
Discovering in-network Caching Policies in NDN Networks from
a Measurement Perspective

Chengyu Fan
Colorado State University

Fort Collins, CO
chengyu.fan@colostate.edu

Susmit Shannigrahi
Tennessee Tech
Cookeville, TN

sshannigrahi@tntech.edu

Christos Papadopoulos
Colorado State University

Fort Collins, CO
christos.papadopoulos@colostate.edu

Craig Partridge
Colorado State University

Fort Collins, CO
craig.partridge@colostate.edu

ABSTRACT

Caching is integral to Named Data Networking (NDN). Routers in

NDN networks are encouraged to cache content and serve later

requests from their caches.

As NDN has evolved, researchers have realized that different

caching schemes work better for different types of content and

patterns of content requests. From a measurement perspective, this

means that being able to determine the caching schemes in use

within an NDN network can be essential to understanding the

network’s performance.

In this paper, we investigate the feasibility of detecting NDN

caching schemes via active measurement (i.e., by sending requests

into the network and measuring responses) from edge systems (e.g.,

by users). We show it is possible to determine what algorithms

routers are using to decide what content to cache. Furthermore,

for stochastic caching schemes with fixed caching probabilities, we

show it is possible to infer the caching probability. Finally, while

we do not seek to understand routers’ cache replacement policies

(which we leave to future work), we find that the methods for

determining the caching algorithm are robust to cross traffic that

may impact the content of a router’s cache.

CCS CONCEPTS

• Networks → Network measurement; Network simulations;

Network monitoring.

KEYWORDS

Named Data Networking, network measurement, caching

ACM Reference Format:

Chengyu Fan, Susmit Shannigrahi, Christos Papadopoulos, and Craig Par-

tridge. 2020. Discovering in-network Caching Policies in NDN Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8040-9/20/09. . . $15.00
https://doi.org/10.1145/3405656.3418711

from a Measurement Perspective. In 7th ACM Conference on Information-

Centric Networking (ICN ’20), September 29-October 1, 2020, Virtual Event,

Canada.ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3405656.

3418711

1 INTRODUCTION

Caching is a central feature of Named Data Networking (NDN) [26].

In NDN, consumers request uniquely named content, using an In-

terest packet, and the network then seeks to fulfill the request with

a Data packet that contains the uniquely named content. Because

content is uniquely named, it can be cached in routers’ local storage

(in NDN, the Content Store). Every time a router sees a Data packet,

it must decide whether to cache the packet, hoping that there will

be a later Interest for the same content.

Caching can decrease consumers’ access latency. Caching can

also reduce loads on the producers of data. Because duplicate or

later requests for the same content can be satisfied from caches in

routers, producers are less likely to be overwhelmed when their

content is popular.

In-network caching systems’ performance depends on many

factors, such as content popularity, the routing of content request

packets, when routers decide to cache, when the cache is full, and,

how routers decide which content to replace with new content. Fur-

thermore, experiments suggest that different caching approaches

may better serve different applications. A number of different NDN

caching policies have been developed (see section 3). Since a caching

policy can be applied to a specific name prefix, ISPs have the po-

tential to provide differentiated caching services or other novel

caching-related content services. Different routers in an NDN net-

work may implement different caching policies.

Suppose that you are a user (consumer), or an application de-

veloper, or a content creator (producer), and you see signs that

the content you are requesting, distributing, or creating is not be-

ing distributed efficiently in an NDN network. Clearly, you would

like to know how the network’s routers are caching the content.

The knowledge could help content creators verify their caching

agreement with ISPs. Being able to infer caching policies of other

ASs might also allow an AS to determine local caching policies

effectively and perform traffic engineering.

Broadly, there are three possible approaches for learning the

routers’ content caching policies:

106

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada C. Fan et al.

• Interrogate each router and ask that router how it would

cache the content;

• Passively measure NDN traffic from one or more vantage

points and inferring the caching pattern from the observed

traffic behavior; and

• Actively measure by sending Interests into the NDN net-

work and inferring the caching pattern from the observed

responses.

