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Abstract— Caching networks can reduce the routing costs of
accessing contents by caching contents closer to users. However,
cache nodes may belong to different entities and behave selfishly
to maximize their own benefits, which often lead to performance
degradation for the overall network. While there has been
extensive literature on allocating contents to caches to maximize
the social welfare, the analysis of selfish caching behaviors
remains largely unexplored. In this paper, we model the selfish
behaviors of cache nodes as selfish caching games on arbitrary
directed graphs with heterogeneous content popularity. We study
the existence of a pure strategy Nash equilibrium (PSNE) in
selfish caching games, and analyze its efficiency in terms of
social welfare. We show that a PSNE does not always exist in
arbitrary-topology caching networks. However, if the network
does not have a mixed request loop, i.e., a directed loop in which
each edge is traversed by at least one content request, we show
that a PSNE always exists and can be found in polynomial time.
Furthermore, we can avoid mixed request loops by properly
choosing request forwarding paths. We then show that the
efficiency of Nash equilibria, captured by the price of anarchy
(PoA), can be arbitrarily poor if we allow arbitrary content
request patterns, and adding extra cache nodes can make the
PoA worse, i.e., cache paradox happens. However, when cache
nodes have homogeneous request patterns, we show that the
PoA is bounded even allowing arbitrary topologies. We further
analyze the selfish caching games for cache nodes with limited
computational capabilities, and show that an approximate PSNE
exists with bounded PoA in certain cases of interest. Simulation
results show that increasing the cache capacity in the network
improves the efficiency of Nash equilibria, while adding extra
cache nodes can degrade the efficiency of Nash equilibria.

Index Terms— Caching networks, selfish caching games, Nash
equilibrium, price of anarchy.

I. INTRODUCTION

CACHING networks can reduce the routing costs for
accessing contents by caching the requested contents
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as close to the requesting users as possible. Prevailing
caching networks include content delivery networks (CDN)
[2], [3], information-centric networks (ICN) [4], femtocell
networks [5], web caching networks [6], and peer-to-peer
networks [7]. There has been extensive previous work (e.g.,
[8]–[10]) on how to optimally allocate contents to available
caches. However, most existing work assumes that cache nodes
are altruistic and cooperate with each other to optimize an
overall network performance objective.

In practice, cache nodes may belong to different enti-
ties [11]. For example, in wireless community mesh networks
such as Google WiFi [12] and Guifi [13], individual users
contribute their wireless routers (as caches) to the community.
On the Internet, different operators and providers deploy their
own caching infrastructures and services. Examples include
AT&T Content Delivery Network Service, Google Global
Cache, Netflix Open Connect, and Akamai.1

In caching networks where different entities operate their
own caches, cache nodes may behave selfishly to maximize
their own benefits. For example, in multi-hop wireless com-
munity mesh networks [14], a cache node has an incentive
to cache the content items to minimize its own routing cost,
which may not always maximize the social welfare. This
motivates us to study the selfish caching behaviors through
a game-theoretic approach.

To our best knowledge, this is the first paper to examine
selfish caching games on arbitrary directed graphs with het-
erogeneous content popularity. We focus on the pure strategy
Nash equilibrium (PSNE),2 and address two fundamental
questions. First, is a PSNE guaranteed to exist in any selfish

caching game? Second, if a PSNE exists, does it have a

guaranteed efficiency in terms of social welfare? The short
answers to the above two questions are “No” and “No”. In
other words, the selfish caching game does not always admit
a PSNE. Even if a PSNE exist, its efficiency in terms of social
welfare can be very poor.

In this paper, we characterize the conditions under which
(i) a PSNE exists, and (ii) a PSNE has a guaranteed efficiency.
We characterize the efficiency of PSNE by the price of anarchy

(PoA), which is the ratio of the social welfare achieved
by the worst PSNE to that achieved by a socially optimal
strategy [16], [17]. The analysis of PSNE and PoA takes into
account the asymmetric and node-specific interdependencies
among cache nodes, which reflect the network topology and
content request patterns. Our analysis will help the network
designer understand when the network behaves with certain

1In this paper, we treat one provider as one cache node. Another example is
a caching network where each provider owns multiple cache nodes. In such
a case, we can model the interactions among multiple cache nodes belonging
to the same provider as a coalititional game.

2The main reason for implementing PSNE in practice is simplicity [15].
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performance guarantees, and how to create these conditions
in the network.

We analyze the selfish caching game in two scenarios.
We first consider a scenario where all contents have equal
sizes, which corresponds to practical applications such as
video-on-demand services using harmonic broadcasting that
divide each video into segments of equal size [18]. We then
consider a scenario where contents have unequal sizes, which
corresponds to practical applications such as video streaming
services over HTTP (e.g., Netflix and Hulu) that split each
video into segments of lengths from 2 to 10 seconds [19].

Our primary contributions are:
• Selfish Caching Game: To the best of our knowledge,

this is the first work that studies the selfish caching
game on directed graphs with arbitrary topologies and
heterogeneous content popularity.

• Pure Strategy Nash Equilibrium (PSNE): For selfish
caching games with equal-sized content items, we first
show that a PSNE does not always exist. We then show
that a PSNE exists if the network does not have a mixed
request loop, i.e., a directed loop in which each edge is
traversed by at least one content request. Furthermore,
we propose a polynomial-time algorithm to find a PSNE
for the selfish caching game with no mixed request loop.

• Price of Anarchy: We show that the PoA in general can
be arbitrarily poor if we allow arbitrary content request
patterns. Furthermore, adding extra cache nodes can make
the PoA worse, a phenomenon which we call the cache

paradox. However, when cache nodes have homogeneous
request patterns, we show that the selfish caching game is
an α-scalable valid utility game and the PoA is bounded
in arbitrary-topology caching networks.

• Approximate PSNE: For selfish caching games with
unequal-sized content items, each node’s payoff maxi-
mization problem is NP-hard. When cache nodes have
limited computational capability, we show that their self-
ish caching behaviors lead to an approximate PSNE with
bounded PoA in certain cases of interest.

The rest of the paper is organized as follows. In Section II,
we review related literature. In Section III, we introduce
our system model. In Section IV, we model the selfish
caching game and analyze the PSNE. In Section V, we study
the PoA. In Section VI, we analyze selfish caching games
with unequal-sized content items. In Section VII, we provide
simulation results. We conclude in Section VIII. Due to

space constraints, some proofs are presented in the online

technical report.

II. RELATED WORK

There has been a rich body of previous work on caching,
many of which are summarized in an excellent recent sur-
vey [20]. In the following, we introduce related work regarding
caching optimization and selfish caching game, respectively.

