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Abstract— A new method is discussed for the systematic
synthesis, design, and performance optimization of single-ended
varactor-based 2:1 parametric frequency dividers (PFDs) exhibit-
ing an ultralow-power threshold (Pgy). For the first time, it is
analytically shown that the Pgy,-value exhibited by any PFD
can be expressed as an explicit closed-form function of the
different impedances forming its network. Such a unique and
unexplored property permits reliance on linear models, during
PFD design and performance optimization. The validity of our
analytical model has been verified, in a commercial circuit
simulator, through the time- and frequency-domain algorithms.
To demonstrate the effectiveness of our new synthesis approach,
we also report on a lumped prototype of a 200:100 MHz PFD,
realized on a printed circuit board (PCB). Although inductors
with quality factors lower than 50 were used, the PFD prototype
exhibits a Py,-value lower than —15 dBm. Such a Py,-value is
the lowest one ever reported for passive varactor-based PFDs
operating in the same frequency range.

Index Terms— Auxiliary generators (AGs), frequency dividers,
linear-time-variant (LTV) system, nonlinear dynamics.

I. INTRODUCTION

N THE last decades, growing attention has been paid to

the development of new electronic components leveraging
strong nonlinear dynamics in order to surpass the limitations
of currently available devices and systems [1]-[12]. In par-
ticular, many research groups have looked at the possibility
of exploiting nonlinear phenomena to attain frequency syn-
thesizers (FSs) with record-low jitter levels [9], [13]-[20].
Only recently, one of the investigated approaches produced
a new CMOS-compatible component referred to as para-
metric filter (PFIL) [21], [22], which shows the unprece-
dented ability to act as a jitter cleaner without requiring the
use of a voltage-controlled oscillator (VCO). PFILs leverage
the complex nonlinear dynamics exhibited by varactor-based
2:1 parametric frequency dividers (PFDs) [23]-[26], placed
in nonautonomous feedback loops and directly connected at
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the output of a noisy FS. Despite the fact that a PFIL pro-
totype showing a large phase-noise suppression was recently
demonstrated [22], such a system is characterized by a power
consumption that is not suitable for low-power integrated
electronics. For this reason, new strategies to reduce the power
consumed by PFILs are required to enable their adoption in
low-power systems. This critical power limitation is mostly
determined by the minimum input power (Py) that makes
PFDs able to operate in their division regime. PFDs are
nonlinear circuits that rely on the adoption of modulated reac-
tances to activate a frequency-division mechanism. Because of
their strong nonlinear behavior, the design of PFDs, through
commercial circuit simulators, presents several challenges
that have prevented achieving PFDs exhibiting ultralow Py,-
values [16], [24]. For instance, as these devices can exhibit
abrupt changes in their electrical characteristics, the use of
time-domain (TD) algorithms to model their response is
only limited to PFDs using a reduced number of compo-
nents. This constraint impedes the attainment of optimized
PFD designs with minimum Py-values through TD-based
methods. In contrast, the detection of subharmonic oscilla-
tions through conventional harmonic-balance (HB) algorithms
shows severe limitations due to the absence of subharmonic
frequencies among those used to find the steady-state solution
of time-varying circuits. In order to circumvent these limita-
tions, several approaches were developed to detect the onset
of subharmonic oscillations in PFDs, through perturbation
methods [12], [27], [28] or through the iterative determi-
nation of the conversion matrix [29]-[32] associated with
any adopted variable reactance. Also, a recent effort has even
produced a new methodology to reconstruct the bifurcation
loci of nonlinear RF circuits without recurring to continuation
techniques [33]. Although several techniques are now available
to detect the presence of large-signal periodic oscillations in
different types of circuits, a systematic approach to design
PFDs with minimum Py, value is still to be fully developed.

Recently, while investigating the optimum design conditions
to build nonreciprocal RF filters [34] through a network
of modulated reactances, we discovered that it is always
possible to express the transfer function describing the oper-
ation of such systems as an explicit function of the static
equivalent impedance seen by each modulated component.
The discovery of such a unique property led to augmented
synthesis capabilities that allowed us to unveil the main design
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criteria and functionalities of a novel nonreciprocal RF compo-
nent, with optimized architecture, insertion loss, and isolation.
Here, we show that a similar property exists for PFDs, relating
the stability of large-signal periodic regimes to the different
static impedances forming their network. For the first time,
a closed-form expression of the Py-value exhibited by any
2:1 varactor-based PFD is derived and reported. In particular,
we show that this key performance parameter can indeed be
expressed as an explicit function of the impedances seen by
the variable reactance toward the PFD circuit ports and relative
to the input (or pump, foump) and output (fou) frequencies.
Therefore, we demonstrate that the minimization of Py, can
be tackled through standard impedance synthesis approaches,
thereby not requiring the adoption of perturbation-based or
iterative techniques that are often hard to use without increas-
ing the design and the simulation complexity. This complexity
can even be unsustainable when targeting ultrahigh-frequency
(UHF) and superhigh-frequency (SHF) PFDs, whose design
requires electromagnetic simulations to account and compen-
sate for the significant parasitics generally introduced by the
board layout. Due to the derived closed-form expression of
Pn, a new design guideline for ultralow threshold PFDs is
unveiled and reported, hence providing the means to finally
achieve low-power PFILs. To demonstrate the validity and
effectiveness of our findings, a 200:100 MHz PFD, using
lumped off-the-shelf components, was designed and built on
a printed circuit board (PCB). Even though this device uses
inductors with quality factors (Q) lower than 50, the engi-
neered strategic selection of its passive components renders it
able to achieve a Py,-value lower than —15 dBm. To the best
of the authors’ knowledge, this value is the lowest one ever
reported for passive PFDs operating in the same frequency
range [16], [24], [25], [29].