We assume that the caching measurement happens in a future

NDN-based Internet that is similar to today’s IP-based Internet.

Many ISPs cooperate to distribute data to consumers. Each ISP may

have its own routing, forwarding, and caching policies. Similar

to BGP policies in today’s IP networks, each ISP has information

about its own caching policies. However, many ISPs are unwilling

to reveal their caching policies to others or the public [25]. This

work focuses on the active measurement from edge systems. We

envision that active measurement at the edge systems (e.g., by users

or vantage points in open measurement platforms) could give NDN

users the ability to detect the caching policy in use.

To this end, we present the first active measurement scheme

to detect caching algorithms in NDN networks in this paper. We

show that by periodically repeating probes for the same content,

and measuring the difference in response times, we can infer the in-

network caching algorithms. The method is robust in the presence

of cross traffic, and we can use it to estimate the pre-set probability

value for static probabilistic caching decisions.

The rest of the paper is organized as follows. Section 2 gives

existing measurement NDN tools. We introduce some common

caching mechanisms in NDN networks in Section 3 as background

knowledge. Section 4 points out our objectives and describes our

method. We show the profile of some common caching decisions

in Section 5 and then investigate the robustness of our method in

the presence of cross traffic. Section 6 demonstrates the results of

apply our method on a real topology, and Section 7 concludes the

papers.

2 RELATED WORK

NDN is a new network architecture and network measurement is

one of the understudied challenges in NDN.

The shift to a content-centric based communication mechanism

fundamentally changes the way to measure NDN networks. The

rich in-network functionalities not only improve data distribution

performance but also introduce complexity in NDN networks. Due

to this complexity, only a few tools are currently available in NDN

measurements. These tools give users limited capabilities to under-

stand network performance, and identify and troubleshoot network

issues.

In general, network measurement needs tools to measure net-

work performance, traffic, and in-network state. NDN can be seen as

a superset of IP. NDN could name data in various ways where the IP

address is one feasible format. Therefore, NDN needs measurement

tools/methods to cover more aspects than IP.

To the best of our knowledge, NDN has a few measurement

tools [2, 7, 11, 22] that cover some aspects. Many of them focus on

essential properties such as reachability (e.g. ndnping [22]) and the

number of available paths (Contrace [also called CCNinfo] [1, 2],

ccnx-trace [17], and NDN-trace [7]). Marchal et al. [11] investigated

the server-side performance for generating NDN Data.

Obviously, no tool or method exists to measure NDN-specific

network states, i.e., forwarding state, and caching state. Research

is needed to allow people to measure NDN-specific network states

and understand their effects on network performance. This paper

presents the first caching policy detection method to fill the gap in

NDN measurements.

3 CACHING POLICIES IN NDN

A number of caching policies have been tested in NDN networks [3,

6, 15, 16, 27].

Typically, NDN caching policies contain two parts: the caching

decision and the cache replacement decision [13, 14]. In this paper,

we focus on detecting the caching decision algorithms. As the

background to understanding our results, this section presents the

different caching decision algorithms that have been implemented

in NDN networks. We conclude this section with a brief discussion

of cache replacement, though we do not measure it in our study.

3.1 Caching Decision

The caching decision is to determine whether a packet will be stored

in the CS or discarded. Typically, an NDN node needs to make such

a decision when a Data packet arrives at an NDN node that does

not have the packet in its CS.

3.1.1 Cache Everything Everywhere (CEE). CEE is the most straight-

forward caching decision strategy. With CEE as the strategy, NDN

nodes attempt to cache every incoming Data packet that is not

already in their CS. Caching Data packets everywhere provides

the rapid replication of all available Data packets through the net-

work. Due to its simplicity, the CEE strategy is widely used in NDN

networks.