Caching Optimization: There is considerable recent litera-
ture on a variety of caching optimization problems, including
proactive caching [21], [22], optimal caching under queuing
models [23], [24], optimal caching under unknown content
popularities [25], [26], distributed adaptive algorithms for

Fig. 1. A caching network with |V | = 8 nodes and |I| = 2 content
items, where node 4 (node 7, respectively) is the designated server of item 1
(item 2, respectively). The request forwarding paths are fixed in our model.
For example, the path of node 5 requesting item 1 is p(5,1) = (5, 6, 4), and
the path of node 3 requesting item 2 is p(3,2) = (3, 6, 5, 7).

optimal caching [8]–[10], [27], caching at the edges [28]–[32],
TTL (time-to-live) caches [33], [34], optimal caching in evolv-
ing networks [35], joint caching and routing optimization [3],
[36], [37], optimal cache partitioning [38], and collaborative
caching [39]–[44]. All the above work assumes that all cache
nodes aim to maximize the social welfare.

Selfish Caching Game: There are several papers which
study selfish caching behaviors in simple settings. In [45],
Chun et al. study the selfish caching game on undirected
graphs with a single content item, assuming homogeneous
content popularity across users. In [46], Goemans et al. study
the content market sharing game, where users get rewards
for caching content items. The paper assumes that any node
which caches a requested item can serve the request with same
cost, without considering network topology. The authors in [6]
and [47] study a distributed selfish replication game in an
undirected complete graph, where the distance between any
two nodes is the same. In [48], Gopalakrishnan et al. study the
capacitated selfish replication game in an undirected network,
where users are equally interested in a set of content items.

The analysis in the above literature is applicable to undi-
rected graphs, and some are restricted to homogeneous content
popularity. In this work, we study the selfish caching game on
directed graphs with arbitrary topologies and heterogeneous
content popularity.

III. SYSTEM MODEL

We consider a network of selfish caches, represented by a
directed caching graph G(V, E) with an arbitrary topology,
where V is the set of cache nodes and E is the set of
bidirectional edges which enable ARQ with asymmetric edge
costs (see an example in Figure 1). Each cache node requests
one or more content items (e.g., movies) from the set I =
{1, . . . , |I|}. For each content item i ∈ I, there is a fixed
set of designated server nodes Di ⊆ V , |Di| > 0, that
store i in their permanent storage (outside of their caches).3

We consider equal-sized content items in Sections III–V,
which correspond to applications such as video-on-demand

3For example, designated server nodes can be content providers’ caches.
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services using harmonic broadcasting that divide each video
into segments of equal size [18].4 We will consider the case
of unequal-sized items in Section VI.

A. Caching Strategies

Each node s ∈ V has a cache of capacity cs ∈ N, i.e., node
s can store exactly cs equal-sized content items. We denote
the caching strategy of node s ∈ V by xs = {xsi : ∀i ∈ I} ∈
{0, 1}|I|, where

xsi ∈ {0, 1}, for all i ∈ I,

indicates whether node s stores content item i, and satisfies
∑

i∈I

xsi ≤ cs, for all s ∈ V.

We let x−s = {x1, . . . ,xs−1, xs+1, . . . ,x|V |} denote the
caching strategy of nodes other than node s, and let
x = {xs, x−s} denote the global caching strategy. Given xs,
we let Zs = {i : xsi = 1, i ∈ I} denote the set of items
cached by node s ∈ V .

B. Content Requests

We describe each content request by a pair (s, i), where the
request source5 s ∈ V requests content item i ∈ I. We assume
that each request (s, i) arrives according to a stationary ergodic
process [49], [50] with arrival rate λ(s,i) ≥ 0 for all s ∈ V and
i ∈ I, which reflects heterogeneous content popularity across
items and request nodes.6

Request (s, i) is forwarded over a pre-determined fixed
request forwarding path7 p(s,i), from request source s to one
of content item i’s designated server nodes in Di. Specifically,
the path p(s,i) of length K ≤ |V | is a sequence (p1, . . . , pK) of
nodes pk ∈ V such that p1 = s, pK ∈ Di, and (pk, pk+1) ∈ E
for all k ∈ {1, . . . , K − 1}. We require that p(s,i) contains no
loops (pk �= pl for all 1 ≤ k < l ≤ K) and no node other than
the terminal node on p(s,i) is a designated server for content
item i (pk �∈ Di for all 1 ≤ k < K). For request (s, i), we let
V(s,i) = {v : v ∈ p(s,i), v �= s, v /∈ Di} denote the set of
intermediate nodes on path p(s,i). We denote Vs = ∪i∈IV(s,i)

as the set of intermediate nodes on all the request forwarding
paths of node s.8

Request (s, i) travels along path p(s,i) until either (i) the
request reaches a node v ∈ p(s,i) such that node v caches

4Without loss of generality, we normalize the size of each item to be one.
5We consider a request source to be a point of aggregation which combines

many network users. While a single user may request a given content item
only once over a time period, an aggregation point is likely to submit many
requests for a given content item over a time period.

6We consider selfish caching behaviors under complete information, where
cache nodes know all other nodes’ content request patterns [11], [45],
[46]. Specifically, cache nodes can estimate content request patterns through
historical information or long-term learning [21].

7Similar as in the named data networks, we assume that the request
forwarding path is determined in a longer timescale compared with caching.
And we consider selfish caching behaviors under complete information where
cache nodes know the request forwarding paths [11], [45], [46].

8Note that each cache node can play some or all of the following roles: a
designated server of content items, a source of requests, and an intermediate
node on request forwarding paths.

TABLE I

KEY NOTATION

content item i, i.e., xvi = 1 or, (ii) if xvi = 0 for all v ∈
p(s,i) \ {pK}, the request reaches pK ∈ Di. Having found
the closest copy of content item i, the network generates a
response message carrying the requested content item i. The
response message is propagated in the reverse direction along
the request forwarding path, i.e., from the closest node with
content item i back to the request source node s.9

C. Routing Costs

Transferring a content item across edge
e = (u, v) ∈ E incurs a cost (e.g., delay or financial
expense) denoted by wuv ≥ 0.10 Since the size of each
request message is relatively small compared with the
content item, we assume that costs are only due to content
item transfers, and the costs of forwarding requests are
negligible [9]. To serve the request (s, i), the routing cost
depends on the caching decision xsi of the request source
node s, as well as the caching decisions xvi, ∀v ∈ V(s,i),
of all the intermediate nodes on the request forwarding path
p(s,i). Specifically, the routing cost of transferring item i over
the reverse direction of p(s,i) is

h(s,i)

(
xsi, {xvi : v ∈ V(s,i)}

)

=

|p(s,i)|−1∑

k=1

wpk+1pk

k∏

k′=1

(
1 − xpk′ i

)

=

|p(s,i)|−1∑

k=1

wpk+1pk
(1 − xsi)

k∏

k′=2

(
1 − xpk′ i

)
.

Note that h(s,i)(·) includes the cost on edge (pk+1, pk),
i.e., wpk+1pk

, if and only if none of the nodes from p1 to pk on
path p(s,i) has cached content item i. For example, in Figure 1,
p(3,2) = (3, 6, 5, 7) and the routing cost of request (3, 2)
depends on x32, x62 and x52. If (x32, x62, x52) = (0, 0, 1),
then h(3,2)(x32, x62, x52) = w63 + w56.