II. DETECTION OF SUBHARMONIC
OSCILLATIONS IN PFDs

The detection of parametric instabilities represents a signif-
icant challenge for most commercial circuit simulators [24].
In particular, a reliable identification of subharmonic oscilla-
tions would not only enable optimal performance in parametric
circuits but would also allow the prevention of drops in
spectral purity and power efficiency in other circuit com-
ponents, such as amplifiers and frequency multipliers [33],
[35], [36]. Several research groups have looked at possible
approaches to identify the generation of parametric oscillations
in RF systems. Some approaches use TD algorithms. However,
due to the abrupt functional changes occurring at points of
marginal stability, the use of TD-based detection methods to
analyze the operation of parametric circuits may lead to severe
convergence issues. These problems can be only overcome
through the adoption of finer time steps, which frequently
implies unsustainable computation times. For this reason,
their use can even be impossible when analyzing complex
systems, such as PFILs or more advanced PFD designs.
On the other hand, when using frequency-domain (FD)-based
algorithms, most commercial HB-circuit simulators cannot
detect the onset of oscillations occurring at frequencies that
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are submultiples of any applied input frequency. This is
due to the lack of subharmonic frequencies among those
used by these simulators to evaluate currents and voltages
in analyzed circuits. However, as FD methods can efficiently
characterize the behavior of any circuit with a much shorter
computation time than TD methods, enabling their use is
key to most efficiently designed PFDs. Therefore, different
approaches have been explored to achieve a reliable behavioral
prediction of parametric components and systems through HB
methods. In particular, in [37], a voltage—auxiliary generator
technique was developed to extract the Py-value attained by
varactor-based PFDs. This approach is based on the artificial
introduction of a voltage generator in series with an ideal
frequency-selective resistive filter and placed in parallel to the
adopted modulated reactance. This generator, which is charac-
terized by an excitation frequency equal to the divided output
frequency (fou), applies a low-voltage signal in the circuit,
thus forcing any HB simulator to consider a signal at fo
during its computation. The signal generated by the auxiliary
generator (AG) acts as noise, characterized by an impulsive
frequency distribution centered at fuy. Its use permits the
assessment of PFD stability, at fou, as the amplitude of the
main excitation voltage, at foump (i.€., 2fou), is increased.
Although this method allows the detection of any parametric
instability, it requires iterative simulation steps to find the
steady-state response of PFDs, after these systems transition
into their division region. As an alternative approach, a novel
detection technique has recently been developed [16]. This is
based on the introduction of a power auxiliary generator (pAG)
in the PFD output mesh and on behalf of the PFD output
load (R;). A pAG is characterized by an ideal voltage gen-
erator, at fou, in series with its internal impedance (Zg, set
to be equal to Ry). The available power (Pqy) of the pAG is
kept small enough to ensure that no perturbation of the circuit
behavior is generated as a result of its use. Thus, the intro-
duction of the pAG allows the inclusion of f,y in the list of
frequencies used by any HB simulator, without perturbing the
impedances seen by any modulated reactance in the circuit.
Furthermore, contrary to the AG, the use of a pAG avoids
reliance on optimizations to extract the steady-state response
of PFDs. In fact, when a pAG is used, the PFD output voltage
can be directly extracted from the HB-simulated voltage across
the pAG at f,,. Such a voltage automatically differs from
the originally set value, corresponding to Pqy, after the onset
of any subharmonic oscillation at fo,: in the circuit. This
unique feature enables the direct extraction of the PFD output
spectrum even for input power (P;,) levels that are higher
than Py,. However, in order to reliably use the discussed pAG
technique, very fine sweeps of specific controlling parameters,
such as Py, or fpump, must still be implemented to facilitate the
HB convergence to nontrivial dividing solutions. This feature
also makes the pAG technique nonideal when optimizing
PFD designs targeting ultralow Py-values. Hence, when the
minimization of Py is the main design objective, gaining
intuition about the different factors affecting its value is funda-
mental. To do so, one of objectives of this article has been to
compute a generic closed-form expression that can be easily
accessed through linear simulation algorithms to estimate
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Fig. 1. (a) Initially analyzed PFD design, which is formed by three LC
tanks (two static linear ones and one including a modulated varactor) and two
resistors mapping the source resistance and load resistance, respectively. This
PFD circuit is initially studied as a mean to extract an equivalent FD model
that can be used to investigate the behavior of more general PFD designs.
(b) More general PFD circuit model that includes three general impedances
(Z1-Z3) on behalf of the LC tanks used in (a). This model is adopted in
the FD analysis used in this article to analytically find Pg,. (c) Definition of
Z1-Z3 for the circuit shown in (a).

and minimize the Py-value exhibited by any PFD that is to
be designed.

A. Closed-Form Expression for Py,

We start our analysis from the simplified circuit shown
in Fig. 1(a). After selecting as state variables the charge
q1(1), g2(t), and g3(¢) in the capacitors C;—C3(t), respectively,
we write the system of Kirchhoff’s equations (1) that describes
the circuit behavior, when assuming zero prestored electrical
energy in all circuit components. Rg and R; represent the
source and load impedances and v;(f) is a continuous-wave
input signal with magnitude equal to V|

0i(1) = qlc(t) + qzc(t) + Rsq| () + RLg) (1)
1 2
+ Lig] (t) + L2g5 (1)
0i(1) = qlc(f) + 2((?) + Rsq(t) + L1ql/(t) + Lag(t)

q1(t) — q2(t) — q3(t) = 0. (1)

In (1), C5(t) can be replaced with its Taylor expansion (2),
computed around its average dc value (Cgc).
) 2)

In (2), € represents an arbitrarily small real parameter that is
used to control the perturbation order [38], [39] adopted at dif-
ferent stages of our analytical treatment. Also, the coefficients
C, and Cy; represent the first- and second-order coefficients
relative to the varactor C(v) characteristics, for the chosen
biasing voltage (Vq.). Note that (2) can be used to describe the
C (v) characteristics of any varactor technologies, including the
dc-biased transistor-based ones often preferred when designing
tunable integrated circuits. When targeting the computation
of Py, (2) can be truncated after its first-order perturbation

Cuqs(t C 1)?
1q3(t) gL d25]§( ) 4.
CdC Cdc

Cs(t) = Cdc(l +e
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term [13], [16] and (1) can be simplified as
t t
oty = 20 L 2O |y + Rugh)
C C
+ L1y (1) + Lag) (1)
q1(t)  q3(t)  Cueqs(r)? )
1) = + — + Rsq;(t
Dl( ) C] Cdc CC%C Sql()
+ L1g5 (t) + L3g3 (1)
q1(t) — q2(t) — q3(t) = 0. (3)