CEE leads to high redundancy, especially in a strongly connected

network [13]. This redundancy can hurt the overall caching effi-

ciency of a network. In a network with severely limited caching

capabilities, CEE is likely to waste precious caching resources.

Caching efficiency can be measured using diversity [13], which

is the ratio of unique content objects in all caches to unique content

producers. Other advanced caching strategies attempt to maximize

this metric by ensuring different router saves different Data packets.

3.1.2 Leave CopyDown (LCD). NDNnetworkswith the LCD caching

policy always cache Data packets only at the first node to receive

the Data [14]. The "first node" is the next hop from the node where

the cache hit occurred towards the consumer.

LCD is chosen when the network wants to improve the caching

diversity without introducing complex communication into the

caching process. LCD tends to keep Data packets close to the pro-

ducer in the retrieval process, and the saved copy could alleviate

the load on the producer as long as it stays on the data retrieval

path.

3.1.3 Static Probabilistic Caching. The easiest solution to decrease

redundancy is to apply a certain probability when a router needs

to decide whether it should cache the incoming Data chunk1. The

1This paper uses Data chunk and Data packet interchangeably.

107

Discovering in-network Caching Policies in NDN Networks from a Measurement Perspective ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

probability that an NDN router will store the incoming data chunk

could be decided by the network operator. Whenever a router re-

ceives a Data chunk, it generates a random number between 0 and

1. If the generated number is smaller than the pre-set probability

p, the router saves the chunk in its CS. Otherwise, the router does

not cache this chunk, simply forwarding it to the downstream.

Since not every Data chunk is cached at every router, the cache

diversity with probabilistic caching across the network will defi-

nitely be higher than that with CEE. Chunks requested and sent

more often than others have a higher chance of being stored at

more routers, as they arrive at routers more often.

Let n be the number of times that a node receives the same Data

chunk, the caching probability at that node is 1 − (1 − p)n [28].

A lower p will result in higher cache diversity, and CEE could

be treated as a special case of probabilistic caching with p = 1.

However, a wide range of value has been considered [20], such as

0.7, 0.5, 0.3, and other values.

3.1.4 Dynamic Probabilistic Caching. Some caching strategies adopt

dynamic probability to better adapt the caching behavior to the

network state. In these strategies, each router computes a caching

probability individually for itself or even for each Data packet,

based on available information, such as node-local information,

Data chunk information, or even the information from the wider

network. For example, local router ID, the position of the caching

node in the network topology, and other information can be used

to determine the probability.

ProbCache [15] is a dynamic probabilistic caching strategy that

computes the caching probability of a given Data chunk based on

the position of the caching node. The position is decided by the

total number of hops between its producer and the consumer that

requested it, as well as the number of hops remaining on the path

to the consumer [14]. ProbCache achieves this by extending the

Data packet with two new fields, namely, Time Since Birth (TSB)

and Time Since Inception (TSI). TSB counts the number of hops

since the creation ("birth") of the Data packet. TSB’s initial value

is 1. Every router increments the value when it forwards the Data

packet. TSI is defined as the number of hops between the creation

of the corresponding Interest packet and the cache hit. ProbCache

calculates the cache weight as TSB/TSI . This way, the network

edges would have a higher probability of storing Data chunks. One

should notice that the caching probability is re-calculated each time.

When a Data chunk is cached, TSI is the hop counts between the

consumer and the router that caches the chunk.

Some researchers believe that caching closer to the server could

be more beneficial in some topologies [14]. ProbCache-inv, a vari-

ant of ProbCache, stores more data chunks at the producer side

by simply inverting the caching probability to rand() < (1 −

CacheWeiдht)).

3.1.5 Other Strategies. This subsection briefly introduces a number

of alternative strategies that consider various types of information

in their mechanisms. However, due to their complexity and over-

head, we do not describe them in this paper.

Cooperative caching uses more than local information in their

caching decisions. The cooperation could be implicit or explicit.

