([n]).

In Section 8.1, we will prove Theorem 2.4 when A C Z using a simple combinatorial
argument. Unfortunately this proof does not extend to the case A C Z/NZ, due to the
lack of a natural ordering in Z/NZ. Following the idea in [18], we will attempt to replace
the original set A C Z/NZ by a Freiman model A C Z (so that in particular |A| = |A]
and T,(A) = Ty(A)). This technique, called rectification, was first investigated in [3]. The
following lemma gives a simple example of rectification:

Lemma 8.1. Let N be a positive integer. Let A C Z.N (—N/4,N/4) be a subset, and let
A CZ/NZ be the image of A under the natural projection Z — Z/N7Z. Then Ty(A) = Tx(A).

Proof. Let m: A — A be the natural projection map. We need to show that both 7 and 7!
preserve k-APs. It suffices to show that 7 is a Freiman isomorphism, in the sense that for
any ap,as,ag,aq € A, a1 + ay = az + a4 if and only if 7(a1) + w(as) = w(az) + 7(ay). The
only if direction is clear. The if direction follows from the fact that

—N<ar+ay—a3—as <N
whenever aq, as, az,as € A. O

A more sophisticated rectification lemma is given in [18, Theorem 4.1], which allows us
to prove Theorem 2.4 when the set A has small doubling, in the sense that |A + A|/|A4| is
small (see Lemma 8.3 below). After stating some preparatory lemmas in Section 8.2, we will
then prove the general case of Theorem 2.4 in Section 8.3 using a structural decomposition
theorem [18, Proposition 3.2], which allows us to deduce that if T;(A) is close to maximal
then A must have small doubling.

8.1. Proof of Theorem 2.4 when A C 7Z. In this subsection we prove the case when
A C Z by induction on k.” The statement is trivial when k = 2 since Tj,(A) = n? always.
Now let k£ > 3, and assume that the statement has been proved for smaller values of k. It is
convenient to count the number of nontrivial increasing k-APs in A:

T.(A) = #{(a,b) : b > 0,a,a+0b,...,a+ (k—1)b e A}.
Clearly Ty(A) = 2T} (A) + n. Thus it suffices to show that T} (A) < T} ([n]). Arrange the
elements in A in increasing order:
A:{CLO <ap < --- <6Ln_1}.

Choose m € Z such that

k—2 ( 1) <m < k—2
R
There are two types of k-APs counted in T} (A): those whose second largest element is at
least a,,, and those whose second largest element is smaller than a,,. If the second largest

n+ 1.

"We are grateful to Anton Bankevich for suggesting the proof in this subsection.
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element of a k-AP in A is a; for some m < i < n, then there are at most n — 1 — ¢ possibilities
for its largest element. Thus the number of k-APs in A of the first type is at most

Z(n—l—i).

For k-APs in A of the second type, their first £ — 1 terms form a (k—1)-AP in {ag, ..., am_1}
Thus the number of k-APs in A of the second type is at most

T, 1({ao, .. am}) <T;_({0,1,...,m —1})
by induction hypothesis. It follows that
THA) < Y (n=1-i)+ T, ,({0,1,...,m—1}).
m<i<n

To conclude the proof, we claim that the first term on the right hand side above is equal to
the number of k-APs in {0,1,...,n — 1} of the first type:

Y (n—1-i)=#{(a;b):b>0,a>0,a+ (k—1b<na+(k—2b>m}, (81)
m<i<n
and the second term is equal to the number of k-APs in {0,1,...,n — 1} of the second type:
T, .({0,1,...,m—1}) = #{(a,b) : b > 0,a > 0,a+ (k —1)b < n,a+ (k—2)b < m}. (8.2)
To prove (8.1), it suffices to show that for any m < i < n we have
n—1—i=#{(a,b) :6>0,a>0,a+ (k—1)b<n,a+ (k—2)b=1i}.
This follows from the fact that any choice of the value of j = a+ (k—1)b from {i+1,...,n—1}
uniquely determines an admissible (a,b) since
i 2 (k=2)(7—1)
by our choice of m. To prove (8.2), note that any (a,b) with b > 0, a > 0, and a+ (k—2)b < m
automatically satisfies a 4+ (k — 1)b < n since
k—1 a k

at (k-2 - — <L o oy

at(k-1b=r—p K2 %2

by our choice of m.

