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ABSTRACT

Caching is integral to Named Data Networking (NDN). Routers in
NDN networks are encouraged to cache content and serve later
requests from their caches.

As NDN has evolved, researchers have realized that different
caching schemes work better for different types of content and
patterns of content requests. From a measurement perspective, this
means that being able to determine the caching schemes in use
within an NDN network can be essential to understanding the
network’s performance.

In this paper, we investigate the feasibility of detecting NDN
caching schemes via active measurement (i.e., by sending requests
into the network and measuring responses) from edge systems (e.g.,
by users). We show it is possible to determine what algorithms
routers are using to decide what content to cache. Furthermore,
for stochastic caching schemes with fixed caching probabilities, we
show it is possible to infer the caching probability. Finally, while
we do not seek to understand routers’ cache replacement policies
(which we leave to future work), we find that the methods for
determining the caching algorithm are robust to cross traffic that
may impact the content of a router’s cache.
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1 INTRODUCTION

Caching is a central feature of Named Data Networking (NDN) [26].
In NDN, consumers request uniquely named content, using an In-
terest packet, and the network then seeks to fulfill the request with
a Data packet that contains the uniquely named content. Because
content is uniquely named, it can be cached in routers’ local storage
(in NDN, the Content Store). Every time a router sees a Data packet,
it must decide whether to cache the packet, hoping that there will
be a later Interest for the same content.

Caching can decrease consumers’ access latency. Caching can
also reduce loads on the producers of data. Because duplicate or
later requests for the same content can be satisfied from caches in
routers, producers are less likely to be overwhelmed when their
content is popular.

In-network caching systems’ performance depends on many
factors, such as content popularity, the routing of content request
packets, when routers decide to cache, when the cache is full, and,
how routers decide which content to replace with new content. Fur-
thermore, experiments suggest that different caching approaches
may better serve different applications. A number of different NDN
caching policies have been developed (see section 3). Since a caching
policy can be applied to a specific name prefix, ISPs have the po-
tential to provide differentiated caching services or other novel
caching-related content services. Different routers in an NDN net-
work may implement different caching policies.

Suppose that you are a user (consumer), or an application de-
veloper, or a content creator (producer), and you see signs that
the content you are requesting, distributing, or creating is not be-
ing distributed efficiently in an NDN network. Clearly, you would
like to know how the network’s routers are caching the content.
The knowledge could help content creators verify their caching
agreement with ISPs. Being able to infer caching policies of other
ASs might also allow an AS to determine local caching policies
effectively and perform traffic engineering.

Broadly, there are three possible approaches for learning the
routers’ content caching policies:



ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

o Interrogate each router and ask that router how it would
cache the content;

e Passively measure NDN traffic from one or more vantage
points and inferring the caching pattern from the observed
traffic behavior; and

o Actively measure by sending Interests into the NDN net-
work and inferring the caching pattern from the observed
responses.

We assume that the caching measurement happens in a future
NDN-based Internet that is similar to today’s IP-based Internet.
Many ISPs cooperate to distribute data to consumers. Each ISP may
have its own routing, forwarding, and caching policies. Similar
to BGP policies in today’s IP networks, each ISP has information
about its own caching policies. However, many ISPs are unwilling
to reveal their caching policies to others or the public [25]. This
work focuses on the active measurement from edge systems. We
envision that active measurement at the edge systems (e.g., by users
or vantage points in open measurement platforms) could give NDN
users the ability to detect the caching policy in use.

To this end, we present the first active measurement scheme
to detect caching algorithms in NDN networks in this paper. We
show that by periodically repeating probes for the same content,
and measuring the difference in response times, we can infer the in-
network caching algorithms. The method is robust in the presence
of cross traffic, and we can use it to estimate the pre-set probability
value for static probabilistic caching decisions.

The rest of the paper is organized as follows. Section 2 gives
existing measurement NDN tools. We introduce some common
caching mechanisms in NDN networks in Section 3 as background
knowledge. Section 4 points out our objectives and describes our
method. We show the profile of some common caching decisions
in Section 5 and then investigate the robustness of our method in
the presence of cross traffic. Section 6 demonstrates the results of
apply our method on a real topology, and Section 7 concludes the

papers.

2 RELATED WORK

NDN is a new network architecture and network measurement is
one of the understudied challenges in NDN.

The shift to a content-centric based communication mechanism
fundamentally changes the way to measure NDN networks. The
rich in-network functionalities not only improve data distribution
performance but also introduce complexity in NDN networks. Due
to this complexity, only a few tools are currently available in NDN
measurements. These tools give users limited capabilities to under-
stand network performance, and identify and troubleshoot network
issues.

In general, network measurement needs tools to measure net-
work performance, traffic, and in-network state. NDN can be seen as
a superset of IP. NDN could name data in various ways where the IP
address is one feasible format. Therefore, NDN needs measurement
tools/methods to cover more aspects than IP.