Implicit coordination strategies set up prior rules on nodes to avoid

the need for explicit coordination. For example, Li et al. [8] propose

a label-caching decision, evenly distributing chunks across the

network. Users need to choose the subsets number k for chunks.

Each router is preassigned a fixed label l at the beginning, where

l < k . Nodes are only allowed to cache chunks whose segment ID

modulo k is equal to l . Users could adjust k to automatically stratify

chunks as needed.

In explicit coordination, nodes require continuous communica-

tion among the nodes to maintain a consistent state [14]. Infor-

mation contained in the communication is cache states or cached

chunks. The strategy proposed by Liu et al. [9], for example, coordi-

nates between nodes to construct a virtual backbone network with

core nodes that are responsible for caching.

Similar to the approach above, other works have used various

other information that can help caching decisions. Vural et al. [24]

propose a strategy that uses content popularity to calculate the

cost function for the caching of incoming chunks. Chai et al. [4]

utilize the network topology to save content chunks at the most

central node. All caching strategies claim to generate reasonable

good performance, but currently, there is no consensus on what

information a good strategy should have.

3.2 Cache Replacement Policy

The cache replacement policy is to determine how to choose chunks

that need to replace when a router has reached its capacity.

Some commonly used cache replacement decisions are Least

Recently Used (LRU), Least Frequently Used (LFU), and Random

Replacement (RR). In LRU, the router always chooses the one that

was least recently requested. LFU, as a variation on LRU, keeps

track of how often the objects in the cache are requested and evicts

the least popular ones. As the least complex of the basic cache

replacement policies, RR simply evicts random content objects

every time it needs to replace a chunk.

NFD forwarder uses Priority-FIFO as the default replacement

policy [23]. In this paper, we assume the default cache replacement

policy is used.

4 DISCOVERING IN-NETWORK CACHING

DECISIONS

This section discusses our objectives and briefly describes our ex-

perimental methodology.

4.1 Objectives

Network users can benefit from knowing what caching mechanism

the network is using. Misconfiguration of caching policies may

happen when an ISP provides differentiated caching services or

other novel content services. Mistakenly assigning a lower proba-

bility to a content provider who contracted with an ISP for higher

probability violates the contract. The caching detection method

could help a content provider verify its contract with an ISP. Be-

sides, the caching policy might affect application development. For

example, content providers prefer to cache chunks at the server

side at the beginning, in order to utilize network storage to help

serve a burst of requests. As we discussed earlier, the ProbCache-inv

mechanism [15], instead of the default CEE caching mechanism,

will work better. Knowing what caching mechanism the network is

108

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada C. Fan et al.

using could help developers save time in debugging or tuning ap-

plication performance. We admit that ISPs could access CS entries

on each router to figure out the caching mechanisms. However,

this approach needs special privileges or additional management

protocols. Passive measurements may work in inferring caching

policies by monitoring on-going traffic, but it requires not only

special privileges but also sufficient traffic under a name prefix in

the network. Relying on third-party databases may not work well

either, as they may be incomplete or out-of-date.

Our goal in this work is to let edge-systems detect deployed

caching mechanisms without the help of ISPs. Content providers

detect the active caching policy in an ISP could be one of the ex-

ample. When a content provider has contract with an ISP, he/she

knows what the caching behaviors are supposed to be. Then the

content provider can conduct measurements on chosen vantage

nodes in an open measurement platform (e.g. RIPE Atlas [19], M-

Lab [5], and other platforms in today’s IP networks) to verify if the

agreement is enforced.

A caching policy contains the caching decision and the cache

replacement policy. Our method aims to detect the caching deci-

sion from the end-hosts for several reasons. First, caching decisions

directly affect the data retrieval performance. Whenever a Data

chunk arrives, NDN routers need to make caching decisions. The

cached copies could improve data retrieval performance immedi-

ately. Second, end-users have no tools or methods to detect what

caching decision policy is in use.

NDN routers are stateful, and naive active measurements may

not produce correct results about the network’s caching state. In-

jecting too many probe packets into the NDN network will place

pressure on the network state or even change the network state.