It is convenient to transform (3) to its equivalent FD rep-
resentation. However, in order to do so, it is necessary to
make proper assumptions about the spectral characteristics of
q1(t), q2(t), and g3(¢). Here, these three charge distributions
[labeled together as g;.3(f)] are assumed to be formed by
the superposition of two continuous-wave signals [qﬁ 2.3(t) and
q12.5(1)], respectively, characterized by a frequency (f) equal
to the generator frequency (fpump) and to its divided-by-two
value (fou). Although the g7, ;(7) signals are not originated
from any excitation source in the circuit, assuming their exis-
tence is crucial to introduce the small perturbative components
at foue that enable the detection of Py. Furthermore, even
though the mutual relationship between ¢ (), g»(¢), and g3(¢)
is determined by the circuit dynamics, the phase lag between
g/ (t) and g/ (¢) for any arbitrarily chosen one of these signals
[¢i(t)] can be strategically selected to lower the complexity
of our following FD analysis. In this case, it is convenient to
assume g5 (t) to be in phase with g1 (r) so that the Fourier
transform of q32(t) in (3) only produces real components.
We report in (4) the assumed distributions for ¢ (¢), g»(¢) and

q3(1)

q1(t) = aicos(wpt + ¢)) + bicos(w,t + ¢7)
q2(t) = axcos(wpt + ¢3) + bacos(w,t + ¢3)
q3(t) = azcos(wpt) + b3cos(wot). 4)

In (4), a1 23(t), bi2.3(2), ¢ﬁ2, and ¢{ , represent the magnitude
of g{,5(t) and g, ;(r) and the phase of ¢{,(z) and g{,(r),
respectively. Also, w, and w, are, respectively, equal to 27 fou
and 27 foump. Given the assumed charge distributions and
starting from (3), an equivalent unilateral HB problem can
be defined as in the following equation:

P 0 P 0
3= S B R0t + Ofwy)
+iRL(Q5w, + 0F)wp — L1(Qfew,” + QT w)?)
— Ly(Q5w,” + QY w,?)
Vi_0i+0f  03+07 <CaQ5(03+205)
2 C Cac 2C3,
+iRs(Qfw, + Qfw,) — Li(Qfw,” + Ofw,?)
— L3(Q5w,” + Qfw,?)
07+ 07 — 05— 07 — 05— 0) =0.
In (5), 07, 05, 0%, 09, 05, and Q represent the single-sided
FD components relative to ¢i(t), g2(t), and g3(¢t) for both
Spump and fou. For clarity, their definition is reported in the

)
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following equation:

1 _ig?
f,z = §a1,2e ¢1,25(f - fpump)

1
2= 5b12e70(f = fou)

1
Qf = §a35(f - fpump)

1
05 = §b35(f — fou)- (6)

Also, the terms ng and Q% Qg originate from the unilateral
Fourier transform of ¢3(¢)> when considering only the com-
ponents at fou and fpump, their definition is reported in the
following equation:

1
ng = Zbgé(f - fpump)

1
0508 = Za3b35(f — fou)- )

It is important to point out that (5) contains terms at both
frequencies of interest. Since the validity of (5) must be
ensured at both fou and fpump, €ach equation forming it can
be divided into two equations, collecting the various terms at
these two frequencies. Also, since we expect b3 to be small,
below threshold, ng can be neglected without altering the
validity of our analytical treatment. The resulting HB system
is reported in the following equation:

-1
Q‘{( — —iRsw, + Llwi)
Ci

-1
+Q§(a—iRLwa+L2w3)=0
-1
Q‘{( & — i Rsw, +L1w§)
1 €Cy0} )
+Q”(—+ + Lsw, ) =0
’ Cdc Cgc
01— 0;-05=0
E+Q” iR, + Lo
2 T E ¢ SO
+0? _—1—iRa) + L’ ) =0
2 5 LWp 20,
v 1
7‘ + Q{’( o iRy +L1w2)
1
+Q§(a+L3a}i)=0
C
07 — 07 - 0§ =0. (8)

From the inspection of (8), it can be observed that all
Fourier coefficients (Q9, 05, 0%, OV, 0%, and Q%) multiply
a complex term that includes the static equivalent impedance
seen from N1 (see Fig. 1) toward one specific branch of the
analyzed PFD. As discussed in [34], such an important feature
originates from the dependence of the conversion gain of a
modulated capacitor on the impedance that such a capacitor
sees from its insertion point and at the different frequencies
in the circuit. Consequently, (8) can be used to extract an
equivalent transformed two-tone unilateral HB system for
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Fig. 2. (a) Schematic (at fpump) of a generic PFD design with a two-port
network on its input branch. (b) Schematic of the equivalent network of (a),
at fpump, Which can be analyzed in order to find the Py-value of the PFD
shown in (a). As evident, this network relies on a one-port impedance (Z)
instead of [Z];n. Z; is the equivalent impedance seen by N1 toward the
generator in (a). Furthermore, an equivalent voltage generator with magnitude
Veq is adopted. Veq corresponds to the open-circuit voltage at fpump across
the output terminals of [Z];, in the PFD shown in (a). (c) Schematic of the
network to consider when extracting G, to find Veq from V; or vice versa.

PFDs exhibiting different and generically complex equivalent
impedances [Z,—Z3; see Fig. 1(b) and (c)]. In the following
analysis, the value of these impedances at fou and fpump Will
be indicated as Z®), z\®) z@ 7“7 7\ and 7\
In order to derive the transformed HB system, two important
aspects must be considered. First, Z3 must include the static
impedance of the modulated varactor. Also, the voltage (Veq)
to use in the transformed HB system coincides with the applied
input voltage (V;) only in the typical cases in which the
impedance used in the input branch of the PFD is a one-port
network, connected between the input port and N 1. In contrast,
when a two-port network ([Z];,) is used in the input branch
of the PFD [see Fig. 2(a)], a different excitation voltage must
be adopted [see Fig. 2(b)]. Such a voltage coincides with the
equivalent open-circuit voltage component, at fpump, extracted
at the output port of [Z];,. Also, its value can be found as
G, V), where G, is the open-circuit voltage gain at fump of the
equivalent two-port network formed by the series combination
of Rg with [Z];, [see Fig. 2(c)]. The resulting transformed
unilateral HB system for PFDs using generic Z;—Zj3 is reported
in the following equations:

—iQ5Z\" w, — i Q325" w, = 0

o ) " eC P no
012w, — 10370, + LD _ g
Cdc
01-0;-05=0 9
V w w
o012 - 10127, 0
V.