To the best of our knowledge, NDN has a few measurement
tools [2, 7, 11, 22] that cover some aspects. Many of them focus on
essential properties such as reachability (e.g. ndnping [22]) and the
number of available paths (Contrace [also called CCNinfo] [1, 2],
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cenx-trace [17], and NDN-trace [7]). Marchal et al. [11] investigated
the server-side performance for generating NDN Data.

Obviously, no tool or method exists to measure NDN-specific
network states, i.e., forwarding state, and caching state. Research
is needed to allow people to measure NDN-specific network states
and understand their effects on network performance. This paper
presents the first caching policy detection method to fill the gap in
NDN measurements.

3 CACHING POLICIES IN NDN

A number of caching policies have been tested in NDN networks [3,
6,15, 16, 27].

Typically, NDN caching policies contain two parts: the caching
decision and the cache replacement decision [13, 14]. In this paper,
we focus on detecting the caching decision algorithms. As the
background to understanding our results, this section presents the
different caching decision algorithms that have been implemented
in NDN networks. We conclude this section with a brief discussion
of cache replacement, though we do not measure it in our study.

3.1 Caching Decision

The caching decision is to determine whether a packet will be stored
in the CS or discarded. Typically, an NDN node needs to make such
a decision when a Data packet arrives at an NDN node that does
not have the packet in its CS.

3.1.1 Cache Everything Everywhere (CEE). CEE is the most straight-
forward caching decision strategy. With CEE as the strategy, NDN
nodes attempt to cache every incoming Data packet that is not
already in their CS. Caching Data packets everywhere provides
the rapid replication of all available Data packets through the net-
work. Due to its simplicity, the CEE strategy is widely used in NDN
networks.

CEE leads to high redundancy, especially in a strongly connected
network [13]. This redundancy can hurt the overall caching effi-
ciency of a network. In a network with severely limited caching
capabilities, CEE is likely to waste precious caching resources.

Caching efficiency can be measured using diversity [13], which
is the ratio of unique content objects in all caches to unique content
producers. Other advanced caching strategies attempt to maximize
this metric by ensuring different router saves different Data packets.

3.1.2  Leave Copy Down (LCD). NDN networks with the LCD caching
policy always cache Data packets only at the first node to receive
the Data [14]. The "first node" is the next hop from the node where
the cache hit occurred towards the consumer.

LCD is chosen when the network wants to improve the caching
diversity without introducing complex communication into the
caching process. LCD tends to keep Data packets close to the pro-
ducer in the retrieval process, and the saved copy could alleviate
the load on the producer as long as it stays on the data retrieval
path.

3.1.3  Static Probabilistic Caching. The easiest solution to decrease
redundancy is to apply a certain probability when a router needs
to decide whether it should cache the incoming Data chunk!. The

I This paper uses Data chunk and Data packet interchangeably.
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probability that an NDN router will store the incoming data chunk
could be decided by the network operator. Whenever a router re-
ceives a Data chunk, it generates a random number between 0 and
1. If the generated number is smaller than the pre-set probability
p, the router saves the chunk in its CS. Otherwise, the router does
not cache this chunk, simply forwarding it to the downstream.

Since not every Data chunk is cached at every router, the cache
diversity with probabilistic caching across the network will defi-
nitely be higher than that with CEE. Chunks requested and sent
more often than others have a higher chance of being stored at
more routers, as they arrive at routers more often.

Let n be the number of times that a node receives the same Data
chunk, the caching probability at that node is 1 — (1 — p)™ [28].

A lower p will result in higher cache diversity, and CEE could
be treated as a special case of probabilistic caching with p = 1.
However, a wide range of value has been considered [20], such as
0.7, 0.5, 0.3, and other values.

3.1.4 Dynamic Probabilistic Caching. Some caching strategies adopt
dynamic probability to better adapt the caching behavior to the
network state. In these strategies, each router computes a caching
probability individually for itself or even for each Data packet,
based on available information, such as node-local information,
Data chunk information, or even the information from the wider
network. For example, local router ID, the position of the caching
node in the network topology, and other information can be used
to determine the probability.

ProbCache [15] is a dynamic probabilistic caching strategy that
computes the caching probability of a given Data chunk based on
the position of the caching node. The position is decided by the
total number of hops between its producer and the consumer that
requested it, as well as the number of hops remaining on the path
to the consumer [14]. ProbCache achieves this by extending the
Data packet with two new fields, namely, Time Since Birth (TSB)
and Time Since Inception (TSI). TSB counts the number of hops
since the creation ("birth") of the Data packet. TSB’s initial value
is 1. Every router increments the value when it forwards the Data
packet. TSI is defined as the number of hops between the creation
of the corresponding Interest packet and the cache hit. ProbCache
calculates the cache weight as TSB/TSI. This way, the network
edges would have a higher probability of storing Data chunks. One
should notice that the caching probability is re-calculated each time.
When a Data chunk is cached, TSI is the hop counts between the
consumer and the router that caches the chunk.

Some researchers believe that caching closer to the server could
be more beneficial in some topologies [14]. ProbCache-inv, a vari-
ant of ProbCache, stores more data chunks at the producer side
by simply inverting the caching probability to rand() < (1 —
CacheWeight)).