Our method needs to ensure the correctness by minimizing the

measurement overhead.

Caching decision mechanisms may utilize any information to

make decisions, such as local random numbers, topology informa-

tion, data labels, or even traffic information. Our method should

allow users to specify any NDN parameters and observe the net-

work’s behavior with generated traffic.

4.2 Methodology

An appropriate caching policy could benefit both the consumer and

the producer. Caching can decrease consumers’ access latency and

reduce the loads on the producer. Consumers, producers, and appli-

cation developers would like to check if the appropriate caching

policy is used when they notice data are not distributed efficiently

in NDN networks.

To this end, our method assumes that users can access both the

client node and the server node so that they can generate the Data

packets with various parameters. Users can specify name prefix,

Data payload length, and other parameters to observe the caching

behavior. The server-side could also deploy a service to answer

probing Interests with required parameters following a protocol,

but the protocol design is out of the scope of this paper. For the

sack of simplicity, we assume that NDN routers use the best-effort

forwarding strategy, and the default replacement policy is used in

this paper. According to NFD Developer’s guide [23], Priority-FIFO

is the default replacement policy on NFD forwarder.

To capture the unique distribution of chunks, the client first

sends out tens of unique Interests. The client then re-sends the

same Interests (duplicates) for several rounds so that it can detect

the change of hop counts of Data chunks from one round to another.

We show that 50 Interests and 10 rounds are enough for detecting

caching decisions in Section 5. Users can tune the number of probing

Interests and rounds to minimize the overhead.

To be more consistent with typical use of the architecture, the

tool appends a reserved name component (e.g. "/detectcaching")

and a nonce to make each measurement session unique, and then

the longest prefix matching can help fetch the same Data chunk

with duplicate Interests. For example, when the target name prefix

is "/ndn/conference/icn20", the tools append the name components

"/detectcaching/<nonce>" to form the measurement name prefix

"/ndn/conference/icn20/detectcaching/<nonce>" in the measure-

ment. The unique name prefix ensures that no other measurements

affect the on-going probing session. A chunk ID is appended to the

prefix name of the probing session to make each Interest unique,

and thus we can capture the hop count information for each chunk

separately. Additionally, the CanBePre f ix field [21] is enabled in

all the Interests, so that the cached Data chunks can satisfy these

incoming Interests. After the client fetches a Data chunk, it saves

the hop count. We then plot the hop counts in Violin Plots for

caching mechanisms when the measurements are done.

We derive our method from the Leave Copy Down (LCD) caching

mechanism [14], and then show that the method can apply to other

mechanisms in Section 5. As shown in Figure 1, the client sends out

Interests to trigger Data chunks from the server-side. In the first

round, the client sends out Interests for data chunks 1, and 2 for

Content "/data." These Interests are forwarded to the server. Upon

the arrival of these Interests, the server responds with correspond-

ing Data chunks. Since NDN routers have LCD caching decisions

configured, the Data chunks carry a field to indicate the hop count

away from the storage. According to the hop count field, router

R3 will save all chunks locally. Other routers forward Data chunks

downstream to the client. In the next round, the client sends out

the same number of Interests again. All Interests are duplicate with

new parameter values. Router R3 will respond with local copies.

For the same reason, caching happens at the next router, R2. Similar

caching behavior happens to round three as well.

The caching state and its change in the data retrieval process

give a unique profile for caching decisions. The distribution of hop

counts for Data chunks demonstrates the feature of retrieval in one

round. In each round, the client could perceive the hop changes

of each chunk after it fetches them. Specifically, the LCD caching

mechanism puts all chunks that belong to the same round in the

same hop. From one round to another, LCD gradually moves Data

chunks from the upper router to the lower one. In the client’s view, it

can notice Data chunks in the second round have decremented hop

counts. We can claim that the caching decision is LCD if the Data

chunks have the same hop count in one round and the subsequent

rounds have one less hop.

