EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

Named Data Networking based File Access for XRootD

Citdlin Tordache!*, Ran Liu®, Justas Balcas'**, Raimondas Srivinskas, Yuanhao Wu2,
Chengyu Fan®, Susmit Shannigrahi*, Harvey Newman', and Edmund Yeh?

I California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, United States
2Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States

3Colorado State University, Fort Collins, CO 80523, United States

4Tennessee Tech University, 1 William L Jones Dr, Cookeville, TN 38505, United States

Abstract. We present the design and implementation of a Named Data Net-
working (NDN) based Open Storage System plug-in for XRootD. This is an
important step towards integrating NDN, a leading future internet architecture,
with the existing data management systems in CMS. This work outlines the first
results of data transfer tests using internal as well as external 100 Gbps testbeds,
and compares the NDN-based implementation with existing solutions.

1 Introduction

This paper describes a significant effort in the SDN-Assisted NDN for Data Intensive Ex-
periments (SANDIE) [1] project, that brings together researchers from Caltech, Northeastern
University, Colorado State University, Tennessee Tech and other institutes working towards
integrating a Named Data Networking (NDN)-based data distribution system for the CMS
experiment at the LHC [2]. The team has created NDN-based data naming schemes, and an
NDN-based data access architecture that is supported by advanced Software Defined Network
(SDN) services to meet the challenges faced by the LHC high energy physics program as well
as other data intensive science use cases such as Genomics and Astrophysics. SANDIE also
integrates NDN’s Virtual Interest Packet (VIP) [3] paradigm, a joint forwarding and caching
set of algorithms, which is applied to a set of the most frequently requested data files in CMS
in order to achieve a desirable trade-off between performance and operating complexity.

While the SANDIE project aims to integrate NDN with the mainstream data distribution
systems of the LHC experiments, starting with CMS, the focus of this paper is to discuss
the development and deployment of a major subcomponent, an NDN-based XRootD Open
Storage System (OSS) [4][5][6] plug-in instrumented with an accelerated packet forwarder.

The paper is structured as follows. In Section 2, we provide a very brief overview of NDN.
In Section 3, we discuss the NDN-based XRootD OSS plug-in design and implementation
details. Specifically, we present the producer-consumer applications and their integration
with XRootD in the context of CMS workflow, and then discuss our experience in deploying
and performance testing the plug-in on a local testbed. Section 4 demonstrates the perfor-
mance analysis of our initial testbed deployment, and Section 5 shows the increasing maturity
of NDN, together with the performance gains achieved by using the NDN-DPDK forwarder

*e-mail: catalinn.iordache @ gmail.com
**e-mail: justas.balcas@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

developed by NIST. We finally discuss our plans for continued development and integration
efforts and conclusions.

2 Named Data Networking

Named Data Networking (NDN) [7][8] is a leading Future Internet Architecture where
users and applications can fetch data directly using the content name instead of connecting
to the host where the data resides. NDN forwards packets using the content names directly,
which greatly simplifies the routing and forwarding infrastructure. Additionally, NDN sup-
ports in-network caching, native multicast, multipath-forwarding, and a strategy layer where
users can define (dynamic) per-prefix request forwarding policies. All these properties allow
users to utilize resources intelligently, e.g., through the use of caching for popular datasets,
utilizing multiple paths for superior latency and failover performance. NDN Data packets
carry publicly verifiable built-in signatures that guarantee data provenance and integrity. This
property decouples data security from its original publisher or communication channels, en-
abling data retrieval from any repository or router cache, as well as the original publisher.
These properties also allow NDN to fully exploit rapidly declining storage costs by making
caching an integral part of the network architecture, which also enhances network perfor-
mance by decreasing congestion and delays. The NDN architecture has been the subject of
active research around the world over the last ten years [9][10], and versions of the architec-
ture have been experimentally implemented in several international testbeds [8].

3 The XRootD NDN based Open Storage System plug-in

To integrate an end-to-end solution for data distribution using NDN as the underlying
architecture, we implemented NDN-based consumer and producer applications, the two fun-
damental entities in any data transfer process. The consumer acts as a client that composes
NDN Interest packets (analogous to a query) to request data from the network. The producer
is the server that has access to data on file systems and publishes it in the form of NDN Data
packets (analogous to a response).