= - i0"2\w, — iz w, =0
O — 07 - 05 =0.

In the following, in favor of a more compact analytical
treatment, we limit our analysis to the common case in which
PFDs use one-port networks in their input branch (G, = 1).

(10)
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The system in (10) is then solved in terms of QF, OF, and Q7
when assuming V.4 equal to Vi [see (11)]. It is important to
point out that Q7, 0, and QY are the only components setting
the large-signal periodic behavior of PFDs

w2
0y = (@)
4Zeq" w,
. =iz
Q2 = (a),)
4Zeq" w,
. (wp)
—1 V]Z r
0 = "t (11)
4Zeq" 0,
In (11), zéf;") is defined as
z& = 707 4 2 (280 + 27y, (12)

Similarly, it is possible to compute Qf, Q9, and Qf from (9),
after replacing Qf with the expression reported in (11). It is
useful to rewrite the resulting set of equations in a matrix
representation as follows:

o1
[A]| 05| =0 (13)
03
where [A] is defined as
—iZ\ w0, —iZ™w, 0
. (wp)
VieCyZ,”
—iz™w, 0 — iz, - A2
4C4c* Zeg" @,
1 -1 -1

(14)

The matrix shown in (14) can be used to identify the minimum
input voltage magnitude Vy, activating the desired subharmonic
oscillation. In order to do so, it suffices to find the V;-
value that nulls the determinant of the system matrix shown
in (14). The expressions of the so found Vy-value, as well
as the corresponding Py, -value, are reported in the following
equations:

—4CLZG 2,

Vih = (15)
€Cy(2 + 7z
[Vin |
Py = . 16
th SRy (16)

In (15) and (16), Z{) is defined as

Zéa){)) — Zéwo)zéwo) + wau) (Zéwu) + Zgwo)) (17)

As evident from (15) and (16), Vi, and Py, are explicit func-
tions of all the impedance values characterizing the operation
of PFDs at both fou and fpump. Such impedances significantly
shape the stability region of PFDs, thus playing a critical role
in their design and performance characteristics. In particular,
the inspection of (15) permits the establishment of a general
guideline for the design of PFDs. First, (15) clearly shows
that low-capacitance varactors (low Cgy.), with a wide tuning
range (large Cy), are generally desirable to minimize Vi,.
In addition, (15) shows that a quadratic increase of Vi, is
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expected at increasing w,-values. Such an important feature
is mainly due to the increasing challenge of achieving large
voltage swings, across variable capacitors, at higher driving
frequencies. Ultimately, (15) provides an essential guidance
in the synthesis of Z;—Z3. In fact, this synthesis can be
tackled through conventional linear methods targeting the
minimization of (15), even for complex high-frequency board
designs that are generally sensitive to undesired parasitics. The
ability to design Z;—Z3 through conventional linear synthesis
approaches is essential to enable optimum and reliable per-
formance. Therefore, it is straightforward to verify that the
minimum Py, can be attained when four resonant conditions
are satisfied. These conditions suggest that the following holds.

1) The series of Z, and Z3 has to be designed to series
resonate at fo (i.e., Zé“’”) + Zgw”) — Re{Zé“’”)} =R)).
2) The series of Z; and Z3 has to be designed to series

resonate at fpump (i.€., Zg%) + Z;w”) R Re{zgwp)} _
R}).
3) Z; has to be designed to parallel resonate at

fou (e, Zi“’”) — 00).
4) Z, has to be designed to parallel
Spump (€., Zéw") — 00).

resonate at

In the listed conditions, Ry and R; represent the equivalent
resistances observed from N1 when looking toward the source
and the load, respectively. Even when assuming all compo-
nents to be lossless, R’S and R} can be different from R and
Ry . For instance, their value can be made strategically lower
through the adoption of impedance transformation stages,
as will be discussed in Section III. Therefore, when Z|— Z3
are optimally designed, Vi, becomes

4C2 R, Ry?

€ Cd '
When the use of a minimum number of lumped components
is needed in favor of the highest degree of miniaturization,
the optimum synthesis of Z;—Z3 can be tackled through the

strategic use of five electrical components (Cy, C», Ly, L,, and
L3). In particular, the following holds.

min __

= (18)

1) Z, can be realized as the parallel combination of an
inductor (L;) and a capacitor (C;), whose resonance
frequency matches the output frequency at which the
minimum Py, is desired.

2) Z, can be realized as the parallel combination of an
inductor (L,) and a capacitor (C;), whose resonance
frequency is equivalent to twice the output frequency
at which the minimum Py, is desired.

3) Z; includes the static portion (Cg.) of the varactor
electrical characteristics; it can be realized by adding
an inductor (L3) whose value is directly related to both
Z{*) and wa”) .

It is important to note that, by satisfying the four resonant
conditions, it is possible to prevent any undesired reduction
of the voltage swing across the varactor due to the current
at foump leaking through the output branch. Furthermore, any
leakage of the generated power at f,,: into the input source
circuitry is prevented. Also, note that Py is a function of
all the abovementioned circuit components. Among them,
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b) 1L L,
Zy
15T
Rg Cy 7, Z, Cy Ry;
3
= Coc =
L
Fig. 3. (a) Schematic of the 200:100 -MHz PFD used as a case study in this
article. The values of the adopted circuit components are: L; = 382.5 nH,

Ly, =742.5 nH, C; = 6.6 pF, C2, = 0.85 pF, L3 = 500 nH, Cy4. = 1.7 pF,
Cys = —0.3, and Cz = 0.02. (b) Schematic of Z|—Z3 for the same PFD.
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0.5, = FD
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fout(MHz)

Fig. 4. Black dot: Vi, values versus four numerically determined through
TD methods applied to the PFD shown in Fig. 3. Blue line: analytically
calculated Vy, values [see (15)] for the same PFD. Red line: Py, distribution
corresponding to the Vi, one plotted in blue.

