Software Impacts 8 (2021) 100077

journal homepage: www.journals.elsevier.com/software-impacts

Contents lists available at ScienceDirect

Software Impacts

SOFTWARE
IMPACTS

Original software publication

DRAS-CQSim: A reinforcement learning based framework for HPC cluster M)

scheduling @
Yuping Fan“, Zhiling Lan

Illinois Institute of Technology, Chicago, IL, United States of America

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Reinforcement learning
Cluster scheduling
High-performance computing

For decades, system administrators have been striving to design and tune cluster scheduling policies to improve
the performance of high performance computing (HPC) systems. However, the increasingly complex HPC
systems combined with highly diverse workloads make such manual process challenging, time-consuming, and
error-prone. We present a reinforcement learning based HPC scheduling framework named DRAS-CQSim to

automatically learn optimal scheduling policy. DRAS-CQSim encapsulates simulation environments, agents,
hyperparameter tuning options, and different reinforcement learning algorithms, which allows the system
administrators to quickly obtain customized scheduling policies.

Code metadata

Current code version

Permanent link to code/repository used for this code version
Permanent link to Reproducible Capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v1.0

https://github.com/SPEAR-IIT/CQSim/tree/DRAS
https://codeocean.com/capsule/7855334/tree/v1

MIT

Git

Python, Tensorflow, Keras

Any OS supporting Python
http://bluesky.cs.iit.edu/cqsim/documents/Manual.pdf
yfan22@hawk.iit.edu

Software metadata

Current software version

Permanent link to executables of this version

Permanent link to Reproducible Capsule

Legal Software License

Computing platforms/Operating Systems

Installation requirements & dependencies

If available, link to user manual - if formally published include a reference to the
publication in the reference list

Support email for questions

v1.0

https://github.com/SPEAR-IIT/CQSim/tree/DRAS
https://codeocean.com/capsule/7855334/tree/v1

MIT

Any OS supporting Python

Python, Tensorflow, Keras
http://bluesky.cs.iit.edu/cqsim/documents/Manual.pdf

yfan22@hawk.iit.edu

1. Introduction

Cluster scheduler is crucial in HPC. It determines when and which
user jobs should be allocated to available system resources. Tradition-
ally, scheduling policies are developed by system administrators based

on their experience with specific systems and workloads. However,
such a manually designing and tuning process becomes increasingly
difficult to handle the increasingly complex HPC systems and highly
diverse application workloads. In recent years, reinforcement learning

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

* Corresponding author.
E-mail address: yfan22@hawk.iit.edu (Y. Fan).

https://doi.org/10.1016/j.simpa.2021.100077

Received 31 March 2021; Received in revised form 23 April 2021; Accepted 26 April 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2021.100077
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100077&domain=pdf
https://github.com/SPEAR-IIT/CQSim/tree/DRAS
https://codeocean.com/capsule/7855334/tree/v1
http://bluesky.cs.iit.edu/cqsim/documents/Manual.pdf
mailto:yfan22@hawk.iit.edu
https://github.com/SPEAR-IIT/CQSim/tree/DRAS
https://codeocean.com/capsule/7855334/tree/v1
http://bluesky.cs.iit.edu/cqsim/documents/Manual.pdf
mailto:yfan22@hawk.iit.edu
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:yfan22@hawk.iit.edu
https://doi.org/10.1016/j.simpa.2021.100077
http://creativecommons.org/licenses/by/4.0/

Y. Fan and Z. Lan

ST +1 -1 1 HS
i "\ Scheduled [SYystem %
) Jobs Module .
: — 1111
: Job Sﬂz?nit Job & Queue Manager) = . =
Log Event Queue 1 >Scheduling II!‘ H
Status Decision . :
_System Status . :
Job v 111 H
Scheduling AMmE |
Module C:@:‘ = B E |
5 Logging w .:
., Module R

SE_) - i

Fig. 1. DRAS-CQSim overview.

has been successfully employed in various fields of decision-making
problems, such as gaming playing [1,2], self-driving cars [3,4], and
autonomous robots [5-7]. Reinforcement learning (RL) is an area of
machine learning that automatically learns to make decisions through
interaction with the environment.