3.1 The consumer application

The architecture of the consumer application takes into consideration the integration with
the XRootD framework, and its capability to interpret file system calls includes requests for
byte-ranges within the events in HEP data files. Currently, both the consumer and producer
support only the file system calls needed for copying files, namely: open, fstat, read and close.
The open file system call provides access to files in the file system, fstat returns information
about files such as name or size, while read is able to retrieve bytes from files. The consumer
translates file system calls on file paths to Interest Names following the naming format “/ndn
/xrootd/file_system call/filename/segment no?<additional info>". All the Interest
packets expressed by the consumer are under the same prefix - “/ndn/xrootd”. The rest
of the Name components [11], except the last one in case of read file system call, represent
strings delimited by a ““/”” character in the file path.

An Interest packet that addresses the open file system call on file: “/path/to/foo.txt”
has the NDN Name: “/ndn/xrootd/open/path/to/foo.txt<additional _info>". The con-
sumer expects a Data packet that contains the encoded NDN Name, which is the same as the
Interest that addresses it, the Content, and additional information such as the signature [12],
all of which adds up to a maximum packet size of 8800 Bytes, where the Data packet protocol

EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

between consumer and producer can support a maximum Content size of 7168 Bytes. This
means that when expecting to request or publish content larger than the maximum size that
can be accommodated within a single packet, one has to keep protocol consistency between
the consumer and the producer. In the case of the read file system call, the SANDIE consumer
accomplishes this by adding another Name component that represents a segment number.
For example, the Interest: “/ndn/xrootd /read/path/to/foo.txt/3<additional info>" re-
quests the third segment in the file and expects a Data packet with bytes in the offset range
[21504, 28671) from “/path /to/foo.txt”.

The consumer offers multi-threaded support, and the number of concurrent threads to
copy a file over the network is configurable from the command line [6]. Each thread reads
a chunk of 256 KB (also configurable) from an offset, by composing all Interest packets
needed and placing them in a thread-safe fixed window size pipeline. The size of the pipeline
is also configurable and dictates how many Interests are expressed at any one time. For all
expressed Interests in the pipeline, NACK, duplicate, congestion or timeout cases are handled
with retransmission.

On receiving the Data packets, the consumer validates their signature, retrieves the Con-
tent, and passes it to a higher level of the application. When all the Interests in the pipeline
are satisfied, the execution continues until the desired data from the entire file is retrieved.
When a processing thread receives all Data packets for its Interests, it saves the content to a
thread-safe heap object, which will be used in the final step of the application to store it on
disk (i.e., in case of network performance analysis one may skip this step to save time and
prolong disk life).

3.2 The producer application

The producer application runs as a systemd service on servers that have access to CMS
data. Its primary purpose is to respond to incoming Interest packets from the forwarders in
the network, interpret them and respond with Data packets. To keep track of all opened files
and not run into problems that may occur in Linux based operating systems, the producer uses
a thread-safe map object of all file descriptors (abstract indicators used for accessing files).
Upon receiving an Interest packet, the first step of execution is to identify the file system
call and the file path. Once these are determined, it checks if the file is already opened by
consulting the map of file descriptors and takes action accordingly.

If the Producer has

access to the ﬁle, it . N XRootD Server CMSSW (XRootD protocols)
. i Jobs/client requests !
will perform the de- | storeime/xroottiet é’ File locally™~\ 1" YES" > open(/store/me/xrootdffile1)
. . e ! available? Local Filesystem
sired system call on it,

------------------ > Request (Interest)
Respons (Data)

compose a Data packet
and sign it. For ex- Data Server Data Server
ample, in the case of Imnt/adoop
an open file system e -
call, the Content of the open/fstat/read/close open/fstat/read/close
packet is an integer,

which can be zero in

case of success or an Figure 1: XRootD NDN based Open Storage System plug-in
error number (linux er- architecture

rno) on failure. If the

call fails, the Data packet is marked as an Application Level NACK [12], so that the con-
sumer can identify it as an error. For the fstat file system call the Content is the actual POSIX

EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

struct stat of 144 Bytes. On read, the producer uses the segment number in the Interest Name
to locate the offset in the file and then read the maximum Content size.

The map of file descriptors is periodically checked (the frequency is configurable) and
files that have not been accessed for a long time are closed. The access time is updated
at each Interest packet and checked asynchronously. Other configuration parameters of the
producer application are - the number of threads to be used for packet processing, enable or
disable signing (i.e., use a fake signature), or the freshness period of Data packets [6].