9In this paper, we assume that forwarding and transmission follow standard
network protocols. In some settings, forwarding and transmission incur a
service cost to the cache node due to the consumption of the transmit power
and communication resource. We will consider such costs in the future work.

10We do not model the congestion effect on each edge. How to jointly
consider cost and throughput issues is an interesting open problem.

Authorized licensed use limited to: Northeastern University. Downloaded on June 14,2021 at 03:00:23 UTC from IEEE Xplore.  Restrictions apply. 



712 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 2, APRIL 2021

D. Selfish Caching Behavior

Each selfish cache node s ∈ V seeks a caching strategy
to optimize its own benefit, i.e., minimizing the aggregate
expected cost for serving all its own requests, calculated as
follows:

hs (xs, {xv : v ∈ Vs})

=
∑

i∈I

λ(s,i) · h(s,i)

(
xsi, {xvi : v ∈ V(s,i)}

)
. (1)

For notation simplicity, we write hs(·) as hs(xs, x−s). In the
absence of caching, i.e., x = 0, the aggregate expected cost
of node s is:

hs(0) =
∑

i∈I

λ(s,i)

|p(s,i)|−1∑

k=1

wpk+1pk
.

We define the caching gain of node s as

gs(xs, x−s) = hs(0) − hs(xs, x−s). (2)

Intuitively, the caching gain is the cost reduction enabled by
caching. Since hs(0) is a constant, minimizing the aggregate
expected cost in (1) is equivalent to maximizing the caching
gain in (2). Hence, the caching gain in (2) serves as node s’
payoff function.

IV. SELFISH CACHING GAME

In this section, we model the interactions among selfish
cache nodes by a selfish caching game on directed graphs.
We construct an example where the pure strategy Nash equilib-
rium (PSNE) does not exist for such a game. We then identify
the condition under which a PSNE exists, and propose a
polynomial-time algorithm to find a PSNE under the condition.

A. Game Modeling

We define the selfish caching game as follows:
Game 1 (Selfish Caching Game on Directed Graphs):

• Players: the set V of cache nodes on the caching graph;

• Strategies: the caching strategy xs = {xsi : ∀i ∈ I}
for each cache node s ∈ V , where xsi ∈ {0, 1} and∑

i∈I xsi ≤ cs;

• Payoffs: the caching gain gs(xs, x−s) for each s ∈ V .

Since the selfish caching game is a finite game, there exists
at least one mixed strategy Nash equilibrium (including pure
strategy Nash equilibrium as a special case). However, since it
is difficult to implement random caching strategies in practical
caching networks, we focus on analyzing pure strategy Nash
equilibria in this paper, as defined below.

Definition 1 (Pure Strategy Nash Equilibrium): A pure

strategy Nash equilibrium of the selfish caching game is a

caching strategy profile xNE such that for every cache node

s ∈ V ,

gs(x
NE
s , xNE

−s ) ≥ gs(xs, x
NE
−s ), for all feasible xs. (3)

Fig. 2. An example where PSNE does not exist. The caching network has
|V | = 5 nodes and |I| = 2 content items, where node 4 (node 5, respectively)
is the designated server of item 1 (item 2, respectively). The cache capacity is
1 at each node. The request arrival rates satisfy λ(v,i) = λi,∀v ∈ V, i ∈ I ,
where λ1 = 10 and λ2 = 14. The request forwarding paths are fixed, for
example, p(3,1) = (3, 2, 4).

B. An Example With No PSNE

In the following, we first show that the PSNE does not
always exist.

Theorem 1: There exists a selfish caching game for which

the pure strategy Nash equilibrium does not exist.
Proof: Figure 2 is an example with no PSNE. For node 4

(node 5, respectively), caching item 2 (item 1, respectively) is
its dominant strategy. Now we analyze the selfish behaviors
of nodes 1, 2, and 3. It is easy to verify that for all 8 feasible
caching strategy profiles, there always exists one cache node
that can improve its caching gain by changing its caching
strategy unilaterally. For example, if all the three nodes cache
item 1, then node 3 has the the incentive to cache item
2 to improve its caching gain assuming that the other two
nodes do no change their caching strategies. Hence there is
no strategy profile where everyone is achieving its maximum
payoff assuming other nodes do not change their strategies.
Hence, the PSNE does not exist. �

C. Existence of a PSNE

Deciding the existence of a PSNE for games on graphs is
NP-hard in general [51]. However, we identify the condition
under which a PSNE of the selfish caching game exists and can
be found in polynomial time. To proceed, we first introduce
the definition below.

Definition 2 (Mixed Request Loop): A mixed request loop

on a directed graph is a directed loop (p1, p2, . . . , pK , pK+1 =
p1) involving 3 ≤ K ≤ |V | nodes, where pk ∈ V for 1 ≤ k ≤
K , pk �= pl for all 1 ≤ k < l ≤ K , and at least one content

request traverses edge (pk, pk+1) ∈ E for all 1 ≤ k ≤ K .

In Figure 2, (1, 3, 2, 1) forms a mixed request loop, where
requests for item 1 traverse edge (3, 2), and requests for item
2 traverse edges (2, 1) and (1, 3).

Note that a loop on graph is not always a mixed request
loop. For example, (1, 3, 2, 1) in Figure 3 is a loop. However,
the request forwarding path is p(3,1) = (3, 1, 2, 4) rather than
(3, 2, 4), meaning no request traverses edge (3, 2). Hence, loop
(1, 3, 2, 1) is not a mixed request loop. In other words, we can
avoid mixed request loops by properly choosing the request
forwarding paths.
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Fig. 3. An example where there is no mixed request loop. The request
forwarding path is p(3,1) = (3, 1, 2, 4).

Next, we will show that a PSNE exists in the selfish caching
game on caching graphs with no mixed request loop.11

Theorem 2: A PSNE always exists in the selfish caching

game on caching graphs with no mixed request loop.
Proof: See Appendix A in the technical report [52]. �

Theorem 2 holds in caching networks with arbitrary topolo-
gies and heterogeneous content popularity. We prove the
existence12 of the PSNE by finding a PSNE in polynomial
time.

D. Polynomial-Time Algorithm to Find a PSNE

In this section, we present a polynomial-time algorithm to
find a PSNE for the selfish caching game. Specifically, for
each selfish caching game, we can define a state graph [46]
as follows.

Recall that given node s’ caching strategy
xs, the set Zs = {i : xsi = 1, i ∈ I} is the set of
content items cached by node s ∈ V . Hence we can use
x = {xs : ∀s ∈ V } and Z = {Zs : ∀s ∈ V } interchangeably
to represent the caching strategy profile.

Definition 3 (State Graph [46]): A state graph is a directed

graph where each vertex corresponds to a strategy profile Z .

There is a directed arc from vertex Z to vertex Z ′ with label

v if the only difference between Z and Z ′ is the strategy of

player v and the payoff of player v in Z is strictly less than

its payoff in Z ′.