109

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada C. Fan et al.

Table 1: Summary of Caching Decision Policy Profiles

Caching decision

policies

Cache Everything

Everywhere (CEE)

Leave Copy

Down (LCD)

Label-

caching

Static Probabilistic Caching Dynamic Probabilistic Caching

Prob-20 Prob-50 Prob-80 ProbCache ProbCache-inv

Hop cnt Dist

shape at 2nd Rd
line line violin violin violin violin violin violin

len(Black bar) in

Violin plot at 2nd Rd
N/A N/A long long medium short short long

Converge Speed 1 round hops of path N/A slow medium fast medium medium

5.4 The effects of cross traffic

Traffic sent by other applications may lead to competition on shared

network resources (bandwidth, content store, and others). Com-

petition on the bandwidth will trigger more packet drops. A large

volume of data in the same direction (between client and server)

may use out of the content store (CS) and trigger cache replacement

events. When a large number of replacement events happen in a

short time, many Data chunks will be evicted. Since our method

needs cached chunks to plot Violin Plots, competition in the same

direction may kick out Data chunks for measurement too often.

In such case, the tool cannot plot reasonable good Violin Plots for

detection. For the sake of simplicity, we assume that such a worst

case does not happen in this paper.

We are more interested in the correctness of our method when

encountering cross traffic, as it is more common. To introduce cross

traffic, we attach the traffic generator at router eight and three in

the linear topology. Cross traffic could happen at any router, but we

believe putting traffic on either the server-side and the client-side

could help us understand its effect separately. In our simulation, we

only turn on one cross traffic at a time. To let cache replacement

happen more often, we set the CS size to 100. The traffic generator

produces sufficient traffic to overload the router.

In our simulation, most mechanisms are not sensitive to cross

traffic. They may leave more data chunks at the server-side, and

thus they have taller interquartile range, but that does not affect

the correctness of detection. The only exception is LCD.

However, we can still use the method to identify the LCD mech-

anism. Figure 4b demonstrates that LCD cannot move forward to

lower hops after hop nine (client node is the first hop) in the pres-

ence of cross traffic at router eight. LCD initializes the forwarding

tag to one when a cached chunk is pulled out. If the Data chunk is

evicted, the router is unable to attach such a tag, and the next-hop

cannot receive a chunk that contains a caching signal. When the

cross traffic happens at router three, the plot becomes a Violin shape

when chunks reach the third router (Figure 4a). We can see that

samples are not stuck at hop four, but round 8, 9, and 10 contain

samples with deviations. In this case, the competition happens close

to the client. The delay between the client and the router is small,

and thus duplicate Interests get a chance to reach the router before

eviction happens. In contrast, the delay between the client and the

router eight is much larger. When Interests arrive, cross traffic has

evicted all the chunks in the CS.

The profile of caching policies may vary when other cache re-

placement policies are in use. However, the default cache replace-

ment policy is straightforward and efficient to evict cached probing

packets, which gives a good scenario for verifying the robustness

of the detection method. We plan to study the behaviors of our ap-

proach with caching replacement policies in the future. A function

of the amount of cross traffic, the cache size, and the replacement

policy may be useful in this direction.

6 DETECTING ON A REAL TOPOLOGY

The previous section shows that using hop counts with Violin

Plot could profile a caching decision mechanism. The profile can

be used to estimate the probability value for static probabilistic

caching mechanisms, and the method is robust in the presence of

cross traffic. However, the NDN stack does not explicitly expose

the hop count information to applications.

The client could use HopLimit to figure out how many hops it

needs to fetch a specific chunk, but it may slow down the measure-

ment and introduce a lot of overhead. The HopLimit is an Interest

field to limit the number of hops the Interest is allowed to be for-

warded [21]. To figure out the hop count of a chunk, the client

needs to send out an Interest that starts with HopLimit one. If no

data is received, it increments the HopLimit value to two and sends

out the same interest until a data packet comes back. This approach

has two issues. First, the client must send Interests to cover all hops

until an Interest reaches the router that contains the data chunk.