C4c depends on the available varactor technology, whereas
Ly, Cy, Ly, and C, depend heavily on the chosen value of
L. Consequently, it is convenient to search for the optimal
values of L, C|, Ly, and C, that satisfy the listed resonant
conditions in terms of Cy4. and L3 in the following equation:

C 4Cdc
1 =

3(= 14 16L3Cyc f2,72)
Cr = — Cdc

3( — 1+ 4L3Cdcf02ut”2)
L 3( — 14+ 16L3Cdcf(in”2)
16Cdcf02ut7[2
L AL f?) (19)
16Cdcf02ul7[2

Despite the fact that a low Cy4. value would be required
to ensure the minimum Py, the use of ultralow-capacitance
varactors is not practical as it often leads to suboptimal
performance. This important feature is mostly determined by
the limited Q of available inductors. This limitation constrains
Li—L3 not to exceed certain values, in order to prevent
undesired and significant increases of R; and Rj. As a case
study, it is now instructive to extract Vy, through (15) for
a generic simplified PFD-design, formed by lossless inductors
and capacitors. The resulting value can then be compared with
the one numerically found through TD-based methods, in order
to confirm the validity of the reported analytical approach. The
chosen device, a 200:100-MHz PFD, as well as the adopted
L3, Cyq, Cy, and Cyy values, along with the corresponding
optimal Ly, Ly, Cy, and C, values, are reported in Fig. 3.
The estimated Vj;, values based on (15) are shown in Fig. 4,
together with some corresponding results for different values
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Fig. 5. (a) Phase portrait of the charge [¢3(7)] in the varactor of the analyzed
PFD (see Fig. 3), for V| = 0.037 V (thus below Vi,). This plot was computed
by assuming the varactor to be completely discharged at the moment (¢ = 0)
in which the input voltage is applied to the circuit. In red, the typical limit
cycle describing the dynamical behavior of the analyzed PFD after reaching
its steady-state periodic characteristics is also reported. (b) Phase portrait
of g3(¢) for Vi = 0.039 V (thus above Vi). This plot was computed by
assuming the varactor to be completely discharged at the moment (+ = 0)
in which the input voltage is applied to the circuit. After a limited number
of excitation cycles, the portrait exhibits a period that is twice the excitation
period. Consequently, once the PFD reaches its steady-state periodical regime,
the trajectory described by the system (see the red line) assumes a different
shape from conventional limit cycles.

of fou-values (keeping fpump = 2 fou), Obtained through TD
methods. Clearly, the Vj;, values derived through numerical TD
methods match very closely the analytically predicted ones,
thus demonstrating the validity of our analytical findings. The
Py values corresponding to the Vi, values found through (15)
are also shown in Fig. 4. As is evident, when neglecting
the ohmic losses introduced by each adopted element and
when properly selecting the different components forming its
network, the investigated PFD can exhibit a Py, value (for
four = 100 MHz) that is lower than —24 dBm, corresponding
to Vi, of 0.038 V. To further verify the substantial and desired
change in the dynamical behavior of the analyzed PFD, for
V1 being slightly higher or slightly lower than Vj;,, we report
the phase portraits [40] (see Fig. 5) relative to ¢3(t) and
derived through TD methods, when assuming that fo, equals
100 MHz (i.e. foump equals 200 MHz) and for V| equal to
0.037 and 0.039 V, respectively. As is evident, substantially
different behaviors characterize the operation of the analyzed
PFD for the two investigated V| values. In particular, for V;
equal to 0.037 V, the portrait of g3(t) shows the existence
of a limit cycle. This cycle maps the evolution of g¢;(¢)
and gj(t) as time evolves from the origin of the reference
system (f = 0) and zero prestored charge exists in the
different capacitors. In contrast, for V; equal to 0.039 V
(thus being higher than the expected Vi value), the por-
trait exhibits a substantially different behavior. In fact, once
the PFD reaches its steady-state periodic operational regime
(see the red lines in Fig. 5), the portrait exhibits twice the
period that exhibits in the former case. Such a unique feature
maps (in the TD) the origin of a period-doubling mechanism
that marks the existence of a subharmonic oscillation in the
circuit. The phenomenon of period doubling can also be
directly observed by extracting the Poincaré map (PM) [41]
(see Fig. 6). This tracks the radius of the limit cycle of
g3 r = (@3t +nT)> + (g4t + nT))/w,)) 2, where n
is an integer number) versus V, for consecutive returns (incre-
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Fig. 6. PM relative to the charge g3(¢) versus V| for the PFD shown

in Fig. 3. As is evident, for V;-values that exceed the same Vi,-value that was
analytically found through (15), the analyzed PFD undergoes a change in its
dynamical characteristics that results in the activation of a period-doubling
mechanism. In the inset, the spectrum of the output power for the same PFD
shown in Fig. 3 is reported for Vj-values that are right below and above Vi,.