8.2. Proof of Theorem 2.4 when A C Z/NZ: preparations. In this subsection, we
collect a few lemmas that will allow us to reduce the problem in Z/NZ to the simpler one in
Z. From now on we fix some large prime N and work in Z/NZ. To begin with, we show that
k-AP counts are controlled by additive energy. For two subsets A, B C Z/NZ, the additive
energy E(A, B) is defined by

E(A,B) =#{(a,d,0,l)) e AX AX BxB:a+b=d +10},
and note the trivial bound
E(A, B) < min(| AP B|, |A||BP) < |AP2| B[*2
We will also consider additive energy of dilates ¢ - A for a positive integer ¢, defined by
0-A={la:aec A}.
For subsets Ay, ..., Ay C Z/NZ, define the asymmetric k-AP count by
Te(Aq, ..., Ax) = #{(a,b) :a € Aj,a+ b€ Ay, ...;a+ (K —1)b € Ax}.
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Clearly if Ay =--- = Ay = A then T,(A4, ..., A) = T(A).
Lemma 8.2. Let Ay, ..., Ay CZ/NZ be subsets, and let n = max(|A4|,...,|Ax|). If
max E({- A, 0 Aiy) < en?
L0 e{1,2}

for some e € (0,1) and 1 <i <k, then Ti(Ay, ..., Ay) < '/%n?,

Proof. Note that Tj(Ay, ..., Ag) is trivially bounded by either T5(A;_1, A;, Aiv1) or T5(A;, Air1, Aita).
The conclusion then follows immediately from [18, Lemma 4.2]. O

The following lemma shows that Theorem 2.4 holds if A has small doubling.

Lemma 8.3. Let K > 1. The following statement holds if ¢ is sufficiently small in terms of K.
Let A C Z/NZ be a subset with |A] =n < cN and |A+ A| < K|A|. Then Tip(A) < Ti([n]).

Proof. By [18, Theorem 4.1], there exisits a dilate d - A of A (for some d € (Z/N7Z)*) that
is contained in an interval of length at most N/2k. After dilation and translation we may
assume that A C [1, N/2k]. Now that any k-AP in A (as a subset of Z/NZ) is also a k-AP
in Z, we may apply the A C Z case of Theorem 2.4 to conclude that Tj(A) < Ti([n]), as
desired. O

8.3. Proof of Theorem 2.4 when A C Z/NZ. We continue to work in Z/NZ. In view of
Lemma 8.3, we may assume that n is sufficiently large in terms of k. We first establish a
rough structure theorem for sets with close to maximal number of k-APs.

Lemma 8.4. Let ¢ > 0 be sufficiently small. Let A C Z/NZ be a subset with |A] =n < cN,
and suppose that n is sufficiently large in terms of k. If

n? 1
Te(A) > 1-
k( )—k:—1< 100k2)’
then there exists a dilate d - A of A for some d € (Z/NZ)*, such that all but at most n/10k?
elements in d - A lies in an interval of length at most N/100k.

Proof. Choose a sufficiently small € > 0, and then choose some &’ > 0 sufficiently small in terms
of . Apply [18, Proposition 3.2| to obtain a structural decomposition A = A;U---UA,, U Ay
into disjoint subsets satisfying the following properties:

(1) |A;| 2 |A] for each 1 <i < m, so that m <. 1;

(2) |A; + Ai| Seo |Ai] for each 1 < < m;

(3) E(€- A, 0"+ Ay) < &'| A% A% whenever 1 <i < j <mand (,0 € {1,2};

(4) E(¢- Ag, 0’ - A) < e|A]® whenever ¢, ¢ € {1,2}.

To estimate Tj(A), we write it as the sum of m* terms of the form Ty(A;,,. .., A;,) for some
1 <iy,...,0 <m,and the k terms Ti(Ao, A,..., A),Tk(A, Ao, ..., A), ..., T(A A, ..., Ap).
To estimate Ty (A;,, ..., A;,) when ¢y,..., i are not all the same, we use Lemma 8.2 and

property (3) to obtain
Tk(Aila ce 7Azk) S 8,1/6’]12.
2

Thus the total contributions from these terms are bounded by &'/m*n?. Moreover, by
Lemma 8.2 and property (4) we also have