Most Interests are wasted without any Data chunks returned. These

Interests introduce overhead not only into the bandwidth but also

the PIT. Second, the measurement with HopLimit will be time-

consuming. Interest has to wait until it times out when no Data

comes back. No better way to speed up the measurement process

without affecting the caching states. To this end, we use measured

RTT at the client as the indicator of hops. When RTT does not

work, we apply k-means [10] to estimate hop counts for chunks.

We simulate the measurement process using ndnSIM [12] on

Rocketfuel topology 7018 [18]. The real topology contains delays

and queuing size for each link, perfect for validating our method.

We do not introduce other traffic in the network, as the point of

this simulation is not for figuring out the effect of cross traffic.

The simulation contains just one client and one server to exchange

messages. They are randomly assigned to two nodes on the topol-

ogy. Similar to the method mentioned before, the client sends out

Interests to fetch Data chunks. Unlike previous experiments, the

client calculates the RTT for each Data chunk. After collecting all

samples, we use the RTT information to plot the Violin Plot.

Figure 5 shows that simply using RTT in Violin Plot could de-

tect some caching decisions for the chosen nodes. The delays for

chunks from the server varies, but they do not affect us to identify

caching mechanisms. Figure 5a clearly points out that CEE keeps

all chunks at the closest hop since round two. The distribution of

113

Discovering in-network Caching Policies in NDN Networks from a Measurement Perspective ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the National

Science Foundation grants OAC-1659403 as well as the anonymous

reviewers for their comments and feedback.

REFERENCES
[1] Hitoshi Asaeda, Kazuhisa Matsuzono, and Thierry Turletti. 2015. Contrace: a

tool for measuring and tracing content-centric networks. IEEE Communications
Magazine 53, 3 (2015), 182ś188.

[2] Hitoshi Asaeda and X Shao. 2018. CCNinfo: Discovering content and network
information in content-centric networks. Technical Report. IRTF Internet Draft
(work in progress).

[3] Giovanna Carofiglio, Vinicius Gehlen, and Diego Perino. 2011. Experimental
evaluation of memory management in content-centric networking. In 2011 IEEE
International Conference on Communications (ICC). IEEE, 1ś6.

[4] Wei Koong Chai, Diliang He, Ioannis Psaras, and George Pavlou. 2013. Cache
łless for morež in information-centric networks (extended version). Computer
Communications 36, 7 (2013), 758ś770.

[5] Constantine Dovrolis, Krishna Gummadi, Aleksandar Kuzmanovic, and Sascha D
Meinrath. 2010. Measurement lab: Overview and an invitation to the research
community.

[6] Xiaoyan Hu, Jian Gong, Guang Cheng, and Chengyu Fan. 2015. Enhancing
in-network caching by coupling cache placement, replacement and location. In
2015 IEEE International Conference on Communications (ICC). IEEE, 5672ś5678.

[7] Siham Khoussi, Davide Pesavento, Lotfi Benmohamed, and Abdella Battou. 2017.
NDN-trace: a path tracing utility for named data networking. In Proceedings of
the 4th ACM Conference on Information-Centric Networking. ACM, 116ś122.

[8] Zhe Li and Gwendal Simon. 2011. Time-shifted tv in content centric networks:
The case for cooperative in-network caching. In 2011 IEEE international conference
on communications (ICC). IEEE, 1ś6.

[9] Yinlong Liu, Dali Zhu, andWei Ma. 2016. A novel cooperative caching scheme for
content centric mobile ad hoc networks. In 2016 IEEE Symposium on Computers
and Communication (ISCC). IEEE, 824ś829.

[10] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281ś297.

[11] Xavier Marchal, Thibault Cholez, and Olivier Festor. 2016. Server-side per-
formance evaluation of NDN. In Proceedings of the 3rd ACM Conference on
Information-Centric Networking. ACM, 148ś153.