Inspired by the successful RL examples, we present an open-source
HPC scheduling toolkit named DRAS (Deep Reinforcement Agent for
Scheduling) to automatically learn customized scheduling policies [8,
9]. DRAS with CQSim simulator packs together all the necessary com-
ponents, i.e., training environment, agents, and RL algorithms, to train
the scheduling policy model. Currently DRAS contains the two most
popular reinforcement learning algorithms, deep g-learning, and policy
gradient [10], and can be easily switch to other reinforcement learning
or traditional scheduling algorithms. Our objective is to enable system
administrators to quickly obtain the optimal scheduling policies for
their specific system and workload environment and easily compare the
performance of different scheduling policies.

2. Functionalities and key features

DRAS-CQSim, illustrated in Fig. 1, is a reinforcement learning em-
powered cluster scheduling framework. Rather than executing jobs on
real systems, DRAS uses the event-driven scheduling simulator named
CQSim [11] to train the agents. CQSim simulates the job scheduling
environment by reading the job arrival event from the job log and
advancing the simulation clock according to scheduling decisions and
job runtime information. CQSim consists of four main components: job
& queue manager, system module, logging module, and job scheduling
module. The job & queue manager maintains waiting jobs and manages
job lifecycle. System module simulates the status of the real systems.
Each node in the system is represented as an object and the system
module keeps track of each node’s availability information. The logging
module collects the finished job information, such as job submit time,
start time, and end time. The job scheduling module makes scheduling
decisions based on the queue status, system status, and historical
job information retrieved from queue manager, system module, and
logging module respectively. The job scheduling module provides an
interface to plugin a customized scheduling policy, such as FCFS (First
Come First Serve) and SJF (Shortest Job First). Our DRAS agents are
implemented as reinforcement learning based scheduling policies. Our
key features are:

« Easy-to-use: DRAS-CQSim requires Python, Tensorflow, and Keras to
be install. These prerequisites are easily satisfied on most systems. It
provides the concise command to run simulations and train agents.
Listing 1 shows an example to train DRAS agents. Argument n and

Software Impacts 8 (2021) 100077

j are required to run DRAS. Argument n specifies the file containing
the information of the simulated system. Argument j specifies the file
containing job traces. The Config folder encapsulates all details of
scheduling policies, simulated systems, neural networks, requiring no
configuration from the user for most use cases. DRAS provides sen-
sible default values, but users can customize configurations via two
approaches: directly modify the configuration files under Config
folder or add optional arguments in command.

Listing 1: Train DRAS agent command example

$ python cqsim.py —j job_log.swf
-n node_structure.swf ——is_training 1

+ High scalability: The simulator dynamically streams in the job traces
for simulation and streams out the finished jobs to disks. Hence, the
memory requirements to run the simulations do not linearly increase
with the size of job traces. This allows the simulator to run scalable
simulations with a limited amount of memory resources.
Hyperparameter tuning: Hyperparameters play a crucial role in model
performance. To find the optimal hyperparameters, one needs to try
various hyperparameter combinations. DRAS requires no source code
modifications to find hyperparameters. The customized hyperparam-
eters can be passed to source code through command arguments.
The configurable hyperparameters are ranging from learning rate,
mini-batch size, epsilon, epsilon decay rate, and discount factor. This
allows the developers to launch multiple simulations with different
hyperparameters in parallel.

Performance comparison: The output of the simulation is in Results
folder by default and it includes the job and system information
to evaluate scheduling performance. All simulations have the same
output format regardless of scheduling policies. This enables a fair
performance comparison of the different scheduling policies on the
same log.

Extensibility: Modules are independent of each other. The scheduling
policy plug-in only communicates with job scheduling module and
is entirely decoupled from the rest of the system. DRAS employed
the two most popular reinforcement learning algorithms, i.e., policy
gradient and deep q-learning. In addition, there are several traditional
scheduling algorithms, such as FCFS, SJF, and LJF (longest job first),
to choose from. New scheduling algorithms can be implemented by
creating a new scheduling policy plug-in and replacing the current
plug-in.

Rich debugging facility: We provides five-level logging options to
record various events to Debug folder. The most detailed logging
information captures sufficiently detailed information allowing the
developers to quickly identify the issues in their code. To achieve the
best performance, the developers can set debug_1v1 argument to 1,
which will record the minimum amount of information to reduce the
1/0 demand.