A PSNE corresponds to a vertex on the state graph without
any outgoing arc, i.e., a sink. Hence identifying a PSNE of
the selfish caching game is equivalent to identifying a sink on
the corresponding state graph.

We propose a polynomial-time algorithm (Algorithm 1 [46])
to find a sink on the state graph. The algorithm proceeds
in rounds. The first round starts at the vertex Z = ∅,
corresponding to the strategy profile where none of the cache
nodes cache any content item (Line 1 of Algorithm 1). In each
round, the first arc traversed on the state graph corresponds
to an add arc where a player, say s, changes from Zs to
Zs ∪ {i∗}. Intuitively, player s adds only one content item i∗

to its cache, where we select i∗ among all possible content
items not currently in Zs to maximize player s’ caching gain
(Lines 3-4 of Algorithm 1). After the first arc, subsequent arcs

11Note that no mixed request loop is a sufficient (but not necessary)
condition for a PSNE to exist.

12The selfish caching game generally admits multiple PSNEs, depending on
system parameters such as edge weights and request arrival rates.

Algorithm 1 Find PSNE on State Graph [46]

Input: G(V, E), I, wuv , ∀(u, v) ∈ E, λ(s,i) and p(s,i), for
all s ∈ V, i ∈ I

Output: ZNE

1 Set Z = ∅;
2 repeat

3 Randomly pick a node s ∈ V where |Zs| < cs;
4 Add item i∗ where

i∗ ∈ arg maxi∈I\Zs
gs(Zs ∪ {i}, Z−s) to node s,

i.e., Zs ← Zs ∪ {i∗};
5 while ∃v ∈ V, j /∈ Zv, t ∈ Zv, such that

gv(Zv ∪ {j} \ {t}, Z−v) > gv(Zv, Z−v) do

6 Set Zv ← Zv ∪ {j} \ {t};
7 end

8 until ∀s ∈ V satisfies |Zs| = cs;
9 Set ZNE = Z;

in the same round correspond to change arcs. Specifically,
a change arc corresponds to a player, say v, replacing Zv by
Zv ∪ {j} \ {t}, where j /∈ Zv and t ∈ Zv. Intuitively, player
v replaces content item t for content item j if gv(Zv ∪ {j} \
{t}, Z−v) > gv(Zv, Z−v) (Lines 5-7 of Algorithm 1). When
the current vertex on the state graph has no change arcs, one
round ends. For the vertex where a round ends, if there is an
add arc outgoing from it, a new round starts; otherwise, it is
a sink and the algorithm terminates. Such a sink corresponds
to the PSNE.

In the following theorem, we show that Algorithm 1 can
find a sink on the state graph in polynomial time.

Theorem 3: For the selfish caching game on

arbitrary-topology caching graphs with no mixed request

loop, Algorithm 1 computes a PSNE in polynomial time by

traversing a path of length at most |V ||I|2(|V | − 2)2 on the

corresponding state graph.
Proof: See Appendix B in the technical report [52]. �

Note that for any given selfish caching game, Algorithm 1
does not require the construction of the whole state graph. At
any given vertex of the state graph, Algorithm 1 only requires
one to find the next arc to traverse, which takes O(|V |) time.
Hence, the total maximum running time of Algorithm 1 is
O(|V |2|I|2(|V |−2)2). Furthermore, different random choices
of the next arc to traverse in Algorithm 1 correspond to
different outcomes if there is more than one PSNE in the
selfish caching game.

Since each cache node maximizes its own benefit, a PSNE
of the selfish caching game does not in general optimize the
social welfare. We will quantify the efficiency of the Nash
equilibria in terms of social welfare next.

V. PRICE OF ANARCHY

To evaluate the efficiency of Nash equilibria, we analyze the
price of anarchy (PoA) [16], i.e., the ratio of the social welfare
achieved by the worst Nash equilibrium to that achieved by a
socially optimal strategy.

In this paper, we define the social welfare as the aggregate
caching gain in the network. Specifically, the social welfare
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Fig. 4. An example where PoA approaches 0. Consider a caching
network with |V | = 3 nodes where node 3 is the designated server
of content items in set I = {1, 2, . . . , I}. The request arrival rates
at node 1 satisfy λ(1,1) > 0, λ(1,i) = λ(1,1) − ε > 0,
where ε > 0, for i ∈ I \ {1}. Node 2 does not generate request, i.e.,
λ(2,i) = 0, ∀i ∈ I . The cache capacities are c1 = 1 and c2 = I − 1.

maximization problem is

max G(x) �
∑

s∈V

gs(xs, x−s)

s.t.
∑

i∈I

xsi ≤ cs, xsi ∈ {0, 1}, ∀s ∈ V, i ∈ I. (4)

Problem (4) is NP-hard [9]. It is challenging to calculate the
socially optimal solution and analyze the PoA in general.

In the following, we first show that the PoA can be arbi-
trarily poor if we allow any content request patterns. We then
identify the cache paradox where adding extra cache nodes
can make the PoA worse. Under reasonable constraints of
request patterns and paths, however, we can show that the
PoA is bounded in general caching networks. Furthermore,
for given caching networks with known network topology and
parameters, we can derive a better bound for PoA.

A. An Example With an Arbitrarily Poor PoA

Next, we show that the PoA can be arbitrarily close to 0,
indicating that the selfish caching behaviors can lead to
unboundedly poor performance in terms of social welfare.

Lemma 1: There exists a selfish caching game for which

the PoA is arbitrarily close to 0.
Proof: We construct an example where PoA approaches 0,

as shown in Figure 4. In this example, the socially optimal
caching strategy is for node 1 to cache content item 1 and
for node 2 to cache content items 2 to I . The optimal social
welfare, i.e., aggregate caching gain, is13

GSO = λ(1,1)(w21 + w32) +

I∑

i=2

λ(1,i)w32.

There may exist more than one PSNE. One is that node 1
caches item 1 and node 2 caches none of the content items
(since node 2 has no request of its own). The social welfare
achieved by this PSNE is GNE = λ(1,1)(w21 +w32). We have

GNE

GSO
=

1

1 +
∑I

i=2
λ(1,i)w32

λ(1,1)(w21+w32)

.

When w32 � w21 and ε → 0, we have
λ(1,i)w32

λ(1,1)(w21+w32) → 1

and GNE

GSO → 1
I

, which goes to 0 as I becomes very large.
Since PoA measures the worst case ratio between any PSNE
and the social optimal solution, the PoA will be no larger than
GNE/GSO and hence can be arbitrarily close to 0. �

13The superscript “SO” represents socially optimal.

Fig. 5. An example where adding an extra cache node makes the PoA worse.

B. Cache Paradox

In practice, one way to improve the aggregate caching
gain in the network is to add extra cache nodes. However,
we identify the following cache paradox.

Lemma 2: In the selfish caching game, adding extra cache

nodes can make the PoA worse.

