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1. Introduction

Cluster scheduler is crucial in HPC. It determines when and which
user jobs should be allocated to available system resources. Tradition-
ally, scheduling policies are developed by system administrators based

on their experience with specific systems and workloads. However,
such a manually designing and tuning process becomes increasingly
difficult to handle the increasingly complex HPC systems and highly
diverse application workloads. In recent years, reinforcement learning
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Fig. 1. DRAS-CQSim overview.

has been successfully employed in various fields of decision-making
problems, such as gaming playing [1,2], self-driving cars [3,4], and
autonomous robots [5-7]. Reinforcement learning (RL) is an area of
machine learning that automatically learns to make decisions through
interaction with the environment.

Inspired by the successful RL examples, we present an open-source
HPC scheduling toolkit named DRAS (Deep Reinforcement Agent for
Scheduling) to automatically learn customized scheduling policies [8,
9]. DRAS with CQSim simulator packs together all the necessary com-
ponents, i.e., training environment, agents, and RL algorithms, to train
the scheduling policy model. Currently DRAS contains the two most
popular reinforcement learning algorithms, deep g-learning, and policy
gradient [10], and can be easily switch to other reinforcement learning
or traditional scheduling algorithms. Our objective is to enable system
administrators to quickly obtain the optimal scheduling policies for
their specific system and workload environment and easily compare the
performance of different scheduling policies.

2. Functionalities and key features

DRAS-CQSim, illustrated in Fig. 1, is a reinforcement learning em-
powered cluster scheduling framework. Rather than executing jobs on
real systems, DRAS uses the event-driven scheduling simulator named
CQSim [11] to train the agents. CQSim simulates the job scheduling
environment by reading the job arrival event from the job log and
advancing the simulation clock according to scheduling decisions and
job runtime information. CQSim consists of four main components: job
& queue manager, system module, logging module, and job scheduling
module. The job & queue manager maintains waiting jobs and manages
job lifecycle. System module simulates the status of the real systems.
Each node in the system is represented as an object and the system
module keeps track of each node’s availability information. The logging
module collects the finished job information, such as job submit time,
start time, and end time. The job scheduling module makes scheduling
decisions based on the queue status, system status, and historical
job information retrieved from queue manager, system module, and
logging module respectively. The job scheduling module provides an
interface to plugin a customized scheduling policy, such as FCFS (First
Come First Serve) and SJF (Shortest Job First). Our DRAS agents are
implemented as reinforcement learning based scheduling policies. Our
key features are:

« Easy-to-use: DRAS-CQSim requires Python, Tensorflow, and Keras to
be install. These prerequisites are easily satisfied on most systems. It
provides the concise command to run simulations and train agents.
Listing 1 shows an example to train DRAS agents. Argument n and
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j are required to run DRAS. Argument n specifies the file containing
the information of the simulated system. Argument j specifies the file
containing job traces. The Config folder encapsulates all details of
scheduling policies, simulated systems, neural networks, requiring no
configuration from the user for most use cases. DRAS provides sen-
sible default values, but users can customize configurations via two
approaches: directly modify the configuration files under Config
folder or add optional arguments in command.

Listing 1: Train DRAS agent command example

$ python cqsim.py —j job_log.swf
-n node_structure.swf ——is_training 1

+ High scalability: The simulator dynamically streams in the job traces
for simulation and streams out the finished jobs to disks. Hence, the
memory requirements to run the simulations do not linearly increase
with the size of job traces. This allows the simulator to run scalable
simulations with a limited amount of memory resources.
Hyperparameter tuning: Hyperparameters play a crucial role in model
performance. To find the optimal hyperparameters, one needs to try
various hyperparameter combinations. DRAS requires no source code
modifications to find hyperparameters. The customized hyperparam-
eters can be passed to source code through command arguments.
The configurable hyperparameters are ranging from learning rate,
mini-batch size, epsilon, epsilon decay rate, and discount factor. This
allows the developers to launch multiple simulations with different
hyperparameters in parallel.