3.3 Integration with CMS and deliverables

To have a transparent transition to the end-user from the current CMS architecture for
distributing data to an NDN-based one, we perform this integration through an Open Storage
System plug-in for the XRootD framework. The OSS plug-in provides the particular imple-
mentation of a logical file system. Here, logical file system operations are translated into
specific actions optimized for the underlying storage. The plug-in is developed following
a C++ programming language interface proposed by XRootD, where each function mirrors
one of the POSIX file system calls. It represents a shared library that exports the XrdOssGet-
StorageSystem symbol used by the framework to load it. The NDN based XRootd plug-in,
and its flow in an NDN network with multiple producers working with the CMS software
base (CMSSW), is presented in Figure 1.

The default operating system used in CMS is CentOS 7. For better integration with the
system, we packaged our software as RPMs and published them on a proprietary repository
developed by SANDIE, where the entire software stack is kept updated. We consider the
NDN software stack to be composed of: ndn-cxx [13], the NDN Forwarding Daemon (NFD)
[14], ndn-tools [15], Boost C++ libraries' and XRootD. The repository is available at [16]
and is currently used by the NDN team for their continuous integration system and puppet”
scripts for configuring the SANDIE testbed.

4 Performance Analysis

The consumer and producer were built using the ndn-cxx API [13], which is the founda-
tion for the NFD [14] forwarder as well as the applications that depend on it. NFD creates
in-network caches and forwarding services in the network that the applications can utilize.
Both ndn-cxx and NFD are research prototypes that bring a considerable performance over-
head and a low throughput. The current OSS plug-in utilizes both, and as a result, suffers
from low performance. More recently, NIST has created a high-performance NDN-DPDK
[17] forwarder that provides much-improved application performance, and the SANDIE team
is currently working on integrating it into the XRootD plug-in.

The performance testing of the consumer and producer was done on the local SANDIE
testbed at Caltech. Three dual processor Intel Xeon ES and one AMD EPYC uniprocessor
servers, with 32 compute threads per processor and more than 100 GB of RAM were used.
The forwarders were configured with specific routing rules and without caching policy. The
throughput analysis of the consumer and producer, used as stand-alone applications, is pre-
sented in Figure 2. The first plot shows the variation with the different number of threads
and with different interface delays. In this case, the fixed window size was 64 packets, the
number of threads was 16, and the maximum interface delay was 100ms. Because the con-
gestion control algorithm uses a fixed window, the performance decreases with added delay

1Boost C++ Libraries: https://www.boost.org/
2puppet: https://puppet.com/

EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

on the interface. For a 2.4 GB CMS data file, the maximum throughput achieved was close to
800 Mbps, when the consumer was using four processing threads. When varying the pipeline
size, we observed that the overall throughput is higher than in the first test, but it still fell
with increasing interface delay, as shown in Figure 2. Compared with standard NDN tools
for copying files (i.e., ndnput/cat chunks [15]), the consumer-producer applications achieved
more than an 8x increase in throughput performance when no delay was applied on the inter-

face.
Throughput Comparison with Interface Delay and Consumer No. Threads Variation - XRootD NDN
800 Consumer - Producer B consumer-1thread-pipesz64
_ 700 [consumer-2thread-pipesz64
600

consumer-4thread-pipesz64
§ 500 consumer-8thread-pipesz64
ey [consumer-16thread-pipesz64

2 00 BOOCR--MRCRK--- BB e Expon. (consumer-1thread-pipesz64)
[S) |

3 200 Expon. (consumer-2thread-pipesz64)
2

= | Expon. (consumer-4thread-pipesz64)

100 R RRE I I
Al | i |] T LT T T M R b
1 2 3 4 5

5 400

15

6 7 8 9 10 1 12 13 14 15
Interface delay (ms)

Throughput Comparison with Interface Delay and Fixed Pipeline Size Variation - XRootD NDN

Consumer - Producer = consumer-4thread-pipesz64

[consumer-1thread-pipesz128

-
§ 600 consumer-1thread-pipesz256
S .
E 500 | consumer-1thread-pipesz512
5 400 BE || i S e Y E— Expon. (consumer-4thread-pipesz64)
:Z 300 v Expon. (consumer-1thread-pipesz128)
§ oo Expon. (consumer-1thread-pipesz256)
0 e | .lrl «HEE T CNRE
0 2 10 15