3.1.5 Other Strategies. This subsection briefly introduces a number
of alternative strategies that consider various types of information
in their mechanisms. However, due to their complexity and over-
head, we do not describe them in this paper.

Cooperative caching uses more than local information in their
caching decisions. The cooperation could be implicit or explicit.
Implicit coordination strategies set up prior rules on nodes to avoid
the need for explicit coordination. For example, Li et al. [8] propose
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a label-caching decision, evenly distributing chunks across the
network. Users need to choose the subsets number k for chunks.
Each router is preassigned a fixed label [ at the beginning, where
I < k. Nodes are only allowed to cache chunks whose segment ID
modulo k is equal to I. Users could adjust k to automatically stratify
chunks as needed.

In explicit coordination, nodes require continuous communica-
tion among the nodes to maintain a consistent state [14]. Infor-
mation contained in the communication is cache states or cached
chunks. The strategy proposed by Liu et al. [9], for example, coordi-
nates between nodes to construct a virtual backbone network with
core nodes that are responsible for caching.

Similar to the approach above, other works have used various
other information that can help caching decisions. Vural et al. [24]
propose a strategy that uses content popularity to calculate the
cost function for the caching of incoming chunks. Chai et al. [4]
utilize the network topology to save content chunks at the most
central node. All caching strategies claim to generate reasonable
good performance, but currently, there is no consensus on what
information a good strategy should have.

3.2 Cache Replacement Policy

The cache replacement policy is to determine how to choose chunks
that need to replace when a router has reached its capacity.

Some commonly used cache replacement decisions are Least
Recently Used (LRU), Least Frequently Used (LFU), and Random
Replacement (RR). In LRU, the router always chooses the one that
was least recently requested. LFU, as a variation on LRU, keeps
track of how often the objects in the cache are requested and evicts
the least popular ones. As the least complex of the basic cache
replacement policies, RR simply evicts random content objects
every time it needs to replace a chunk.

NFD forwarder uses Priority-FIFO as the default replacement
policy [23]. In this paper, we assume the default cache replacement
policy is used.

4 DISCOVERING IN-NETWORK CACHING
DECISIONS

This section discusses our objectives and briefly describes our ex-
perimental methodology.

4.1 Objectives

Network users can benefit from knowing what caching mechanism
the network is using. Misconfiguration of caching policies may
happen when an ISP provides differentiated caching services or
other novel content services. Mistakenly assigning a lower proba-
bility to a content provider who contracted with an ISP for higher
probability violates the contract. The caching detection method
could help a content provider verify its contract with an ISP. Be-
sides, the caching policy might affect application development. For
example, content providers prefer to cache chunks at the server
side at the beginning, in order to utilize network storage to help
serve a burst of requests. As we discussed earlier, the ProbCache-inv
mechanism [15], instead of the default CEE caching mechanism,
will work better. Knowing what caching mechanism the network is
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using could help developers save time in debugging or tuning ap-
plication performance. We admit that ISPs could access CS entries
on each router to figure out the caching mechanisms. However,
this approach needs special privileges or additional management
protocols. Passive measurements may work in inferring caching
policies by monitoring on-going traffic, but it requires not only
special privileges but also sufficient traffic under a name prefix in
the network. Relying on third-party databases may not work well
either, as they may be incomplete or out-of-date.

Our goal in this work is to let edge-systems detect deployed
caching mechanisms without the help of ISPs. Content providers
detect the active caching policy in an ISP could be one of the ex-
ample. When a content provider has contract with an ISP, he/she
knows what the caching behaviors are supposed to be. Then the
content provider can conduct measurements on chosen vantage
nodes in an open measurement platform (e.g. RIPE Atlas [19], M-
Lab [5], and other platforms in today’s IP networks) to verify if the
agreement is enforced.

A caching policy contains the caching decision and the cache
replacement policy. Our method aims to detect the caching deci-
sion from the end-hosts for several reasons. First, caching decisions
directly affect the data retrieval performance. Whenever a Data
chunk arrives, NDN routers need to make caching decisions. The
cached copies could improve data retrieval performance immedi-
ately. Second, end-users have no tools or methods to detect what
caching decision policy is in use.

NDN routers are stateful, and naive active measurements may
not produce correct results about the network’s caching state. In-
jecting too many probe packets into the NDN network will place
pressure on the network state or even change the network state.
Our method needs to ensure the correctness by minimizing the
measurement overhead.

Caching decision mechanisms may utilize any information to
make decisions, such as local random numbers, topology informa-
tion, data labels, or even traffic information. Our method should
allow users to specify any NDN parameters and observe the net-
work’s behavior with generated traffic.

4.2 Methodology

An appropriate caching policy could benefit both the consumer and
the producer. Caching can decrease consumers’ access latency and
reduce the loads on the producer. Consumers, producers, and appli-
cation developers would like to check if the appropriate caching
policy is used when they notice data are not distributed efficiently
in NDN networks.