Proof: Consider a caching network with two nodes
in Figure 5 (left subfigure), where node 2 is the designated
server for two content items. Assume c1 = 1 and λ(1,1) >
λ(1,2) > 0. At the equilibrium, node 1 caches item 1, which
is also socially optimal. Hence, PoA = 1.

Now we add an extra cache node, i.e., node 3 (see the right
subfigure in Figure 5), where c3 = 1 and λ(3,1) = λ(3,2) = 0.
Assume w21 = w31 + w23, w31 > 0, and w23 > 0. Then
one equilibrium is that node 1 caches item 1 and node 3
caches nothing. However, the socially optimal strategy is that
node 1 caches item 1 and node 3 caches item 2. Hence,
the PoA with node 3 satisfies

PoA′ =
λ(1,1)(w31 + w23)

λ(1,1)(w31 + w23) + λ(1,2)w23
< 1.

Intuitively, adding node 3 does not change the social welfare
achieved at the equilibrium, but increases the optimal social
welfare, and hence makes the PoA worse. �

C. Bound on PoA

In this section, we show that under reasonable constraints of
request patterns and paths, the selfish caching game belongs
to a class of games that we call α-scalable valid utility games,

and the PoA is bounded by the length of the longest request
forwarding path in the network.

Recall that Zs = {i : xsi = 1, i ∈ I} represents
the set of content items cached by node s ∈ V . For
convenience, we express the caching gain of node s as
gs(Zs, Z−s), and the aggregate caching gain of the network as
G(Z) =

∑
s∈V gs(Zs, Z−s).

We first define the valid utility games (for general games
not restricted to selfish caching games), introduced by Vetta
in [15].

Definition 4 (Valid Utility Game [15]): A game (with social

function γ(·) and individual payoff functions fs(·), ∀s ∈ V )14

is a valid utility game if the following three properties are

satisfied:

1) The social function γ(·) is non-decreasing and submod-

ular. Mathematically, for every content item i ∈ I and

for any subsets Z, Z ′ such that Z ⊆ Z ′,

γ(Z) ≤ γ(Z ′), (5)

γ(Z ∪ {i}) − γ(Z) ≥ γ(Z ′ ∪ {i})− γ(Z ′). (6)

14Note that the social function can be any objective that the network aims
to optimize, and may not be the summation of individual players’ payoff
functions.
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Fig. 6. An example that satisfies the path overlap property. Here,
p(2,1) = (2, 3) and p(1,1) = (1, 2, 3).

2) The sum of players’ payoff functions fs(·) for any

strategy profile x should be no larger than the social

function γ(·):
∑

s∈V

fs(xs, x−s) ≤ γ(x). (7)

3) The payoff of a player is no less than the difference

between the social function when the player participates

and that when it does not participate

fs(xs, x−s) ≥ γ(xs, x−s) − γ(0, x−s). (8)

Vetta in [15] proved that the PoA of a valid utility game
is bounded by 2. In the following, we define a new class of
games called α-scalable valid utility games, which generalizes
the notation of valid utility games.

Definition 5 (α-Scalable Valid Utility Game): A game is an

α-scalable valid utility game if it satisfies the two properties in

(5), (6), and (7), and the payoff of a player is no less than the

product of a positive constant α and the difference between

the social function when the player participates and that when

it does not participate:

fs(xs, x−s) ≥
1

α
·
[
γ(xs, x−s) − γ(0, x−s)

]
. (9)

Note that the valid utility game is a special case of the
α-scalable valid utility games with α = 1. We show that the
selfish caching game is an α-scalable valid utility game with
α = maxv∈V,i∈I |p

(v,i)|−1 when the following two properties
are satisfied.

Definition 6 (Homogeneous Request Pattern Property): The

request arrival processes for content item i ∈ I at different

nodes are the same, i.e.,

λ(s,i) = λi, ∀s ∈ V, i ∈ I. (10)

The homogeneous request pattern property implies that each
content item has a global popularity. Note that even under
the homogeneous request pattern property, the popularity of
different content items can be different, i.e., λi �= λj , i �= j,
i, j ∈ I.

Definition 7 (Path Overlap Property): If node s is on path

p(v,i), then starting from node s, path p(v,i) overlaps with path

p(s,i), i.e.,

s ∈ p(v,i) ⇒ p(s,i) ⊆ p(v,i). (11)

Figure 6 shows an example that satisfies the path overlap
property. Note that the path overlap property is naturally
satisfied when each node chooses a unique shortest path to
fetch content items.

Theorem 4: The selfish caching game with the homoge-

neous request pattern and path overlap properties on caching

Fig. 7. An example to calculate the value of δ(G). We assume
λ(v,i) = λi, ∀v ∈ V, i ∈ I . According to (14), we have δ(G) =

1
1+w21/w32

∈ [0, 1]. When w21/w32 → 0, we have δ(G) → 1; when
w21/w32 → ∞, we have δ(G) → 0.

graphs with no mixed request loop is an α-scalable valid utility

game where

α = max
v∈V,i∈I

|p(v,i)| − 1. (12)

Proof: See Appendix C in the technical report [52]. �

In the following theorem, we show that when the selfish
caching game is an α-scalable valid utility game, the PoA is
bounded by the length of the longest request forwarding path
in the network.

Theorem 5: When the selfish caching game is an α-scalable

valid utility game, the PoA satisfies

PoA ≥
1

1 + α
=

1

maxv∈V,i∈I |p(v,i)|
. (13)

Proof: See Appendix D in the technical report [52]. �

The PoA bound decreases with α. The intuition is that as
the length of the request forwarding path increases, the selfish
behaviors of the intermediate nodes on a request forwarding
path affect more succeeding nodes. The above performance
guarantee is true for general caching networks with an arbi-
trary topology. However, given a caching network with a
known topology and network parameters, we can further
explore the network structure and derive a better bound for
PoA. This is achieved by characterizing the discrete curvature
of the social function, as discussed next.

D. PoA and the Discrete Curvature of the Social Function

To understand how the discrete curvature [15] of the social
function will affect our PoA analysis, we first introduce the
discrete derivative. For a set function G(·), we define the
discrete derivative at Y in the direction Z as

G′
Z(Y ) = G(Y ∪ Z) − G(Y ).

We define the discrete curvature of a non-decreasing, submod-
ular social function G(·) to be

δ(G) = max
∀s∈V :G′

Zs
(∅)>0

G′
Zs

(∅) − G′
Zs

(I|V | − Zs)

G′
Zs

(∅)
∈ [0, 1],

(14)

where I|V |−Zs represents the caching strategy profile (which
can be infeasible) under which node s caches content items in
set I \Zs while all other nodes cache all content items in set
I. Figure 7 shows an example to calculate the value of δ(G).

Given the discrete curvature of the social function, we can
obtain a better bound for the PoA of the selfish caching game.