5

50 60 70 80 90 100

Interface delay (ms)

Throughput Comparison with Interface Delay Variation - XRootD NDN Consumer - Producer vs ndnput/cat chunks on-

demand
ndn-tools-pipesize64

'g B consumer-4thread-pipesz64
N - Expon. (consumer-4thread-pipesz64)
5)
E Expon. (ndn-tools-pipesize64)
g
=
L 15
L
<2
£ 5

o

0 100 200 300 400 500 600 700 800

Troughput (Mbit/s)

Figure 2: Performance analysis of the SANDIE consumer and producer applications

The XRootD NDN based OSS plug-in performance was also compared against standard
CMS tools: XRootD with a TCP based POSIX OSS plug-in and the Fast Data Transfer
(FDT) [18] application. The same hardware configuration as in the previous analysis was
used, with the same file sizes. The Xrdcp client was used in order to copy files using XRootD,
which also offers the possibility of varying the number of streams, a similar functionality to
that found in FDT. The results can be observed in Figure 3, where the XRootD POSIX based
plug-in has the best performance when interface delay is 2ms. It can also be observed that
FDT performance is more stable with increased interface delay.

This first series of tests and analysis allowed us to understand how we can integrate NDN-
based solutions with the CMS (and other) physics workflows and also that ndn-cxx and NFD
are not the ideal choices for production-grade integration because of the low upper bound
on throughput performance. Following the NIST team’s work, that moved away from NFD

EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

@
3
3

< XRootD NDN 0SS plugin
E 500 plug
§ 400 ==xrdcp-ndn-streams1
= ~=-xrdcp-ndn-streams2
3
2 300 —=xrdcp-ndn-streams4
g’ 200 xrdcp-ndn-streams8
E 100 ——xrdcp-ndn-streams15
=
o
o 2 5 10 15 20 25 30 40 50 60 70 80 90 100
Interface delay (ms)
__ 20000
< XRootD POSIX OSS plugin
g 15000 —=—xrdcp-stream-2GB-1
= xrdcp-stream-2GB-2
§ 10000 \ ——xrdcp-stream-2GB-4
S —==xrdcp-stream-2GB-8
o 5000 ——xrdcp-stream-2GB-15
<
= —
o
0 2 5 10 15 20 25 30 a0 50 60 70 80 90 100
Interface delay (ms)
2000
%
= Fast Data Transfer tool
L 1500 — e
s e —— — .
5 — —————
3 1000 —— ——
5 —————
§ 500
IS —~fdt-stream-2GB-1 —~fdt-stream-2GB-2 fdt-stream-2GB-4 ——fdt-stream-2GB-8 +fdt-stream-2GB-15
o
o 2 5 10 15 20 50 60 70 80 90 100

25 30 40
Interface delay (ms)
Figure 3: Performance comparison of consumer and producer and standard CMS tools

in order to develop a new DPDK-based forwarding solution (NDN-DPDK) to achieve high
throughput, SANDIE also made the paradigm shift in its development process in order to
deliver a solution that CMS could consider for distributing data. The performance of the new
forwarder with LHC data is discussed in Section 5.

5 XRootD NDN-DPDK Open Storage System plug-in

The SANDIE team has applied the recently-developed high-speed NDN-DPDK for-
warder on a testbed environment. NDN-DPDK [19] is a high-speed NDN forwarder de-
veloped with the Data Plane Development Kit (DPDK)* by NIST. NDN-DPDK achieves
superior throughput performance by enabling direct access to the server’s network interface
cards (NICs), thus eliminating context switching time by bypassing Linux kernels, and ex-
ploiting a multi-threaded structure to greatly accelerate lookup and packet processing. Early
benchmarking results, presented by NIST, demonstrated up to 62.8 Gbps of throughput on a
local testbed, with six forwarding threads and optimized data payload size and packet name
length.