Performance comparison: The output of the simulation is in Results
folder by default and it includes the job and system information
to evaluate scheduling performance. All simulations have the same
output format regardless of scheduling policies. This enables a fair
performance comparison of the different scheduling policies on the
same log.

Extensibility: Modules are independent of each other. The scheduling
policy plug-in only communicates with job scheduling module and
is entirely decoupled from the rest of the system. DRAS employed
the two most popular reinforcement learning algorithms, i.e., policy
gradient and deep q-learning. In addition, there are several traditional
scheduling algorithms, such as FCFS, SJF, and LJF (longest job first),
to choose from. New scheduling algorithms can be implemented by
creating a new scheduling policy plug-in and replacing the current
plug-in.

Rich debugging facility: We provides five-level logging options to
record various events to Debug folder. The most detailed logging
information captures sufficiently detailed information allowing the
developers to quickly identify the issues in their code. To achieve the
best performance, the developers can set debug_1v1 argument to 1,
which will record the minimum amount of information to reduce the
1/0 demand.

3. Impact

Reinforcement learning is a highly active research field. Advanced
reinforcement learning algorithms have been proposed in recent years
[12-16]. However, not all reinforcement learning algorithms are suit-
able for our HPC scheduling problem. A good solution is supposed
to achieve good scheduling performance, such as low average job
wait time and high system utilization, with the minimum scheduling
overhead. Typical HPC systems tolerate 10-30 s of scheduling de-
lay [17,18]. It is crucial to evaluate the performance and overhead of
new RL scheduling methods before deployment. Fortunately, our DRAS
design can easily embrace new RL algorithms.
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The underlying CQSim scheduling simulator has been successfully
supporting a number of projects in this field over a decade [8,19-30].
CQSim provides a unified platform to evaluate the performance of vari-
ous methods with minimal overheads. For example, [8,24] used CQSim
to explore advanced methods, such as reinforcement learning and plan-
based methods, to scheduling HPC jobs. The advanced scheduling
methods enable the HPC systems to achieve better user-level and
system-level performance. [19,22,28] utilized CQSim to explore various
factors that could affect the performance of HPC job scheduling, such
as job runtime estimate and system utilization. By identifying these fac-
tors, the system administrators could develop new policies to minimize
the impacts of these factors. [20,21,23,26] aim to find the scheduling
strategies to handle multiple resources, i.e., CPU, burst buffer, GPU,
and power. CQSim plays a crucial role in these multi-resource projects,
because CQSim simulator provides a virtual configurable platform to
identify the best scheduling policy to schedule specific resources on
a given system before deployment on real systems. [25,29,30] pro-
posed and analyzed novel job placement algorithms on HPC system
to improve the efficiency of job placement. Job placement problems
are difficult to be measured and conducted on real systems due to
the scale of the problems, CQSim provides an easy platform to eval-
uate the performance of various job placement solutions. Additionally,
CQSim is a mature community with many existing scheduling policies,
ranging from traditional utility-based policies, optimization methods,
to popular RL methods. This enables quick and accurate performance
comparison between the new and existing scheduling methods.

DRAS cannot only serve the research purpose, more importantly,
the trained RL model can directly deploy to real HPC systems. Thanks
to the decoupled scheduling policy design, the system administrators
could first train and evaluate the RL agent in the simulator using the
historical job logs. Once they obtain satisfactory performance, they can
transfer the trained RL agent to real HPC systems and schedule jobs in
real-time.

4. Conclusion and future work

In this work, we present DRAS-CQSim, a reinforcement learn-
ing based HPC scheduling framework, which aims to train RL-based
scheduling agents to outperform the traditional scheduling policies. In
summary, DRAS-CQSim implements two RL-based scheduling methods,
provides a standard platform to design and evaluate RL-based schedul-
ing methods, and enables fair comparison of different scheduling
methods. As further developments, we plan to implement and evaluate
other RL methods, such as A2C, SAC, and PPO, in order to find the best
RL-empowered method for HPC job scheduling.
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