Theorem 6: Given the discrete curvature δ(G) of the social

function, for any selfish caching game with the homogeneous
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request pattern and path overlap properties on caching graphs

with no mixed request loop, the PoA satisfies

PoA ≥
1

α + δ(G)
. (15)

Proof: See Appendix E in the technical report [52]. �

The PoA bound decreases with δ(G). The intuition is that
under a larger δ(G), the selfish behavior of a cache node
has a greater impact on the achieved social welfare. Since
δ(G) ∈ [0, 1] exploits the curvature property of the given
network structure, the performance guarantee in (15) is better
than the one in (13).

VI. SELFISH CACHING GAMES WITH

UNEQUAL-SIZED ITEMS

In this section, we analyze more general selfish caching
games with unequal-sized items, which correspond to the
practical applications such as video streaming services over
HTTP (e.g., Netflix and Hulu) that split each video into
segments of lengths from 2 to 10 seconds [19]. We show that
the caching gain maximization problem for each cache node is
NP-hard. We further generalize the model by considering that
each cache node has limited computational capability to solve
its caching gain maximization problem. This may lead to an
approximate PSNE. We analyze the existence and efficiency
of an approximate PSNE under these two generalizations.

A. Game Modeling

Let Li denote the size of content item i, for all i ∈ I. We
define the selfish caching game with unequal-sized items as
follows:

Game 2 (Selfish Caching Game With Unequal-Sized

Items):

• Players: the set V of cache nodes on the caching graph

G(V,E);

• Strategies: the caching strategy xs = {xsi : ∀i ∈ I}
for each cache node s ∈ V , where xsi ∈ {0, 1} and∑

i∈I Lixsi ≤ cs;

• Payoffs: the caching gain gs(xs, x−s) for each s ∈ V .

In the following, we will show that for each cache node
s ∈ V , given fixed x−s, its caching gain maximization
problem is equivalent to a knapsack problem. For node s ∈ V ,
the caching gain in (2) can be equivalently written as

gs(xs, x−s)=
∑

i∈I

λ(s,i)

|p(s,i)|−1∑

k=1

wpk+1pk
(1−

k∏

k′=2

(1−xpk′ i))

+
∑

i∈I

xsi · λ(s,i)

|p(s,i)|−1∑

k=1

wpk+1pk

×
k∏

k′=2

(1 − xpk′ i). (16)

Given fixed x−s, the first term in (16) is a constant, while
the second term in (16) depends on xs. Define weight

qsi(x−s) = λ(s,i)

|p(s,i)|−1∑

k=1

wpk+1pk

k∏

k′=2

(1 − xpk′ i). (17)

Intuitively, qsi(x−s) represents the routing cost for request
(s, i) under x−s if xsi = 0. Given fixed x−s, the caching gain
maximization problem of node s is equivalent to the following
knapsack problem:

max
xs

∑

i∈I

xsi · qsi(x−s)

s.t.
∑

i∈I

Lixsi ≤ cs, xsi ∈ {0, 1}, ∀i ∈ I. (18)

Solving the knapsack problem (18) is NP-hard.15 In prac-
tice, each cache node has limited computational capability
in a short time period (e.g., minutes or hours for which
the request patterns remain unchanged [25]), and can only
solve the knapsack problem (18) to an approximate solution
x̂s = {x̂si : ∀i ∈ I}. There is extensive literature on the
polynomial-time approximation algorithms for the knapsack
problem [53]. We present one such algorithm in Lines 4-12 of
Algorithm 2, which achieves a 1/2 approximation ratio (see
Section 9.4.2 of [53]).

Now we consider the general case where cache nodes obtain
only a 1/β approximate solution with β > 1 for problem (18).
This leads to the β-approximate PSNE of Game 2.

B. Existence of an Approximate PSNE

A β-approximate PSNE is a strategy profile for which no
player can improve its caching gain by a factor more than β of
its current caching gain by unilaterally changing its strategy.16

Definition 8 (β-Approximate PSNE [55]): A pure strategy

profile xβ−NE is a β-approximate PSNE if no player can find

an alternative pure strategy with a payoff which is more that

β times its current payoff. That is for any player s ∈ V ,

gs(x
′
s, x

β−NE
−s ) ≤ β · gs(x

β−NE
s , xβ−NE

−s ),

for all feasible x′
s. (19)

Next, we show that a β-approximate PSNE exists when the
following property is satisfied:

Definition 9 (Cloud Property): All content items are stored

in the same designated server node, i.e.,

|Di| = 1 and Di = Dj , ∀i �= j, i, j ∈ I. (20)

Furthermore, for each cache node s ∈ V , its request forward-

ing path for different content items is the same, i.e.,

p(s,i) = ps, ∀i ∈ I. (21)

In practice, a network in which all content items are stored
in the cloud server satisfies (20). Note that (21) is naturally
satisfied when each node chooses the unique shortest path to
fetch content items. Furthermore, (21) is naturally satisfied in
a tree topology.

In the following, we show that a β-approximate PSNE
exists in Game 2 with the cloud property and the path overlap

15When Li = Lj ,∀i, j ∈ I , problem (18) is a max-weight knapsack
problem, which is easy to solve and corresponds to the scenario with
equal-sized items in Sections III–V.

16An alternative notion of approximate PSNE (see, e.g., [54]) is based on
an additive error, rather than the multiplicative error. Our definition is equally
natural, and indeed more in line with the notion of price of anarchy in game
theory [15], [16], [55].
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property in (11).17 Note that in the caching graph satisfying
the cloud property and the path overlap property, there is no
mixed request loop.

Theorem 7: A β-approximate PSNE always exists in

Game 2 with the cloud property and the path overlap property.
Proof: See Appendix F in the technical report [52]. �

The result holds in arbitrary-topology networks with het-
erogeneous content popularity. However, the complexity for
finding an approximate PSNE may grow exponentially with
the number of nodes and their strategies in general.

C. Polynomial-Time Algorithm to Find an Approximate PSNE

In this section, we propose a polynomial-time algorithm to
find an approximate PSNE of Game 2.

With the cloud property in (20) and (21), and given des-
ignated server node u, the caching gain of each cache node
s ∈ V depends on not only xs but also {xv : v ∈ Vs},
where Vs = {v : v ∈ ps, v �= s, v �= u} is the set of
intermediate nodes on node s’ request forwarding path ps.
We group nodes with the same number of intermediate nodes
into one set, i.e., denote the set of nodes with |Vs| = m by
Vm = {s ∈ V : |Vs| = m} where 0 ≤ m ≤ |V | − 2. Note
that since node u stores all content items, its caching strategy
does not affect other nodes.

If the path overlap property in (11) is satisfied, we know
that if node v ∈ Vs, then s /∈ Vv . That is, if node v in on
path ps, then node s is not on path pv. Hence, for each node
s ∈ Vm with |Vs| = m intermediate nodes in set Vs = {v :
v ∈ ps, v �= s, v �= u}, every intermediate node v ∈ Vs

has a smaller number of intermediate nodes, i.e., |Vv| < m.
This motivates us to find the equilibrium strategies for nodes
in sets Vm, 0 ≤ m ≤ |V | − 2, according to the increasing
order of m.