At the Supercomputing 2019 conference (SC19) 4, the SANDIE team gave the first
demonstration [20] that the NDN-DPDK can achieve comparably excellent throughput per-
formance (per thread) with real LHC data on a layer-2 transcontinental network testbed. CMS
data from the producer at Caltech in Pasadena was transferred to the consumer located at the
Caltech SC19 booth in Denver. As shown in Figure 4, the demo achieved an impressive mean
throughput of 6.7 Gbps over the wide area path between the consumer at the SC19 booth and
the Data producer at Caltech in Pasadena. The performance was achieved using two single
threaded applications running the CentOS 8 operating system. The applications used for this
demo were completely rewritten using NDN-DPDK. They follow the same architecture as
presented in Figure 1, however they were not so advanced in the development. Features such

3NDN Packet Format Specification 0.3 documentation: http://named-data.net/doc/NDN-packet-spec/current/
4SC19 Conference Website: https://sc19.supercomputing.org/

EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

as multi-threaded support, congestion control and retransmission logic which were missing,
are currently under development, and so the performance may be further improved in the
future.

NDN-DPDK Based Consumer-Producer Transfer File Application Throughput at SC19
Consumer (booth/Denver) - NDN-DPDK Forwarder (booth/Denver) - Producer (Caltech California)

Packets: 446589379
Transferred: 3.266 TB 4.80
00

Lt L

Throughput (Gbit/s)
»
8
Transfer time (s)

8

4.50

r
b

oo ldldjjl —A L i e VIJIJW

Duration of experiment - 3h
Throughput ——GoodPut —— Transfer Time

Figure 4: SC 19 Demo: Real-time Performance Plot

The demo points to the great promise of NDN for accelerating data transport and man-
agement for the LHC and other data-intensive science applications. The throughput achieved
at SC19 over a transcontinental wide area network closely matches the throughput observed
by NIST [19] with a single thread over a local testbed. Since NIST has shown that the for-
warding performance of the NDN-DPDK forwarder increases linearly with the number of
threads, we expect to achieve throughputs up to the 100 Gbps range over the wide area by
using multi-threaded consumer and producer applications.

6 Conclusions

This work presents a successful integration of the legacy XRootD framework with NDN
primitives, by implementing a new OSS plug-in. The new architecture can provide location
transparent data access and simplify XRootD’s data location services that are currently im-
plemented through a set of “redirectors” [21]. At this point, the integration has been achieved
only with the consumer object developed based on ndn-cxx API. The performance results as
well as a deep analysis of the entire code flow showed that the main bottleneck is the NFD
forwarder, which limited the application to a maximum throughput of 1 Gbps.

Following further development of new consumer and producer applications using the
NDN-DPDK forwarder, higher throughput results were shown at the SC19 Network Research
Exhibition. The new applications have a completely different logic from the ones based on
the ndn-cxx API, but the architecture remains the same. The new developments show a mean
throughput of 6.7 Gbps over a transcontinental testbed. These are promising results and
we are continuing to work towards the integration of NDN-DPDK with XRootD, as well as
further throughput improvements by:

e Implementing multi-thread support on both consumer and producer applications. The con-
sumer object will be used by XRootD, which for large files is distributing the work among
a pull of threads, while the producer will be able to supply multiple concurrent requests
from different clients with high performance.

e Implementing a common interface for different file systems supported by CMS (i.e.,
HDFS3 and CephFS®) on the producer side. Currently, all file requests are handled us-

5The Hadoop Distributed File System: https://storageconference.us/2010/Papers/MSST/Shvachko.pdf
6Ceph File System: https://docs.ceph.com/docs/master/cephfs/

EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

ing POSIX file system calls, a factor that can become the main bottleneck of the entire flow
if not taking advantage of the high performance file access of distributed file systems.

e Containerizing NDN-DPDK consumer and producer applications using Docker containers.
DPDK requires many dependencies (e.g., kernel version, network cards, drivers) that are
hard to configure at a larger scale. By packaging all requirements inside containers, it’s
easier for CMS to adopt the proposed NDN solution.

e Deploying and testing of prototypical CMS workflows using the new NDN-DPDK for-
warder in the context of the XRootD plug-in, to demonstrate its performance and scalabil-
ity.

In the longer term we plan to explore an alternate scheme of data location and gathering
using NDN together with the CEPH file system, and to further accelerate the packet forward-
ing functions through the use of smart NICs with FPGAs.

7 Acknowledgements

This work is supported in part by grants from DOE office of Advanced Scientific Com-
puting Research (SDN-NGenlA - DOE/ASCR, DE-SC0015527 and SENSE, DOE/ASCR,
DE-SC0015528) and the National Science Foundation (NSF-1246133, NSF-1341024, NSF-
1120138).