To this end, our method assumes that users can access both the
client node and the server node so that they can generate the Data
packets with various parameters. Users can specify name prefix,
Data payload length, and other parameters to observe the caching
behavior. The server-side could also deploy a service to answer
probing Interests with required parameters following a protocol,
but the protocol design is out of the scope of this paper. For the
sack of simplicity, we assume that NDN routers use the best-effort
forwarding strategy, and the default replacement policy is used in
this paper. According to NFD Developer’s guide [23], Priority-FIFO
is the default replacement policy on NFD forwarder.
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To capture the unique distribution of chunks, the client first
sends out tens of unique Interests. The client then re-sends the
same Interests (duplicates) for several rounds so that it can detect
the change of hop counts of Data chunks from one round to another.
We show that 50 Interests and 10 rounds are enough for detecting
caching decisions in Section 5. Users can tune the number of probing
Interests and rounds to minimize the overhead.

To be more consistent with typical use of the architecture, the
tool appends a reserved name component (e.g. "/detectcaching")
and a nonce to make each measurement session unique, and then
the longest prefix matching can help fetch the same Data chunk
with duplicate Interests. For example, when the target name prefix
is "/ndn/conference/icn20", the tools append the name components
"/detectcaching/<nonce>" to form the measurement name prefix
"/ndn/conference/icn20/detectcaching/<nonce>" in the measure-
ment. The unique name prefix ensures that no other measurements
affect the on-going probing session. A chunk ID is appended to the
prefix name of the probing session to make each Interest unique,
and thus we can capture the hop count information for each chunk
separately. Additionally, the CanBePre fix field [21] is enabled in
all the Interests, so that the cached Data chunks can satisfy these
incoming Interests. After the client fetches a Data chunk, it saves
the hop count. We then plot the hop counts in Violin Plots for
caching mechanisms when the measurements are done.

We derive our method from the Leave Copy Down (LCD) caching
mechanism [14], and then show that the method can apply to other
mechanisms in Section 5. As shown in Figure 1, the client sends out
Interests to trigger Data chunks from the server-side. In the first
round, the client sends out Interests for data chunks 1, and 2 for
Content "/data." These Interests are forwarded to the server. Upon
the arrival of these Interests, the server responds with correspond-
ing Data chunks. Since NDN routers have LCD caching decisions
configured, the Data chunks carry a field to indicate the hop count
away from the storage. According to the hop count field, router
R3 will save all chunks locally. Other routers forward Data chunks
downstream to the client. In the next round, the client sends out
the same number of Interests again. All Interests are duplicate with
new parameter values. Router R3 will respond with local copies.
For the same reason, caching happens at the next router, R2. Similar
caching behavior happens to round three as well.

The caching state and its change in the data retrieval process
give a unique profile for caching decisions. The distribution of hop
counts for Data chunks demonstrates the feature of retrieval in one
round. In each round, the client could perceive the hop changes
of each chunk after it fetches them. Specifically, the LCD caching
mechanism puts all chunks that belong to the same round in the
same hop. From one round to another, LCD gradually moves Data
chunks from the upper router to the lower one. In the client’s view, it
can notice Data chunks in the second round have decremented hop
counts. We can claim that the caching decision is LCD if the Data
chunks have the same hop count in one round and the subsequent
rounds have one less hop.
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Figure 1: Caching state changes for LCD caching mechanism.

5 EMPIRICAL RESULTS

We use ndnSIM-2.7 [12] to validate our caching decision detection
method. This section presents the experiment settings and empirical
results.

5.1 Experiment settings

Our simulation assumes the content store (CS) is installed on all
the routers except the first one, as that is usually the consumer’s
localhost. To simplify the scenario, we assume only one consumer
and one producer, and the Best Route Strategy is configured on all
the NDN nodes.

We also assume that the uniform caching policy is used. That
means that the same caching policy is using on all the routers in
each experiment. To the best of our knowledge, the benefits of using
hybrid policies have not been studied, and operators tend to use
the same policy for a name prefix. Managing the uniform policy
is straightforward. Admittedly, operators may use hybrid policies
intentionally or unintentionally, which we leave to future work.
We envision that our method could detect the use of hybrid policies
by comparing the results with uniform policy scenarios.

We first use a simple linear topology with 11 nodes to capture
the profile for some common caching decisions. The topology has
enough hops to plot chunk distributions for these caching decisions.
Since the network is configured with the Best Route Strategy, the ap-
plications do not utilize the potential alternative paths provisioned
by a complex topology.

In each round, the client sends out 50 Interests as probing packets.
The client repeats sending duplicate probing messages 10 times to
ensure that the changes in hop count distribution could be detected.
Since data chunks in the first round must be from the server-side,
we expect data chunks collected by other rounds show the hop
count distribution and its changes. We then depict the hop count
distribution and its changes in Violin Plots.