We propose a polynomial-time algorithm (Algorithm 2)
to find a β-approximate PSNE. Specifically, We find the
equilibrium strategies of nodes in sets Vm for 0 ≤ m ≤ |V |−2
sequentially (Lines 1-2 of Algorithm 2). For example, for node
s ∈ V0 such that Vs = ∅ (Line 3 of Algorithm 2), its β-
approximate equilibrium strategy xβ−NE

s is the β-approximate
solution to problem (18), calculated by Lines 4-12 of Algo-
rithm 2. Note that for a node s ∈ V0, qsi(x−s) = qsi is
a constant independent of other nodes’ strategies. For node
s ∈ Vm with 1 ≤ m ≤ |V | − 2 (Line 3 of Algorithm 2), its
equilibrium strategy is the β-approximate solution to problem
(18), calculated by Lines 4-12 of Algorithm 2.18 Note that its
equilibrium strategy depends only on the caching strategies of
nodes v ∈ Vs in its intermediate node set with |Vv| < m, and
hence qsi(x−s) = qsi({xβ−NE

v : v ∈ Vs}). We continue this
sequential process until all nodes decide their β-approximate
equilibrium caching strategies. The resulting caching strategy
profile is a β-approximate PSNE of Game 2.

17The cloud property and the path overlap property are sufficient conditions
for existence. Analyzing the sufficient and necessary conditions for existence
of (approximate) PSNE on graphs is an open problem, and we will consider
it in the future work.

18Lines 4-12 of Algorithm 2 achieve a 1/2 approximation ratio of problem
(18), and hence β = 2. Note that β is identical across all nodes.

Algorithm 2 Find β-Approximate PSNE

Input: G(V, E), I, wuv , ∀(u, v) ∈ E, λ(s,i) and p(s,i), for
all s ∈ V, i ∈ I

Output: xβ−NE

1 Classify nodes into sets Vm for 0 ≤ m ≤ |V | − 2;
2 for m = 0 : |V | − 2 do

3 for s ∈ Vm do

4 Set x̂s = 0, i.e., x̂si = 0, ∀i ∈ I;
5 Relax problem (18) to a linear programming

problem by relaxing xs ∈ {0, 1}|I| to
x̃s ∈ [0, 1]|I|;

6 Compute an optimal solution x̃
∗
s of the

LP-relaxation;
7 Set Is = {i : x̃∗

si = 1} and Fs = {i : 0 < x̃∗
si < 1};

8 if
∑

i∈Is
q(s,i)(x−s) > maxi∈Fs

q(s,i)(x−s) then

9 Set x̂si = 1, ∀i ∈ Is;
10 else

11 Set x̂sj = 1 for j = arg maxi∈Fs
q(s,i)(x−s);

12 end

13 end

14 end

15 Set xβ−NE = x̂;

In the following theorem, we show that Algorithm 2 can
find a β-approximate PSNE of Game 2 in polynomial time.

Theorem 8: For Game 2 with the cloud property and the

path overlap property, Algorithm 2 computes a β-approximate

PSNE in O(|V ||I|) time.
Proof: See Appendix G in the technical report [52]. �

We next analyze the PoA of Game 2.

D. Price of Anarchy

we show that the PoA for the β-approximate PSNE is
bounded under the homogeneous request pattern property
in (10).

Theorem 9: For Game 2 with the cloud property, the path

overlap property, and the homogeneous request pattern prop-

erty, the PoA for the β-approximate PSNE satisfies

PoAβ ≥
1

1 + α · β
=

1

1 + β ·
(
maxv∈V,i∈I |p(v,i)| − 1

) .

(22)

Proof: See Appendix H in the technical report [52]. �

The performance guarantee holds for arbitrary caching
networks. However, due to cache nodes’ limited computational
capabilities, the guarantee for the approximate PSNE in (22)
is worse than the one in (13) for the equal-sized item case.

VII. SIMULATION RESULTS

We perform simulations on networks including the Abilene
network shown in Figure 8, the GEANT network shown
in Figure 14, and the Grid topology shown in Figure 18.
Simulation results show that the performance of Nash equi-
libria improves with the cache capacity at each node, while it
degrades with the number of nodes that do not generate content
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Fig. 8. Abilene network.

requests. Furthermore, adding extra cache nodes to the existing
network can make the performance of Nash equilibria worse.

Upper Bound of the Optimal Social Welfare: Since the social
welfare maximization problem (4) is NP-hard, we calculate
an upper bound for the optimal social welfare. Specifically,
we relax problem (4) by relaxing the binary caching strategy
x = {xsi ∈ {0, 1} : ∀s ∈ V, i ∈ I} to be a continuous caching
probability strategy φ = {φsi ∈ [0, 1] : ∀s ∈ V, i ∈ I} where∑

i∈I φsi ≤ cs, ∀s ∈ V , while keeping the objective function
unchanged. The relaxed problem is

max G(φ) s.t.
∑

i∈I

φsi ≤ cs, φsi ∈ [0, 1], ∀s ∈ V, i ∈ I.

(23)

The relaxation objective function G(φ) is not concave, so (23)
is not a convex optimization problem. We approximate G(φ)
by L(φ) below [9]:

L(φ) =
∑

s∈V, i∈I

λ(s,i)

|p(s,i)|−1∑

k=1

wpk+1pk
min

{
1,

k∑

k′=1

φpk′ i

}
.

Note that L(φ) is concave, and we can solve the following
convex optimization problem in polynomial time.

max L(φ) s.t.
∑

i∈I

φsi ≤ cs, φsi ∈ [0, 1], ∀s ∈ V, i ∈ I.

(24)

We have the following result:
Lemma 3: Let x∗, φ∗, and φ∗∗ be the optimal solutions to

problems (4), (23), and (24), respective. Then:

G(x∗) ≤ G(φ∗) ≤ L(φ∗) ≤ L(φ∗∗). (25)

Proof: See Appendix I in the technical report [52]. �

Hence, L(φ∗∗) serves as an upper bound for the optimal
social welfare G(x∗). We define Ḡ(xSO) = L(φ∗∗).19

In the following, we first perform simulations for the
case with equal-sized content items and show the results
in Figures 10–21, which validate the existence of a PSNE
in Theorem 2 and the PoA analysis in Theorem 5. We then
perform simulations for the case with unequal-sized content
items and show the results in Figures 22 – 25, which validate
the existence of an approximate PSNE in Theorem 7 and the
PoA analysis of the approximate PSNE in Theorem 9.

Experiment Setup for the Abilene Network: For the Abilene
network shown in Figure 8, we take all edge costs from

19The superscript “SO” represents socially optimal.

Fig. 9. Abilene network with extra nodes.

Fig. 10. G(·) vs. cv, under both heterogeneous and homogeneous request
patterns.

the Abilene network configuration [56].20 We consider a set
I = {1, . . . , 10} of content items [9], where node 1 is the
designated server of the first 6 content items and node 2 is
the designated server of the remaining 4 content items. Each
node chooses the shortest path to fetch every content item,
following which there is no mixed request loop on the graph.
We generate the arrival rates λ(s,i), ∀s ∈ V, i ∈ I uniformly
at random in the interval [0, 10].