mental n-values) on the map. This can be done by sampling the
dynamical steady-state large-signal TD response of the ana-
lyzed PFD with a sampling rate that is equal to the excitation
frequency while assuming a continuously increasing driving
voltage. As shown in Fig. 6, for V| < Vg, the PM shows a
continuous trend with respect to V. Such a unique feature
is a clear indication that ¢3(¢) has a period that is equal to
1/ fpump- In contrast, for V| > Vy,, the PM exhibits two separate
lines. The existence of two consecutive lines in PMs is a clear
indication of the different g3 values that the system exhibits
(above threshold) at the end of consecutive sampling periods.
This dynamical feature is also used often to numerically
identify, through TD methods, the presence of period-doubling
regimes in nonlinear dynamical systems. Instead, in order
to confirm that the analytically derived Py values closely
match the ones found with a commercial circuit simulator
through the pAG technique (see Section II), we compared the
distributions of Py, versus Lj3 extracted, both analytically and
through the application of the pAG technique, for the circuit
in Fig. 3. As can be observed from Fig. 7, the distribution
of Py, versus Ls, derived through the pAG technique, agrees
with the one analytically calculated using (16). This further
demonstrates the validity of our analytical findings. It is worth
mentioning that in order to extract the simulated data points
shown in Fig. 7 (see the red points), a Py,-sweep of 6000 steps
had to be configured for the HB simulator to converge to the
desired nontrivial solution. This constraint can lead to design
times, for optimized high-frequency PFDs, which can exceed
days. Ultimately, we analytically studied the dependence of
Py, on the Q value that can be exhibited by practical inductors
forming the circuit shown in Fig. 3 (see the inset in Fig. 7). For
simplicity, in order to do so, we assumed that all the inductors
were exhibiting the same Q. Interestingly, our investigation
revealed that ultralow Py,-values can indeed be attained, even
when using inductors with Q-values that are only around 50.

B. Evaluating the Response of PFDs for P;, > Py

In Section II-A, a closed-form expression was found to eval-
uate the threshold voltage and power (Vy, and Py) activating
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Fig. 7. Analytically found trend (blue line) of Py, versus L3 and simulated

Py, values through the pAG technique (red dots), for a limited set of L3-
values relative to the PFD described in Fig. 3. It is important to point out
that the HB simulator adopted to estimate Py, through the pAG technique has
been configured to include 25 harmonics of foy, in favor of a more accurate
prediction of the PFD response above the threshold. In the inset, a contour
plot is reported, simultaneously mapping the impact on Py, of L3 and the
quality factor (Q), which is considered to be the same for all the inductors
used in Fig. 3.
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Fig. 8. (a) Solution amplitudes of the possible numerically found voltage

(Vout) components (at fou) across the load resistance R;, of the PFD shown
in Fig. 3. Note that three different V¢ distributions (relating to the solution
sets S1-S3) are possible. (b) Real part of the eigenvalue (o) of [J] for S1 and
S2. The a value of S3 is constant and positive for all Vj-values, thus being a
clear indication that S3 is not a stable solution for the system. For this reason,
its distribution with respect to V; has not been included here.

a 2:1 subharmonic oscillation in varactor-based PFDs. In this
section, the procedure to analytically estimate the complete
response of PFDs, below and above the parametric threshold,
is discussed and applied to the PFD circuit shown in Fig. 3.
The assessment of the PFD response, after the occurrence of a
bifurcation, requires solving the systems in (1) and (2) without
neglecting any second-order perturbation term proportional
to €2. This increased complexity renders the solution of these
systems only computable through numerical methods. How-
ever, some important features can still be identified. In fact,
three sets of Qf, 09, and Qf are found to be potential
solutions for the new HB system that includes the higher order
terms. One set (S1) is representative of the trivial solution
(07 = 09 = 0% = 0), thus describing the evolution of
the PFD when no input signal at f,, exists in the circuit
and when assuming V; < V. Another set (S3) shows the
quasi-uniform and not-nulled distributions for Qf, 09, and
Q% versus the magnitude of V;. Finally, the last solution
set (S2) corresponds to more complex distributions for Qf,
03, and Qf versus the magnitude of V), exhibiting nulled
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values for V| approaching Vy,. The amplitudes of the voltage
components across Ry (Vout), at four, for solutions S1-S3 were
analytically determined and plotted versus the input power
(Pin) at fpump, for the investigated PFD shown in Fig. 3. Fig. 8
shows the extracted trends of V,, versus P, for S1-S3. Due to
the existence of three possible steady-state periodic solutions
(S1-S3), the complete response of the analyzed PFD can only
be determined analytically by evaluating the stability of each
solution while varying the magnitude of the applied input
signal. In order to do so, matrix A in (14), now including the
higher order terms, can be linearized around each solution in
order to evaluate the evolution of the system in the presence
of small perturbations acting on the steady-state amplitudes
of Qf, 0F, and Qf relative to the same solution. It is worth
pointing out that the resulting linearized matrix represents a
Jacobian matrix ([J]) that provides the means to investigate
the stability of any possible solution at fo,. This can be done
by looking at the sign of the purely real eigenvalue (1) of [J]
(see Fig. 8). In particular, by looking at the real part () of
A, it is straightforward to realize that S3, for the PFD shown
in Fig. 3, corresponds to a positive and constant a-value for
any V;-value, thus representing an unstable fixed point for the
system. In contrast, for both S1 and S2, the sign of o changes
when V| approaches Vy,. In particular, S1 represents the only
stable solution for V| < Vi, whereas S2 represents the only
stable solution for V; > Vy,. In other words, the trivial solution
is stable for V; < Vy,, whereas the dividing solution is stable
for V| > Vy. It is also worth pointing out the fact that S1 and
S2 flip their stability at the same V;-value, which suggests
that the rising of the subharmonic oscillation occurs through
a supercritical bifurcation. For this reason, no abrupt jump
is expected in the PFD frequency response, as its operation
involves the transition from one operational regime to the
other. As evident, the Vy, value extracted from Fig. 8 matches
the one we found through both the observation of the phase
portraits (see Fig. 5), the analysis of the PM (see Fig. 6), and
the use of the pAG technique with a commercial HB simulator
(see Fig. 7). After determining the stability of S1 and S2,
it is easy to estimate the output power of the PFD in Fig. 3
when this is driven at foump = 200 MHz and when P, is
progressively increased to activate the division process in the
circuit. In Fig. 9, we report the PFD output power (Poy,
delivered to R;) versus Py, for the PFD shown in Fig. 3.

III. LUMPED REALIZATION OF A 200:100-MHz PFD

In Section II1, a closed-form expression for Py, was derived.
In order to experimentally verify the validity of our findings,
we designed a 200:100-MHz PFD using lumped components
available on the shelf. The PFD was assembled on a PCB
made of FR4 and its performance was characterized using
conventional RF measurement equipment. A detailed descrip-
tion of the adopted design flow, as well as the analysis of our
measured results, is discussed in the remainder of this section.

