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ABSTRACT

We study fair content allocation strategies in caching net-
works through a utility-driven framework, where each re-
quest achieves a utility of its caching gain rate. The result-
ing problem is NP-hard. Submodularity allows us to devise
a deterministic allocation strategy with an optimality guar-
antee factor arbitrarily close to 1−1/e. When 0 < α ≤ 1, we
further propose a randomized strategy that attains an im-
proved optimality guarantee, (1 − 1/e)1−α, in expectation.
Through extensive simulations over synthetic and real-world
network topologies, we evaluate the performance of our pro-
posed strategies and discuss the effect of fairness.
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1. INTRODUCTION
In-network caching is a fundamental enabler of many ap-

plications, such as information-centric networks (ICNs), con-
tent delivery networks (CDNs), and femtocell networks. Mo-
tivated by a series of recent papers (e.g. [1]), we study fair-
ness considerations in the context of the so-called caching

gain rate. Informally, given a caching strategyX, the caching
gain rate of a flow of requests for an item is given by:

λ ·∆C(X),

where λ is the rate with which the item is requested, and
∆C(X) is the reduction of routing costs due to caching. In-
tuitively, this metric incorporates both the popularity of an
item, as captured by λ, as well as the benefit of caching
in routing (measured in hops, distance traveled, or delay
incurred). In contrast to, e.g., cache hit rates or through-
puts/rates alone, it incorporates routing costs in the network
design objective. Such costs are important: requests served
with hit rate 1 at a distant server, in reality, have a lower
utility than requests served locally with a lower hit rate.

We propose a fair caching framework to achieve differ-
ent degrees of fairness w.r.t. requests, content items, as well
as users, respectively, in a caching network with arbitrary
topology. We aim to find an optimal storage resource allo-
cation that maximizes the total utility as a function of the
caching gain rate. To the best of our knowledge, this is the
first work that studies fair caching w.r.t. caching gain rates
in a multi-hop caching network with arbitrary topology.
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Our analysis provides new insights on how fairness w.r.t.
caching gain rate affects caching decisions. We observe, for
example, that the intuitive behavior of caching highly re-
quested content towards the edge indeed occurs for α <
1, but is reversed when α > 1. From a technical stand-
point, our analysis establishes the submodularity of clas-
sic α-fairness objectives when applied to caching gain rates,
making it amenable to polynomial-time approximation with
a 1−1/e approximation. Moreover, our algorithm under the
stationary randomized regime is novel, and improves upon
the above approximation ratio in the α ∈ (0, 1] regime.
The full paper of this abstract is available in [2].

2. MODEL
(1) Caching networks: We represent the caching net-

work by a directed graph G(V,E), where V is a set of cache
nodes and E is a set of bidirectional edges. We denote by C
the set of items of equal size (see Section 6 of the full paper
for an extension to unequal sizes) to be cached. Let

xvi ∈ {0, 1}, for all v ∈ V, i ∈ C, (1)

be the indicator variable indicating whether node v stores
item i. We denote by the matrix X = [xvi]v∈V,i∈C , the
global caching strategy. Each node v ∈ V is equipped with
a cache that can store cv ∈ N+ items, so

P

i∈C xvi ≤ cv, for all v ∈ V. (2)

We denote each content request by a pair (i, p), where
i ∈ C is the item requested and p ⊆ V is the pre-established
path to the server over which the request message is routed.
Let R be the set of all such requests. Request arrivals fol-
low independent Poisson processes with rate λ(i,p) ≥ 0. A
request terminates upon a cache hit (at the serer or an in-
termediate cache), and a response message carrying the re-
quested item is sent back over reverse path.

We denote by wuv ≥ 0 the routing cost incurred when
transferring an item across edge (u, v) ∈ E. The routing cost
for serving request (i, p) is determined by the downstream
cost, given by

C(i,p)(X) =
|p|−1
P

k=1

wpk+1pk

k
Q

k0=1

(1− xp
k0 i). (3)

We define the difference between the routing costs without
caching and with caching as the caching gain:

F(i,p)(X) = C(i,p)(0)− C(i,p)(X)

=
|p|−1
P

k=1

wpk+1pk

✓

1−
k
Q

k0=1

(1− xp
k0 i)

◆

. (4)
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Reducing the routing cost of request (i, p) is equivalent to
increasing the caching gain.