We use Violin Plots to demonstrate both the distribution for
Data chunks and its change across multiple rounds for several
reasons. First, chunks may appear on any routers that subject to the
caching probability. Formulas are difficult to represent the chunk
distribution. Second, other commonly-used plots cannot present
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both the metrics. For example, Box Plot tends to hide important
details about how values in the data are distributed. On the contrary,
a Violin Plot is a combination of a Box Plot and a Density Plot. The
Violin Plot can show the shape of the distribution, the median value,
and the thick black bar in the center to represent the interquartile
range. Aside from showing the aforementioned statistics, a Violin
Plot also shows the entire distribution shape of the data, which can
be easily captured visually.

5.2 Caching decision profiles

Since ndnSIM [12] provides hop count information for each Data
chunk, we plot Violin Plot for each caching decision mechanism.
Figure 2 shows the profiles for some common caching decision
mechanisms.

CEE, LCD, and Label-caching stand out for their distinct Violin
Plot shapes. CEE caches everything everywhere. LCD always caches
Data chunks at the next hop from the node where the cache hit
occurred. When Lable-caching is in use, an NDN router only caches
Data chunks whose IDs modulo k are equal to the assigned label
1. It is obvious that both CEE and LCD deterministically save all
Data chunks at a specific hop. The difference is the hop counts
for each round. CEE starts to serve requests with the local copy
since the second round. In Figure 2a, these chunks stay at the 2nd-
hop for the rest of the rounds as the 2nd-hop router is the closest
node equipped with CS. When LCD is using, the hop count for
one round is always one hop closer to the client, until it arrives
at the 2nd-hop router (Figure 2b). Lable-caching, however, caches
chunks on multiple routers. This caching mechanism consistently
keep chunks at specific hops. Duplicate Interests do not change the
caching state. Figure 2c shows that all the rounds produce the same
violin shape.

Static probabilistic caching is the easiest way to achieve higher
cache diversity without increasing the complexity. Figure 2 shows
the profile of static probabilistic caching decisions with probability
20, 50, and 80, respectively, dubbed as Prob-20, Prob-50, and Prob-80.
Comparing with CEE and LCD, a major difference is that cached
chunks have various hop count within one round when static prob-
abilistic caching decisions are in use. Data chunks disperse along
the path with some probability and form a violin shape. From one



ICN ’20, September 29-October 1, 2020, Virtual Event, Canada C. Fanet al.
12 12 12
—_ cachingLbl R cachingLbl PR
10 H cee 10 . |cd 10
8 8 — 8
1 1 €
3 3 — 3
o o o
o o — o
T T T
4 4 —_ 4
2 S e 2 | 2 cachinngI
mm |abel-caching
0 0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
#tround to send requests #tround to send requests #tround to send requests
(a) CEE (b) LCD (c) Label-caching
12 12 12
I cachingLbl R cachingLbl R cachingLbl
10 = prob-80 10 = prob-50 10 = prob-20
8 8 8
E E £
86 8 86
o a o
o o o
T T T

1 2 3 4 5 6 7 8 9
#tround to send requests

10 1 2 3 4

5

#round to send requests

ALJ.J.LJ.J___ z A‘ALLJ_J‘

6 7 8 9 10 1 2 3 4 5 6 7

#tround to send requests

8 9 10

(d) Prob-80 (e) Prob-50 (f) Prob-20
12 12
— cachingLbl — cachingLbl
10 mm probCache 10 mm probCache-inv
8 8
€ €
3 3
S 6 © 6
o o
o o
T T
4 4 ‘
> iJ.J.ALJ.____ 2 ‘iLJ.J.___
0 0

1 2 3 4 5 6 7 8 9

#tround to send requests

10

(g) ProbCache

12 3 4 5 6 7 8 9
#tround to send requests

10

(h) ProbCache-inv

Figure 2: Profiles for various caching decisions.

round to another, duplicate Interests pull back Data chunks that
are not cached on the 2nd-hop router, and the violin shapes change
accordingly. The samples in the first round form a line, which in-
dicates all chunks are from the server. The second round has the
tallest violin shape in a specific static probabilistic caching. With
subsequent rounds, the violin shapes become progressively shorter.
Duplicate Interests let chunks go through the downstream routers,
and they have a higher chance of being cached. The change of violin
shape between rounds also represents the static probability. When
the probability is 80 (Figure 2d), data chunks are quickly cached at
the closest hop to the client. Probability 50 makes the process much
slower. Even when most chunks are cached one hop awayj, it still
takes another six probing rounds to cache all chunks at the 2nd-hop
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router (Figure 2e). Prob-20 is the worst one in terms of the time to
cache all chunks at the 2nd-hop router (Figure 2f). After ten rounds,
some chunks are still not cached at the closest router. We note that
the height of the interquartile range for round two indicates the
pre-set probability value for static probabilistic caching decision
mechanisms. We present the approach to estimating the probability
value in the next subsection.