A. Design of a 200:100-MHz PFD

The design of the reported PFD targeted the minimization
of Py, at a chosen f,, value of interest. In this case, 100 MHz
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Fig. 9.  Numerically extracted output power (Poy) for the PFD shown
in Fig. 3. The plot was generated with the assumption of a white noise power
spectral density in the circuit, resulting in —80 dBm of power for Py, < Py
(when the trivial solution is the only stable one for the circuit).

Transformation
Network

Output

I
]
Cmatching
Lmatching
R,
=
ZTrans

Fig. 10. Schematic of the PFD we built in this article. The circuit is designed
to be driven by a 50-Q generator and to be attached (at its output) to a 50-Q
output load (Ry).

was chosen as the desired output frequency. Fig. 10 shows a
schematic of the PFD architecture that we selected for the
experimental validation. This PFD design relies on the five
components [L;, Ly, Cy, C2, and Lj3; see (19)] used in the
simplified PFD circuit in Fig. 3. However, two additional
components were added: a capacitor and an inductor. These
components, labeled as Cyarching and Liarching, Were chosen
so as to form the equivalent lumped representation of a
quarter-wave transformation stage at fo,. It is important to
point out that the adoption of this stage is key to lowering
the Py value that can be attained through only the use of
the other five components. In fact, the use of this stage
reduces the impact of the output load (R;) on the stability of
the PFD, by converting R; to an impedance (Z7,4,5) Whose
value, at foy, is real and lower than 1 Q. In other words,
the use of the transformation stage permits the reduction of
R}, thus minimizing V™" and, consequently, Py [see (16)
and (18)]. Moreover, the adoption of a transformation network
relying on a series capacitor permits the use of Craiching
also as a dc blocker. It is worth mentioning that due to
the adoption of the transformation stage, the varactor sees
a low resistance (R}) at fu, that closely matches the one
seen by each varactor in previously reported differential PFD
topologies [26], [42]. However, since such a low R; value
is attained without requiring two identical varactors (thus
twice the Cy. value) simultaneously connected to the input
source, the reported PFD can reach lower Pg-values than its
corresponding differential counterpart. However, differential
topologies inherently exhibit a large spectral purity, which
can only be attained by single-ended configurations when
these rely on high-order and high-Q passive networks. The
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Fig. 11.  3-D plot mapping the distribution of Py, versus L3 and Cgyc, where
Q equal to 50 was assumed for all the inductors in the circuit.

selected values for Cyuuiching (227 pF) and Lyasching (11.3 nH)
were chosen so that the lowest Z7,.,s value could be attained
when considering the typical Q values exhibited by available
inductors on the shelf. It is worth mentioning that because of
the more dispersive behavior of Z, with respect to the one
of the simplified circuit in Fig. 3, the resonant conditions that
must be satisfied in order to minimize Py, lead to different
expressions for the optimal values of L;, L,, C;, and C,
versus L3 and Cz. However, such differences are small and,
consequently, practically negligible. Furthermore, the optimal
component valuessignificantly depend on the maximum Q
that can be exhibited by L; and L, in practice. Therefore,
after finding a commercially available hyperabrupt varactor
(model: Skyworks SMV1405), characterized by Cgy. values
ranging from 1 pF to 10 pF and capable of exhibiting high C,
values [see (2)], we analytically studied the distribution of Py,
[see (16)] versus L3 and Cgc. In order to do so, the C,; value
exhibited by the selected varactor was expressed in terms of
Cg4c. This simplification made C4. the only required varactor
parameter to extract Py,. Moreover, the derived Py, distribution
was found after selecting the L, Ly, C;, and C, values that
satisfy the resonant conditions discussed in Section II-A, for
each analyzed set of L3 and Cg. values. In Figs. 11 and 12,
we report the computed trend and the contour plot of Py
versus L3 and Cyq. when assuming Q of L, L, and L3 to
be 50. This value corresponds to the best quality factor that
we could find for off-the-shelf inductors that are in the same
range as those required to optimally design a 200:100-MHz
PFD relying on ideal lossless components to work (see Fig. 3).
As is evident, a monotonically decreasing Py, is attained as
Lj is increased. However, the adoption of L3 values larger
than 800 nH would require C to be lower than 0.5 pF. This
design constraint would expose any PFD built on a PCB to
the risk of exhibiting performance that are too sensitive to
unmodeled variations of the actual C, value. Also, because
of the limited availability of surface-mounted commercial
inductors, simultaneously showing large inductance, high-Q
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Fig. 12.  Contour plot mapping Py, versus Lz and Cgc, assuming that Q

of all the inductors is 50. The range of these two parameters in which no
division is possible is also identified.

values (exceeding 50), and a self-resonance frequency higher
than the maximum frequency of interest (200 MHz), the use
of excessively large L3 values is also not practical. Based
on these limitations, we selected the C4. value (1.7 pF) that
minimizes Py, given the largest suitable Lj3-value that we
could find (500 nH). By looking at the C(v) characteristic
of the chosen varactor, this optimal Cg. value permits to
easily find the corresponding dc voltage (1.6 V) that must
be used in the actual PFD circuit to bias the varactor. Also,
after selecting L3, we looked at the sensitivity of the optimal
Cq4c value as we vary Q exhibited by L;—L3, ranging from
10 to 50. As is evident from Fig. 13, we found the optimal
Cqc value to be only slightly dependent on Q of the adopted
inductors, thus being almost immune to nonidealities that
often make commercial inductors exhibit different Q values
from their nominal values. In summary, the values that we
selected for the experimental demonstration are 382.5 nH,
742.5 nH, 6.6 pF, 0.85 pF, and 500 nH for L, L,, Cy, C,,
and L3, respectively. Based on these values, we searched for
commercial components with the closest nominal behavior to
the desired ones. Then, we assembled a distributed model of
the board layout using microstrip components. After building
this model, we minimized the impact of the board layout
on Py. In order to do so, we developed an ad hoc design
framework that allows for the extraction of the values of
z\), zed) zled 7“0 78 and z\” directly from the
distributed model. These values are then used and automat-
ically updated during an optimization routine targeting the
minimization of (16), which is used as the goal function.
During this optimization step, we also considered the available
S-parameters for the lumped components that we selected.
We report, in Fig. 14 (see the green line), the analytically
derived distribution of Py, versus fou, extracted through (16)
after determining the best layout geometry and under the
assumption that the input frequency is always twice the fou
value. The same distribution was also evaluated using the
PAG technique by replacing the optimized distributed model
for the board with its actual electromagnetic simulated RF
model (see the red points in Fig. 14). It can be seen that

Authorized licensed use limited to: Northeastern University. Downloaded on June 14,2021 at 11:34:33 UTC from IEEE Xplore. Restrictions apply.