3. Impact

Reinforcement learning is a highly active research field. Advanced
reinforcement learning algorithms have been proposed in recent years
[12-16]. However, not all reinforcement learning algorithms are suit-
able for our HPC scheduling problem. A good solution is supposed
to achieve good scheduling performance, such as low average job
wait time and high system utilization, with the minimum scheduling
overhead. Typical HPC systems tolerate 10-30 s of scheduling de-
lay [17,18]. It is crucial to evaluate the performance and overhead of
new RL scheduling methods before deployment. Fortunately, our DRAS
design can easily embrace new RL algorithms.

Y. Fan and Z. Lan

The underlying CQSim scheduling simulator has been successfully
supporting a number of projects in this field over a decade [8,19-30].
CQSim provides a unified platform to evaluate the performance of vari-
ous methods with minimal overheads. For example, [8,24] used CQSim
to explore advanced methods, such as reinforcement learning and plan-
based methods, to scheduling HPC jobs. The advanced scheduling
methods enable the HPC systems to achieve better user-level and
system-level performance. [19,22,28] utilized CQSim to explore various
factors that could affect the performance of HPC job scheduling, such
as job runtime estimate and system utilization. By identifying these fac-
tors, the system administrators could develop new policies to minimize
the impacts of these factors. [20,21,23,26] aim to find the scheduling
strategies to handle multiple resources, i.e., CPU, burst buffer, GPU,
and power. CQSim plays a crucial role in these multi-resource projects,
because CQSim simulator provides a virtual configurable platform to
identify the best scheduling policy to schedule specific resources on
a given system before deployment on real systems. [25,29,30] pro-
posed and analyzed novel job placement algorithms on HPC system
to improve the efficiency of job placement. Job placement problems
are difficult to be measured and conducted on real systems due to
the scale of the problems, CQSim provides an easy platform to eval-
uate the performance of various job placement solutions. Additionally,
CQSim is a mature community with many existing scheduling policies,
ranging from traditional utility-based policies, optimization methods,
to popular RL methods. This enables quick and accurate performance
comparison between the new and existing scheduling methods.

DRAS cannot only serve the research purpose, more importantly,
the trained RL model can directly deploy to real HPC systems. Thanks
to the decoupled scheduling policy design, the system administrators
could first train and evaluate the RL agent in the simulator using the
historical job logs. Once they obtain satisfactory performance, they can
transfer the trained RL agent to real HPC systems and schedule jobs in
real-time.

4. Conclusion and future work

In this work, we present DRAS-CQSim, a reinforcement learn-
ing based HPC scheduling framework, which aims to train RL-based
scheduling agents to outperform the traditional scheduling policies. In
summary, DRAS-CQSim implements two RL-based scheduling methods,
provides a standard platform to design and evaluate RL-based schedul-
ing methods, and enables fair comparison of different scheduling
methods. As further developments, we plan to implement and evaluate
other RL methods, such as A2C, SAC, and PPO, in order to find the best
RL-empowered method for HPC job scheduling.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Acknowledgments

This work is supported in part by US National Science Foundation

grants CNS-1717763, CCF-1618776, and the US Department of Energy,
Office of Science, under contract DE-AC02-06CH11357.

Software Impacts 8 (2021) 100077

References

[1] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, 1. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
D. Hassabis, Mastering the game of go with deep neural networks and tree
search, Nature (2016).

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G.
Driessche, T. Graepel, D. Hassabis, Mastering the game of go without human
knowledge, Nature (2017).

[3] S. Shalev-Shwartz, S. Shammah, A. Shashua, Safe, multi-agent, reinforcement
learning for autonomous driving, 2016, arXiv:1610.03295.

[4] A. Sallab, M. Abdou, E. Perot, S. Yogamani, Deep reinforcement learning
framework for autonomous driving, electronic imaging.

[5] W. Smart, L. Pack Kaelbling, Effective reinforcement learning for mobile robots,
in: Robotics and Automation.

[6] J. Kober, J. Peters, Reinforcement learning in robotics: A survey, in: Learning
Motor Skills: From Algorithms To Robot Experiments, 2014.

[7] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. Ojea, E. Solowjow,
S. Levine, Residual reinforcement learning for robot control, in: ICRA’19.

[8] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, M. Papka, Deep reinforcement
agent for scheduling in HPC, in: IPDPS, 2021.

[9]1 DRAS Github Repository, https://github.com/SPEAR-IIT/CQSim/tree/DRAS.