Results in the Abilene Network: Figure 10 shows the aggre-
gate caching gain G(xNE) and Ḡ(xSO) under different cache
capacities at each node,21 for the case with heterogeneous
request patterns λ(s,i) (the upper two curves) and for the case
with homogeneous request patterns λ(s,i) = λi, ∀s ∈ V, i ∈ I
(the lower two curves),22 respectively. We can see that the
gap between G(xNE) and Ḡ(xSO) under homogeneous λi

is smaller than the gap under heterogeneous λ(s,i). Thus,
the homogeneous request pattern leads to better performance
achieved by selfish caching behaviors in the Abilene network.

In practice, some cache nodes are intermediate routers
which do not request for any content items. We define nodes
with positive request rates as Type-I nodes (with a total number
NI ), and nodes with no request as Type-II nodes (with a total
number NII ). We show the impact of NII in Figure 11. We
can see that the gap between G(xNE) and Ḡ(xSO) decreases
with the cache capacity at each node, while the gap increases
with NII . This implies that the impact of the selfish behaviors
is mitigated when the cache resource increases, and the selfish
behaviors of Type-II nodes degrade the (relative) performance
of Nash equilibria (since the selfish Type-II nodes will not
cache content items at equilibrium).

20We assume that the edge costs are symmetric.
21We show the results for the case where cache nodes may have different

cache capacities in Appendix J in the technical report [52].
22We take λi =

�
s∈V λ(s,i)/V given the heterogeneous λ(s,i),∀s ∈

v, i ∈ I .
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Fig. 11. G(·) vs. cv, under different no. of Type-II nodes NII .

Fig. 12. G(xNE)/Ḡ(xSO) vs. cv , under different NII , for 100 trials.

Fig. 13. G(xNE)/Ḡ(xSO) vs. no. of extra cache nodes, under different cv .

Fig. 14. GEANT network.

To understand the impact of the randomness of request
arrival rates λ(s,i), we perform simulations on 100 sets of
randomly generated {λ(s,i) : ∀s ∈ V, i ∈ I}, and show the
average ratios G(xNE)/Ḡ(xSO) of the 100 trials in Figure 12,
where the error bars represent the standard deviations. As is
consistent with our observation from Figure 11, the perfor-
mance of the Nash equilibria increases with the cache capacity,
while decreases with NII .

In practice, one direct way to improve the aggregate caching
gain in the network is to add extra cache nodes. To check the
impact of extra caches on the performance of Nash equilibria,
we sequentially add node 12, node 13, until node 21, shown
in Figure 9. We show the ratio G(xNE)/Ḡ(xSO) with different
number of extra nodes in Figure 13. We can see that adding
more extra caches makes PoA worse. The reason is that adding
extra cache nodes can improve the optimal social welfare,
while it cannot improve the social welfare achieved by Nash
equilibria due to the selfish nature of cache nodes. Hence the

Fig. 15. G(·) vs. cv, under both heterogeneous and homogeneous request
patterns.

Fig. 16. G(·) vs. cv, under different no. of Type-II nodes NII .

Fig. 17. G(xNE)/Ḡ(xSO) vs. cv , under different NII .

Fig. 18. Grid topology.

“relative” performance of the Nash equilibria (measured in
terms of PoA) reduces.

Results in the GEANT Network: We perform simulations
on the GEANT network shown in Figure 14. We consider a
set I = {1, . . . , 20} of content items. We generate the cost
on each edge uniformly at random from the interval [1, 100].
We show the performances corresponding to selfish behaviors
in Figures 15–17. As in the Abilene network, the homogeneous
request pattern leads to better (relative) performance achieved
by selfish caching behaviors, and the ratio G(XNE)/Ḡ(XSO)
increases with cv and decreases with NII .

Results in the Grid Topology: We perform simulations on
the Grid topology shown in Figure 18. We consider a set
I = {1, . . . , 16} of content items, and generate the cost on
each edge uniformly at random from the interval [1, 100].
We show the performance corresponding to selfish behaviors
in Figures 19–21. Different from the Abilene and GEANT
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Fig. 19. G(·) vs. cv, under both heterogeneous and homogeneous request
patterns.

Fig. 20. G(·) vs. cv, under different no. of Type-II nodes NII .

Fig. 21. G(xNE)/Ḡ(xSO) vs. cv , under different NII .

Fig. 22. G(·) vs. cv, under both heterogeneous and homogeneous request
patterns.

Fig. 23. G(·) vs. cv, under different no. of Type-II nodes NII .

networks, we observe in Figure 19 that the homogeneous
request pattern leads to a larger aggregate caching gain but
a smaller ratio G(XNE)/Ḡ(XSO) than that under the het-
erogeneous request pattern. As in the Abilene and GEANT

Fig. 24. G(xNE)/Ḡ(xSO) vs. cv , under different NII .

Fig. 25. G(xNE)/Ḡ(xSO) vs. no. of extra cache nodes, under different cv.

networks, G(XNE)/Ḡ(XSO) increases with cv, and decreases
with NII .

Results for the Scenario With Unequal-Sized Items:

We perform simulations in the Abilene network for the
case where different content items have different sizes in
Figures 22 – 25. We assume that the sizes of the |I| =
10 content items are L = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8, 2.0}, and node 1 is the designated server of the
10 content items. We compare the performance achieved by
the approximate Nash equilibria of Game 2 and that by the
socially optimal solution. Figure 22 shows that the homoge-
neous request pattern leads to larger gaps between G(xNE)
and Ḡ(xSO), and hence a worse performance achieved by
selfish caching behaviors at the approximate Nash equilibrium.
Figures 23 – 25 show that the gap between G(xNE) and
Ḡ(xSO) decreases with the cache capacity at each node, while
the gap increases with NII . Furthermore, adding more extra
caches makes the PoA worse.

VIII. CONCLUSION

In this paper, we analyze selfish caching games on directed
graphs, which can yield arbitrary bad performance. We show
that a PSNE exists and can be found in polynomial time if
there is no mixed request loop, and we can avoid mixed request
loops by properly choosing request forwarding paths. We then
show that although cache paradox happens, i.e., adding extra
cache nodes does not improve the performance of PSNE,
with the homogeneous request pattern property and the path
overlap property, the PoA is bounded in arbitrary-topology
networks. We further show that the selfish caching game
with unequal-sized items admits an approximate PSNE with
bounded PoA in special cases.

There are several interesting directions to explore in the
future, such as analyzing the impact of the congestion effect on
each edge, analyzing the joint caching and routing decisions
of selfish nodes, analyzing the privacy issue, analyzing the
dynamic selfish caching game under incomplete information,
and analyzing the coalitional game for the caching network
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with multiple cache providers where each provider owns
several cache nodes.
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