3506

0.
Py, (dBm) _10|
-20.

Fig. 13.  3-D plot mapping the distribution of Py, versus Cqc and Q, when
assuming L3 to be 500 nH (thus the value used in our built PFD), and all the
inductors showing the same Q.
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Fig. 14.  Simulated distributions of Py, versus foue for the PFD built in this
article. In green, simulated values extracted through the reported analytical
method once this is applied, directly in a circuit simulator, to the PFD built
in this article. In red, simulated values extracted through the pAG technique.
In blue, measured Py, values for the same frequencies considered during our
simulations. In order to extract both the simulated and the measured data,
Spump Was kept equal to 2 fou for all investigated fou values.

TABLE I

COMPARISON BETWEEN THE MAIN PERFORMANCE CHARACTERISTICS
OF THE PFD DEVELOPED IN THIS ARTICLE WITH PREVIOUSLY
REPORTED PASSIVE PROTOTYPES, ALSO OPERATING WITHIN THE

UHF RANGE
Py, (dBm) Jour (MHz) Implementation
This work -15 100 lumped
[16] 10.5 226.7 lumped
[25] 6 315 lumped
[43] -6.5 1277 lumped
[42] 4 850 hybrid

both simulation approaches exhibit closely matching trends
and predicted minimum Py, values lower than —12.5 dBm at
fout €qual to 100 MHz.
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Fig. 15. Measured (blue line) and simulated (red line, using the pAG

technique) distributions of Poy: versus Pj, for the PCB built in this article.
For comparison, the simulated distribution of Py, versus Pi,, without the
transformation stage, is shown in green. In order to reach the highest accuracy,
the HB order in our simulations was set to 25. As is evident, the measured
and simulated Py, values (see the blue and red points, relative to foy equal to
100 MHz, in Fig. 14) match closely the value we found through our analytical
method applied directly during the PFD design in a commercial HB circuit
simulator (see the Py value, at fou equal to 100 MHz, for the green line
in Fig. 14). Inset: photograph of the fabricated PFD.

B. Measured Results

The designed PFD was built on a PCB made of FR4
(see the inset of Fig. 15). An external bias-T (model Inmet
8800SMF3-06) was used to simultaneously drive the PFD
input port with an RF signal and with a dc voltage (1.6 V)
required to bias the varactor. The output performance of the
PFD, terminated on a 50-Q resistive load, was characterized
using conventional RF bench-top measurement equipment.
In particular, first, we extracted the measured Py, values for
Jout ranging from 90 to 110 MHz (the same range exploited
during the PFD design phase; see Fig. 14). As is evident from
Fig. 14, the measured Py values match closely the corre-
sponding values extracted, in a commercial circuit simulator,
through our new analytical approach and through the adoption
of the pAG technique. A minimum Py, equal to —15 dBm was
measured at the targeted designed fo, value (100 MHz). To the
best of the authors’ knowledge, such a low Py, value is the
lowest one ever reported for passive PFDs operating within
the same frequency range (see Table I). Then, we extracted
the PFD output power (P,,) at the targeted output frequency
(100 MHz). In order to do so, we used two synchronized vector
network analyzers (VNAs). One network analyzer (Keysight
PNA N5221A) was set up to produce the pump signal at
200 MHz and to generate a slow P, sweep from —25 to
0 dBm. The other VNA (Keysight ENA E5071C) was used
to track the received power at 100 MHz. The measured
distribution of P,y versus Py, (see Fig. 15) closely follows the
predicted distribution found through the pAG technique. It is
worth mentioning that a much higher Py value would have
been attained without the use of a transformation stage (see
the simulated green trend in Fig. 15). To visualize the output
response of the PFD after the activation of the division process,
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Fig. 16. Measured waveform of the output voltage of the PFD, extracted
from an oscilloscope (Keysight DSOX6004A) when fou: was set to 100 MHz

(i.e., fpump = 200 MHz) and P;, was chosen to be —2 dBm, thus higher
than Py,.

the measured TD waveform of its output voltage across Ry, is
also shown in Fig. 16, for a P;, value (—2 dBm) exceeding
Py Under this operating condition, the presence of an output
signal with a strong frequency component at 100 MHz can be
easily observed.

IV. CONCLUSION

In this article, a new systematic synthesis approach is
discussed to enable the design of varactor-based 2:1 PFDs,
exhibiting ultralow-power thresholds (Py,). For the first time,
it is analytically shown that the Py, value exhibited by PFDs
can be expressed as a closed-form explicit function of the
impedances seen by the variable capacitor, at the input fre-
quency and at the main output frequency of operation. This
unique feature permits the creation of optimum PFD designs,
without relying on time-consuming and memory-intensive
simulation approaches, but only through conventional design
and optimization techniques that are frequently used in linear
circuits. Due to the development of the reported analytical
framework, we formulate new optimal design criteria for
PFDs requiring ultralow Py, values. In order to experimentally
validate our analytical findings, a 200:100-MHz PFD, relying
on commercially available lumped components, was designed
and assembled on a PCB. Due to its engineered design
and despite the relatively low Q exhibited by its inductors,
the fabricated PFD exhibited a record-low Py value equal
to —15 dBm. The design approach presented in this article
opens exciting scenarios for the development of even other
parametric components. In particular, the capability to obtain
ultralow threshold PFDs will facilitate the future chip-scale
development of PFILs, thus enabling their use to reduce
the jitter level exhibited by available FSs in low-power RF
transceivers.
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