[10] R. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for
reinforcement learning with function approximation, in: NIPS’99.

[11] CQSim Github Repository, https://github.com/SPEAR-IIT/CQSim.

[12] Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves, Tim-
othy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, Asynchronous
methods for deep reinforcement learning, 2016, arXiv:1602.01783.

[13] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Deterministic
policy gradient algorithms, in: Proceedings of the 31st International Conference
on Machine Learning, 2014.

[14] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, Daan Wierstra, Continuous control with deep
reinforcement learning, 2019, arXiv:1509.02971.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov,
Proximal policy optimization algorithms, 2017, arXiv:1707.06347.

[16] John Schulman, Sergey Levine, Philipp Moritz, Michael 1. Jordan, Pieter Abbeel,
Trust region policy optimization, 2017, arXiv:1502.05477.

[17]1 W. Allcock, P. Rich, Y. Fan, Z. Lan, Experience and practice of batch scheduling
on leadership supercomputers at Argonne in: JSSPP’17.

[18] L. Yu, Z. Zhou, Y. Fan, M. Papka, Z. Lan, System-wide trade-off modeling
of performance, power, and resilience on petascale systems, J. Supercomput.
(2018).

[19] B. Li, S. Chunduri, K. Harms, Y. Fan, Z. Lan, The effect of system utilization on
application performance variability, in: ROSS, 2019.

[20] Y. Fan, Z. Lan, Exploiting multi-resource scheduling for HPC, in: SC Poster, 2019.

[21] Y. Fan, Z. Lan, P. Rich, W. Allcock, M. Papka, B. Austin, D. Paul, Scheduling
beyond CPUs for HPC, in: HPDC’19.

[22] Y. Fan, P. Rich, W. Allcock, M. Papka, Z. Lan, Trade-off between prediction
accuracy and underestimation rate in job runtime estimates, in: CLUSTER’17.

[23] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, M. Papka, Integrating
dynamic pricing of electricity into energy aware scheduling for HPC systems, in:
SC’13.

[24] X. Zheng, Z. Zhou, X. Yang, Z. Lan, J. Wang, Exploring plan-based scheduling
for large-scale computing systems, in: Cluster, 2016.

[25] X. Yang, X. Zheng, Z. Zhou, W. Tang, J. Wang, Z. Lan, Balancing job perfor-
mance with system performance via locality-aware scheduling on torus-connected
systems, in: Cluster, 2014.

[26] Y. Fan, P. Rich, W. Allcock, M. Papka, Z. Lan, ROME: A multi-resource job
scheduling framework for exascale HPC systems, in: IPDPS Poster, 2018.

[27] Y. Fan, P. Rich, W. Allcock, M. Papka, Z. Lan, Next generation workload man-
agement system for high performance computing systems, in: Greater Chicago
Area System Research Workshop (GCASR), 2018.

[28] Y. Fan, P. Rich, W. Allcock, M. Papka, Z. Lan, Exploring machine learning to
adjust job runtime estimate for high-performance computing, in: Greater Chicago
Area System Research Workshop (GCASR), 2017.

[29] P. Qiao, X. Wang, X. Yang, Y. Fan, Z. Lan, Preliminary interference study
about job placement and routing algorithms in the fat-tree topology for HPC
applications, in: CLUSTER Poster, 2017.

[30] P. Qiao, X. Wang, X. Yang, Y. Fan, Z. Lan, Joint effects of application
communication pattern, job placement and network routing on fat-tree systems,
in: ICPP Workshops, 2018.

http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb1
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb2
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb2
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb2
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb2
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb2
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb2
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb2
http://arxiv.org/abs/1610.03295
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb6
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb6
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb6
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb8
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb8
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb8
https://github.com/SPEAR-IIT/CQSim/tree/DRAS
https://github.com/SPEAR-IIT/CQSim
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1502.05477
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb18
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb18
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb18
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb18
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb18
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb19
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb19
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb19
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb20
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb24
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb24
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb24
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb25
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb25
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb25
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb25
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb25
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb26
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb26
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb26
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb29
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb29
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb29
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb29
http://refhub.elsevier.com/S2665-9638(21)00025-7/sb29

	DRAS-CQSim: A reinforcement learning based framework for HPC cluster scheduling
	Introduction
	Functionalities and key features
	Impact
	Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