Tw(Ag, A, ..., A) < e'/on?,
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and similarly for the other k£ — 1 terms involving Ag. Thus we have shown that

2

) /1/6 1/6
S;Tk(Az) m +e k 100]€3’

IIM?r

if £,¢’ are small enough (recall that m depends only on ¢). If ¢ is sufficiently small in terms
of ,¢’, then Lemma 8.3 can be applied to each A; in view of property (2) to get

2 2

= 2 n n 1
g A+ = (k—1)m < max | A + (k= m+ oo

100k3 — k—11<i<m

Combined with the lower bound for 7j;(A) in the hypothesis, this implies that |A;| >
(1 — 1/10k?)n for some 1 < i < k. By [18, Theorem 4.1], after dilation we may assume that
A; is contained in an interval of length at most N/100k. O

We are now ready to prove Theorem 2.4. In view of Lemma 8.4, after a suitable dilation
and translation we may assume that the set Ag = AN [—N/100k, N/100k] has size |Ag| >
(1 —1/10k%)|A|. Let

A =AN([-0.1N,0.1N]JU[0.4N,0.6N]).
Write ny = |A;| and ny = |A\A;| = n — n;. Note that for any k-AP in A, if at least two
of its first three terms lie in Ay, then it is entirely contained in A;. Thus any k-AP in A
that is not entirely contained in A; must have at least one term outside A; and at least two

out of the first three terms outside Ap, and the number of these k-APs is then bounded by
3kna| A\ Ao| < nno/2k. Tt follows that

< +%.

Note that 2- A; C [-0.2N,0.2N]. Thus from Lemma 8.1 and the integer case of Theorem 2.4
proved in Section 8.1, we obtain

Using (2.6) we arrive at
n? 1 nnoy
T.(A) < —2 —(k—1)4+ —.
WA) = =g+ k=D 5
If ny > 0, then
1 nng nNg n? — n%
(k-1 < <
A e e N

provided that n > k(k — 1)/2 (which we may assume). Thus in this case we have

7’L2

kE—1

Ti(A) < < Ti([n])

as desired. If ng = 0, then A = A; and the desired conclusion follows from (8.3).
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APPENDIX A. PROOFS OF FURTHER BOUNDS ON (GAUSSIAN WIDTHS

A.1. Matching lower bound for 3-APs. Here we prove the matching lower bound

GW(T3/N) 2 v/Nlog N
in Theorem 4.4. As in Section 4.1 we only work out the Q = Z/NZ setting here. The
) = [N] C Z setting can be deduced similarly by embedding [N] in a larger cyclic group to
avoid APs from wrapping around zero.
First we show that if h: Z/NZ — R is a random function with h(a) ~ Normal(0, 1) i.i.d.
for a € Z/NZ, then, with probability at least 1/2, we can find some f: Z/NZ — [0, 1] such

that
(¥ VT5(f),h) 2 V/Nlog N. (A1)

Indeed, the real components of i(2s) for integers 0 < s < N/4 are independent Gaussians
with variance ©(1/N) (since the Fourier transform is orthogonal), so with probability at least

0.9 there is some integer 0 < s < N/4 such that ERE(ZS) 2 +/(log N)/N and furthermore
h(0) = O(1/v/N). Then, setting f(a) = (1+cos(2rsa/N))/2 so that f(0) = 1/2, f(+s) = 1/4
and f(r) =0 for all r ¢ {0, s, —s}, we obtain, by Lemma 4.3,

~

LT(n ) = FO2R(0) +

and

+ FR(-29) + Fl-s)7h(2s) = {h(0) + WR(25) 2 /5,

~

LTyt f) = —Tg(f f.h) = F(0)*h(0) = O(N~'/?)
+ 15

N2
Thus (A.1) holds since (VT5(f), h) = T5(f, f,h) + T5(f, h, f) + Ts5(h, [, f).

Finally, one can convert f: Z/NZ — [0,1] to a {0, 1}-valued function by changing the
value of f at a € Z/NZ to 1 with probability f(a) and 0 with probability 1 — f(a). A routine
probabilistic argument shows that (A.1) holds for some f: Z/NZ — {0, 1}, thereby proving

GW(T3/N) 2 v/Nlog N.