References

[1] E. Yeh, H. Newman, and C. Papadopoulos, Sandie: SDN Assisted NDN for Data Inten-
sive Experiments, 2017, NSF Award 1659403

[2] L. Evans and P. Bryant, LHC Machine, Journal of Instrumentation, vol. 3, p. S08001,
2008

[3] E. M. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu and D. Leon, VIP: A Framework for Joint
Dynamic Forwarding and Caching in Named Data Network, Proceedings of ACM Con-
ference on Information-Centric Networking, pp. 117-126, 2014

[4] A.Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, XROOTD - A highly scalable archi-
tecture for data access, WSEAS Transactions on Computers, vol. 1, no. 4.3, pp. 348-353,
2005

[5] XRootD: Open File System & Open Storage System Configuration Reference, [Accessed
2020-1-27], [Online], Available: https://xrootd.slac.stanford.edu/doc/dev50/ofs_config.
pdf

[6] The NDN based File System XRootD plugin component for Open Storage System and a
suitable NDN producer, [Accessed 2020-1-27], [Online], Available: https://github.com/
cmscaltech/sandie-ndn/tree/master/xrootd-ndn-oss-plugin

[7]1 L. Zhang, A. Afanasyeyv, J. Burke, V. Jacobson, K. Claffy, P. Crowley, C. Papadopoulos,
L. Wang, and B. Zhang, Named Data Networking (ACM SIGCOMM Computer Commu-
nication Review), vol. 44, no. 3, pp. 66-73, 2014

[8] S. Shannigrahi, C. Papadopoulos, E. Yeh, H. Newman, A. J. Barczyk, R. Liu, A. Sim,
A. Mughal, I. Monga, J.-R. Vlimant et al., Named Data Networking in Climate Research
and HEP Applications in Journal of Physics: Conference Series, vol. 664, no. 5. IOP
Publishing, 2015, p. 052033

[91 NDN Annual Progress Summaries , [Accessed 2020-1-27], [Online], Available: https:
//named-data.net/project/annual-progress-summaries/

EPJ Web of Conferences 245, 04018 (2020) https://doi.org/10.1051/epjconf/202024504018
CHEP 2019

[10] NDN Publications , [Accessed 2020-1-27], [Online], Available: https://named-data.net/
publications/

[11] NDN Name Format, [Accessed 2020-1-27], [Online], Available: http://named-data.net/
doc/NDN-packet-spec/current/name.html

[12] NDN Packet Format Specification, [Accessed 2020-1-27], [Online], Available: https:
//named-data.net/doc/NDN-packet-spec/current/

[13] ndn-cxx: NDN C++ library with eXperimental eXtensions, [Accessed 2020-1-27], [On-
line], Available: https://github.com/named-data/ndn-cxx

[14] NFD - Named Data Networking Forwarding Daemon, [Accessed 2020-1-27], [Online],
Auvailable: http://named-data.net/doc/NFD/current/

[15] NDN Tools and Applications, [Accessed 2020-1-27], [Online], Available: https://
named-data.net/codebase/applications/

[16] The SANDIE NDN software stack repository, [Accessed 2020-1-27], [Online], Avail-
able: https://github.com/cmscaltech/sandie-ndn/tree/master/packaging/RPMS/x86_64
[17] NDN-DPDK: High-Speed Named Data Networking Forwarder, [Accessed 2020-1-27],

[Online], Available: https://github.com/usnistgov/ndn-dpdk

[18] Fast Data Transfer, [Accessed 2020-1-27], [Online], Available: http://monalisa.cern.
ch/FDT/

[19] J. Shi, Ndn-dpdk: High-speed named data networking forwarder, National Institute of
Standards and Technology, 2020, [Accessed 2020-1-7]. [Online]. Available: https://doi.
org/10.18434/M32111

[20] NRE-19: SCI9 Network Research Exhibition: Caltech Booth 543 Demonstrations,
[Accessed 2020-1-27], [Online], Available: https://sc19.supercomputing.org/app/uploads/
2019/11/SC19-NRE-024.pdf

[21] Using Xrootd Service (AAA) for Remote Data Access, [Accessed 2020-6-06], [Online],
Available: https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookXrootdService#
ReDirector

	Introduction
	Named Data Networking
	The XRootD NDN based Open Storage System plug-in
	The consumer application
	The producer application
	Integration with CMS and deliverables

	Performance Analysis
	XRootD NDN-DPDK Open Storage System plug-in
	Conclusions
	Acknowledgements