[12] Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang.
2015. ndnSIM 2.0: A new version of the NDN simulator for NS-3. NDN, Technical
Report NDN-0028 (2015).

[13] Jakob Pfender, Alvin Valera, and Winston KG Seah. 2018. Performance compari-
son of caching strategies for information-centric IoT. In Proceedings of the 5th

ACM Conference on Information-Centric Networking. 43ś53.
[14] Jakob Pfender, Alvin Valera, and Winston KG Seah. 2019. Content Delivery

Latency of Caching Strategies for Information-Centric IoT. arXiv preprint
arXiv:1905.01011 (2019).

[15] Ioannis Psaras, Wei Koong Chai, and George Pavlou. 2012. Probabilistic in-
network caching for information-centric networks. In Proceedings of the second
edition of the ICN workshop on Information-centric networking. 55ś60.

[16] Ioannis Psaras, Richard G Clegg, Raul Landa, Wei Koong Chai, and George Pavlou.
2011. Modelling and evaluation of CCN-caching trees. In International Conference
on Research in Networking. Springer, 78ś91.

[17] Susmit Shannigrahi, Dan Massey, and Christos Papadopoulos. 2017. Traceroute
for Named Data Networking. Technical Report. Technical Report. NDN, Technical
Report NDN-0055, Revision 2. https://named

[18] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies
with Rocketfuel. ACM SIGCOMM Computer Communication Review 32, 4 (2002),
133ś145.

[19] RIPE NCC Staff. 2015. Ripe atlas: A global internet measurement network. Internet
Protocol Journal 18, 3 (2015).

[20] Saran Tarnoi, Kalika Suksomboon, Wuttipong Kumwilaisak, and Yusheng Ji.
2014. Performance of probabilistic caching and cache replacement policies for
content-centric networks. In 39th Annual IEEE Conference on Local Computer
Networks. IEEE, 99ś106.

[21] NDN Team. [n.d.]. Interest Format. Retrieved Aug 21th, 2020 from https://named-
data.net/doc/NDN-packet-spec/current/interest.html

[22] NDN Team. 2015. NDN Essential Tools. Retrieved Dec 9th, 2019 from https:
//github.com/named-data/ndn-tools

[23] NFD Team. 2018. NFD Developer’s Guide. Technical Report, NDN-0021 Revision
9 (2018).

[24] Serdar Vural, Ning Wang, Pirabakaran Navaratnam, and Rahim Tafazolli. 2016.
Caching transient data in internet content routers. IEEE/ACM Transactions on
Networking 25, 2 (2016), 1048ś1061.

[25] Feng Wang and Lixin Gao. 2003. On inferring and characterizing internet rout-
ing policies. In Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement. 15ś26.

[26] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,
Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. 2014. Named data
networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014),
66ś73.

[27] Tiankui Zhang, Xiaogeng Xu, Le Zhou, Xinwei Jiang, and Jonathan Loo. 2018.
Cache space efficient caching scheme for content-centric mobile ad hoc networks.
IEEE Systems Journal 13, 1 (2018), 530ś541.

[28] Yanyong Zhang, Dipankar Raychadhuri, Luigi Alfredo Grieco, Emmanuel Baccelli,
Jeff Burke, Ravishankar Ravindran, Guoqiang Wang, Anders Lindgren, Bengt
Ahlgren, and Olov Schelén. 2015. Requirements and Challenges for IoT over ICN.
(2015).

116

	Abstract
	1 Introduction
	2 Related Work
	3 Caching policies in NDN
	3.1 Caching Decision
	3.2 Cache Replacement Policy

	4 Discovering In-network Caching Decisions
	4.1 Objectives
	4.2 Methodology

	5 Empirical results
	5.1 Experiment settings
	5.2 Caching decision profiles
	5.3 Estimation of static probability
	5.4 The effects of cross traffic

	6 Detecting on a real topology
	7 Conclusion
	Acknowledgments
	References