We also investigate dynamic probabilistic caching mechanisms,
which dynamically compute a caching probability for each individ-
ual node or even for each content chunk. ProbCache [15] is one of
such caching mechanisms introduced in section 3. It computes the
caching probability of a given Data chunk based on the total num-
ber of hops between its producer and the consumer that requested
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it, as well as the number of hops remaining on the path to the
consumer. In other words, the caching probability is larger when a
chunk gets closer to the consumer in each round. Figure 2g shows
that the height of the interquartile range for ProbCache is similar to
Prob-80 when the client sends duplicate Interests for the first time.
That is because ProbCache assigns a larger probability to routers
that is closer to the client when the path is long. Apart from static
probabilistic caching mechanisms, ProbCache recalculates the prob-
ability value for each round. We can find that caching all chunks at
the closest router, which is the 2nd-hop router, takes another four
rounds. The calculation rule makes the probability value drop when
most chunks are cached around. If a chunk is cached at the 3rd hop
in our topology, the probability to be cached at the 2nd hop is %3,
which is less than the probability 80. ProbCache-inv [15] is identical
to ProbCache in every way except that the final caching probabil-
ity is inverted as (1 — CacheWeight). Figure 2h demonstrates that
ProbCache-inv has a taller violin shape, comparing with ProbCache.
ProbCache-inv tries to cache chunks closer to the producer, so the
probability drops when chunks get closer to the client. From the
interquartile range at the 2nd round, ProbCache-inv is like a static
probability between 50 and 20. However, ProbCache-inv assigns
a higher probability when the router is closer to the Data sink
(cache or producer). When the cache gets closer to the client, the
caching probability on routers increases accordingly. Therefore,
ProbCache-inv takes fewer rounds to cache all chunks at hop two.

To help readers capture the differences between profiles, Table 1
summarizes the key features of the profiles for the above caching
decision policies. When CEE or LCD policy is using, the distribution
of hop count at the 2nd round forms a line. However, other policies
have violin shapes to represent the hop count distribution. The
length of the black bar (i.e. the interquartile range) in Violin plots
at the 2nd round varies from one policy to another. Label-caching,
Prob-20, and ProbCache-inv have long black bars, but Prob-80 and
ProbCache have short ones. Converge speed is the speed of caching
all the Data chunks at the closest hop. CEE uses just one round
to converge. LCD moves chunks one hop down towards the client
gradually, and Label-caching never converges. We can also use the
converge speed to identify the differences when Violin shapes are
similar. Prob-20 converges slower than ProbCache-inv, and Prob-80
is much faster than ProbCache.

5.3 Estimation of static probability

Static probabilistic caching may accept any probability value be-
tween 0 and 1. The misconfiguration of probability value may dra-
matically change the behavior of caching behavior. Having a precise
probability number could help end-users predict application perfor-
mance or debug applications. Specifically, if we know the pre-set
probability p, and a router receives the same chunk n times, we can
estimate the probability of a chunk to be saved as 1 — (1 — p)".
We could leverage the Violin Plot to estimate the static proba-
bility value as well. Since the probability value is applied to each
incoming Data chunk, the overall cache diversity is improved. When
the path between the client and the server is long enough, most Data
chunks are likely to be cached. The ideal case is that all chunks are
cached in the network. Comparing the plot shapes in measurements
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with the ideal case, we are able to estimate the pre-set probability
value.

In a network that all routers have the content store (CS) installed,
we can calculate, p;, the percentage of chunks that the client can
get from the i-th router as Formula 1 for the ideal case.

pi=pl-p)iliel,...n 1)

Where:

e p: the pre-set probability for static probabilistic caching
mechanisms;

e i: the hop number that starts from the client toward the
server.

After getting the p;, we can estimate the number of chunks that
are supposed to be cached on the i-th router as np;. Then, it is
straightforward to plot a Violin Plot using the numbers of cached
chunks on a router.
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Estimated profile for three static probabilistic

Using the above method, we plot the profile for the three static
probabilistic caching in Figure 3. The plotted profile is a Violin Plot
that shows the ideal distribution of cached chunks for the second
round, which contains the largest number of samples. Since the
first router has no CS installed in our experiments, the violin shape
starts at hop two. The number of cached chunks at a hop is also
annotated aside from the violin shape. As shown in Figure 3, the
median for Prob-20 is around four, while Prob-50 and Prob-80 are
zero. The interquartile range in these three probabilistic caching
decisions is different too. Prob-20 has the longest interquartile
range, while the interquartile range for Prob-50 is much shorter.
Prob-80 has most chunks cached at the closest router, and thus
the range height is zero. Comparing Figure 3 with Figure 2, we
can find that Prob-50 and Prob-80 have similar plot shapes, but
Prob-20 has slight differences between the simulation and the ideal
case. The median for Prob-20 in Figure 2 is three. The bottom of
Prob-20’s interquartile range is two in our simulations, while the
ideal case is three. However, the median, the interquartile range,
and together with the violin shape form a unique fingerprint for
caching mechanisms. The feature helps us approximately identify
static probabilistic caching mechanisms with pre-set values.
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Table 1: Summary of Caching Decision Policy Profiles

Caching decision Cache Everything Leave Copy  Label-  Static Probabilistic Caching =~ Dynamic Probabilistic Caching
policies Everywhere (CEE) Down (LCD) caching Prob-20 Prob-50 Prob-80 ProbCache ProbCache-inv
Hop cnt Dist . . C 1 1 . 1. . 1. Y

shape at 2nd Rd line line violin violin violin violin violin violin

len(Black bar) in .