(2) Utility function and utility maximization: We
aim to allocate the cache storage resource fairly for requests
using a utility-driven framework. We consider the utility of
the caching gain rate associated with each request. Math-
ematically, given caching gain F(i,p)(X) and request rate
λ(i,p), request (i, p) achieves utility U(λ(i,p)F(i,p)(X)). To
capture fairness, we consider a class of ↵-fair utility func-
tions, parameterized by ↵ 2 R+:

U(z) =

8

>

>

>

>

>

<

>

>

>

>

>

:

z1−α

1− ↵
when 0  ↵ < 1,

log(z + ✏) when ↵ = 1, or

(z + ✏)1−α

1− ↵
when ↵ > 1,

(5)

where ✏ ≥ 0 is a constant. Our goal is to maximize the total
utility under the cache storage constraints:

Maximize: G(X) =
X

(i,p)∈R

U(λ(i,p)F(i,p)(X)) (6a)

s.t. X 2 D1, (6b)

where D1 is the set of X 2 R
|V |×|C| satisfying (1) and (2).

3. MAIN RESULTS

We derive the following key results in the paper:
(1) Submodular maximization: The objective G can

be naturally expressed as a set function. For S ✓ V ⇥ C, let
XS 2 {0, 1}|V |×|C| be the binary vector whose support is S.

We can interpret our objective G : {0, 1}|V ||C| ! R+ as a

set function G : V ⇥ C ! R+ via G(S) , G(XS). We show
the monotonicity and submodularity of set function G:

Theorem 1. The objective function G(S) , G(XS) of

Prob. (6) is a non-decreasing and submodular set function.

Constraints (1) and (2) define a matroid. Hence, Prob. (6)
is a submodular maximization problem under matroid con-
straints. This problem is NP-hard in general; we discuss
polynomial-time approximation algorithms as follows.

(2) Deterministic offline strategy: The greedy algo-
rithm produces a solution within 1/2 approximation factor
from the optimal. We can further improve the approxima-
tion guarantee to 1−1/e ⇡ 0.63, using the continuous-greedy
algorithm. It maximizes the multilinear extension of the ob-
jective G(X) over the reals, obtaining a fractional solution
Y in the convex hull of D1. Solution Y is then rounded to
produce an integer solution in D1 by pipage rounding [3].
Applied to our setting, this yields the following result:

Theorem 2. If X̂ 2 D1 is the integer solution produced

by pipage rounding and X∗ 2 D1 is the optimal solution of

Problem (6), then with high probability we have: G(X̂) ≥

(1 − 1
e
)G(X∗), for 0  ↵ < 1, and G(X̂) − G(0) ≥ (1 −

1
e
)(G(X∗)−G(0)), for ↵ ≥ 1.

(3) Stationary randomized strategy: In this setting,
we assume that time is slotted, and that at each time slot,
a random caching strategy X is sampled from a joint distri-
bution µ over D1: µ(X) =

Q

v∈V µv(xv1, . . . , xv|C|), where
µv is the distribution of node v. We aim to decide µ to

maximize the total utility of expected caching gain rate of
the network, which is defined as:

P

(i,p)∈R U(Eµ[λ(i,p)F(i,p)(X)]). (7)

We denote by yvi, v 2 V , i 2 C the marginal probability that
node v stores item i, i.e., Eµv

[xvi] = Pµv
[xvi] = yvi, and let

Y = [yvi]v∈V,i∈C . We propose an L-method that maximizes
(7) and produces a solution Y within a (1− 1/e)1−α factor
from the optimal deterministic solution of Prob. (6). It ex-
tends the method by Ageev and Sviridenko [3] used earlier
in the linear case (↵ = 0). When 0 < ↵ < 1, this factor is
better than the 1−1/e ratio of continuous-greedy algorithm.

Theorem 3. Let Y ∗ be the optimal solution that maxi-

mizes (7) and Y ∗∗ be the solution produced by L-method, we

have: for ↵ 6= 1, G(Y ∗∗) ≥ (1− 1
e
)1−αG(Y ∗), and for ↵ = 1,

G(Y ∗∗) ≥ G(Y ∗)− c, where c = |R| log e
e−1

.

Given the marginal probability matrix Y 2 D2 produced by
L-method, a randomized rounding policy is required at each
node v 2 V to produce a joint distribution µ over D1. The
randomized rounding strategy we adopt is Alg. 2 in [1].

(4) Numerical results: In Fig. 1, we plot the time-
average total utilities achieved by different algorithms (Gree-
dy (GRD), continuous-greedy (CG), and L-method (L) as well
as path replication combined with the LRU, LFU, FIFO and
random replacement (RR)) in nine network topologies for the
case when ↵ = 0.8. We can see that in all topologies, GRD,
CG and L outperform four path replication algorithms.

Figure 1: Comparison of average utilities (in log scale).

We also show that content items are more fairly allocated
when considering the proposed fair caching framework. Fig.
2 presents the results of content allocation, from which we
can observe that content items are more evenly distributed
in the caches of each layer as ↵ increases.
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(a) ↵ = 0
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(b) ↵ = 0.4
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(c) ↵ = 0.8

Figure 2: The content allocation in a balanced tree caching network
where items with lower indices have higher request rates. A bar at
position i ∈ {1, . . . , 20} represents the fraction of total cache space
in a layer that is allocated to item i.
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