A.2. Improved upper bound for 4-AP. Here we prove the final claim in Theorem 4.1
that
GW(Ty/N) < N*/*(log N)Y4. (A.2)
As earlier we only discuss the 2 = Z/NZ setting here. We have
<VT4(f)7h> :T4(h7f7f7f)+T4(fah7f7f) +T4(f7fah7f> +T4<f7f7f7h) (A3>

Define the following multiplicative analogue of the finite difference

Ah(x) = f(a)h(z +s)

(since we will be working with real-valued functions, one can ignore the conjugation). The
Fourier transform of A h controls T}, as shown by the following lemma, which plays a similar
role to Lemma 4.4 for T5.

Lemma A.1. For any f: Z/NZ — [—1,1] and any h: Z/NZ — R,
1 1 — 1/2
FILh L EDS (5 X 18R

SELZ/NZL

The same holds with the left-hand side replaced by T'(f, h, f, f), T(f, f,h, f), or T(f, f, f, h).
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Proof. We prove the inequality for T'(h, f, f, f) as the other cases are analogous. We have
2

T .1 0P = |3 (Z bla = 30)f(a - (1)) 1(@
<N (Z h(a — 3b) f(a — 2b) f(a — b)) 2 [Cauchy-Schwarz|
=N Z h(Z — 3b)h(a — 3V) f(a — 2b) f(a — 20') f(a — b) f(a — V)
= Ng Assh(a — 30)Agg f(a — 20)Af(a —b)  |by setting s = b — V]
vy
= N> Ts(Assh, Moo f, A )
< N® Z |Ashllee [by Lemma 4.4 on T
S N? Z |2 oo
The lemma follows by reasrranging. O

Let h: Z/NZ — R be a random function with independent standard Gaussian values.

Noting that
Z h(a)h(a + s)w™"

an/NZ
is a quadratic form of Gaussians, and using tail bounds for such random variables [21] (also
[4, Example 2.12]) we find that for every s # 0,
log N
N
We always have st\hﬂoo <1 for all s. Thus

GW(Ty/N)=E,  sup  (VTy(f)/N,h)

f: Z/NZ—{0,1}

H@LHOO = O( ) with probability 1 — O(N~1?). (A.4)

— 1/2
< Eh\/ﬁ< Z ||A5h||oo) [by (A.3) and Lem. A.1]
SE€Z/NZ
< N¥*(log N)'*. [by (A.4)]

Acknowledgments. We thank Ben Green and Freddie Manners for helpful discussions. We
also thank the anonymous referee for helpful comments that improved the exposition of the

paper.

REFERENCES

[1] R. C. Baker, G. Harman, and J. Pintz. The difference between consecutive primes. II. Proc. London
Math. Soc. (3), 83(3):532-562, 2001. 115

[2] B. B. Bhattacharya, S. Ganguly, E. Lubetzky, and Y. Zhao. Upper tails and independence polynomials
in random graphs. Adv. Math., 319:313-347, 2017. 11, 12, 13