Violin plot at 2nd Rd N/A N/A long long medium  short short long

Converge Speed 1 round hops of path  N/A slow medium  fast medium medium

5.4 The effects of cross traffic

Traffic sent by other applications may lead to competition on shared
network resources (bandwidth, content store, and others). Com-
petition on the bandwidth will trigger more packet drops. A large
volume of data in the same direction (between client and server)
may use out of the content store (CS) and trigger cache replacement
events. When a large number of replacement events happen in a
short time, many Data chunks will be evicted. Since our method
needs cached chunks to plot Violin Plots, competition in the same
direction may kick out Data chunks for measurement too often.
In such case, the tool cannot plot reasonable good Violin Plots for
detection. For the sake of simplicity, we assume that such a worst
case does not happen in this paper.

We are more interested in the correctness of our method when
encountering cross traffic, as it is more common. To introduce cross
traffic, we attach the traffic generator at router eight and three in
the linear topology. Cross traffic could happen at any router, but we
believe putting traffic on either the server-side and the client-side
could help us understand its effect separately. In our simulation, we
only turn on one cross traffic at a time. To let cache replacement
happen more often, we set the CS size to 100. The traffic generator
produces sufficient traffic to overload the router.

In our simulation, most mechanisms are not sensitive to cross
traffic. They may leave more data chunks at the server-side, and
thus they have taller interquartile range, but that does not affect
the correctness of detection. The only exception is LCD.

However, we can still use the method to identify the LCD mech-
anism. Figure 4b demonstrates that LCD cannot move forward to
lower hops after hop nine (client node is the first hop) in the pres-
ence of cross traffic at router eight. LCD initializes the forwarding
tag to one when a cached chunk is pulled out. If the Data chunk is
evicted, the router is unable to attach such a tag, and the next-hop
cannot receive a chunk that contains a caching signal. When the
cross traffic happens at router three, the plot becomes a Violin shape
when chunks reach the third router (Figure 4a). We can see that
samples are not stuck at hop four, but round 8, 9, and 10 contain
samples with deviations. In this case, the competition happens close
to the client. The delay between the client and the router is small,
and thus duplicate Interests get a chance to reach the router before
eviction happens. In contrast, the delay between the client and the
router eight is much larger. When Interests arrive, cross traffic has
evicted all the chunks in the CS.

The profile of caching policies may vary when other cache re-
placement policies are in use. However, the default cache replace-
ment policy is straightforward and efficient to evict cached probing
packets, which gives a good scenario for verifying the robustness
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of the detection method. We plan to study the behaviors of our ap-
proach with caching replacement policies in the future. A function
of the amount of cross traffic, the cache size, and the replacement
policy may be useful in this direction.

6 DETECTING ON A REAL TOPOLOGY

The previous section shows that using hop counts with Violin
Plot could profile a caching decision mechanism. The profile can
be used to estimate the probability value for static probabilistic
caching mechanisms, and the method is robust in the presence of
cross traffic. However, the NDN stack does not explicitly expose
the hop count information to applications.

The client could use HopLimit to figure out how many hops it
needs to fetch a specific chunk, but it may slow down the measure-
ment and introduce a lot of overhead. The HopLimit is an Interest
field to limit the number of hops the Interest is allowed to be for-
warded [21]. To figure out the hop count of a chunk, the client
needs to send out an Interest that starts with HopLimit one. If no
data is received, it increments the HopLimit value to two and sends
out the same interest until a data packet comes back. This approach
has two issues. First, the client must send Interests to cover all hops
until an Interest reaches the router that contains the data chunk.
Most Interests are wasted without any Data chunks returned. These
Interests introduce overhead not only into the bandwidth but also
the PIT. Second, the measurement with HopLimit will be time-
consuming. Interest has to wait until it times out when no Data
comes back. No better way to speed up the measurement process
without affecting the caching states. To this end, we use measured
RTT at the client as the indicator of hops. When RTT does not
work, we apply k-means [10] to estimate hop counts for chunks.

We simulate the measurement process using ndnSIM [12] on
Rocketfuel topology 7018 [18]. The real topology contains delays
and queuing size for each link, perfect for validating our method.
We do not introduce other traffic in the network, as the point of
this simulation is not for figuring out the effect of cross traffic.
The simulation contains just one client and one server to exchange
messages. They are randomly assigned to two nodes on the topol-
ogy. Similar to the method mentioned before, the client sends out
Interests to fetch Data chunks. Unlike previous experiments, the
client calculates the RTT for each Data chunk. After collecting all
samples, we use the RTT information to plot the Violin Plot.

Figure 5 shows that simply using RTT in Violin Plot could de-
tect some caching decisions for the chosen nodes. The delays for
chunks from the server varies, but they do not affect us to identify
caching mechanisms. Figure 5a clearly points out that CEE keeps
all chunks at the closest hop since round two. The distribution of
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Figure 5: Profiles for various caching decisions using RTT.

cached chunks never changes after that. Just like using hop counts,
LCD moves data chunks hop by hop towards the client when using
RTT (Figure 5b). Some samples have slight variances, but they do
not change the plot shapes too much. Finally, Figure 5¢ demon-
strates a similar violin shape for all rounds, which indicates the
caching decisions do not change when encountering duplicate In-
terests. Among all the caching decisions, we know the label-caching
mechanism is the one who has that unique feature.

RTT may not always be good enough to identify the deployed
caching decisions. We choose other nodes to deploy the client and
the server, and Figure 6 shows that the generated ViolinPlots for
static probabilistic caching are misleading for the new pair of nodes.
The reason is that some links have small delays, while others have
large delays. RTT values group some samples visually, but they
cannot represent the hop counts correctly.

We argue that the samples in the same group are from the same
router. The rationale behind this is that the chunks from the same
router go through the same links, and the Interests to pull these
chunks use the same links as well. After grouping samples with
similar RTTs, we can rank groups by their RTT values, and then
each group can represent a hop.

To this end, we apply the k-means clustering algorithm [10] to
group samples. The k-means algorithm takes the collected RTT
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data and the target cluster number k as input, splitting the data
into a fixed number (k) of clusters. The algorithm yields a cluster
id associated with each sample in the data. We can then sort the
clusters by the median RTTs. Each cluster is assigned a hop number,
starting from hop one. Specifically, in our experiments, we specify
six as the k value, and the generated plots present the reasonably
good estimated hop counts. Figure 7 shows that the generated
plots are similar to the ones in our experiments using hop counts
(Figure 2). The probability applied on each Data chunk makes the
violin shapes not exactly the same from one round to another.
However, increasing the number of probing packets can reduce the
deviation and minimize the differences.

In summary, we claim that using RTT with the k-means algo-
rithm in our method is enough to identify caching decisions on
the real topology. We are aware that the k-means clustering algo-
rithm has the difficulty of deciding perfect k-value. The plot shapes
generated by incorrect k-value is misleading in caching policy de-
tection. For example, when the probability value 80 is using, the
static probabilistic caching decision saves chunks on the first four
hops from the client. In this case, we cannot produce the correct
shapes with k-value six. Fortunately, the collected data contains
RTT information for chunks. As long as we know the link delays
as prior, we can estimate the range of hop counts as the k-value.



ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

cachingLbl
= prob-50

400000
350000
300000

2 250000

E 200000
150000
100000

50000

1
#trounds to send requests

(a) Prob-50

UL

C.Fanetal.

cachingLbl
== prob-20

400000
350000
300000

2 250000

£ 200000

150000

100000

50000

1 2 3 4 5 6 7 8 9

#£rounds to send requests

10

(b) Prob-20

Figure 6: Profiles for various static probabilistic caching decisions.
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NDN-trace [7] is a perfect candidate tool to figure out the hop count
and the link delays between the client and the server. We can use
NDN-trace to set up a mapping between the hop count and the
delays.

Many other clustering algorithms are available to group samples
with similar delays in the same clusters. We can use any available
algorithms for estimating the hop counts. Some clustering algo-
rithms are designed to improve scalability. Some algorithms focus
on large-scale data processing or high dimensional data process-
ing. However, our experiments do not require high scalability. Our
dataset has small size, typically hundreds of samples. Delay is the
only dimension that the algorithms need to support.

7 CONCLUSION

The new networking paradigm introduced by NDN, in particular,
its stateful data plane with caching and name-based forwarding,
require a solution to detect caching mechanisms. In this paper,
we present the first active measurement scheme to detect caching
decisions. Our method lets the client send out a small number of
Interests to request Data packets under the target name prefix.
After repeating the measurements several rounds, the client can
collect necessary data chunk information to produce profiles. The
profile contains the hop counts distribution and the distribution
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changes across rounds to identify a caching decision uniquely. We
show that our method can estimate the probability value for static
probabilistic caching mechanisms, and it is robust to cross traffic.
We also apply our method on the real topology, and our results
demonstrate that we can detect active caching decisions by mapping
delays to hop counts.

This paper produces profiles for some common available caching
decision mechanisms. Other mechanisms, such as the explicit co-
operative caching decisions and caching decisions based on be-
tweenness centrality of the caching node, may be deployed in NDN
networks. Generating profiles for these mechanisms could benefit
caching detection. Additionally, the mixed-use of caching decision
schemes may be used intentionally or unintentionally. It may cause
conflicts in saving chunks. We envision that comparing measure-
ments with the ideal fingerprints could help identify misconfigured
policies. Moreover, NDN has other forwarding strategies (e.g., Mul-
ticast, Load-balance, etc.) available, and we plan to study detecting
caching decisions in the presence of other forwarding strategies.

In the future, we plan to apply the proposed method to NDN
testbed for further study. We notice that it may not be straightfor-
ward to build a caching policy detection tool based on the plots’
visual variation. We will propose the design for the caching detec-
tion tool in future work.
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