UPPER TAIL LARGE DEVIATIONS FOR ARITHMETIC PROGRESSIONS 33

[3] Y. F. Bilu, V. F. Lev, and I. Z. Ruzsa. Rectification principles in additive number theory. Discrete
Comput. Geom., 19(3, Special Issue):343-353, 1998. Dedicated to the memory of Paul Erdgs. 127
[4] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. Oxford University Press, Oxford,
2013. A nonasymptotic theory of independence, With a foreword by Michel Ledoux. 132
[5] J. Briét and S. Gopi. Gaussian width bounds with applications to arithmetic progressions in random
settings. arXiv:1711.05624. 14, 111
[6] S. Chatterjee. The missing log in large deviations for triangle counts. Random Structures Algorithms,
40(4):437-451, 2012. 11
[7] S. Chatterjee. An introduction to large deviations for random graphs. Bull. Amer. Math. Soc., to appear.
12
[8] S. Chatterjee and A. Dembo. Nonlinear large deviations. Adv. Math., 299:396-450, 2016. 11, 12, 13, 17,
114
[9] S. Chatterjee and P. S. Dey. Applications of Stein’s method for concentration inequalities. Ann. Probab.,
38(6):2443-2485, 2010. 11
[10] S. Chatterjee and S. R. S. Varadhan. The large deviation principle for the Erdgs-Rényi random graph.
European J. Combin., 32(7):1000-1017, 2011. 11, 16, 125
[11] D. Conlon and W. T. Gowers. Combinatorial theorems in sparse random sets. Ann. of Math. (2),
184(2):367-454, 2016. 114
[12] E. Croot. The minimal number of three-term arithmetic progressions modulo a prime converges to a
limit. Canad. Math. Bull., 51:47-56, 2008. 16
[13] B. Demarco and J. Kahn. Tight upper tail bounds for cliques. Random Structures Algorithms, 41(4):469—
487, 2012. 11
[14] B. DeMarco and J. Kahn. Upper tails for triangles. Random Structures Algorithms, 40(4):452-459, 2012.
1
[15] R. Eldan. Gaussian-width gradient complexity, reverse log-Sobolev inequalities and nonlinear large
deviations. arXiv:1612.04346. 12, 13, 14, 17, 18
[16] N. Frantzikinakis. Some open problems on multiple ergodic averages. arXiv preprint arXiv:1103.3808,
2016. 114
[17] N. Frantzikinakis, E. Lesigne, and M. Wierdl. Random differences in Szemerédi’s theorem and related
results. J. Anal. Math., 130:91-133, 2016. 114
[18] B. Green and O. Sisask. On the maximal number of 3-term arithmetic progressions in subsets of Z/pZ.
Bull. Lond. Math. Soc., 40(6):945-955, 2008. 12, 15, 127, 129, 130
[19] B. Green and T. Tao. The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math.
(2), 175(2):465-540, 2012. $14
[20] B. Green, T. Tao, and T. Ziegler. An inverse theorem for the Gowers U**![N]-norm. Ann. of Math. (2),
176(2):1231-1372, 2012. 12
[21] D. L. Hanson and F. T. Wright. A bound on tail probabilities for quadratic forms in independent random
variables. Ann. Math. Statist., 42:1079-1083, 1971. 132
[22] S. Janson, K. Oleszkiewicz, and A. Ruciriski. Upper tails for subgraph counts in random graphs. Israel J.
Math., 142:61-92, 2004. 11
[23] S. Janson and A. Ruciriski. The infamous upper tail. Random Structures Algorithms, 20(3):317-342,
2002. 11
[24] S. Janson and A. Ruciiiski. The deletion method for upper tail estimates. Combinatorica, 24(4):615-640,
2004. 11
[25] S. Janson and A. Rucinski. Upper tails for counting objects in randomly induced subhypergraphs and
rooted random graphs. Ark. Mat., 49(1):79-96, 2011. 11, 12
[26] J. H. Kim and V. H. Vu. Divide and conquer martingales and the number of triangles in a random graph.
Random Structures Algorithms, 24(2):166-174, 2004. 11
[27] E. Lubetzky and Y. Zhao. On replica symmetry of large deviations in random graphs. Random Structures
Algorithms, 47(1):109-146, 2015. 11, 16, 125
[28] E. Lubetzky and Y. Zhao. On the variational problem for upper tails in sparse random graphs. Random
Structures Algorithms, 50:420-436, 2017. 11, 12, 13, 117
[29] T. Tao. Higher order Fourier analysis, volume 142 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2012. 114



34 BHATTACHARYA, GANGULY, SHAO, AND ZHAO

[30] V. H. Vu. A large deviation result on the number of small subgraphs of a random graph. Combin. Probab.
Comput., 10(1):79-94, 2001. 11

[31] L. Warnke. Upper tails for arithmetic progressions in random subsets. Israel J. Math., 221:317-365, 2017.
1, 12

[32] Y. Zhao. On the lower tail variational problem for random graphs. Combin. Probab. Comput., 26:301-320,
2017. 16, 125

DEPARTMENT OF STATISTICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA 19104, USA
E-mail address: bhaswar@wharton.upenn.edu

DEPARTMENT OF STATISTICS, UC BERKELEY, CALIFORNIA, CA 94720, USA
E-mail address: sganguly@berkeley.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506, USA
E-mail address: xuancheng.shaoQuky.edu

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA
02139, USA

E-mail address: yufeizOmit.edu



	1. Introduction
	2. Statements of results
	3. Gaussian width and non-linear large deviations
	4. Bounds on Gaussian width
	5. Variational problem at the macroscopic scale
	6. Variational problem at the microscopic scale
	7. Replica symmetry
	8. Maximizing the number of k-APs
	Appendix A. Proofs of further bounds on Gaussian widths
	References

